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With the increasing data volume, there is a trend of using large-scale pre-trained models to store the knowledge
into an enormous number of model parameters. The training of these models is composed of lots of dense
algebras, requiring a huge amount of hardware resources. Recently, sparsely-gated Mixture-of-Experts (MoEs)
are becoming more popular and have demonstrated impressive pretraining scalability in various downstream
tasks. However, such a sparse conditional computation may not be effective as expected in practical systems
due to the routing imbalance and fluctuation problems. Generally, MoEs are becoming a new data analytics
paradigm in the data life cycle and suffering from unique challenges at scales, complexities, and granularities
never before possible.

In this paper, we propose a novel DNN training framework, FlexMoE, which systematically and trans-
parently address the inefficiency caused by dynamic dataflow. We first present an empirical analysis on the
problems and opportunities of training MoE models, which motivates us to overcome the routing imbalance
and fluctuation problems by a dynamic expert management and device placement mechanism. Then we
introduce a novel scheduling module over the existing DNN runtime to monitor the data flow, make the
scheduling plans, and dynamically adjust the model-to-hardware mapping guided by the real-time data traffic.
A simple but efficient heuristic algorithm is exploited to dynamically optimize the device placement during
training. We have conducted experiments on both NLP models (e.g., BERT and GPT) and vision models
(e.g., Swin). And results show FlexMoE can achieve superior performance compared with existing systems
on real-world workloads — FlexMoE outperforms DeepSpeed by 1.70× on average and up to 2.10×, and
outperforms FasterMoE by 1.30× on average and up to 1.45×.
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1 INTRODUCTION

Large-scale pre-trained models (PTMs), such as Transformer models, have promoted the deep
learning (DL) development on various complicated tasks, including natural language processing, e.g.,
BERT [9], GPT [6], T5 [41], computer vision, e.g., ViT [10], Swin [25], advertising recommendation,
e.g., M6 [24], and so on. These models are also known as foundation models since they are trained
on hundreds of gigabytes of data and can be adapted, e.g., task-specific fine-tuning, to a wide range
of downstream tasks. However, recent studies [6, 20] have demonstrated the model quality scales
as the power law with data size, parameter size, and computation budgets. Current state-of-the-
art foundation models have excessively grown to trillions of parameters and therefore become
extremely expensive and time-consuming to be trained.

To avoid hitting the train-ability wall, one well-known line of studies utilizes the sparsely-gated
Mixture-of-Experts (MoE) [45] structure to make pre-trained models cost-effective. This sparse
MoE architecture enlarges the model parameter size by expanding expert networks while keeping
the computational budget stable. Specifically, each MoE layer consists of a gate network and a series
of experts (e.g., tens of), where the gate network routes the input tokens (i.e., the inputs of the layer)
to only a small number of experts rather than all experts to be computation-efficient. MoE models
have been successfully used to boost the performance of various PTMs, such as language models
(e.g., GLaM [11] achieve the state-of-the-art performance in the SuperGLUE NLP benchmark [47])
and vision models (e.g., V-MoE [43] matches the most powerful vision transformers with only half
computation time).

Due to the superior behaviors, large-scale MoE models have attracted wide interests in industrial
companies recently when building real-world big data applications, including Google [11], Meta [44],
Microsoft [42] and Alibaba [24]. Such kind of data-intensive workloads is becoming a new data
analytics paradigm for data science research communities. With the rapid expansion of MoE models,
unprecedented opportunities are brought into the data life cycle (especially in model development,
deployment, and management procedures), as well as challenges. For example, Google created
the ST-MoE [50] model to help improve the question answering quality of their search engines,
which achieves state-of-the-art result in the AIRC leadboard [5], e.g., increasing from 81.40% to
86.52% by using MoE. However, such a large MoE model not only needs a lot of data to train on,
e.g., 1.5T tokens for ST-MoE, but also consumes large amounts of expensive computing resources
for training. Therefore, it is necessary to address data management problems hidden in existing
systems and conduct optimizations to overcome these challenges.

Since a single MoE layer can easily exceed the limited GPUmemory, previous distributed training
techniques (e.g, data parallel [23] and model parallel [30, 32, 33, 36]) are becoming unsatisfactory.
To train large MoE models, Lepikhin et al. [21] proposed the expert parallelism technique, which
distributes experts into multiple GPUs to fit within the limited GPU memory. For each training
token, after the gate network has determined the routing, it will be sent to the GPUs where its target
experts reside. Since it adapts to the special characteristic of MoE structures, expert parallelism has
become one of the most widely-used techniques to train MoE-based models in several well-known
frameworks, including DeepSpeed-MoE [42], Tutel [19] and HetuMoE [37].

The Challenge of Workload Imbalance. Despite the widespread adoption of expert paral-
lelism [21], it suffers from the severe workload imbalance brought by the sparse and conditional
computing nature of MoE layers. Specifically, the input tokens are organized at a fine-grained level
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and routed to the individual experts by the gating network. We found that the input tokens show
highly uneven preferences on the experts and the routing results keep varying over training [34].
As reported by [17, 22, 26] and verified by our empirical studies, such workload imbalance could
lead to significantly efficiency slowdown and severe resource under-utilization.

The Current Landscape. To tackle the workload imbalance problem, most existing works
leverage an auxiliary balance loss on each MoE layer to enforce balanced routing. To control the
trade-off between system efficiency (workloads balance) and statistical efficiency (model quality),
the balance loss is further associated with a tunable penalty weight. In addition, Fedus et al. [12]
introduces the expert capacity to avoid excessive input token assignments to the experts. In other
words, tokens beyond the expert capacity will be dropped by the experts. Nevertheless, these
methods can only mitigate the workload imbalance problem rather than fundamentally guarantee
balance. Moreover, they make users stuck in a dilemma: whether and to what degree shall we sacrifice
model quality for system efficiency? For instance, applying a large penalty weight to the balance
loss (or applying a low capacity to experts) could help load balancing among experts but harm the
model quality since a substantial amount of tokens would be routed to some less-desired experts
(or dropped), and vice versa.

Intuitively speaking, the aforementioned methods try to adjust the data-flow of tokens to be
as even as possible, i.e., enforcing all experts to process almost the same amount of tokens. They
are friendly adapted to existing expert parallelism systems, because users can easily change the
definitions of their model (e.g., balance loss and capacity) and without any modifications on the
implementation of underlying DL systems. In other words, such approaches are friendly to people
who are not familiar with DL systems so they have to sacrifice the model quality for training
efficiency. Unlike previous approaches making model modifications, which may cause model
quality degradation, we try to optimize the workload imbalance from a system perspective:

How to design a distributed MoE training system that could achieve the maximum system
efficiency without affecting the model quality in the meanwhile?

Summary of Our Approach. In this work, we propose FlexMoE, a novel distributed training
system for large-scale sparse MoE models. We overcome the routing imbalance problem from
the brand new perspective of the expert placement — instead of placing each expert on a single
GPU device as in traditional expert parallelism nor duplicating all experts to all GPU devices
as in traditional data parallelism, we introduce a fine-grained replicated expert parallelism
that selects specific heavy experts, duplicates them over multiple devices, and spreads the input
tokens across the replicas. It is non-trivial in sparse MoE models because the device placement
of these experts changes the original input data assignment (i.e., all-to-all communication across
different experts) and involves additional synchronization overheads (i.e., all-reduce communication
among replicated experts). By precisely modeling the actual execution procedure of the MoE layer,
FlexMoE estimates the costs that determine the concrete expert replication scheme.

We further investigate the uneven distribution of the sparsely-activated experts in various MoE
training workloads. Our key finding is that MoE models exhibit routing fluctuation during the
iterative training process. We observe that the imbalanced expert preference distribution changes
continuously and smoothly during the training process (will be described in-depth in Section 2.4).
The training of gate networks is highly unstable [7] because gradient-based optimization algorithms
will reinforce the previous routing determination until it reaches a certain point and escapes from
the wrong learning direction. To handle this obstacle, we design a dynamic expert management
mechanism in FlexMoE to adaptively adjust the expert-to-device mapping and the assignment
of tokens during training. Specifically, we adopt a data-driven approach to adaptively change the
expert placement during training by monitoring the traffic trends. For instance, FlexMoE gradually
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expands resources for experts with increasing workloads for faster calculations and shrinks those
with decreasing workloads to reduce replica synchronization overheads.

FlexMoE is designed as a novel scheduling module on top of existing DNN frameworks, which
monitors data traffic, makes scheduling plans, and dynamically adjusts the mapping between
the data-flow graph and distributed devices. Particularly, three placement adjustment primitives
(i.e., expand, shrink, migrate) are provided to flexibly govern the expert placement and a gate
flow-control mechanism is introduced to enable autonomous global traffic optimization. Based
on these building blocks, a simple yet effective algorithm is designed to estimate the benefits or
overheads of each adjustment to determine the optimal scheduling plan.

Last but not least, we implement FlexMoE on top of PyTorch [38] and verify the superiority of
our work through comprehensive experiments. When training several popular MoE-based PTMs
(e.g., BERT, GPT, Swin) of various tasks on a 64-GPU A100 cluster, FlexMoE achieves up to 2.1× of
speedup compared with existing state-of-the-art MoE training systems. Furthermore, FlexMoE
consistently outperforms them in terms of model quality since we do not accommodate the expert
placement with compromised token-routing.

Paper Organization. In section 2, we discuss the inefficiency of training sparse MoE models
with expert parallelism and explore opportunities for optimizing such problems through system-
level optimizations. In section 3, we introduce the system design of FlexMoE, which leverages the
vExpert abstraction to facilitate dynamic expert management and device placement. We provide
details on the system implementation in Section 4 and evaluate the effectiveness of FlexMoE in
Section 5.

2 BACKGROUND ANDMOTIVATIONS

We first present the notations used in our paper.
* E: A series of experts {𝑒1, ..., 𝑒𝑁 }.
* G: A set of GPUs, where 𝑔 ∈ G.
* I: The assignment of tokens, where 𝐼𝑒,𝑔 ⊂ I.
𝐼𝑒,𝑔 represents the number of tokens for expert 𝑒 to GPU 𝑔.

* P: The expert-to-device mapping, where (𝑒, 𝑔) ∈ P.
(𝑒, 𝑔) ∈ P represents GPU 𝑔 exists expert 𝑒 .

* 𝑇𝑃𝑆 : Tokens-per-second for an expert.
* 𝐵𝑤𝑔,𝑔′ : Bandwidth between GPU 𝑔 and 𝑔′.
* 𝐵𝑃𝑆 (G′): Bytes-per-second for AllReduce on a set of GPUs G′.

2.1 Transformer with Mixture-of-Expert

The Transformer architecture [46] has demonstrated its superior performance in various tasks [6,
9, 10, 25, 27, 41, 49], which mainly consists of attention networks and feed-forward networks. Each
attention network first linearly transforms the input tokens into corresponding queries (Q), keys
(K) and values (V) and then performs the scaled dot-product on them as Equation 1, where 𝑑 is
the dimension of queries and keys. Meanwhile, this attention network benefits from capturing the
dependencies between tokens within the sequence, and thus is effective in sequence transduction
tasks.

Attention(𝑄,𝐾,𝑉 ) = softmax(𝑄𝐾
𝑇

√
𝑑
)𝑉 (1)

Each feed-forward network (FFN) is composed by two fully connected layers and an activation
function, i.e., ReLU, formulated as Equation 2. Different from the attention network, FFNs model
the relation of different feature dimensions within a single token by scaling it into larger dimension
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(b) The distributed training of an MoE layer with Top-1 gate

Fig. 1. Illustrations of Mixture-of-Experts (MoE). Figure 1(a) represents the workflow of a typical MoE layer

(detailed in Section 2.1). Figure 1(b) presents the distributed training of an MoE layer as expert parallelism,

where experts are partitioned while non-MoE layers (e.g., self-attention, gate) are duplicated across devices.

For example, according to the result of Gate, GPU 1 routes 6 input tokens to 1𝑠𝑡 Expert and the other 3 tokens

to 𝑁𝑡ℎ Expert (detailed in Section 2.2).

space. For example, the output dimension of𝑊1 is always set as 4× of its input dimension. Existing
famous pre-trained models are usually stacked by a series of transformer layers to improve its
model capacity as well as model quality.

FFN(𝑥) =𝑊2 · ReLU(𝑊1 · 𝑥 + 𝑏1) + 𝑏2 (2)
Recently, scaling with more data and more parameters has driven significant model quality im-

provement [6, 10] while requires large amounts of computing resources for training. To scale models
efficiently, researchers have adopted the sparse-gated Mixture-of-Experts (MoE) paradigm [12, 45]
by replacing the FFN network with an MoE layer, where each input token activates only a subset
of model parameters, and thus introducing model sparsity.
The key components of a MoE layer include a data-dependent sparse gate network 𝑔(𝑥) and a

series of experts E, as shown in Figure 1(a). For each input token 𝑥 , the gate network first produces
the probability of 𝑥 with respective to all experts and then routes 𝑥 to its corresponding experts.
The Top-K gate [45] is formulated in Equation 3, which keeps only the top k values before the
softmax function.

𝑔(𝑥) = softmax(TopK(𝑥 ·𝑊𝑔)) (3)
As soon as each expert 𝑒𝑖 receives its input token 𝑥 (𝑒𝑖 ∈ E), it produces its corresponding output

𝑒𝑖 (𝑥) and then the final output 𝑦 is obtained by the linear combination of 𝑒𝑖 (𝑥) weighted by the
output of the gate network 𝑔(𝑥)𝑖 as follows:

𝑦 =

𝑁∑︁
𝑖=1

𝑔(𝑥)𝑖 · 𝑒𝑖 (𝑥). (4)

When the gate network’s sparsity is static, e.g., Top-1 [12] or Top-2 [21], the computation and
communication costs of given inputs nearly remain constant as the number of experts increases,
allowing models to be scaled effectively with MoE.
To help readers better understand the routine of MoE layers, we also provide an illustration in

Figure 1(b), where each GPU is associated with one expert and 9 tokens are fed to the gate network
and routed to their target experts. For example, GPU 1 routes 6 and 3 tokens to the 1𝑠𝑡 and 𝑁𝑡ℎ
experts, while GPU N routes 4 and 5 tokens to these two experts. This assignment would cause
the workload imbalance problem under current expert placement (i.e., 10 tokens for GPU 1 and 8
tokens for GPU N). Since there is a reverse routing step after the expert computation, all GPUs
have to wait for each other before executing the following layers. Such an imbalanced workload
inevitably results in GPU under-utilization and low training efficiency.
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2.2 Distributed Training

As models are sparsely scaled with MoE, multiple GPUs would be involved for model management
and training acceleration [33, 35, 42]. We will analyze the existing popular parallelism strategies in
the following:

Data Parallelism. Data parallelism (DP) is usually used to scale training when the model can
fit in the device’s available GPU memory, as the communication primitives (e.g., AllReduce) of
DP achieve good scalability performance. In DP, training samples are partitioned while model
parameters are duplicated for each device. Given a batch of training samples, each worker executes
the forward and backward computation, synchronizes gradients globally (i.e., averaged), and updates
local parameters based on the synchronized gradients. However, each device has to maintain a full
replica of the model and thus DP can’t be used to scale up to large models.

Model Parallelism. If the memory requirement of the given model exceeds the GPU memory,
it should be partitioned across multiple devices. In tensor parallelism (TP), every single tensor can
be partitioned over multiple devices to reduce the memory footprint of each GPU. For example,
Megatron-LM [33] proposed to partition the attention network by exploiting its inherent parallelism
in the multi-head attention operation where the queries (𝑄), keys (𝐾 ) and values (𝑉 ) matrices can
be partitioned in a column-parallel fashion. Pipeline parallelism (PP) is an alternative partitioning
method, where different groups of layers are placed on different devices. For example, GPipe [18]
partitions the input batch into a number of micro batches and pipelines each device’s computation
across micro batches to improve the resource utilization of devices.

Expert Parallelism. GShard [21] first proposed expert parallelism (EP) as a specific model
parallelism method for MoE models, where experts within an MoE layer are placed on different
devices and non-MoE layers are replicated on devices as DP. The workflow of distributed training a
Top-1 gate MoE layer is illustrated in Figure 1(b). After getting the target expert for each token, an
All-to-All communication is involved to send tokens to target experts for processing. And another
All-to-All communication is needed to send data back for the execution of data-parallel non-MoE
layers. As MoE models often have numerous experts, e.g., 1024 Experts in Switch Transformer [12],
EP can scale up with model size better than model parallelism.

2.3 Problem Formulation

To model the training cost, we consider a single MoE layer, which consists of a gate network and a
set of experts E (𝑒 ∈ E). Given current expert-to-device mapping P ((𝑒, 𝑔) ∈ P represents GPU 𝑔
has expert 𝑒), the assignment of tokens I (𝐼𝑒,𝑔 represents the number of tokens for expert 𝑒 to GPU
𝑔) at the current step, the training cost can be formulated as 𝑇 (I,P). Our objective is to minimize
this training cost, which can be expressed as follows:

min 𝑇 (I,P) = min (max
𝑔∈G

(𝑒,𝑔) ∈P∑︁
𝑒

{𝑇𝐶 (𝐼𝑒,𝑔) +𝑇𝐴2𝐴 (𝐼𝑒,𝑔) +𝑇𝑆𝑦𝑛𝑐 (P, 𝑒)}) (5)

The first two terms represent the cost of expert computation and All-to-All communication respec-
tively, which are determined by the assignment of tokens, i.e., 𝐼𝑒,𝑔 . And the third term represents the
cost of synchronization (𝑇𝑆𝑦𝑛𝑐 ) because one expert may exist on multiple GPUs as data parallelism
and needs to synchronize their gradients to maintain consistent. Each GPU sums up all of its local
experts with regard to these three terms to obtain its execution time and the global training time
𝑇 (I,P) is the maximum execution time among these GPUs. In order to minimize the training cost
while not modify the definitions of models, we design a dynamic expert management mechanism to
adaptively adjust the expert-to-device mapping P and the assignment of tokens I during training.
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Fig. 2. The top-5 accuracy of Swin-MoE under different balance loss coefficients, where we do not restrict the

capacity of each expert to ensure no token is absent.

Existing System-Friendly Optimizations. As discussed in Section 1, existing works focus on
addressing the workload imbalance problem by modifying the definitions of models (e.g., balance
loss and capacity), which doesn’t need users to make modifications on the underlying DL systems
and therefore is system-friendly.
• The balance loss depicts the imbalance level of I and is widely used in MoE training [12, 21].
Once the gate network produces an imbalanced token assignment, it would be penalized by a
large balance loss. In practice, the training process aims to minimize the weighted sum of balance
loss and training loss. Thus, there exists a trade-off — emphasizing the balance loss would drive
the assignment I to be even but harms the model quality since the training loss would be higher,
and vice versa.
• The capacity is a threshold that limits the number of input tokens for each expert (i.e., 𝐼𝑒,𝑔).
Tokens that exceeds the capacity will be skipped by the expert and directly forwarded to the
next layer by the residual connection. In short, the capacity upper bounds the training cost of
the heaviest expert to improve the overall efficiency, however, at the price of degraded model
quality since a certain amount of tokens cannot be fully trained.

2.4 Observations and Opportunities

Observation 1: Limitations of the existing techniques.We first studied the effect of the exist-
ing techniques empirically and took Swin-MoE [25] as an example, where we varied the balance
loss coefficient and did not restrict the capacity of each expert to ensure no token was absent. The
results are summarized in Figure 2. By increasing the balance loss coefficient from 0 to 0.05, the
GPU utilization is improved from 18.77% to 63.30% while the top-5 accuracy is decreased from
94.588% to 93.981%. It demonstrates that enforcing workload balance by adjusting the assignment
of tokens I would inevitably lead to the trade-off between system efficiency and model quality.
Observation 2: Dynamic imbalanced workloads. We also recorded the trace of training

GPT-MoE models (64 expert per MoE layer) and studied the loads of experts during training. Results
are summarized in Figure 3 and we have identified two key characteristics:
• Skewness. As shown in Figure 3(a), we visualize the computational loads of experts as the
cumulative distribution function (CDF), where we observe that the Top-10 experts (10 out of
64) receive almost 75% tokens, leading to routing imbalance in MoE training. If the experts are
evenly distributed among GPUs as in expert parallelism [21], such imbalanced workloads would
result in severe resource under-utilization, as most experts need to wait for the slowest.
• Smoothness and continuousness. In Figure 3(b), we present evolution of expert loads through-
out the entire training process, where different intervals represent different experts. We observe
that the load of each expert is continuously changing during training, for example, from less to
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(b) The evolution of expert loads throughout the entire training process

Fig. 3. Illustrations of expert loads. For a single step, we sort experts within each MoE layer based on their

computational loads and visualize the corresponding cumulative distribution function (CDF) in Figure 3(a),

where different colors indicate different MoE layers. For the entire training process, Figure 3(b) illustrates the

dynamic changes in the load of each expert, where the different color areas represent the different experts.

more, from more to less, and from more to less and then more again, etc, which poses routing
fluctuation when training MoE models. Fortunately, the load of each expert does not change
dramatically in a short period of time, which means a smooth and continuous change.

Challenges. Motivated by these observations, our work explores how to develop a system that
achieves workload balance by adjusting the expert-to-device mapping (i.e., P) for better system
efficiency while maintaining the model quality. Moreover, the system should dynamically adapt to
the varying routing distribution during the training process. However, since both token routing
and expert loads are decided by the data-dependent gating mechanism, we can not determine
the optimal mapping ahead of its execution. The main challenge lies in designing and modifying
the expert-to-device mapping efficiently under the fast GPU computation and rapid change in
workloads. Another challenge is how to efficiently implement these irregular MoE operations.

Opportunities. Fortunately, as previously mentioned, the distribution changes smoothly and
continuously. This means that the optimal expert-to-device mapping would not shift significantly
in a short period of time. Therefore, it is feasible to refine the mapping based on the ad-hoc routing
determination, without the need to predict the optimum for the next few training steps. Furthermore,
the cost of computation and communication can be estimated before the actual execution. Based
on the cost models, we can predict the benefits and overheads of different mapping candidates to
find the best one.

3 FLEXMOE DESIGN

3.1 Overview

The workflow of our FlexMoE is illustrated in Figure 4, where (1) input tokens are first processed by
the gate network to determine their corresponding target experts and then (2) the router leverages
a greedy algorithm to distribute tokens to different replicas of each expert. Finally, (3) each replica
performs computations on its assigned tokens and delivers the output results back.
To handle the dynamic workload imbalance, we have designed a dynamic expert management

mechanism that adaptively adjusts the expert-to-device mapping P and the assignment of tokens
I during training. In addition to the regular workflow, we also introduce two new components:
Scheduler and Policy Maker. (4) Scheduler monitors the real-time loads of experts and sends
them to Policy Maker if the current imbalance metric (i.e., balance ratio in Equation 6) exceeds
the predetermined threshold. Based on the received loads and the current placement of experts,
Policy Maker produces modification instructions and sends them back to Scheduler. Scheduler
then interacts with the executor of current DL frameworks and triggers modifications of expert
placement at runtime.
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Fig. 4. FlexMoE System Architecture.

To cope with the large decision space of flexible expert-to-device mapping and its dynamic
modifications, FlexMoE proposes the abstraction of vExpert to represent the minimum unit for
scheduling, as detailed in Section 3.2. Moreover, FlexMoE decouples the expert placement modifi-
cations using three placement modification primitives, including Expand, Shrink and Migrate, as
explained in Section 3.3. Finally, we design a greedy heuristic algorithm to generate a sequential
combination of these modification primitives to produce the adjustment plan of expert-to-device
mapping, as described in Section 3.4.
3.2 Dynamic Expert Management and vExpert

To tackle the optimization problem related to expert-to-device mapping and its corresponding
token routing, we introduce a novel abstraction called vExpert, which defines the minimum unit
for scheduling GPU computations for an expert and enables dynamic expert management. The
vExpert abstraction helps in determining how to duplicate experts, when to increase or decrease
replicas, and how to partition tokens between replicas.

vExpert has the following characteristics:

• Each vExpert can only be assigned as the replica of exactly one expert and process part of tokens
for the master expert.
• Each vExpert shares weights with other vExperts for the same expert on the same GPU, which
means packing the same vExperts of the same GPU.
• Evenly workloads (i.e., tokens) partitioning among all vExperts for the same expert.

With this abstraction, we can significantly reduce the large search space of the optimization problem
by making decisions at the vExpert level. Besides, we have designed three placement modification
primitives to manage the dynamic expert management at the vExpert level, including Expand,
Shrink and Migrate (see Section 3.3 for details). These primitives allow for arbitrary modifications
of expert placement by composing them in different ways. Moreover, because the amount of data
in each iteration is fixed (

∑
𝐵𝑖 = 𝐵), we can calculate the ideal capacity of each vExpert (𝐵/(𝐺 ∗ 𝐸))

as a reference for decision-making, where 𝐵 is the total number of input tokens,𝐺 is the number of
GPUs and 𝐸 is the number of vExperts on each device.
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Algorithm 1: Scheduler: Monitor Real-Time Workloads
Input: I: the assignment of tokens;

P: the expert-to-device mapping;
1 while is training do
2 𝑏𝑎𝑙𝑎𝑛𝑐𝑒_𝑟𝑎𝑡𝑖𝑜 ← balance(I, P) // Equation 6 ;
3 while 𝑏𝑎𝑙𝑎𝑛𝑐𝑒_𝑟𝑎𝑡𝑖𝑜 > threshold do
4 𝑝𝑙𝑎𝑛← MakeSchedulingPlan(I, P) // Algorithm 2 ;
5 if 𝑝𝑙𝑎𝑛 is empty then
6 break ;
7 P ←Modify Expert Placement P with 𝑝𝑙𝑎𝑛 ;
8 𝑏𝑎𝑙𝑎𝑛𝑐𝑒_𝑟𝑎𝑡𝑖𝑜 ← balance(I, P) ;
9 P ←Modify Expert Placement P with Migrate ;

3.3 Scheduler

Figure 4 illustrates the role of the Scheduler in connecting the Runtime Executor and the Policy
Maker in FlexMoE. Our design includes a metric, the balance ratio, which measures real-time
workloads and determines when to trigger the Policy Maker for adjustment decisions. Additionally,
we propose three atomic primitives for the Runtime Executor to use in scheduling experts. These
primitives will be further explained in the following section.

Balance ratio. Owing to the synchronous execution mode in MoE layer, the slowest GPU will
dominate the finish time of all-to-all communication as well as the global training. Thus, we design
the balance ratio as Equation 6, which adds up the loads of all vExperts on a single GPU and finds
the max value among all GPUs to get the final results. While there may be other metrics that can
be used to measure loads, we compare the balance ratio in Equation 6 with variance as a metric
and provide a detailed analysis of our findings in Section 5.3.

balance(I,P) = 1∑
(𝑒,𝑔) ∈P 𝐼𝑒,𝑔/|G|

max
𝑔∈G

∑︁
(𝑒,𝑔) ∈P

𝐼𝑒,𝑔 (6)

Expand.When an expert receives increasing workloads, previously allocated vExpert resources
may handle them slower than others and thus produce stragglers (over-utilized). In this scenario,
FlexMoEwill call the Expand primitive to allocate an extra new vExpert resource for this expert at a
time. The Expand primitive copies the expert parameter as well as the corresponding optimizer states
from the source vExpert to the target vExpert via parameter sharing for intra-GPU communication
and point-to-point communication of inter-GPU communication.

Shrink. In the opposite, when previously allocated vExpert resources are not fully utilized due
to decreasing workloads (under-utilized), FlexMoE will call the Shrink primitive to release an
vExpert resource at a time. The Shrink primitive is executed by a tag without any communication,
and thus introduces no overheads.

Migrate. If an expert retains multiple replicas on different GPUs, the training is slowed down
due to the need for extra communications (i.e., gradients all-reduce) for synchronizations. The
efficiency of this communication depends on the number of GPUs involved and their locality. To
reduce the number of GPUs holding expert replicas and lower the synchronization cost, FlexMoE
will call the Migrate primitive exchanges the model states between two vExperts.

We present the workflow of Scheduler in Algorithm 1, which monitors the real-time workloads,
i.e., the assignment of tokens I, and measures the balance ratio under current placements P (Line
1-2). If current balance ratio exceeds the pre-defined 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 , Scheduler will repeatedly ask the
Policy Maker for modification primitives until no beneficial modifications exist (Line 3-8). Then,
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Algorithm 2: Policy Maker: vExpert-Based Scheduling
Input: I: the assignment of tokens;

P: the expert-to-device mapping;
1 Function MakeSchedulingPlan(I, P):
2 Estimate time cost 𝑡0 with I,P by Equation 5;
3 for 𝑒 ∈ E do
4 𝑛𝑒 ← number of vExpert allocated for 𝑒 ;
5 𝑐𝑎𝑝𝑒 ← I𝑒/𝑛𝑒 // capacity of vExpert for 𝑒 ;
6 𝑒0, 𝑒1 ← argmax𝑒∈E {𝑐𝑎𝑝𝑒 }, argmin𝑒∈E {𝑐𝑎𝑝𝑒 } ;
7 Estimate time cost 𝑡1 after expanding 𝑒0 and shrinking 𝑒1;
8 if 𝑡1 < 𝑡0 then
9 return {(Expand, 𝑒0), (Shrink, 𝑒1)} ;

10 return { } ;

Scheduler turns to the Migrate operation to reduce the synchronization cost and continuously
optimizes it at backend (Line 9). Intuitively, the vExpert-based Expand and Shrink primitives
tackle the complicated expert-device mapping problem under the dynamic changing workloads,
and the Migrate primitive continuously optimizes the placement of replicas for each expert.

3.4 Policy Maker

Using the modification primitives described above, FlexMoE employs an efficient vExpert-based
scheduling algorithm for generating sequential modification operations, as shown in Algorithm 2.
Specifically, we leverage a cost-model driven search planning approach, which makes decisions
based on feed-backs from simulating the training time.
To model the training cost of an MoE layer, we decompose it into three parts as Equation 5,

including computation cost 𝑇𝐶 , All-To-All communication cost 𝑇𝐴2𝐴 and expert synchronization
cost 𝑇𝑆𝑦𝑛𝑐 . For each part, we build cost models that take into account input variables (e.g., I: the
assignment of tokens and P: the expert-to-device mapping) as well as environmental variables
(e.g., TPS: tokens-per-second for an expert). By leveraging a profiling-based approach, we first
profile the function’s running time under different input sizes and then estimate the corresponding
environmental variables. Besides, we also consider the cost of expert adjustments, which could be
executed concurrently with model training.

Computation Cost. The computation cost refers to the time taken for an expert to perform the
forward and backward computation of experts during training, which can be formulated as:

𝑇𝐶 (𝐼𝑒,𝑔) =
𝐼𝑒,𝑔

𝑇𝑃𝑆
(7)

where 𝐼𝑒,𝑔 represents the number of input tokens received by expert 𝑒 on GPU 𝑔, and𝑇𝑃𝑆 represents
the throughput (tokens per second) of given GPUs to calculate an expert, which is obtained from
profiling. The computation cost is proportional to the number of input tokens received by an expert,
and inversely proportional to the throughput of the GPU. In other words, the more input tokens
an expert receives, the longer it will take to compute the forward and backward passes, and the
slower the GPU, the longer it will take to process each token.

All-To-All Cost. The All-To-All operation is involved to send tokens to target experts and send
back their results after processing, which will be called for totally 4 times in each training step.
We predict the All-To-All cost by a topology-aware model as Equation 8, where the expert 𝑒 on
GPU 𝑔 has received 𝐼𝑒,𝑔 .𝑐𝑜𝑢𝑛𝑡 (𝑔′) tokens from GPU 𝑔′ and 𝐵𝑤𝑔,𝑔′ is the profiled bandwidth between
GPU 𝑔 and GPU 𝑔′. Our cost model considers the intra-node bandwidth (e.g., PCIe, NvLink) and
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Algorithm 3: Flexible Token Routing
Input: I: Expert Workloads; P: Expert Placement; 𝑔: Current GPU;
Ouptut: 𝑟 : Routing plans

1 /*iterate over all experts*/ ;
2 for e ∈ E do
3 𝑛𝑒 ← number of vExpert allocated for 𝑒 ;
4 𝑐𝑎𝑝𝑒 ← I𝑒/𝑛𝑒 // capacity of vExpert for 𝑒 ;
5 𝑟𝑒,𝑔 ← min(𝑐𝑎𝑝𝑒 × 𝑛𝑒,𝑔, I𝑒,𝑔) // locality first ;
6 𝑠𝑒 ← I𝑒,𝑔 − 𝑟𝑒,𝑔 // tokens for other GPUs ;
7 𝑐𝑒,𝑔 ← 𝑟𝑒,𝑔 − I𝑒,𝑔 // local available capacity ;
8 for 𝑔′ ∈ G − {𝑔} do
9 𝑐𝑒,𝑔′ ← min(𝑐𝑎𝑝𝑒 × 𝑛𝑒,𝑔′, I𝑒,𝑔′) − I𝑒,𝑔′ ;

10 𝑟𝑒,𝑔′ ← 𝑠𝑒 × 𝑐𝑒,𝑔′/
∑
𝑐𝑒 // proportional to availability ;

11 return 𝑟 ← {𝑟𝑒 | 𝑒 ∈ E} ;

inter-node bandwidth (e.g., IB, NIC) separately.

𝑇𝐴2𝐴 (𝐼𝑒,𝑔) = 4 ∗
∑︁
𝑔′∈G

𝐼𝑒,𝑔 .𝑐𝑜𝑢𝑛𝑡 (𝑔′)
𝐵𝑤𝑔,𝑔′

(8)

Synchronization Cost.When expert 𝑒 holds multiple replicas on different GPUs, their gradients
must be synchronized via AllReduce communication, which is determined by the message size, the
number of involved devices and their connected network. We enumerate different device groups
and profile them before training to get their BPS (bytes-per-second). We predict the synchronization
cost for the expert 𝑒 by finding the device group that includes 𝑒 (i.e., P .𝑖𝑛𝑑𝑒𝑥 (𝑒)) and then obtaining
its corresponding 𝐵𝑃𝑆 from profiling data. 𝑠𝑖𝑧𝑒 (𝑒) represents the size of gradients for an expert.

𝑇𝑆𝑦𝑛𝑐 (P, 𝑒) =
𝑠𝑖𝑧𝑒 (𝑒.𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑠)
𝐵𝑃𝑆 (P .𝑖𝑛𝑑𝑒𝑥 (𝑒)) (9)

Expert Adjustment Cost. FlexMoE proposes three modification primitives, including Expand,
Shrink and Migrate. The Expand and Migrate primitives involve transferring model states from
the source GPU to the target GPU via NCCL Point-to-Point communication. On the other hand,
the Shrink primitive is executed with no overheads by marking a tag. We predict the cost of
transferring model states as 𝑠𝑖𝑧𝑒 (𝑒.𝑚𝑜𝑑𝑒𝑙_𝑠𝑡𝑎𝑡𝑒𝑠)

𝐵𝑤𝑔,𝑔′
.

The scheduling policy of Policy Maker is summarized in Algorithm 2. Firstly, the algorithm
gets the time cost 𝑡0 of current placement as the baseline (Line 2), and then finds the expert id with
the maximum workload and the expert id with the minimum workload (Line 3-6). After that, our
Policy Maker estimates the time cost 𝑡1 after applying the Expand and Shrink primitives (Line 7)
and decides whether to return the modification by comparing 𝑡0 and 𝑡1 (Line 8-10).

4 IMPLEMENTATION

We have implemented the proposed mechanisms and algorithms on the top of PyTorch [38] by
adding new customized operators and CUDA kernels. FlexMoE is also a part of a novel distributed
DL system Hetu [28, 29, 31]. To schedule dynamic dataflow more efficiently, FlexMoE incorporates
the following system-level optimizations:

Flexible Token Routing. Router should efficiently transfer input tokens from multiple devices
(e.g., GPUs) to their target experts according to the complicated expert-to-device mapping P. To
accomplish this, FlexMoE has designed a greedy policy as Algorithm 3, which prefers to route
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Table 1. Models for Evaluation.

Model Params. #Layer dModel dFFN #Expert
BERT-MoE-S 0.988B 12 768 3072 32
BERT-MoE-L 6.69B 24 1024 4096 64
GPT-MoE-S 0.988B 12 768 3072 32
GPT-MoE-L 39B 24 2048 8192 64
Swin-MoE-S 946M 24 - - 32
Swin-MoE-L 1.83B 24 - - 64

tokens to the local GPU and then scatters the remaining tokens to other GPUs in proportion to
their available capacity. FlexMoE also implements a efficient expert-wise layout transformation to
arrange the inputs in a continuous space for each expert.

Paralleled Operation Modification. FlexMoE employs a queue to sequentially insert modi-
fication primitives triggered by the scheduler, such as Expand, Shrink and Migrate. To reduce
the time cost of adjustments and kernel launch, we merge several consecutive and parallelizable
operations to run them concurrently. For example, if two operations share the same source and
destination, they can be merged to increase the message size and improve the bandwidth utilization.
Meanwhile, if they share neither source or destination, they can be executed concurrently to
improve the utilization of clusters.

AllReduce Coordination.When the vExperts of a single GPU are assigned to different experts,
it should call the synchronizations separately for each expert, and may cause deadlock since the
order of calls is inconsistent for different GPUs [4]. To avoid this deadlock problem, we assign a
logical id to each expert and the logical id of each replica (vExpert) is same as its main expert.
Then, each GPU invokes synchronizations in ascending order of experts’ logical id.

Best-Effort Adjustment. Since the placement modifications may block the training process, it is
not clearwhether executing the currentmodificationwill be beneficial due to the dynamicworkloads.
To address this problem, FlexMoE leverages a separate CUDA stream to conduct adjustments
concurrently with the available network bandwidth and adopts the best-effort adjustment to avoid
hindering the training process. the Scheduler interacts with the DL executor to determine whether
to call the first operation in the candidate queue.

NCCL Group Management. FlexMoE adopts NCCL [4] library to perform collective com-
munication among GPUs and multiple NCCL groups are required to execute the complicated
synchronization of experts. However, there is a maximum number of live NCCL groups that can
remain, and it is inefficient to eliminate the groups once they have been utilized. FlexMoE employs
a Least Recently Used (LRU) cache to maintain nccl groups and therefore reduces the costs of group
creations and eliminations.
5 EVALUATION

In this section, we present the detailed evaluation results to demonstrate the effectiveness and
scalability of FlexMoE.
5.1 Experimental Setup

Machine environment.We conduct experiments on Azure VMs [1], each equipped with 192-core
AMD CPUs and 8 NVIDIA Ampere A100 GPUs. The GPUs are connected via NVLink 3.0 intra-node
and the servers are connected via 8 InfiniBand NICs (8*200 Gbps totally). RDMA is used by default
and the PyTorch version is 1.11.

Baselines.We compare FlexMoE with other popular frameworks, including DeepSpeed [42]
and FasterMoE [17]. Deepspeed used expert parallelism, which was first proposed by GShard [21].
FasterMoE proposed the shadowing strategy to replicate the popular expert among all GPUs.
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Table 2. Comparison on model quality

Metric
Masked LM Language Modeling

Metric
Image Classification

BERT- BERT- GPT- GPT- Swin- Swin-
MoE-S MoE-L MoE-S MoE-L MoE-S MoE-L

DeepSpeed PPL ↓ 3.53 3.31 12.2 10.71 acc@1 ↑ 77.316 77.022
acc@5 ↑ 93.838 93.642

FlexMoE PPL ↓ 3.14 3.07 11.72 10.47 acc@1 ↑ 77.754 77.109
acc@5 ↑ 94.042 93.663
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Fig. 5. Comparison on system efficiency

Benchmarks and datasets. Our evaluations are conducted by scaling representative trans-
former models in different application domains with the MoE architecture, including BERT [9] and
GPT [40] in NLP and Swin [25] in CV, as shown in Table 1. We adopt Top-2 Gate for each model,
which is adopted by widely used sparse MoE models (GShard [21], GLaM [11], V-MoE [43]), and
set the capacity factor as 1.0 for each expert and balance loss as 0.001. We pretrain BERT-MoE
with masked language modeling (MLM) and next-sentence-prediction (NSP) [9] tasks, GPT-MoE
with language modeling task (LM) [40], Swin-MoE with image classification task [19, 25]. NLP
models are trained on wikipedia [3] and vision models are trained on the ImageNet-1K [2]. All the
hyper-parameters (e.g., learning rate) are fixed as for the same model.

5.2 Overall Performance

To evaluate the end-to-end efficiency of FlexMoE, we compare it with DeepSpeed and FasterMoE.
For DeepSpeed, we use the traditional expert parallelism approach and set the number of experts
per GPU as 1 in every MoE layer. We evaluate two different width of models, X-MoE-S with 32
experts and X-MoE-L with 64 experts, on 32 GPUs and 64 GPUs, respectively.

Model Quality. To demonstrate the importance of not dropping tokens, we compare the model
quality of FlexMoE with DeepSpeed on various models and various tasks. We use the validation
perplexity for language models (e.g., BERT-MoE and GPT-MoE), which is the lower the better,
and top-1/top-5 accuracy of Imagenet-1K for vision models (e.g., Swin-MoE). As shown in Table 2,
FlexMoE outperforms DeepSpeed in almost all tasks, indicating that the limited capacity in existing
MoE systems (e.g., DeepSpeed) can lead to model quality degradation. Considering the training cost,
the Swin-MoE models (scaled based on the Swin-B model) are trained for 100 epochs (less than 300
epochs in the standard configuration) and thus the accuracy is slightly worse than the benchmark,
where 94.04% of FlexMoE v.s. 96.5% of the benchmark as for top-5 accuracy. And we believe it’s
enough to show the benefits of no dropping tokens. What’s more, Swin-MoE-L performs slightly
worse than Swin-MoE-S as the size of training data is small and thus it may lead to overfitting.

System Efficiency.We also evaluate FlexMoE against other SOTA systems on efficiency. To
measure efficiency, we record the required training time to achieve the target model quality, and the
results are illustrated in Figure 5. Our experiments show that FlexMoE achieves the best training
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(a) Different metrics
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(b) Different Scheduling Polices
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(c) Cost Models

Fig. 6. Study of different metrics, different scheduling policies and cost models

efficiency, outperforming DeepSpeed by 1.70× on average and up to 2.10×, and FasterMoE by 1.30×
on average and up to 1.45×. As mentioned above, although DeepSpeed obtains the smallest iteration
time thanks to its limited capacity, it drops tokens to skip the expert network and thus requires
more iterations to converge. FasterMoE proposes the dynamic shadowing strategy for loading
balance, which replicates the popular expert on all GPUs. However, due to its coarse-grained expert
management (i.e., on 1 GPU or on all GPUs), it falls back to a sub-optimal solution. As the number
of GPUs increases, FasterMoE suffers from the global synchronization of expert replicas.

In addition to the expert networks, the time of models’ training also consists of other parts, such
as non-experts’ computation, optimizers’ update and communication. As FlexMoE only optimizes
the execution of the expert networks, we will mainly focus on analyzing the MoE layer in the
following sections.
5.3 Ablation Study

To verify the effectiveness of FlexMoE, we conduct several ablation studies, as demonstrated below.
Different Metrics. FlexMoE utilizes the balance ratio as a key metric to trigger adjustments.

To investigate the impact of alternative metrics, , we also study the use of Variance as a ratio,
formulated as

∑
𝑔∈G (𝐼𝑔 − 𝐼 )2/|G|, in addition to the Max(ours) ratio given by Equation 6. Results

are presented in Figure 6(a) and show that Max(ours) outperforms Variance by 1.03× on average
and up to 1.13× on Swin-MoE-L. Meanwhile, Variance also performs well on BERT-MoE-S and
GPT-MoE-S. Because the training time is dominated by the slowest expert, Max(ours) is a simple
but effective metric. Variance takes the global workload distribution into consideration, which
triggers adjustment more frequently but often gets empty operations from Policy Maker as it is
not always relevant to the actual training.

Different Scheduling Policies. FlexMoE dynamically triggers adjustment according to the
pre-defined balance ratio. We also conduct experiments on static scheduling policies, which triggers
the adjustments in the fixed interval and executes them completely before training. As shown in
Figure 6(b), our dynamic scheduling outperforms both large interval and small interval because of
the dynamic changing workloads. Specifically, small interval will trigger adjustments frequently and
thus introduce more adjustment costs, while large interval can not tackle the dynamic workloads
well because it can not make adjustments in time. Our dynamic policy dynamically decides the
adjustments based on current workloads, which is suitable for the dynamic workloads.

Evaluation on Cost Models Figure 6(c) demonstrates the effectiveness of our cost models,
where we compare the estimation cost to real cost on different input sizes for computation/alltoal-
l/allreduce respectively. It can be observed that our estimation results are very close to the real
execution costs for all experimental models, where the average prediction error is less than 3%.

5.4 Token Efficiency and Expert Efficiency

In this section, we analyze both token efficiency and expert efficiency for different MoE training
methods during the whole training process. Token efficiency refers to the fraction of input tokens
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(a) Token efficiency and Expert efficiency
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(b) Scalability

Fig. 7. Figure 7(a) shows the trends of token efficiency and expert efficiency for different methods during

training. And Figure 7(b) shows the scalability for different methods.

that are processed by the expert network and expert efficiency refers to the meaningful computation
of GPUs. 100% of both metrics is the ideal status of an MoE layer, shown as the red flag in Figure 7(a).
The traditional expert-parallel method (e.g., DeepSpeed) obtains low token efficiency and expert
efficiency as it drops tokens beyond capacity for loading balance. SWIPE, proposed by BaGuaLu [26],
improves expert efficiency by modifying the gating algorithm to re-assign inputs to other experts for
strict load balance. However, this approach changes the relations between tokens and experts, thus
leads to low token efficiency. FasterMoE [17] replicates hot experts on each GPU and guarantees
no tokens dropping in the implementation. However, it doesn’t take load balance as its design goals
and obtains low expert efficiency. Our system, FlexMoE, guarantees 100% token efficiency and
optimizes the allocation of computation resources to balance the workloads among GPUs, and is
the closest to the ideal. With the training progressing, the imbalanced workloads are getting better
due to the punishment of balance loss and all methods are moving towards to better efficiency.

5.5 Scalability

We also evaluate the scalability of FlexMoE on 8, 16, 32 and 64 GPUs, which are conducted on a
single MoE layer with 64 experts. The results are presented in Figure 7(b), which are normalized to
the throughput of DeepSpeed-8GPUs. Results show FlexMoE significantly outperforms DeepSpeed
and FasterMoE. As experiments are conducted on a high-speed interconnected cluster (8*300Gbps
intra-node and 8*200 Gbps inter-node), balanced computation among GPUs plays a key role and
FlexMoE is targeting as it.

6 CONCLUSION

In this paper, we presented FlexMoE, a novel solution to address the dynamic imbalanced challenges
encountered during the training of large-scale MoE models. By integrating a scheduling module on
top of existing DNN frameworks, FlexMoE monitors data traffic, creates scheduling plans, and
dynamically adjusts the expert-to-device mapping during training. Our empirical results on six
popular MoE models demonstrate that FlexMoE outperforms DeepSpeed by an average of 1.70×
and up to 2.10×, while also surpassing FasterMoE by an average of 1.30× and up to 1.45×.
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