
LightRW: FPGA Accelerated Graph Dynamic RandomWalks
Hongshi Tan

hongshi@comp.nus.edu.sg
National University of Singapore

Singapore

Xinyu Chen
xinyuc@comp.nus.edu.sg

National University of Singapore
Singapore

Yao Chen
yaochen@nus.edu.sg

National University of Singapore
Singapore

Bingsheng He
hebs@comp.nus.edu.sg

National University of Singapore
Singapore

Weng-Fai Wong
wongwf@nus.edu.sg

National University of Singapore
Singapore

ABSTRACT
Graph dynamic random walks (GDRWs) have recently emerged
as a powerful paradigm for graph analytics and learning appli-
cations, including graph embedding and graph neural networks.
Despite the fact that many existing studies optimize the perfor-
mance of GDRWs on multi-core CPUs, massive random memory
accesses and costly synchronizations cause severe resource un-
derutilization, and the processing of GDRWs is usually the key
performance bottleneck in many graph applications. This paper
studies an alternative architecture, FPGA, to address these issues
in GDRWs, as FPGA has the ability of hardware customization so
that we are able to explore fine-grained pipeline execution and
specialized memory access optimizations. Specifically, we propose
LightRW, a novel FPGA-based accelerator for GDRWs. LightRW
embraces a series of optimizations to enable fine-grained pipeline
execution on the chip and to exploit the massive parallelism of
FPGA while significantly reducing memory accesses. As current
commonly used sampling methods in GDRWs do not efficiently
support fine-grained pipeline execution, we develop a parallelized
reservoir sampling method to sample multiple vertices per cycle
for efficient pipeline execution. To address the random memory
access issues, we propose a degree-aware configurable caching
method that buffers hot vertices on-chip to alleviate random mem-
ory accesses and a dynamic burst access engine that efficiently
retrieves neighbors. Experimental results show that our optimiza-
tion techniques are able to improve the performance of GDRWs on
FPGA significantly. Moreover, LightRW delivers up to 9.55× and
9.10× speedup over the state-of-the-art CPU-based MetaPath and
Node2vec random walks, respectively. This work is open-sourced
on GitHub at https://github.com/Xtra-Computing/LightRW.

CCS CONCEPTS
•Hardware→Hardware accelerators; • Information systems
→Query operators; •Computer systems organization→Data
flow architectures; • Mathematics of computing→ Graph algo-
rithms.

KEYWORDS
FPGA accelerator; parallel weighted reservoir sampling; random
walk on graphs.

𝒆 𝒘𝒆

A-B 3

A-C 1

A-D 4

weight calculation

D
R

A
M

D
R

A
M initialization

D
R

A
M generation

D
R

A
M

weighted random sampling

𝒖 𝒘𝒕

B 4

C 9

D 1

𝓕(𝒘𝒆, 𝒕)

C

A-B A-C A-D

draw

CA

D

B

F

E
1

4

3

Graph 𝑮

edge weight sampling weight

Figure 1: Processing flow of GDRW on CPUs.

1 INTRODUCTION
Random walk on graphs has been widely adopted by many applica-
tions, such as the recommendation system [23], bioinformatics [60],
and network analysis [39]. Due to the ineffectiveness of traditional
random walk algorithms (i.e., uniform random walk and Deep-
Walk [44], etc.) in extracting temporal relations with structural
information of the graph, graph dynamic random walks (GDRWs)
have attracted increasing attention [19, 25, 26, 42, 58, 59]. For ex-
ample, Node2Vec [25] has been widely used to generate graph
embeddings for downstream machine learning models [42], and
MetaPath [19] plays an important role in knowledge graph analyt-
ics [66]. However, due to inherent random memory accesses and
high computational complexity, GDRWs generally dominate the
overall execution time of these applications. For example, the state-
of-the-art approach, ThunderRW by Sun et al. [54], showed that
Node2Vec [25] can take up to two hours on a graph of 41 million
vertices and 1.21 billion edges on a modern multi-core machine.
Due to the explosive growth of graph data and the rising popularity
of GDRWs in numerous applications, there is an urgent need to
accelerate the performance of GDRWs.

Extensive efforts [54, 65] have been made to optimize GDRWs
on multicore CPUs. For example, Yang et al. [65] explore the paral-
lelism of GDRWs in a distributed environment by efficient graph
partitioning techniques. ThunderRW [54] develops a stage design
and interleaves memory accesses from massive queries for high
memory efficiency and achieves state-of-the-art performance on
modern CPU hardware. Random walk queries are processed con-
currently with multiple threads, and each thread handles differ-
ent queries with the execution flow illustrated in Figure 1. For a
query starting from vertex A in graph G to move one step forward,
weight_calculation traverses all neighbors of A at the start and
then calculates the sampling weights using an application-specific
weight update function F , e.g., the sampling weights of vertex
B, C and D ({4,9,1}) are calculated by F with the corresponding
edge weights {3,1,4} and the current state 𝑡 . Then, weighted random

ar
X

iv
:2

30
4.

07
00

4v
2

 [
cs

.A
R

]
 2

1
A

pr
 2

02
3

https://orcid.org/0000-0002-3243-6875
https://orcid.org/0000-0003-1951-5015
https://orcid.org/0000-0002-5798-2282
https://orcid.org/0000-0001-8618-4581
https://orcid.org/0000-0002-4281-2053
https://github.com/Xtra-Computing/LightRW

Hongshi Tan et al.

sampling is conducted in two procedures. First, initialization builds
an indexing table from the sampling weight, which describes the
distribution of all neighbors and is stored in global memory. Sec-
ond, generation generates uniformly distributed random samples
to index the corresponding vertex. Then, the indexed vertex C is
marked as the starting vertex for the next step. This process is
repeated until it satisfies a specific termination condition, such as a
target length being reached.

Despite those existing studies and optimizations for multi-core
architectures, there are fundamental limitations in microarchitec-
ture level to implementing GDRWs on multicore CPUs efficiently.
Our comprehensive profiling on ThunderRW shows that even with
advanced optimizations such as explicit memory prefetching, 59.9%
of execution cycles are still stalled bymemory accesses, with a cache
miss ratio as high as 58.2% (see more details in Section 2.3). The
irregular nature of graphs [49] results in GDRWs having extremely
poor spatial and temporal locality, rendering the multicore’s com-
plex cache hierarchy ineffective. Moreover, GDRWs on multicore
architectures have to be executed in stages, with barriers required
at the end of each stage. Intermediate data need to be written to
DRAM after the execution of one stage and read again for the next
stage.

This paper studies an alternative architecture, FPGA, to address
those issues in GDRWs. Different from themulticore CPUs that have
fixed architectures with a deep cache hierarchy, FPGAs have the
flexibility to customize hardware logic, which allows us to explore
novel execution schemes such as pipeline execution on chip with
fine-grained inter-stage communication (referred to herein as fine-
grained pipeline execution) to minimize data movement overhead
and design specialized memory engines to handle random memory
accesses in GDRWs efficiently. Specifically, we propose LightRW,
the first FPGA-based acceleration framework for efficient GDRWs.
LightRW creates a fully pipelined and parallelized FPGA-based
accelerator system for GDRWs. The major contributions of our
LightRW framework are as follows:

• We design a parallelized Weighted Reservoir Sampling (WRS) on
FPGA, which is able to process multiple vertices per cycle and
enables fine-grained communication between stages so that the
different stages are executed in parallel and communicate within
the chip without retrieving the DRAM.
• We propose two memory efficient techniques to handle notorious
random accesses to neighbors of vertices: 1) a degree-aware cache
keeps high-degree vertices associated data (e.g., address of their
neighbors) into on-chip memory at runtime, and 2) a burst access
engine adjusts the burst access size to minimize redundant data
access for higher memory bandwidth utilization.
• Our evaluation of LightRW on a server with an FPGA board
attached to the PCIe interface outperforms the state-of-the-art
CPU-based implementation [54] by up to 9.55× and 9.10× on
MetaPath [55] and Node2Vec [25], even with the consideration of
the data transfer overhead over PCIe, respectively. Furthermore,
LightRW is 15× ∼ 26× more power efficient than the state-of-
the-art CPU-based implementation.

The rest of the paper is organized as follows. We introduce the
background and motivation in Section 2. Section 3 presents the
overview of LightRW, including the proposed pipelined GDRW

algorithm and hardware architecture.While Section 4 illustrates the
design of the parallelWRS sampler, Section 5 introduces two GDRW
specific memory optimizations. We present the experimental results
in Section 6 and related works in Section 7. This paper is concluded
in Section 8.

2 BACKGROUND AND MOTIVATION
In this section, we introduce the background of graph dynamic
random walks, discuss the state-of-the-art CPU-based solutions
and motivate our FPGA-based accelerator design according to the
analysis on performance bottlenecks of CPU-based solutions.

2.1 Graph Dynamic RandomWalks
Let 𝐺 = {𝑉 , 𝐸} represent a directed graph with |𝑉 | vertices and |𝐸 |
edges. 𝑁 (𝑢) is refered to a set of all neighbors of 𝑢, and |𝑁 (𝑢) | be
the total number of neighbors (the degree). Let𝑑+𝑢 and𝑑−𝑢 be the out-
degree and in-degree of 𝑢 respectively The undirected graphs are
supported by representing each undirected edge with two directed
edges with the same two vertices. The edge between the vertex 𝑢
and the vertex 𝑣 is represented as (𝑢, 𝑣), and the corresponding edge
weight is represented by 𝑤∗𝑢,𝑣 , in the case of unweighted graphs,
𝑤∗𝑢,𝑣 = 1.

A random walk on a graph begins at a starting vertex and moves
to a randomly selected neighbor of the currently residing vertex
at each step. Based on how the edge (or the neighbor) is selected,
random walks are further categorized into unbiased or biased ones.
The transition probability of an edge is defined as the probability of
the corresponding edge being sampled, and we refer to the unnor-
malized form of the transition probability as the sampling weight.
For unbiased random walks, the transition probability is uniformly
distributed, while for biased random walks, the transition probabil-
ity is generally related to the edge weight. Furthermore, for biased
random walks, if the edge weights remain constant throughout the
process, they are called static random walks. In contrast, graph dy-
namic random walks (GDRWs) take into account the walker’s state
by updating the edge weights at each step to recalibrate the tran-
sition probability. As in static random walks, per-edge transition
probabilities could be calculated offline, and many existing studies
take advantage of this to simplify online calculation [44, 54, 65]. In
comparison, GDRWs require more advanced and challenging opti-
mizations at runtime, which are the focus of this paper. Moreover,
with the modeling on the walker’s state, GDRWs are able to extract
higher-order structural information and temporal relationships in
graphs. Therefore, GDRWs have attracted increasing attention for
graph learning applications.

Next, we introduce two representative GDRW algorithms: Meta-
Path and Node2Vec. Let𝑤𝑡

𝑎,𝑏
be the sampling weight of edge (𝑎, 𝑏)

to be sampled from the current vertex 𝑎 at step 𝑡 . 𝑤𝑡
𝑎,𝑏

is up-
dated by an application-specific weight update function F , i.e.,
𝑤𝑡
𝑎,𝑏

= F (𝑤∗
𝑎,𝑏

,𝑉𝑡−1), where 𝑉𝑡−1 is the set of traversed vertices.
MetaPath [55] is an effective approach for data mining on het-
erogeneous graphs. A MetaPath 𝑀 is defined as 𝐿1

𝑅1−−→ 𝐿2
𝑅2−−→

...
𝑅𝑡−−→ 𝐿𝑡+1, where 𝐿𝑖 is the vertex label in the 𝑖-th step, and 𝑅𝑖 is

the relation between 𝐿𝑖 and 𝐿𝑖+1 (e.g., a book is cited by an author).
A MetaPath random walk query returns a sampled path based on

LightRW: FPGA Accelerated Graph Dynamic Random Walks

the given relation path R = 𝑅1, 𝑅2, ..., 𝑅𝑡 . The weight update func-
tion is shown in Equation (1). For the 𝑡-th step, For the 𝑡-th step,
the weight of the path to be sampled is set according to whether
the relationship is met, as shown in Equation (1a). Otherwise, the
corresponding weight is set to zero, indicating that the path will
not be sampled in this step (Equation (1b)).

𝑤𝑡
𝑎,𝑏

=

{
𝑤∗
𝑎,𝑏

, if ((𝑎, 𝑏) ∈ 𝐸) ∧ (𝑅 (𝑎,𝑏) = R[𝑡]),
0, otherwise.

(1a)
(1b)

Node2Vec [25] is a second-order random walk [15] and has been
widely used as a graph embedding technique [24]. The transition
probability depends not only on the current vertex 𝑎𝑡 but also
on the previously traversed vertex 𝑎𝑡−1. The weight of neighbors
depends on whether it is connected to the last traversed vertex.
In cases where the neighbor 𝑏 is the same as the vertex visited
in the previous step, the sampling weight is equal to the scaled
edge weight with a hyperparameter 𝑝 (Equation (2a)). Apart from
that, if there is an edge between 𝑎𝑡−1 and 𝑏, the sampling weight is
equal to the edge weight (Equation (2b)); otherwise, the sampling
weight is scaled with another factor 𝑞 in Equation (2c). Finally, for
all non-neighboring vertices, the sampling weights are set to zero
(Equation (2d)).

𝑤𝑡
𝑎,𝑏

=

𝑤∗
𝑎,𝑏

𝑝
, if 𝑏 = 𝑎𝑡−1,

𝑤∗
𝑎,𝑏

, if (𝑏 ≠ 𝑎𝑡−1) ∧ ((𝑎𝑡−1, 𝑏) ∈ 𝐸),
𝑤∗
𝑎,𝑏

𝑞
, if (𝑏 ≠ 𝑎𝑡−1) ∧ ((𝑎𝑡−1, 𝑏) ∉ 𝐸),

0, otherwise.

(2a)

(2b)

(2c)

(2d)

2.2 GDRW on CPUs
The execution flow of the CPU-based GDRW [54] is shown in Al-
gorithm 2.1. For an input query composed of a starting vertex 𝑣curr
and the requested length, the algorithm first ascertains the num-
ber of neighbors of the current vertex 𝑣curr for indexing in Line 6.
For each neighbor of 𝑣curr, the algorithm first loads its properties
(Line 8) and then updates the weight of each neighbor using the
application-specific function (Line 9). Different GDRW applications
can be implemented by customizing the application-specific weight
update function. The updated weights are used to implicitly cal-
culate the transition probability, which is the probability of the
neighbors to be selected.

In the next stage, weighted sampling draws one sample based
on the generated weight distribution𝑊 . This process is carried
out in two phases: initialization and generation, which are com-
monly used in sampling methods including inverse transformation
sampling [54] and alias sampling [29]. Since the updated weight is
discretely distributed, the initialization stage constructs an inter-
mediate table 𝑇 that describes the distribution of𝑊 , which allows
for the sampling of weighted items with uniformly distributed ran-
dom numbers (Line 11). Finally, in Lines 12 and 13, the generation
stage randomly draws one neighbor based on 𝑇 and appends it to
the output sequence 𝑄.𝑟𝑒𝑠 , which is then set as 𝑣curr for the next
iteration. This process is repeated until 𝑣𝑐𝑢𝑟𝑟 satisfies the given

Algorithm 2.1: CPU-based GDRWs
Input: 𝐺 : a given graph, Q: a set of input queries.
Output: 𝑉𝑡 : a path of traversed vertices.

1 res = ∅;
2 foreach 𝑄 ∈ Q do
3 𝑣curr = 𝑄.𝑣start, 𝑄.res = ∅;
4 loop
5 𝑤sum = 0,𝑊 = ∅, 𝑁𝑣 = ∅ ;

/* weight_calculation */

6 {address, degree} =
get_neighbors_info(𝑣curr,𝐺);

7 for 𝑖 ← 1 to degree do
8 𝑁 𝑖

𝑣 = get_neighbor(address, 𝑖,𝐺);
9 𝑤𝑖

𝑣 = app_weight_update(𝑁 𝑖
𝑣, 𝑣curr);

10 𝑊 .push(𝑤𝑖
𝑣);

/* weighted_sampling */

11 𝑇 = initialization(𝑊) ; // O(n) time complexity

12 𝑣curr = generation(𝑇);
13 𝑄.res.push(𝑣curr);
14 if (𝑄.is_end()) then
15 res.push(𝑄.res);
16 break;

17 return res;

terminal state (e.g., the required path length). The state-of-the-art
CPU-based system [54] adopts multiple threads to process different
batches of queries in parallel. Each stage of a query is executed se-
quentially and interleaved with memory accesses using one thread,
such that the latency of random access overlaps with computation.

2.3 Inefficiencies of CPU-based GDRWs
To further investigate performance potentials on multi-core archi-
tectures, we have conducted a top-down performance analysis [17]
of the state-of-the-art CPU-based system, ThunderRW [54]. In par-
ticular, we evaluated MetaPath and Node2Vec with two widely used
graphs in previous studies, livejournal [35] and uk-2002 [9], on a
server equipped with the latest Intel Xeon Gold 6246R CPU. We
used vTune [17] to profile the last-level cache miss ratio (denoted
as "LLC Miss"), the proportion of cycles stalled by memory accesses
(denoted as "Memory Bound"), and the proportion of cycles used
for useful computations (denoted as "Retiring Ratio"). More details
about the experimental setup can be found in Section 6.

The profiling results show that the LLC miss ratio is very high
(up to 76.9%), and the memory bound ranges from 31.2% to 59.9%
for the two graphs in both applications. Subsequently, the retiring
ratio is only 8.2% ∼ 33.6%, indicating poor utilization of CPU cores.
In summary, memory accesses dominate the overall execution time
for CPU-based GDRWs. Based on the execution flow on CPUs and
the characteristics of GDRW, there are two key observations for
the inefficiency:
Inefficiency 1: The sequential execution flow on CPUs intro-
duces a large number of memory accesses. The three stages of
GDRW are executed in sequence with barriers required at each
stage on control flow-based multicore CPUs. Here, we provide a

Hongshi Tan et al.

Table 1: Profiling results of the state-of-the-art CPU-based
system [54] on MetaPath and Node2Vec.

Applications Graphs LLC
Miss

Memory
Bound

Retiring
Ratio

MetaPath liveJournal [35] 58.2% 59.9% 8.2%
uk-2002 [9] 61.8% 57.5% 13.7%

Node2Vec liveJournal [35] 76.9% 31.2% 23.3%
uk-2002 [9] 61.1% 31.7% 33.6%

quantitative analysis of the number of memory accesses introduced
by intermediate data access. The weight update stage of the neigh-
bors requires storing updated weights with the size of |𝑁 (𝑣curr) |
in memory. During the initialization stage, the updated weights
are read and, a temporary data structure 𝑇 is created with a size of
|𝑁 (𝑣curr) |. Therefore, in addition to the output results, the entire
process ideally requires 2×|𝑁 (𝑣curr) | memory accesses. However,
since the computations involved are typically lightweight, the costs
of memory access cannot be overlapped. As a result, memory access
tends to dominate the overall execution time.
Inefficiency 2: Irregular memory accesses are poorly han-
dled. Due to the irregular nature of graphs, GDRW introduces
massive irregular memory accesses, including random access to the
addresses of neighbors of a vertex and access to varying numbers
of neighbors, leading to poor data locality. Additionally, the size
of intermediate data for existing weighted sampling methods (i.e.,
alias table [29] and inverse transform distribution table [61], etc.)
is proportional to the number of neighbors. For large graphs, the
space required to cache neighbors of different nodes varies signifi-
cantly, which easily exceeds the capacity of any CPU cache, leading
to cache thrashing. This results in significant cache misses and CPU
core stalls. Moreover, with multiple queries executed with multi-
ple threads, concurrent prefetching in the shared last-level cache
exacerbates the memory access contention and cache thrashing.

2.4 Motivation and Design Rationales
The inefficiencies mentioned above are fundamentally caused by
the sequential execution flow on multicore architectures and the
mismatch between the memory access pattern of GDRW and the
current cache hierarchy of multi-core architectures. It is clear that
a "one size fits all" approach is not suitable. There is a need for a
specialized solution in terms of both the algorithm and architecture.
This paper studies radical and alternative architectures, starting
with FPGA, a commodity hardware for specialized designs.

With the flexibility to customize hardware logic, FPGAs have
demonstrated promising performance in many data-intensive ap-
plications [11–14, 27, 68]. Among them, a common optimization
technique is fine-grained pipelining, which instantiates hardware
units for different tasks (e.g., functional stages in GDRW) on the
chip and connects hardware units through FIFOs for fine-grained
communication (e.g., a vertex per transfer). As a result, it minimizes
the number of DRAM memory accesses and increases parallelism
by simultaneous execution of hardware units in comparison to
non-pipelined systems. Meanwhile, customization of the memory
access engine (i.e., using scratchpad instead of a complex cache
hierarchy on CPUs) is another source of performance improvement.

weight calculation

weighted sampling

D
R
A
M

Degree aware cache

Dynamic burst engine

Memory optimizations

Pipeline execution

on chip inter-stage communication

get_neighbor_info

get_neighbor

app_weight_update

Parallel WRS

D
R
A
M

Figure 2: Processing flow of LightRW.

For example, the FPGA-based graph processing framework from
Chen et al. [14] outperforms state-of-the-art solutions by pipelining
the Scatter and Gather functions of the GAS model [14] and adopt-
ing application-specific memory access units. This motivates us to
explore two directions to address the inefficiencies encountered in
CPU-based GDRWs:
• Pipelining different stages of GDRW on FPGAs with fine-grained
inter-stage communication to eliminate synchronization barriers
and minimize data movement to DRAM.
• Designing specialized memory access engines with considera-
tions on the irregular memory access patterns in GDRWs for
high memory bandwidth utilization.

3 LIGHTRW
With the motivation and design rationales, we introduce LightRW,
an FPGA-based accelerator for efficient GDRW.

3.1 Solution Overview
In short, the design of LightRWhas two complementary approaches:
1) reducing the number of memory accesses to DRAM by enabling
fine-grained pipeline execution of GDRW on FPGAs, and 2) han-
dling randommemory accesses efficiently with customizedmemory
optimizations. Its processing flow is shown in Figure 2.

LightRW eliminates the synchronization barriers of existing
GDRW algorithms to enable fine-grained pipeline execution on the
chip by adopting the weighted reservoir sampling (WRS) technique
that chooses a random sample in a single pass over the items. More
importantly, we parallelize WRS to process multiple vertices per cy-
cle for high throughput pipeline design. With fine-grained pipeline
execution, LightRW reduces the number of memory accesses to
DRAM and achieves higher spatial parallelism compared to existing
GDRW solutions.

We also propose two memory-efficient techniques to handle
notoriously random accesses to the neighbors of vertices. First,
according to the power law distribution of graphs, vertices with
high degrees dominate the connections and are frequently accessed.
Thus, we propose a degree-aware cache that keeps information of
high-degree vertices (e.g., the addresses of their neighbors) into on-
chipmemory at runtime. Second, we propose a dynamic burst access
engine that adjusts the burst access size to minimize redundant data
accesses and thus improve the use of available memory bandwidth,
as the neighbors of different vertices have different lengths.

3.2 Pipelining GDRW with WRS for FPGAs
To explore the solution of fully pipelined GDRW for FPGAs, we
revisit existing weighted sampling methods. We find that weighted

LightRW: FPGA Accelerated Graph Dynamic Random Walks

Algorithm 3.1: Dynamic Random Walk with WRS.
Input: 𝐺 : a given graph, Q: a set of input queries.
Output: 𝑉𝑡 : a path of traversed vertices.

1 res = ∅;
2 foreach 𝑄 ∈ Q do
3 𝑣curr = 𝑄.𝑣start, 𝑄.res = ∅;
4 loop
5 {address, degree} =

get_neighbors_info(𝑣curr,𝐺);
6 for 𝑖 ← 1 to degree do

/* weight_calculation */

7 𝑛𝑣 = get_neighbor(address, 𝑖,𝐺);
8 𝑤 = app_weight_update(𝑛𝑣,𝐺);

/* weighted_sampling */

9 𝑣curr = WRS(𝑛,𝑤, 𝑅);
10 𝑄.res.push(𝑣curr);
11 if (𝑄.is_end()) then
12 res.push(𝑄.res);
13 break;

reservoir sampling (WRS) meets our requirements [20] as it can
choose 𝑛res random samples from a population of unknown size
in a single pass over the items. In particular, let𝑤𝑖 be the weight
of the 𝑖-th item, and the probability that the 𝑖-th item is selected,
denoted as 𝑝𝑖 , is equal to its weight divided by the accumulated
weights of all items passed, which is 𝑝𝑖 = 𝑤𝑖∑𝑖

𝑚=1 𝑤𝑚
. If 𝑝𝑖 is larger

than a uniformly distributed random number 𝑟𝑖 , the 𝑖-th item is
then stored in a reservoir as a candidate for output, otherwise, it
is discarded. As GDRWs only need to sample one vertex to move
forward, 𝑛res is set to one.

The streaming processing nature of WRS eliminates the synchro-
nization barrier between the initialization and generation stages
required in the existing commonly used sampling methods, such
as inverse transformation sampling and bucket-based sampling
approaches [29, 43, 54]. However, it introduces a huge computa-
tional cost, as WRS requires a random number for each item of
the input, and the generation of random numbers on CPUs is time-
consuming. This computational cost prevents WRS from being the
best choice for the CPU-based GDRW system. For example, when
we adopt WRS in optimal CPU-based implementations, we observe
that the performance is 8.2 times worse. In contrast, generating
massive random numbers on FPGAs is no longer a problem. With a
novel state sharing technique, ThundRiNG [56] is able to generate
high-quality and high-throughput random numbers with efficient
resource utilization on FPGAs.

In this paper, we adopt WRS for GDRWs to enable fine-grained
pipeline execution on FPGAs, as shown in Algorithm 3.1. Unlike
CPU-based GDRWs shown in Algorithm 2.1, the weighted sam-
pling method is changed to WRS. This enables us to fuse all the
neighbor weight update and sampling functions into one loop, and
each function can produce and consume a single item at a time to
allow fine-grained communication between functions. We describe
the detailed execution flow as follows: First, get_neighbors_info
loads {address, degree} of 𝑣curr from graph 𝐺 , where address is the

Q
u

er
y

Sc
h

e
d

u
le

r
Q

u
er

y
Sc

h
e

d
u

le
r

Li
g
h
tR
W

WRS Sampler

R2R1 Rk...

k-independent
RNGs

R3

Weight UpdaterWeight Updater

Dynamic
Burst Engine

Neighbor Loader

Memory access
Data stream

Degree-aware
Cache

Neighbor Info
Loader

Degree-aware
Cache

Neighbor Info
Loader

Degree-aware
Cache

Neighbor Info
Loader

Off-chip
DRAMQ

u
er
y

CSR Graph
row_index col_index

CSR Graph
row_index col_index

Figure 3: Overview of hardware architecture.

location of 𝑣𝑐𝑢𝑟𝑟 ’s neighbors in global memory, and degree is the
total number of 𝑣curr’s neighbors (Line 5). Then, a for loop scans
all 𝑣curr’s neighbors and randomly selects one item from them
(Lines 6 to 9). In the 𝑖-th iteration, it first loads the property of the
𝑖-th neighbor, 𝑁𝑣 , and then calculates the sampling weight with
app_update_weight, which is an application-specific function. WRS
takes the updated weight as input to temporally sample one item
as 𝑣next. After all the items are enumerated, the selected 𝑣next is
updated to 𝑄.𝑣curr for the next step.

The intermediate variables of these functions, which are 𝑛𝑣,𝑤 ,
and 𝑣next, consume 𝑂 (1) space and are stored on-chip. This is sig-
nificantly smaller than the state-of-the-art execution flow required
(i.e., 𝑂 (|𝑁 (𝑣curr) |) [54]). The proposed algorithm eliminates the
synchronization barrier among different functions. It also guaran-
tees fine-grained pipeline execution on FPGAs, which reduces the
number of memory accesses to DRAM by fine-grained communi-
cation on-chip and improves spatial parallelism by concurrently
executing the computing stages.

3.3 Hardware Architecture
LightRW efficiently realizes the proposed GDRW on FPGAs with
a highly optimized microarchitecture. While existing CPU-based
GDRWsmainly focus on multi-query parallelization with task inter-
leaving andmultithreading, LightRW explicitly explores parallelism
within the query by processing multiple neighbors per cycle.

Figure 3 shows an overview of LightRW’s hardware architecture,
which consists of the query controller, degree-aware cache, neighbor
info loader, dynamic burst engine, weight updater, and WRS sampler.
The target graphs are stored in the FPGA’s DRAMwith compressed
sparse row (CSR) format, which consists of a row_index array and a
col_index array. The col_index array records adjacent edges (sorted
by destination vertex) of each vertex, while the row_index records
the offset of adjacent edges of each vertex in the col_index array. The
Query Controller loads multiple queries and prepares query meta-
data (e.g., the 𝑣𝑐𝑢𝑟𝑟 , query index, and application-specific parame-
ters) for the next stage. The Neighbor Info Loader reads the address
of the neighbors (adjacent edges) of 𝑣𝑐𝑢𝑟𝑟 , namely the row_index of
𝑣𝑐𝑢𝑟𝑟 . As 𝑣𝑐𝑢𝑟𝑟 is randomly selected, the accesses to the addresses
of neighbors are random. Our proposed Degree-aware Cache caches
vertices with high degrees to improve memory efficiency (details in
5.1). The Neighbor Loader sequentially loads the neighbors of 𝑣𝑐𝑢𝑟𝑟
by dereferencing the address of neighbors. However, the number of
neighbors varies according to the vertices. The memory coalescing
with a fixed burst length may result in redundant memory accesses.
Therefore, we also propose a Dynamic Burst Engine that adopts
hybrid burst lengths to maximize memory bandwidth utilization

Hongshi Tan et al.

(details in 5.2). The Weight Updater calculates the sampling weight
of the fetched neighbors using an application-specific update func-
tion. TheWRS Sampler consumes multiple neighbors per cycle with
throughput at the line rate of memory bandwidth and samples the
vertex for the next step of the current query. Details on how to par-
allelize WRS are given in Section 4. The Query Controller updates
𝑣𝑐𝑢𝑟𝑟 with the sampled vertex. All the above hardware modules are
pipelined and run concurrently.

4 PARALLELIZINGWRS
To process multiple neighbors per cycle for GDRWs, WRS has to be
parallelized. However, data dependency in calculating the probabil-
ity of the item in the reservoir prevents parallelization. As discussed
in Section 3.2, the probability of the 𝑖-th item, 𝑝𝑖 , is calculated as its
weight divided by the accumulated weight of all passed items, i.e.,
𝑝𝑖 =

𝑤𝑖∑𝑖
𝑚=1 𝑤𝑚

. In other words, the probability calculation of the cur-
rent item is dependent on the weights of the previously processed
items, which prevents straightforward parallelization of the prob-
ability calculation. For instance, simple loop unrolling cannot be
applied due to this dependency [28]. Existing works on paralleling
WRS [29, 30] aim to reduce the number of required random numbers
for each machine in a distributed environment, as random number
generation is usually time-consuming for CPUs. On the contrary,
FPGAs can easily generate multiple independent random numbers
benefiting from spatial parallelism, high-performance bitwise op-
erations, and flexible on-chip communication [56]. Therefore, in
this paper, we propose a new parallelized WRS algorithm and its
FPGA-based implementation.

4.1 Parallel WRS Algorithm
The key idea of our proposal is to consume multiple items per
cycle while carefully handling their dependency to ensure the
independence and correctness of sampling. As each item in the
stream requires the accumulated weight of all items passed, namely
𝑤𝑖
sum =

∑𝑖
𝑚=1𝑤𝑚 , we employ a parallelized prefix sum to calculate

the accumulated weights for multiple items in parallel. Specifically,
assuming that we process 𝑘 items per cycle and 𝑖 items have passed,
the accumulated weights for the current 𝑘 items can be represented
by the set {∑𝑖+𝑗

𝑚=1𝑤𝑚}𝑘𝑗=1. By decomposing the sum of the weights
of the passed 𝑖 items, we have the following representation of the
set {∑𝑖+𝑗

𝑚=1𝑤𝑚}𝑘𝑗=1,

{
𝑖+𝑗∑︁
𝑚=1

𝑤𝑚}𝑘𝑗=1 = {
𝑖∑︁

𝑚=1
𝑤𝑚 +

𝑖+𝑗∑︁
𝑚=𝑖+1

𝑤𝑚}𝑘𝑗=1 . (3)

As𝑤𝑖
sum =

∑𝑖
𝑚=1𝑤𝑚 , which is a constant for current 𝑘 items, we

have

{
𝑖+𝑗∑︁
𝑚=1

𝑤𝑚}𝑘𝑗=1 = {𝑤
𝑖
sum +

𝑖+𝑗∑︁
𝑚=𝑖+1

𝑤𝑚}𝑘𝑗=1 (4)

= 𝑤𝑖
sum + {

𝑖+𝑗∑︁
𝑚=𝑖+1

𝑤𝑚}𝑘𝑗=1, (5)

where {∑𝑖+𝑗
𝑚=𝑖+1𝑤𝑚}𝑘𝑗=1 is the prefix sum of {𝑤𝑖+1,𝑤𝑖+2, ...𝑤𝑖+𝑘 }

that can be calculated in parallel.

Algorithm 4.1: Parallel Weighted Reservoir Sampling.
Input:

𝑁𝑣 = {𝑛𝑣1 , 𝑛𝑣2 , ...} : item stream to be sampled;
𝑊 = {𝑤1,𝑤2, ...} : corresponding weight stream;
𝑘 : degree of parallelism;
𝑅 = {𝑟1, 𝑟2, ..., 𝑟𝑘 } : k-wise independent random variables.

Output:

𝑛𝑠 : item sampled with probability of 𝑤𝑠∑
𝑊

.

1 𝑤𝑖
sum = 0, reservoir = ∅, 𝑛𝑠 = ∅ ;

2 do
/* get 𝑘 items and corresponding weights from streams */

3 if (𝑁𝑘 = receive(𝑁𝑣, 𝑘)) ∧ (�̂�𝑘 = receive(𝑊,𝑘))
then

/* calculate the prefix sum array of �̂�𝑘 */

4 𝑊ps = prefix_sum(�̂�𝑘);
5 candidate = ∅;
6 parallel for 𝑗 ← 1 to 𝑘

/* calculate the probability of selecting

�̂�𝑘 [𝑗] */

7 𝑝 =
�̂�𝑘 [𝑗]

𝑤𝑖
𝑠𝑢𝑚+𝑊ps [𝑗]

;
8 𝑟 = 𝑅 [𝑗] .sample(0, 1);
9 if p > r then
10 candidate[𝑗] = 𝑗 ;

/* find the max index in candidate */

11 sel = max(candidate);
/* update the reservoir */

12 if 𝑠𝑒𝑙 ≠ 0 then
13 reservoir = 𝑁𝑘 [sel];

/* update 𝑤𝑖
sum value for next 𝑘 items */

14 𝑤𝑖
sum = 𝑤𝑖

sum + sum(�̂�𝑘) ;
15 𝑛𝑠 = reservoir ;
16 output 𝑛𝑠 ;
17 while 𝑁𝑣 is end;
18 return 𝑛𝑠

Algorithm 4.1 shows the proposed parallelized WRS that can
process 𝑘 items per cycle. The inputs consist of the item stream
𝑁𝑣 = {𝑛𝑣1, 𝑛𝑣2, ...}, weight stream𝑊 = {𝑤1,𝑤2, ...}, the degree of
parallelism 𝑘 , and 𝑘-wise independent random variables uniformly
distributed in the interval [0, 1], 𝑅 = {𝑅1, 𝑅2, ..., 𝑅𝑘 }. The algorithm
reads 𝑘 items and the corresponding weights per cycle (Line 3).
Line 4 calculates the prefix sum of the 𝑘 items, which corresponds
to the second term {∑𝑖+𝑗

𝑚=𝑖+1𝑤𝑚}𝑘𝑗=1 in Equation (5), and stores
it in the array𝑊𝑝𝑠 . Then, 𝑘 items are sampled concurrently. For
each item in 𝑁𝑘 , Line 7 calculates the probability of the 𝑗-th item
being selected. Next, a random number 𝑟 is sampled from the 𝑗-th
random variable in 𝑅 (Line 8). If 𝑝 is smaller than 𝑟 , its index is
stored in candidate (Lines 9 to 10), indicating that the 𝑗-th item is
temporarily selected. After all 𝑘 items are processed, the maximum
value in candidate, which is the index of the latest sampled item,
is outputted to update the reservoir (Lines 11 to 13). Meanwhile,

LightRW: FPGA Accelerated Graph Dynamic Random Walks

 Weight Accumulator

reservoir

15

12

10

9

8

5

3

2

7

3

2

1

2

+

+

+

+

v5

x x v1 v2 v3 v4 v5 v6 v7 v8 x xItems:

0 0 3 4 2 1 2 3 2 1 0 0 Weights:

v3 v4 v5 v6

1st 2nd 3rd 4th

0

0

1

2

3

2

1

2

t3 t1t2

1st

2nd

3rd

4th

2 1 2 3
1st 2nd 3rd 4th

+

+

+

r1

×

r2

×

r3

Selector

>

>

>

>

2 1 2 3
1st 2nd 3rd 4th

2

6

4

1
3

2
3

R1
R2

R3
R4

PRNG

×

r4

Output

Weight stream Data path x Pipeline register Math operator++Item stream

t3t1 t2

P
re

fi
x

su
m

a b ×× ++cc

dd

ThundeRiNG

R1 R2 R3 R4R1 R2 R3 R4

ThundeRiNG

R1 R2 R3 R4

«

«

«

«

«

«

«

«

Figure 4: Hardware architecture of WRS Sampler.

𝑤𝑖
sum is accumulated with sum(�̂�𝑘) (Line 14) for the next batch

of sampling. For a stream with 𝑛 items, the time complexity of
the proposed algorithm is 𝑂 (𝑛/𝑘 + log𝑘), where the functions pre-
fix_sum(),max(), and sum() introduce the𝑂 (log𝑘) time complexity.
Since only reservoir needs to be stored for each 𝑘 input, the space
complexity of the proposed algorithm is 𝑂 (1).

4.2 WRS Sampler
Deploying our proposed parallel WRS algorithm on FPGAs highly
relies on high-quality and high-throughput random number gener-
ation (RNG). Therefore, we first select a suitable RNGmodule. After
that, we introduce the hardware architecture of the WRS Sampler
module for our proposed parallel WRS algorithm.
Selection of RNGs. RNGs can be classified into two types: true
randomnumber generations (TRNGs)[52] and pseudo-randomnum-
ber generations (PRNGs)[40]. TRNGs produce unpredictable and
unreproducible outputs, while PRNGs are commonly used in ran-
domized algorithms such asMonte Carlo simulations [48] and graph
random walks [51] to ensure the reproducibility of results. In re-
cent years, FPGA-based PRNGs have gained attention from both
industry and academia [5, 37].

To enable high-performance WRS, we have summarized the
following criteria for selecting PRNGs: First, the PRNGs must be
capable of generating multiple independent sequences of random
numbers to ensure the independent selection of the candidates
in Lines 6 to 10 of Algorithm 4.1. Second, the generation of ran-
dom numbers should be fast enough to avoid blocking the overall
processing pipeline. Third, the hardware resources required to con-
struct the PRNGs should not constitute a severe conflict with respect
to the resource demand for GDRW processing.

To meet all of the aforementioned criteria, we have selected
ThunderRiNG [56] and integrated it into our WRS pipeline, as
shown in Figure 4. ThunderRiNG allows for the generation of mul-
tiple independent sequences of random numbers while sharing
the costly state generation among different instances. Additionally,
each instance adopts a decorrelator to generate a high-quality ran-
dom number sequence. ThunderRiNG also provides an easy-to-use
interface for integration. Our evaluation has demonstrated that
ThunderRiNG is capable of simultaneously generating up to 64

sequences of random numbers, consuming only 1.2% of hardware
resources, and passing the most stringent empirical randomness
tests [33].
WRS Sampler Hardware Architecture. Figure 4 illustrates the
hardware architecture of the WRS Sampler that realizes the pro-
posed parallelized WRS. It includes four hardware modules:Weight
Accumulator, Selector, PRNG, and Output. To facilitate presentation,
we set 𝑘 to four. TheWeight Accumulator reads 𝑘 items from the
weight stream in one cycle (e.g., {2, 1, 2, 3} at time 𝑡2) and calculates
the accumulated weights of 𝑘 items in two steps. First, it calculates
𝑊𝑝𝑠 using pipelined prefix sum logic (Step a). Then, in Step b ,
it calculates {𝑤𝑖

sum +𝑊ps [𝑗]}𝑘𝑗=1 using four adders in parallel, and
the last prefix sum (e.g., eight in the figure) is added to 𝑤sum to
calculate the next 𝑘 items. The Selector performs the sampling pro-
cedure of 𝑘 items per cycle. To avoid costly division operations
in calculating 𝑝 , we rewrite the comparison between 𝑝 and the
random number in the interval of [0, 1], 𝑟 , as follows: First, let 𝑟∗
be a 32-bit integer random number generated from ThundeRiNG.
The condition for sampling the 𝑗-th item is as follows,

𝑝 > 𝑟 ⇒ �̂�𝑘 [𝑗]
𝑤𝑖
𝑠𝑢𝑚 +𝑊𝑝𝑠 [𝑗]

>
𝑟∗

232 − 1
. (6)

Then, by moving the denominators from both sides to the numera-
tors on the other side, we obtain the following inequality:

⇒ �̂�𝑘 [𝑗] (232 − 1) > 𝑟∗ (𝑤𝑖
𝑠𝑢𝑚 +𝑊𝑝𝑠 [𝑗]). (7)

We further reorganize the left term,

⇒ 232 · �̂�𝑘 [𝑗] > 𝑟∗ (𝑤𝑖
𝑠𝑢𝑚 +𝑊𝑝𝑠 [𝑗]) + �̂�𝑘 [𝑗] . (8)

The comparison in Equation (8) can be further simplified as follows.
Multiplication in the left term can be obtained by light-weight bit
shifting on FPGAs. As {𝑤𝑖

sum +𝑊ps [𝑗]}𝑘𝑗=1 is the output of the
Weight Accumulator, the right term only needs one multiplication
and one addition (Step c), which can be completed simultaneously
by the DSP slice in FPGAs [46]. If the comparison condition is true,
which means the item is a candidate for output, we record the
indices of these items (e.g., two and three in this example). Finally,
we determine the latest candidate by comparing their indices. This
is implemented using a tree-based comparator (Step d), where

Hongshi Tan et al.

Off-chip DRAM
(row_index)

02f

2

...

ae8

 31
……

0e4 3

Address DegreeAddress Degree

On-chip RAMs

 New degree
 is larger ?

Y

 L0

 La

ee

Y
Cache hit ?

N
Read cache line

bb

 V0 address

 V0 degree

 Va address

 Va degree

…Ta
g

Read cache tag

Output
cc

 Memory access
dd

 Memory access
d

Input 1: VaInput 1: Va

aa

Update cache line
ff

Figure 5: Hardware architecture of degree-aware cache.

each level compares two adjacent items. Based on the index of the
selected item, Output extracts the corresponding item from the
input item stream and updates reservoir. In the example, the third
item, 𝑣5, is selected in the reservoir. When the stream ends, reservoir
is output as the sampled result.

5 MEMORY OPTIMIZATIONS
Memory accesses to DRAM are highly optimized in LighRW. First,
LightRW employs a degree-aware cache that stores only the high-
degree vertices in on-chip memory. Second, since neighbors of dif-
ferent vertices have varying lengths, we propose a dynamic burst
access engine that adjusts the burst access size to minimize redun-
dant data access, thereby improving memory bandwidth utilization.

5.1 Degree-aware Cache
Accesses to the addresses of neighbors of the current vertex, namely
the accesses to the row_index array in the Neighbor Info Loader
component, are inherently random, as the current vertices from
different steps are selected randomly. Due to the large reuse dis-
tance [8], existing cache policies (i.e., LRU and FIFO, etc.) that are
designed to retain the most recent or frequently-used data items
in on-chip memory are ineffective in handling this access. In this
paper, we provide an analysis of how the degree of a vertex can in-
dicate the reuse ratio of a vertex in GDRWs. Based on this analysis,
we propose a degree-aware cache to cache the high-degree vertices
at runtime with zero initialization overhead.

Buffering high-degree vertices into fast memory for graph pro-
cessing has been adopted in many recent research works [3, 6, 67].
These approaches are based on the observation that graph process-
ing applications frequently access the properties of vertices with a
larger number of neighbors. For instance, Zhao et al.[67] build a
hash lookup table for high-degree vertices during graph partition-
ing, while Balaji and Lucia [6] sort the vertices by their degrees
in the preprocessing phase and then reindex all vertices during
the graph data preprocessing. However, all of these existing works
introduce additional initialization overhead and are only applicable
for graph processing. Instead, we explore the degree-aware caching
method for GDRWs.
Probability Analysis of Vertex Accesses: We begin by present-
ing the analysis that the degree of a vertex has a positive correlation

with the probability of the vertex being traversed in GDRWs, by ex-
tending the existing conclusion on static randomwalks. Let 𝑃𝑟 [𝑣] be
the probability that 𝑣 is traversed by multiple independent random
walk queries on a static weighted graph and follows a stationary
distribution [51]. Then, 𝑃𝑟 [𝑣] can be represented as follows:

𝑃𝑟 [𝑣] =
∑
𝑢∈𝑁 (𝑣) 𝑤𝑣,𝑢∑

𝑖∈𝑉
∑

𝑗 ∈𝑁 (𝑖) 𝑤𝑖, 𝑗
. (9)

Next, we consider dynamic random walks, where the sampling
weight from vertex 𝑢 to vertex 𝑣 at time 𝑡 is 𝑤𝑡

𝑢,𝑣 . The stationary
distribution of 𝑣 based on the sampling weights at time 𝑡 is then
given by

𝑃𝑟 [𝑣] =
∑
𝑢∈𝑁 (𝑣) 𝑤

𝑡
𝑣,𝑢∑

𝑖∈𝑉
∑

𝑗 ∈𝑁 (𝑖) 𝑤
𝑡
𝑖, 𝑗

. (10)

LetW be defined as
∑
𝑖∈𝑉

∑
𝑗 ∈𝑁 (𝑖) 𝑤

𝑡
𝑖, 𝑗
, and let𝛼 be a scaling factor

that scales the minimal non-zero weight to one. Since graphs have
a finite number of edges, 𝛼 exists and is constant for a given graph.
Similarly,W is also a constant value. Therefore, we have:

𝑃𝑟 [𝑣] =
∑
𝑢∈𝑁 (𝑣) 𝛼𝑤

𝑡
𝑣,𝑢

𝛼W . (11)

Meanwhile, there exists a scaling factor 𝛼 such that the numerator∑
𝑢∈𝑁 (𝑣) 𝛼𝑤

𝑡
𝑣,𝑢 is larger than𝑁 (𝑣) and holds for any 𝑡 . Since 1/𝛼W

is a constant value, we can conclude that 𝑃𝑟 [𝑣] = Ω(𝑁 (𝑣)). Hence,
the degree of vertices can be an admissible heuristic that estimates
the probability of the corresponding vertex being traversed.
Degree-aware Cache Policy: The above analysis supports us in
designing a cache replacement policy that replaces low-degree
vertices in fast memory with high-degree vertices for a high cache
hit ratio. Figure 5 shows an example of our cache replacement policy
and the hardware architecture of the proposed degree-aware cache.
The input to our degree-aware cache is a vertex index, and the
corresponding output is a tuple that contains the starting address
of the neighbors (adjacent edges) and the degree of the vertex.
When an input vertex 𝑣𝑎 is received in Step a , our degree-aware
cache looks up whether 𝑣𝑎 exists in the cache by comparing the
tag of the cache line and the tag of the input. If 𝑣𝑎 is already in the
cache (cache hit), the corresponding cache line is read in Step b ,
and the output is directly sent to the Neighbor Loader module
within one cycle (Step c). If 𝑣𝑎 is not in the cache (cache miss), one
memory access is issued to the off-chip DRAM in Step d . When the
data for 𝑣𝑎 is received from DRAM, the cache immediately outputs
the returned data and compares the degree of the vertex in the
corresponding cache line with the degree of 𝑣𝑎 in Step e . If the
degree of 𝑣𝑎 is higher, the cache updates the cache line with the
data for 𝑣𝑎 ; otherwise, it retains the original data.

5.2 Dynamic Burst Engine
GDRWs need to load all neighbors of the current vertex to move one
step forward. Since neighbors of a vertex are stored in consecutive
addresses, burst access that reads multiple data sequentially with a
single memory request has been an effective method to improve
memory bandwidth utilization [4, 12, 16]. The data size of each
burst access, namely the burst size, is equal to the data width of
the memory interface, 𝑁bus, multiplied by the burst length, 𝑆 . For
example, if the data width of the memory interface is 512-bit, burst

LightRW: FPGA Accelerated Graph Dynamic Random Walks

5.7GB/s

17.57GB/s

91%

8%

0%

20%

40%

60%

80%

100%

0

4

8

12

16

20

0 1 2 4 8 16 32 64

R
at

io
 (

%
)

Th
ro

u
gh

p
u

t
(G

B
/s

)

Varying burst length configurations

Memory bandwidth Ratio of valid data

Figure 6: Memory bandwidth and the ratio of valid data of
MetaPath on livejournal with varying burst lengths.

access with a burst length of four will request 2048-bit data per
request. Figure 6 shows memory throughput benchmark results
(blue line) with different burst lengths on our FPGA platform (Sec-
tion 6.1). The results indicate that the utilized memory bandwidth
increases significantly with increasing burst length until reaching
the peak bandwidth (17.57 GB/s).
Issues of fixed burst length: Burst access with a long burst length
is not effective for power-law graphs as vertices have varying num-
bers of neighbors. If the size of the neighbors is narrower than
the burst size, the remaining data returned from memory will be
unused, resulting in poor effective memory bandwidth utilization.
We define the ratio of valid data as the percentage of data used
in the computation compared to the total number of data loaded
by the memory engine. The red line in Figure 6 shows the ratio
of valid data of MetaPath on livejournal with an increasing burst
length configuration. It turns out that the ratio of valid data is the
highest with a burst length of one and decreases with larger burst
lengths. The existing study, DynaBurst proposed by Asiatici and
Ienne[4], adopts variable-length bursts to the memory interface to
improve the effective memory bandwidth for irregular applications.
The main idea is to cache and reorder numerous narrow memory
requests in a non-blocking cache and explore data reuse of burst ac-
cesses. However, it requires a large amount of on-chip memory and
logic resources for the cache and reordering function, respectively.
Moreover, the latency is non-deterministic and varies significantly,
which is not suitable for GDRWs.
Our Design: To utilize the high memory bandwidth of the long
burst and maintain a high ratio of valid data of the short burst
simultaneously, we propose a dynamic burst engine that schedules
memory access requests with varying sizes to access pipelines
with different burst length configurations at runtime. Let 𝑆1 and
𝑆2 be the number of bytes that can be loaded by one burst access
of the long burst pipeline and short burst pipeline, respectively.
With a total of 𝑐 bytes of neighbors to be loaded, the number of
long burst accesses is set to ⌊𝑐/𝑆1⌋, while the number of short
bursts is set to ⌈(𝑐 − ⌊𝑐/𝑆1⌋𝑆1)/𝑆2⌉. In this way, the majority of
requested data is handled by the long burst pipeline with high
memory bandwidth utilization, and the remaining data that cannot
form a long burst is loaded by the short burst pipeline, achieving
a high ratio of valid data. As the total bytes loaded is equal to
⌊𝑐/𝑆1⌋𝑆1 + ⌈(𝑐 − ⌊𝑐/𝑆1⌋𝑆1)/𝑆2⌉𝑆2, which is equal to ⌈𝑐/𝑆2⌉𝑆2, the
loaded unused data is no larger than 𝑆2.

Due to the highly skewed distribution of node degrees in real
graphs, it is very hard to build the model of burst length configu-
rations to graphs with different structures. Hence, we determine

..................

............

...

 N(Va)=33 N(Vb)=2

... ...

Long burst:
(burst length = 16)

CSR col_index:

Short burst:
(burst length = 1)

Output:

...

Figure 7: Example of dynamic burst strategy.

Burst cmd
Generator

FPGA memory
(col_index)

Long Burst

Short Burst

Memory access
Data stream

Neighbor info input

Intra Burst
Merge

 Va

 Vb

… 33… 33

… 2… 2

 { address , degree }

… 33

… 2

 { address , degree }

 Va

 Vb

… 33

… 2

 { address , degree }

Crossbar

Input
Output

Figure 8: Hardware architecture of dynamic burst engine.

the configurations of the burst length from practical evaluation
(more details in Section 6.3.2). Figure 7 presents an example of our
dynamic burst strategy given 𝑆1 = 16 and 𝑆2 = 1. Assuming the
request to neighbors with a size of 33, the request is scheduled into
two (⌊33/16⌋) long burst accesses and one ((33 − 2 × 16)/1) short
burst access. The request to neighbors with a size of two consists
of zero (⌊2/16⌋) long burst and two ((2 − 0)/1) short burst accesses.

Figure 8 presents the hardware architecture of our dynamic
burst engine, which contains four hardware modules: Burst cmd
Generator, Long Burst, Short Burst, and Intra Burst Merge. The
Burst cmd Generator module takes a data pair, address, degree, as
input, where address is the starting address of neighbors in col_index,
and degree is the number of neighbors of the vertex. The Burst cmd
Generator follows the above scheduling method to generate burst
access commands and dispatches commands to the Long Burst and
Short Burst modules. Long Burst and Short Burst are connected
to a memory crossbar and access the col_index array in FPGA’s
DRAM independently. Their burst length is configured to 𝑆1 and
𝑆2, respectively. The Intra Burst Merge module returns data from
two burst modules and outputs them to the Weight Updater.

6 EVALUATION
In this section, we present the evaluation of LightRW. In Section 6.1,
we introduce the hardware setup and the graph dataset used in
our evaluation. In Section 6.2, we evaluate the throughput and
efficiency of the proposed weighted reservoir sampling module,
PWRS sampler. We further demonstrate the impact of parameters
in the dynamic burst engine and degree-aware cache in Section 6.3.
Finally, we compare LightRW with the state-of-the-art CPU-based
implementation in Section 6.5.

6.1 Experimental Setup
6.1.1 Hardware Platform. LightRW is built on a machine where an
Xilinx Alveo U250 accelerator card is attached to the motherboard

Hongshi Tan et al.

Intel Xeon 6246R CPU
(16 cores)

FPGA
driver

LightRW
controller

col_index row_index

CSR Graph

DDR4 Host Memory

Alveo U250 FPGA Board

LightRW

In
st

an
ce

 0

In
st

an
ce

 1

In
st

an
ce

 2

In
st

an
ce

 3

In
st

an
ce

 0

In
st

an
ce

 1

In
st

an
ce

 2

In
st

an
ce

 3

FPGA DRAM
C

h
n

0

C
h

n
1

C
h

n
2

C
h

n
3

C
h

n
0

C
h

n
1

C
h

n
2

C
h

n
3

P
C

Ie
 D

M
A

17 GB/s × 4 channel

 131 GB/s

16 GB/s

DDR4

PCIe

Intel Xeon 6246R CPU
(16 cores)

FPGA
driver

LightRW
controller

col_index row_index

CSR Graph

DDR4 Host Memory

Alveo U250 FPGA Board

LightRW

In
st

an
ce

 0

In
st

an
ce

 1

In
st

an
ce

 2

In
st

an
ce

 3

FPGA DRAM
C

h
n

0

C
h

n
1

C
h

n
2

C
h

n
3

P
C

Ie
 D

M
A

17 GB/s × 4 channel

 131 GB/s

16 GB/s

DDR4

PCIe

Figure 9: Deployment of LightRW.

via the PCIe bus, as shown in Figure 9. The FPGA board has 2,000
BRAMs, 11,508 DSP slices, 1,341,000 LUTs, and four DRAM channels
with a total capacity of 64 GB. We used the Vitis HLS Toolchain
2021.2 as the development environment.

6.1.2 Graph Datasets. Table 2 shows the graph datasets used in
our evaluation. These real-world graphs come from different cate-
gories, including the web, citations, and social networks. The RMAT
synthetic graphs are produced by the RMAT generator [10].

Table 2: The graph datasets.
Graphs |𝑉 | |𝐸 | |𝐷 | Type Categories
youtube (YT) [35] 1.14M 2.99M 5 Undirected Web
us-patents (UP) [35] 3.78M 16.52M 9 Directed Citation
liveJournal (LJ) [35] 4.8M 68.9M 14 Undirected Social
orkut (OR) [47] 3.1M 117.2M 38 Undirected Social
uk2002 (UK) [9] 18.52M 298.11M 32 Directed Social
rmat-12∼22 (RMAT) [34] 212∼222 215∼225 8 Directed Synthetic

6.1.3 Workloads. We implement and evaluate two representative
GDRW algorithms: MetaPath [55] and Node2Vec [25]. These algo-
rithms are widely adopted as benchmarks in existing graph random
walk systems [19, 25, 42, 57].

6.1.4 Parameter Settings. We follow the experimental settings of
previous works [54, 65]. The number of queries is set to the number
of vertices with non-zero degrees, and each query has a unique
starting vertex. All queries are shuffled following the approach in
ThunderRW [54]. The sampling method of ThunderRW is config-
ured to use inverse transformation sampling following the authors’
recommendation. The graph datasets are initialized with random
edge weights and vertex labels. The query length is set to five for
MetaPath and 80 for Node2Vec, and we set 𝑝 = 2 and 𝑞 = 0.5 for
Node2Vec. All experiments are repeated five times, and the median
results are presented.

6.1.5 Implementation Details. As shown in Figure 9, we imple-
mented LightRW on a CPU-FPGA platform, where a Xilinx Alveo
U250 FPGA accelerator card is attached to the motherboard through
the PCIe bus. To run GDRW queries on a given graph, the LightRW
controller on the host CPU side issues DMA requests to transfer
random walk queries and graph data in the compressed sparse row
(CSR) format to the DRAM of the FPGA platform and then invokes
the accelerator. The LightRW controller then enters a waiting state
until the accelerator completes the computation.

1.14
17.35

1

2

4

8

16

32

1 2 4 8 16 32

Th
ro

u
gh

p
u

t
(G

B
/s

)

k

Memory thr. Sampling thr.

(a) Varying degree of parallelism.

17.40
17.44

16.6

16.8

17.0

17.2

17.4

17.6

2⁶ 2⁸ 2¹⁰ 2¹² 2¹⁴ 2¹⁶

Th
ro

u
gh

p
u

t
(G

B
/s

)

Size of data stream

Memory thr. Sampling thr.

(b) Varying length of stream.

Figure 10: Throughput evaluation of WRS sampler.

Cache size

0%

25%

50%

75%

100%

2⁶ 2⁸ 2¹⁰ 2¹² 2¹⁴ 2¹⁶ 2¹⁸ 2²⁰ 2²² 2²⁴

C
ac

h
e

 m
is

s
ra

ti
o

 (
%

)

Varying graph size

DMC DAC Uncached

Figure 11: Comparison of the cache miss ratio between DAC
and DMC as the size of graphs increases.

Modern FPGAs generally use multiple DRAM channels to pro-
vide higher memory bandwidth [14, 31]. To utilize multiple DRAM
channels, we instantiate multiple independent LightRW instances
and connect each of them to one DRAM channel, as shown in Fig-
ure 9. Each LightRW instance has a private and independent copy
of the graph data and is configured to fully utilize the bandwidth of
one channel. Meanwhile, we evenly distribute random walk queries
to all instances.

6.2 Evaluation on WRS Sampler
The throughput of the WRS Sampler determines the overall per-
formance of LightRW. Therefore, we conduct an evaluation of the
WRS Sampler module with different degrees of parallelism and
varying workloads individually. We randomly generate weights
and items as the input data to be sampled by the WRS Sampler.
The pre-generated data is stored in the one FPGA’s DRAM. Dur-
ing the evaluation, the weights are sent to the WRS Sampler in a
stream, and we measure the number of traversed items per second
as throughput.

Figure 10a shows the throughput of the proposed WRS Sampler
with varying degrees of parallelism, 𝑘 (the number of vertices con-
sumed per cycle). The blue line shows the measured throughput,
while the gray dashed line shows the theoretical throughput. We
observe that the throughput of the WRS Sampler increases linearly
with 𝑘 and matches the theoretical throughput when 𝑘 ≤ 16. At
𝑘 = 16, the sampling throughput reaches the maximum bandwidth
of the FPGA DRAM (17 GB/s), indicating that the proposed sampler
can fully utilize the available memory bandwidth. Moreover, the
results demonstrate the good scalability of our proposed parallel
weighted reservoir algorithm and hardware architecture design.

LightRW: FPGA Accelerated Graph Dynamic Random Walks

2.56×

3.49× 3.55×

4.24×

1.97×

1.23×

3.26×

2.27× 2.31×

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

rmat-14 rmat-16 rmat-18 rmat-20 youtube us-patent liveJournal orkut uk2002

Synthetic graphs Real-world graphs

Sp
ee

d
u

p

baseline b1+b2 b1+b4 b1+b8 b1+b16 b1+b32 b1+b64

Figure 12: Speedup of different dynamic burst strategies onMetaPath with synthetic
graphs and real world graphs.

0%

25%

50%

75%

100%

YT UP LJ OR UK

WRS DYB DAC

(a) MetaPath.

0%

25%

50%

75%

100%

YT UP LJ OR UK

(b) Node2Vec.

Figure 13: Performance breakdown of
WRS, DYB, and DAC on MetaPath and
Node2Vec.

Figure 10b shows the throughput of the WRS Sampler with
varying workloads. Specifically, we generate items of different sizes
to be sampled in data streams ranging from 26 to 216. To ensure the
full bandwidth utilization of the FPGA’s DRAMby theWRS Sampler,
we set the degree of parallelism to 16. The results show that the
throughput of the WRS Sampler is slightly less than the maximum
memory throughput when the workload size is small. This is due
to the initialization overhead of the pipeline execution, but such a
performance difference is negligible. Overall, the proposed WRS
Sampler is capable of fully utilizing the memory bandwidth with
varying workloads. In other words, the WRS Sampler is not the
bottleneck of the entire accelerator pipeline.

6.3 Impact of Memory Optimizations
In this section, we first evaluate the impact of different dynamic
burst strategies in the dynamic burst engine. We then demonstrate
the benefits of our degree-aware cache in reducing the overhead of
random accesses in GDRWs.

6.3.1 Degree-aware Cache. Figure 11 depicts the cache miss ra-
tio of the proposed degree-aware cache (DAC) compared to the
direct-mapped cache (DMC) for MetaPath on RMAT graphs with an
increasing number of vertices from 26 to 224. The evaluated caches
are capable of storing up to 212 vertices.

We can make the following observations. First, for graphs with
fewer than 212 vertices, the cache miss ratio is close to zero, as all
vertices can be cached. Second, our degree-aware cache has a much
lower cache miss ratio than a direct-mapped cache. Specifically, as
the size of the graph increases, the cache miss ratio of the direct-
mapped cache grows significantly, while our cache still maintains
a comparatively lower miss ratio. For example, when the graph
has 218 vertices, the cache miss ratio of the direct-mapped cache is
close to 100%, while our degree-aware cache only has a 49% cache
miss.

6.3.2 Dynamic Burst Engine. Figure 12 shows the throughput com-
parison on MetaPath with different dynamic burst strategies. The
burst strategies are represented as ‘b{x} + b{y}’. For example, given

a strategy b1 + b16, it indicates that the length of a short burst
and a long burst is set to 1 and 16, respectively. The baseline is
b1 + b0, i.e., the burst length of the access pipeline is only con-
figured to one, which is the common setting to handle irregular
workloads [4]. We set the length of the short burst to one since
it achieves minimal overhead in loading unused data, as we have
discussed in Section 5.2. Based on the results in Figure 12, we have
the following highlights. First, performance varies significantly
with different strategies. The burst strategy b1 + b32 achieves the
best performance and outperforms the baseline up to 4.24×. Second,
the strategy b1 + b2 delivers the worst performance, because the
benefits of long burst with length of two cannot amortize the over-
head of the burst plan generation. Third, although similar trends
are observed on both synthetic and real-world graphs, the perfor-
mance improvements from dynamic burst strategies on real-world
graphs are not as significant. This is because real-world graphs are
generally more irregular than synthetic graphs. Nonetheless, our
dynamic burst strategies can still provide up to 3.26× throughput
improvement compared to the baseline solution. As the strategy
b1 + b32 outperforms others in all graphs, we use it as the dynamic
burst strategy for the subsequent evaluation.

6.4 Performance Breakdown
Figure 13 analyzes the performance breakdown of the three pro-
posed techniques, weighted reservoir sampling (WRS), dynamic
burst engine (DYB), and degree-aware cache (DAC). Specifically,
each proposed technique is disabled one at a time, and the resulting
impact on performance is measured relative to the implementation
with all techniques enabled. On the basis of the results, we have the
following observations. First, WRS, which enables pipelined exe-
cution, contributes the most performance improvement (up to 41%
to 79%) for the two GDRW algorithms, particularly for Node2Vec.
Second, the benefit from the dynamic burst engine on Node2Vec
is comparatively small. This is because Node2Vec requires addi-
tional memory access on the neighbors of the last traversed vertex,
which in turn decreases the available memory bandwidth for the
dynamic burst engine. Third, the degree-aware cache contributes

Hongshi Tan et al.

1 1.17× 0.80×
1.70× 1.84×

0.63×

7.41×

6.27×

8.10×

9.55×

7.42×

0

2

4

6

8

10

YT UP LJ OR UK

Sp
e

e
d

u
p

ThunderRW ThunderRW w/PWRS LightRW

(a) MetaPath.

1 1.04× 0.66× 0.99× 1.00× 1.26×

5.17×

8.01× 8.28× 8.02×

9.10×

0

2

4

6

8

10

YT UP LJ OR UK
Sp

e
e

d
u

p

ThunderRW ThunderRW w/PWRS LightRW

(b) Node2Vec.

Figure 14: Performance comparison between LightRW and
ThunderRW on MetaPath and Node2Vec.

(a) MetaPath. (b) Node2Vec.

Figure 15: Comparison of latency between LightRW and
ThunderRW on MetaPath and Node2Vec.

more improvement to MetaPath than to Node2Vec. This is because
that the degree-aware cache aims to improve the performance on
accessing the col_index array, but Node2Vec has more memory
accesses on the row_index array. Even though our cache only oc-
cupies several URAMs, it still achieves up to 6% improvement on
the largest graph uk2002, demonstrating the effectiveness of the
proposed cache replacement policy.

6.5 Comparison with the State-of-the-art CPU
Implementation

We compare LightRW with the state-of-the-art CPU-based imple-
mentation, ThunderRW [54]. ThunderRW is executed on a server
equipped with an Intel Xeon Gold 6246R CPU, which has 16 phys-
ical cores and a 19-stage pipeline, with a total cache capacity of
35.75MB [2].

First, we present the speedup of MetaPath and Node2Vec on five
real-world graphs. Next, we compare the latency of executing small
number of queries. Finally, we conduct a sensitivity evaluation by
varying the query length and number of queries.

6.5.1 Throughput comparison. Figure 14 presents the speedup in
performance of LightRW over ThunderRW for both MetaPath and
Node2Vec. Besides the explicit memory prefetching, task level par-
allelism, and parallelized PRNG [50] that have already been enabled
in ThunderRW, we further implement and integrate the proposed
parallel weighted reservoir sampling algorithm into ThunderRW
(ThunderRW w/PRWS) to make a fair comparison with LightRW.

The impact of parallel WRS algorithm on ThunderRW varies on
different graphs. For example, 1.84× speedup is observed on OR
dataset on MetaPath random walk, while significant performance

10⁵

10⁶

10⁷

10⁸

10⁴

10³

10²

10¹

1

75.74×

11.00×

2¹⁰ 2¹² 2¹⁴ 2¹⁶ 2¹⁸ 2²⁰ 2²²

Th
ro

u
gh

p
u

t
(S

te
p

/s
)

ThunderRW LightRW Speedup

(a) MetaPath.

10⁵

10⁶

10⁷

10⁸

10⁴

10³

10²

10¹

1

34.95×

8.26×

2¹⁰ 2¹² 2¹⁴ 2¹⁶ 2¹⁸ 2²⁰ 2²²

Th
ro

u
gh

p
u

t
(S

te
p

/s
)

ThunderRW LightRW Speedup

(b) Node2Vec.

Figure 16: Comparison of throughput between ThunderRW
and LightRW on LJ with varying numbers of queries on
MetaPath and Node2Vec.

10⁵

10⁶

10⁷

10⁸

10⁴

10³

10²

10¹

1

10.20× 9.97×

10 20 30 40 50 60 70 80

Th
ro

u
gh

p
u

t
(S

te
p

/s
)

ThunderRW LightRW Speedup

(a) MetaPath.

10⁵

10⁶

10⁷

10⁸

10⁴

10³

10²

10¹

1

9.31× 8.27×

10 20 30 40 50 60 70 80

Th
ro

u
gh

p
u

t
(S

te
p

/s
)

ThunderRW LightRW Speedup

(b) Node2Vec.

Figure 17: Comparison of throughput between ThunderRW
and LightRWon LJ with varying query lengths onMetaPath
and Node2Vec.
degradation is also observed on the UP and UK datasets. There are
two potential reasons. First, the maximum number of CPU pipeline
stages is limited to 19, which is not suitable for the proposed parallel
WRS algorithm that relies on long pipeline execution. Second, the
computational cost of random number generation is not sufficiently
amortized over the benefit of reduced memory accesses. LightRW
outperforms ThunderRW, even running at a 10× slower frequency
and 2× lower sequential memory bandwidth. In particular, LightRW
delivers 6.27×∼9.55× speedup over ThunderRW on MetaPath and
5.17×∼9.10× speedup on Node2Vec. This is attributed to the pro-
posed fine-grained pipelining withWRS andmemory optimizations.
It is worth noting that the speedup on the youtube graph is smaller
than others because it is small enough to fit into the CPU last-level
cache.

6.5.2 Latency evaluation. Figure 15 shows the execution latency
of LightRW and ThunderRW. Latency is calculated as the time from
the start to the end of a query. For LightRW, we implement a cycle
counter inside the accelerator to measure the exact hardware cy-
cles. We measure the latency of 8192 randomly selected queries for
each graph using both systems. In Figure 15, the rectangular box of
each data series indicates the range from the lower quartile (25th
percentile) to the upper quartile (75th percentile), and the horizon-
tal line inside the box represents the median measurement. The
whiskers with the horizontal lines at the top and bottom represent
the maximum and minimum measurements, respectively.

On the whole, LightRW achieves much lower latency than Thun-
derRW. This suggests that FPGA-based GDRW is more suitable for

LightRW: FPGA Accelerated Graph Dynamic Random Walks

Table 3: The comparison of power efficiency between
LightRW and ThunderRW on all tested graphs.

App. Power consumption (Watt) Power efficiency
LightRW ThunderRW improvement

MetaPath 41∼45 103∼124 15.05×∼26.42×
Node2Vec 39∼42 110∼126 16.28×∼24.10×

handling real-time graph analytic applications [21, 32, 38]. Addi-
tionally, the latency of LightRW is more consistent across different
graphs compared to ThunderRW. This is because the FPGA-based
design has deterministic latency, CPU-based designs often suffer
from uncontrolled latency and non-deterministic resource sharing,
such as hardware interrupt preemption, user/kernel space context
switching, and synchronization between multiple threads, etc.

6.5.3 Sensitivity evaluation on query parameters. To further inves-
tigate the performance of LightRW and ThunderRW, we conduct a
sensitivity analysis on a representative dataset, the liveJournal (LJ)
graph. This graph has a moderate number of edges and its average
degree is the median of all evaluated real-world graphs. Specifically,
we vary the number and length of queries in our analysis.

Figure 16 presents the throughput of LightRW and ThunderRW
with the number of queries ranging from 210 to 222 of random walk
on the LJ graph. We start the number of queries from 210 because
ThunderRW requires at least 210 queries to fully utilize the memory
bandwidth of the target CPU. First, we can see that LightRW deliv-
ers almost constant throughput regardless of the number of queries.
The throughput is up to 4.8×107 steps per second on MetaPath
and 3.5×107 steps per second on Node2Vec. Next, we observe that
LightRW’s speedup over ThunderRW is 11.00×∼75.74× on Meta-
Path and 8.26×∼34.95× on Node2Vec. In particular, the speedup
is more significant when the number of queries is relatively small
(e.g., up to 75.54× with 210 queries). This is because ThunderRW
has constant initialization overhead, such as memory allocation
and thread allocation, before the execution of multiple queries.

Figure 17 shows the throughput of LightRW and ThunderRW
with varying query lengths from 10 to 80. The trends show that
LightRW delivers constant throughput with different query lengths.
The performance speedup of LightRW over ThunderRW is around
9.97×∼10.20× for MetaPath, and 8.28×∼9.31× for Node2Vec. There-
fore, we conclude that LightRW stably outperforms ThunderRW
on MetaPath and Node2Vec with different query settings.

6.5.4 Comparison of power efficiency. Table 3 compares the power
consumption of LightRW and ThunderRW. The power consumption
of CPU-based execution is measured using the CPU Energy Me-
ter [41] during the execution of each benchmark, while the power
consumption of our LightRW FPGA accelerator is measured using
xbutil [63].

The power efficiency improvement is calculated as the ratio of
end-to-end execution time per Watt of LightRW to that of Thun-
derRW. Overall, LightRW consumes less energy than ThunderRW
and outperforms ThunderRWby 15×∼26× onMetaPath and 16×∼24×
on Node2Vec in power efficiency. Since the power of LightRW on
the FPGA platform is only 2.29× less than that of ThunderRW
on CPUs, and LightRW runs to 9.55× fast ThunderRW, we con-
clude that the improvement in power efficiency is mainly due to

our design rather than a power-efficient hardware platform. The
significant performance and energy efficiency improvements also
demonstrate the efficacy of customizing accelerators for GDRWs.

6.6 Other Results
In this section, we analyze the PCIe overhead of FPGA acceleration
and present the hardware resource utilizations of LightRW for
different GDRW algorithms

Table 4: The proportion of PCIe data transfer time over the
end-to-end execution time of MetaPath and Node2Vec.

App. youtube us-patents liveJournal orkut uk2002
MetaPath 16.5% 15.3% 20.5% 33.5% 23.3%
Node2vec 0.07% 1.10% 0.54% 0.56% 0.25%

6.6.1 PCIe Overhead Analysis. Table 4 shows the percentage of
time taken for PCIe data transfer over the end-to-end execution
time. The results demonstrate that graph data transfer generally
occupies only a small portion of the total end-to-end execution
time, ranging from 0.07% to 33.5%. This suggests that data transfer
is not a bottleneck for the entire system, and justifies the offloading
of GDRWs to the FPGA accelerator.

Table 5: The consumption of hardware resources (percent-
age) and frequency (MHz) of MetaPath and Node2Vec on
Alveo U250 FPGA borad.

App. LUTs REGs BRAMs DSPs Frequency
MetaPath 33.52% 29.76% 17.24% 5.16% 300MHz
Node2Vec 20.84% 18.20% 36.12% 2.62% 300MHz

6.6.2 FPGA resource utilization. Table 5 presents the resource uti-
lization and frequency of LightRW for MetaPath and Node2Vec.
The results show that LightRW utilizes only a small portion of the
resources available on the U250 FPGA, leaving ample resources
for downstream processing logic, such as graph learning applica-
tions. Additionally, LightRW runs at a frequency of up to 300MHz
benefiting from the modular design methodology used.

6.7 Case Study: Link Prediction
As a case study, we integrated our accelerator into the Stanford
Network Analysis Platform (SNAP) to accelerate the link predic-
tion application [62]. SNAP is a popular graph analysis platform
with a core library written in C++, optimized for maximum per-
formance and compact graph representation [36]. Link prediction
is a widely used function in applications such as social networks,
bioinformatics, and e-commerce [62]. The goal is to predict the
existence of a link between two entities in a given network. A com-
mon approach is to use the Node2Vec random walk to generate
different paths, followed by an unsupervised learning method, such
as Word2Vec [25], to process the random walk paths and identify
vertices with minimal cosine similarity to form the predicted edges.

Figure 18 presents the execution time breakdown of LightRW-
accelerated SNAP (SNAP w/LightRW) and CPU-based SNAP for
link prediction on the liveJournal graph. The results show that the
Node2Vec random walk is the most time-consuming part of the
link prediction application. With the acceleration of the Node2Vec

Hongshi Tan et al.

0 200 400 600 800 1000 1200

SNAP w/LightRW

SNAP

Execution time (s)

Graph transfer via PCIe Random walk on CPU Random walk on FPGA
Result transfer via PCIe Learning on CPU

Figure 18: Execution time breakdown for link prediction
on LJ graph between SNAP and LightRW accelerated SNAP
(SNAP w/LightRW)

random walk by LightRW, the total execution time of the link pre-
diction is reduced to half the original execution time. Furthermore,
although graph data and results need to be copied between CPU
and FPGA memory, the impact is negligible compared to the overall
execution time. The results also indicate the potential for further
performance improvements if the learning process can also be of-
floaded to the FPGA side for acceleration.

7 RELATEDWORKS
Graph Random Walks on CPU/GPUs. Knightking [65] adopts
a vertex-centric model for a single query and processes multiple
queries with the BSP execution model, i.e., waiting for all queries to
complete the current step before starting the next step. To leverage
the parallel processing capability of GPUs, C-SAW [43] parallelizes
the initialization and generation stage using the inverse transforma-
tion sampling method among multiple GPU processing cores. Mul-
tiple queries are processed using the BSP model. ThunderRW [54]
proposes a step-centric model that interleaves memory accesses of
subtasks to improve the parallelism of multiple queries, achieving
state-of-the-art performance and outperforming the GPU-based
C-SAW.
Graph Random Walks on FPGAs. Su et al. [53] propose an
FPGA-based accelerator for static random walks that utilizes high
bandwidth memory (HBM) and multiple processing elements to han-
dle multiple queries concurrently. They develope a degree-aware
sampler that selects the appropriate division arithmetic units based
on the degree of the vertices. This work is designed to support a
specific MetaPath query by partitioning the graph into subgraphs
based on vertex labels and performing a static random walk on
each subgraph. However, their architecture is highly specific to
MetaPath queries with only two types of vertex labels. Because it
only supports uniform random sampling, the proposed accelerator
is limited to unweighted MetaPath random walks and cannot be
generalized to any other GDRW algorithms. On the other hand,
LightRW is an accelerator for dynamic random walks and supports
not only generic MetaPath queries but also other GDRW algorithms.
Our performance improvements are mainly due to the novel FPGA
architecture design that efficiently realizes the proposed parallel
weighted reservoir sampling algorithms.

8 CONCLUSION AND FUTUREWORK
This paper proposes LightRW, the first FPGA-based accelerator
for GDRWs. Unlike existing CPU-based approaches that require
synchronization barriers among different stages, LightRW paral-
lelizes the weighted reservoir sampling for GDRWs to enable a
fine-grained pipeline execution on the chip, allowing for better

spatial parallelism and reduced memory access to the DRAM. Ad-
ditionally, LightRW contains two novel memory optimizations to
handle memory access patterns specific to random walks with
better efficiency. Experimental results demonstrate that LightRW
achieves up to 9.55× and 9.10× performance speedup compared to
the state-of-the-art CPU-based implementation on two representa-
tive dynamic random walk algorithms. However, processing large
graphs (e.g., in Terabyte scale) may require multiple FPGA boards
with sufficient computation power and DRAM.

Future work: First, we plan to develop a distributed version of
LightRW to leverage the increased availability of high-speed net-
work interfaces (e.g., InfiniBand and 100G Ethernet) and open-
source network frameworks on FPGAs (e.g., OpenNIC [64] and
Corundum [22]). Second, LightRW demonstrates the advantage of
a fine-grained pipelined accelerator over generic CPU hardware.
Specifically, our pipelined architecture eliminates the high cost of
the random number generation stage and the weighted random
sampling initialization stage. This idea is not limited to GDRWs
but further enables the possibility of more efficient computing for
both graph-based and non-graph-based applications that rely on
randomized approaches, such as Markov chain Monte Carlo [7],
Bayesian networks [18], and physics simulations [45].

ACKNOWLEDGMENTS
This research/project is supported by the National Research Foun-
dation, Singapore under its AI Singapore Programme (AISG Award
No: AISG2-TC-2021-002), the Ministry of Education AcRF Tier 2
grant (No. MOE-000242-00 / MOE-000242-01), and Google South
& Southeast Asia Research Award 2022. We also thank the AMD
Heterogeneous Accelerated Compute Clusters (HACC) program
(formerly known as the XACC program - Xilinx Adaptive Compute
Cluster program) [1] for the generous hardware donation. Bing-
sheng He and Yao Chen from the National University of Singapore
are the corresponding authors.

REFERENCES
[1] AMD. 2023. Heterogeneous Accelerated Compute Clusters (HACC) Program.

https://www.amd-haccs.io/index.html.
[2] Mohamed Arafa, Bahaa Fahim, Sailesh Kottapalli, Akhilesh Kumar, Lily P Looi,

Sreenivas Mandava, Andy Rudoff, Ian M Steiner, Bob Valentine, Geetha Vedara-
man, et al. 2019. Cascade lake: Next generation intel xeon scalable processor.
IEEE Micro 39, 2 (2019), 29–36.

[3] Junya Arai, Hiroaki Shiokawa, Takeshi Yamamuro, Makoto Onizuka, and Sotetsu
Iwamura. 2016. Rabbit order: Just-in-time parallel reordering for fast graph
analysis. In 2016 IEEE International Parallel and Distributed Processing Symposium
(IPDPS). IEEE, 22–31.

[4] Mikhail Asiatici and Paolo Ienne. 2019. DynaBurst: Dynamically Assemblying
DRAM Bursts over a Multitude of Random Accesses. In 2019 29th International
Conference on Field Programmable Logic and Applications (FPL). 254–262. https:
//doi.org/10.1109/FPL.2019.00049

[5] Mohammed Bakiri, Christophe Guyeux, Jean-François Couchot, and Ab-
delkrim Kamel Oudjida. 2018. Survey on hardware implementation of random
number generators on FPGA: Theory and experimental analyses. Computer
Science Review 27 (2018), 135–153.

[6] Vignesh Balaji and Brandon Lucia. 2019. Combining data duplication and graph
reordering to accelerate parallel graph processing. In Proceedings of the 28th
International Symposium on High-Performance Parallel and Distributed Computing.
133–144.

[7] Subho S. Banerjee, Zbigniew T. Kalbarczyk, and Ravishankar K. Iyer. 2019. AcMC2
: Accelerating Markov Chain Monte Carlo Algorithms for Probabilistic Models. In
Proceedings of the Twenty-Fourth International Conference on Architectural Support
for Programming Languages and Operating Systems (Providence, RI, USA) (ASPLOS
’19). ACM, New York, NY, USA, 515–528. https://doi.org/10.1145/3297858.3304019

https://www.amd-haccs.io/index.html
https://doi.org/10.1109/FPL.2019.00049
https://doi.org/10.1109/FPL.2019.00049
https://doi.org/10.1145/3297858.3304019

LightRW: FPGA Accelerated Graph Dynamic Random Walks

[8] Abanti Basak, Shuangchen Li, Xing Hu, Sang Min Oh, Xinfeng Xie, Li Zhao,
Xiaowei Jiang, and Yuan Xie. 2019. Analysis and optimization of the memory
hierarchy for graph processing workloads. In 2019 IEEE International Symposium
on High Performance Computer Architecture (HPCA). IEEE, 373–386.

[9] Paolo Boldi and Sebastiano Vigna. 2004. The WebGraph Framework I: Com-
pression Techniques. In Proc. of the Thirteenth International World Wide Web
Conference (WWW 2004). ACM Press, Manhattan, USA, 595–601.

[10] Deepayan Chakrabarti, Yiping Zhan, and Christos Faloutsos. 2004. R-MAT: A
recursive model for graph mining. In Proceedings of the 2004 SIAM International
Conference on Data Mining. SIAM, 442–446.

[11] Xinyu Chen, Ronak Bajaj, Yao Chen, Jiong He, Bingsheng He, Weng-Fai Wong,
and Deming Chen. 2019. On-the-fly parallel data shuffling for graph process-
ing on OpenCL-based FPGAs. In 2019 29th International Conference on Field
Programmable Logic and Applications (FPL). IEEE, 67–73.

[12] Xinyu Chen, Feng Cheng, Hongshi Tan, Yao Chen, Bingsheng He, Weng-Fai
Wong, and Deming Chen. 2022. ThunderGP: Resource-Efficient Graph Processing
Framework on FPGAs with HLS. ACM Transactions on Reconfigurable Technology
and Systems (TRETS) (2022).

[13] Xinyu Chen, Hongshi Tan, Yao Chen, Bingsheng He, Weng-Fai Wong, and Dem-
ing Chen. 2021. Skew-Oblivious Data Routing for Data Intensive Applications on
FPGAs with HLS. In 2021 58th ACM/IEEE Design Automation Conference (DAC).
IEEE, 937–942.

[14] Xinyu Chen, Hongshi Tan, Yao Chen, Bingsheng He, Weng-Fai Wong, and Dem-
ing Chen. 2021. ThunderGP: HLS-based graph processing framework on fpgas.
In The 2021 ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays. 69–80.

[15] Wai-Ki Ching, XiminHuang,Michael K Ng, and Tak-Kuen Siu. 2013. Higher-order
markov chains. In Markov Chains. Springer, 141–176.

[16] Young-kyu Choi, Yuze Chi, Weikang Qiao, Nikola Samardzic, and Jason Cong.
2021. Hbm connect: High-performance hls interconnect for fpga hbm. In The
2021 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays.
116–126.

[17] Intel Corporation. 2022. Intel VTune Profiler. https://www.intel.com/content/
www/us/en/developer/tools/oneapi/vtune-profiler.html

[18] Petros Dellaportas, Jonathan J Forster, and Ioannis Ntzoufras. 2002. On Bayesian
model and variable selection using MCMC. Statistics and Computing 12, 1 (2002),
27–36.

[19] Yuxiao Dong, Nitesh V Chawla, and Ananthram Swami. 2017. metapath2vec:
Scalable representation learning for heterogeneous networks. In Proceedings of
the 23rd ACM SIGKDD international conference on knowledge discovery and data
mining. 135–144.

[20] Pavlos S Efraimidis and Paul G Spirakis. 2006. Weighted random sampling with
a reservoir. Information processing letters 97, 5 (2006), 181–185.

[21] James Fairbanks, David Ediger, Rob McColl, David A Bader, and Eric Gilbert.
2013. A statistical framework for streaming graph analysis. In 2013 IEEE/ACM
International Conference on Advances in Social Networks Analysis and Mining
(ASONAM 2013). IEEE, 341–347.

[22] Alex Forencich, Alex C. Snoeren, George Porter, and George Papen. 2020. Corun-
dum: An Open-Source 100-Gbps NIC. In 28th IEEE International Symposium on
Field-Programmable Custom Computing Machines.

[23] Marco Gori and Augusto Pucci. 2006. Research paper recommender systems: A
random-walk based approach. In 2006 IEEE/WIC/ACM International Conference
on Web Intelligence (WI 2006 Main Conference Proceedings)(WI’06). IEEE, 778–781.

[24] Martin Grohe. 2020. word2vec, node2vec, graph2vec, x2vec: Towards a theory of
vector embeddings of structured data. In Proceedings of the 39th ACM SIGMOD-
SIGACT-SIGAI Symposium on Principles of Database Systems. 1–16.

[25] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for
networks. In Proceedings of the 22nd ACM SIGKDD international conference on
Knowledge discovery and data mining. 855–864.

[26] Yu He, Yangqiu Song, Jianxin Li, Cheng Ji, Jian Peng, and Hao Peng. 2019. Hetes-
paceywalk: A heterogeneous spacey random walk for heterogeneous information
network embedding. In Proceedings of the 28th ACM International Conference on
Information and Knowledge Management. 639–648.

[27] Yuwei Hu, Yixiao Du, Ecenur Ustun, and Zhiru Zhang. 2021. GraphLily: Ac-
celerating graph linear algebra on HBM-equipped FPGAs. In 2021 IEEE/ACM
International Conference On Computer Aided Design (ICCAD). IEEE, 1–9.

[28] Jung-Chang Huang and Tau Leng. 1999. Generalized loop-unrolling: a method
for program speedup. In Proceedings 1999 IEEE Symposium on Application-Specific
Systems and Software Engineering and Technology. ASSET’99 (Cat. No. PR00122).
IEEE, 244–248.

[29] Lorenz Hübschle-Schneider and Peter Sanders. 2019. Parallel Weighted Random
Sampling. In 27th Annual European Symposium on Algorithms (ESA 2019). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik.

[30] Rajesh Jayaram, Gokarna Sharma, Srikanta Tirthapura, and David P Woodruff.
2019. Weighted reservoir sampling from distributed streams. In Proceedings of the
38th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems.
218–235.

[31] Dario Korolija, Timothy Roscoe, and Gustavo Alonso. 2020. Do {OS} abstractions
make sense on {FPGAs}?. In 14th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 20). 991–1010.

[32] Pradeep Kumar and H Howie Huang. 2020. Graphone: A data store for real-time
analytics on evolving graphs. ACM Transactions on Storage (TOS) 15, 4 (2020),
1–40.

[33] Pierre L’Ecuyer and Richard Simard. 2007. TestU01: AC library for empirical test-
ing of random number generators. ACM Transactions on Mathematical Software
(TOMS) 33, 4 (2007), 1–40.

[34] Jure Leskovec, Deepayan Chakrabarti, Jon Kleinberg, Christos Faloutsos, and
Zoubin Ghahramani. 2010. Kronecker graphs: an approach to modeling networks.
Journal of Machine Learning Research 11, 2 (2010).

[35] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network
Dataset Collection. http://snap.stanford.edu/data.

[36] Jure Leskovec and Rok Sosič. 2016. SNAP: A General-Purpose Network Anal-
ysis and Graph-Mining Library. ACM Transactions on Intelligent Systems and
Technology (TIST) 8, 1 (2016), 1.

[37] Yuan Li, Paul Chow, Jiang Jiang, Minxuan Zhang, and Shaojun Wei. 2013. Soft-
ware/Hardware Parallel Long-Period Random Number Generation Framework
Based on the WELL Method. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems 22, 5 (2013), 1054–1059.

[38] Xi Liu, Ping-Chun Hsieh, Nick Duffield, Rui Chen, Muhe Xie, and Xidao Wen.
2019. Real-time streaming graph embedding through local actions. In Companion
Proceedings of The 2019 World Wide Web Conference. 285–293.

[39] Linyuan Lü and Tao Zhou. 2011. Link prediction in complex networks: A survey.
Physica A: statistical mechanics and its applications 390, 6 (2011), 1150–1170.

[40] Makoto Matsumoto and Takuji Nishimura. 1998. Mersenne twister: a 623-
dimensionally equidistributed uniform pseudo-random number generator. ACM
Transactions on Modeling and Computer Simulation (TOMACS) 8, 1 (1998), 3–30.

[41] SoSy Lab LMU Munich. 2021. CPU Energy Meter. https://github.com/sosy-
lab/cpu-energy-meter.

[42] Giannis Nikolentzos and Michalis Vazirgiannis. 2020. Random walk graph neural
networks. Advances in Neural Information Processing Systems 33 (2020), 16211–
16222.

[43] Santosh Pandey, Lingda Li, Adolfy Hoisie, Xiaoye S Li, and Hang Liu. 2020. C-
SAW: A framework for graph sampling and random walk on GPUs. In SC20:
International Conference for High Performance Computing, Networking, Storage
and Analysis. IEEE, 1–15.

[44] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learning
of social representations. In Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining. 701–710.

[45] SJ Plimpton, SG Moore, A Borner, AK Stagg, TP Koehler, JR Torczynski, and MA
Gallis. 2019. Direct simulation Monte Carlo on petaflop supercomputers and
beyond. Physics of Fluids 31, 8 (2019), 086101.

[46] Juan J Rodriguez-Andina, Maria J Moure, and Maria D Valdes. 2007. Features,
design tools, and application domains of FPGAs. IEEE Transactions on Industrial
Electronics 54, 4 (2007), 1810–1823.

[47] Ryan Rossi and Nesreen Ahmed. 2015. The network data repository with inter-
active graph analytics and visualization. In Twenty-Ninth AAAI Conference on
Artificial Intelligence.

[48] Reuven Y Rubinstein and Dirk P Kroese. 2016. Simulation and the Monte Carlo
method. Vol. 10. John Wiley & Sons.

[49] Ilya Safro, Paul D Hovland, Jaewook Shin, and Michelle Mills Strout. 2009. Im-
proving Random Walk Performance.. In CSC. 108–112.

[50] Mutsuo Saito and Makoto Matsumoto. 2008. SIMD-oriented fast Mersenne
Twister: a 128-bit pseudorandom number generator. In Monte Carlo and Quasi-
Monte Carlo Methods 2006. Springer, 607–622.

[51] Frank Ludvig Spitzer. 1976. Principles of random walk / Frank Spitzer (2d ed. ed.).
Springer-Verlag New York. xiii, 408 p. ; pages.

[52] Mario Stipčević and Çetin Kaya Koç. 2014. True random number generators. In
Open Problems in Mathematics and Computational Science. Springer, 275–315.

[53] Chunyou Su, Hao Liang, Wei Zhang, Kun Zhao, Baole Ai, Wenting Shen, and
Zeke Wang. 2021. Graph Sampling with Fast Random Walker on HBM-enabled
FPGA Accelerators. In 2021 31st International Conference on Field-Programmable
Logic and Applications (FPL). IEEE, 211–218.

[54] Shixuan Sun, Yuhang Chen, Shengliang Lu, Bingsheng He, and Yuchen Li. 2021.
ThunderRW: an in-memory graph random walk engine. Proceedings of the VLDB
Endowment 14, 11 (2021), 1992–2005.

[55] Yizhou Sun and Jiawei Han. 2013. Mining heterogeneous information networks:
a structural analysis approach. Acm Sigkdd Explorations Newsletter 14, 2 (2013),
20–28.

[56] Hongshi Tan, Xinyu Chen, Yao Chen, Bingsheng He, and Weng-Fai Wong. 2021.
ThundeRiNG: generating multiple independent random number sequences on
FPGAs. In Proceedings of the ACM International Conference on Supercomputing.
115–126.

[57] Fatemeh Vahedian, Robin Burke, and Bamshad Mobasher. 2017. Weighted Ran-
dom Walk Sampling for Multi-Relational Recommendation. In Proceedings of the
25th Conference on User Modeling, Adaptation and Personalization (Bratislava,

https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
http://snap.stanford.edu/data
https://github.com/sosy-lab/cpu-energy-meter
https://github.com/sosy-lab/cpu-energy-meter

Hongshi Tan et al.

Slovakia) (UMAP ’17). Association for Computing Machinery, New York, NY,
USA, 230–237. https://doi.org/10.1145/3079628.3079685

[58] Fatemeh Vahedian, Robin D Burke, and Bamshad Mobasher. 2016. Weighted
Random Walks for Meta-Path Expansion in Heterogeneous Networks.. In RecSys
Posters.

[59] Guojia Wan, Bo Du, Shirui Pan, and Gholameza Haffari. 2020. Reinforcement
learning based meta-path discovery in large-scale heterogeneous information
networks. In Proceedings of the aaai conference on artificial intelligence, Vol. 34.
6094–6101.

[60] Nian Wang, Min Zeng, Yiming Li, Fang-Xiang Wu, and Min Li. 2021. Essential
Protein Prediction Based on node2vec and XGBoost. Journal of Computational
Biology 28, 7 (2021), 687–700.

[61] Wikipedia contributors. 2022. Inverse transform sampling —Wikipedia, The Free
Encyclopedia. https://en.wikipedia.org/w/index.php?title=Inverse_transform_
sampling&oldid=1115190568 [Online; accessed 16-October-2022].

[62] Wikipedia contributors. 2022. Link prediction — Wikipedia, The Free Ency-
clopedia. https://en.wikipedia.org/w/index.php?title=Link_prediction&oldid=
1100501520 [Online; accessed 14-October-2022].

[63] Xilinx. 2020. Vitis Unified Software Development Platform 2020.2 Documentation.
https://www.xilinx.com/html_docs/xilinx2020_2/vitis_doc/index.html.

[64] Xilinx. 2020. Xilinx OpenNIC Shell. https://github.com/Xilinx/open-nic-shell
[65] Ke Yang, MingXing Zhang, Kang Chen, Xiaosong Ma, Yang Bai, and Yong Jiang.

2019. Knightking: a fast distributed graph random walk engine. In Proceedings of
the 27th ACM Symposium on Operating Systems Principles. 524–537.

[66] Xiao Yu, Xiang Ren, Yizhou Sun, Quanquan Gu, Bradley Sturt, Urvashi Khandel-
wal, Brandon Norick, and Jiawei Han. 2014. Personalized entity recommendation:
A heterogeneous information network approach. In Proceedings of the 7th ACM
international conference on Web search and data mining. 283–292.

[67] Jin Zhao, Yu Zhang, Xiaofei Liao, Ligang He, Bingsheng He, Hai Jin, and Haikun
Liu. 2021. LCCG: a locality-centric hardware accelerator for high throughput of
concurrent graph processing. In Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis. 1–14.

[68] Shijie Zhou, Rajgopal Kannan, Viktor K Prasanna, Guna Seetharaman, and Qing
Wu. 2019. HitGraph: High-throughput graph processing framework on FPGA.
IEEE Transactions on Parallel and Distributed Systems 30, 10 (2019), 2249–2264.

https://doi.org/10.1145/3079628.3079685
https://en.wikipedia.org/w/index.php?title=Inverse_transform_sampling&oldid=1115190568
https://en.wikipedia.org/w/index.php?title=Inverse_transform_sampling&oldid=1115190568
https://en.wikipedia.org/w/index.php?title=Link_prediction&oldid=1100501520
https://en.wikipedia.org/w/index.php?title=Link_prediction&oldid=1100501520
https://www.xilinx.com/html_docs/xilinx2020_2/vitis_doc/index.html
https://github.com/Xilinx/open-nic-shell

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Graph Dynamic Random Walks
	2.2 GDRW on CPUs
	2.3 Inefficiencies of CPU-based GDRWs
	2.4 Motivation and Design Rationales

	3 LightRW
	3.1 Solution Overview
	3.2 Pipelining GDRW with WRS for FPGAs
	3.3 Hardware Architecture

	4 Parallelizing WRS
	4.1 Parallel WRS Algorithm
	4.2 WRS Sampler

	5 Memory Optimizations
	5.1 Degree-aware Cache
	5.2 Dynamic Burst Engine

	6 Evaluation
	6.1 Experimental Setup
	6.2 Evaluation on WRS Sampler
	6.3 Impact of Memory Optimizations
	6.4 Performance Breakdown
	6.5 Comparison with the State-of-the-art CPU Implementation
	6.6 Other Results
	6.7 Case Study: Link Prediction

	7 Related Works
	8 Conclusion and Future Work
	Acknowledgments
	References

