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Data series indexes are necessary for managing and analyzing the increasing amounts of data series collections

that are nowadays available. These indexes support both exact and approximate similarity search, with

approximate search providing high-quality results within milliseconds, which makes it very attractive for

certain modern applications. Reducing the pre-processing (i.e., index building) time and improving the accuracy

of search results are two major challenges. DSTree and the iSAX index family are state-of-the-art solutions for

this problem. However, DSTree suffers from long index building times, while iSAX suffers from low search

accuracy. In this paper, we identify two problems of the iSAX index family that adversely affect the overall

performance. First, we observe the presence of a proximity-compactness trade-off related to the index structure

design (i.e., the node fanout degree), significantly limiting the efficiency and accuracy of the resulting index.

Second, a skewed data distribution will negatively affect the performance of iSAX. To overcome these problems,

we propose Dumpy, an index that employs a novel multi-ary data structure with an adaptive node splitting

algorithm and an efficient building workflow. Furthermore, we devise Dumpy-Fuzzy as a variant of Dumpy

which further improves search accuracy by proper duplication of series. Experiments with a variety of large,

real datasets demonstrate that the Dumpy solutions achieve considerably better efficiency, scalability and

search accuracy than its competitors. This paper was published in SIGMOD’23.
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1 INTRODUCTION
Massive data series collections are now being produced by applications across virtually every

scientific and social domain [31, 43, 74], making data series one of the most common data types.

The problems of managing and analyzing large-volume data series have attracted the research

interest of the data management community in the past three decades [8, 44]. In this context,

similarity search is an essential primitive operation, lying at the core of several other high-level

algorithms, e.g., classification, clustering, motif discovery and outlier detection [10, 11, 43, 46, 59, 64].

Similarity search aims to find the nearest neighbors in the dataset, given a query series and a

distance measure. The naive solution is to sequentially calculate the distances of all series to the

query series. However, sequential scan quickly becomes intractable as the dataset size increases.

To facilitate similarity search at scale, a data series index can be used to prune irrelevant data and

thus, reduce the effort required to answer the queries. Moreover, as researchers pay more attention

to data exploration, the importance of approximate similarity search grows rapidly [21, 22]. It is

widely employed in real-world applications since it can provide high-quality approximate query

results within the interactive response time, in the order of milliseconds [5, 7, 15, 37, 62]. In such

applications, approximate query result quality is sufficient to support downstream applications [16].

Recent examples include 1) a k-nearest-neighbors (kNN) classifier [3], whose accuracy converges

to the best when kNN mean average precision (MAP) reaches 60%; 2) an outlier detector [54] that

achieves the best ROC-AUC with 50% MAP; and 3) a kNN-based SoftMax approximation technique

for large-scale classification, which achieves nearly the same accuracy as the exact SoftMax when

kNN recall reaches 80% [69]. For these applications, the core requirements for the kNN-index are

the query time under the above precision (should be in the order of milliseconds), the index building

time, and the scalability to support large datasets.

Although there are dozens of approaches in the literature that can index data series [22], only a few

of them can robustly support large data series collections, e.g., over 100GB (which is why techniques

for approximate search [22], as well as progressive search for exact [20] and approximate [29] query

answering have been studied). Among them, DSTree [65] and the iSAX index family [45] show

the best query performance on the approximate search and support exact search at the same time.

Due to the dynamic segmentation technique, DSTree requires a long index building time (over one

order of magnitude slower than iSAX) and is hard to optimize. On the contrary, benefiting from

fast index building and rich optimizations [13, 14, 49, 50, 52, 67, 70], the iSAX index family has

become the most popular data series index in the past decade. Nonetheless, iSAX still suffers from

unsatisfactory approximate search accuracy when visiting a small portion of data (one or several

nodes, ensuring millisecond-level delay), e.g., its MAP is less than 10% when visiting one node

while query time exceeds one second when improving MAP to ≥50% [22]. In this work, we identify

the intrinsic problem of the index structure and building workflow of the iSAX index family and

propose our novel solution, Dumpy, to tackle those.

First, we observe that the design of the index structure is an inherent but overlooked problem

that significantly limits the performance of the iSAX index family. Although iSAX [56] does not in

principle limit the fanout of a node, popular iSAX-family indexes [12, 14, 38, 48, 49, 52, 67, 70] still

adopt a binary structure (except for the first layer that has a full fanout). When a node contains

more series than the leaf size threshold 𝑡ℎ, it selects one SAX segment and splits the node into two

child nodes.

However, under this binary structure, the splitting policies being used [12, 56] often lead to

sub-optimal decisions (cf. [68], Section 4), that hurt the proximity (i.e., similarity) of series inside a

node, and finally the quality of approximate query results.
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Recently, a full-ary SAX-based index has been proposed to tackle this problem [68]. A full-ary

structure splits a full node on all segments, such that it avoids the problems of focusing on a

single segment that leads to sub-optimal splitting decisions. However, it generates too many nodes

(at most 2
𝑤
, 𝑤 is the total number of segments) in each split, leading to an excessive number

of leaf nodes, and hence extremely low leaf node fill factors. This leads to an underperforming

(disk-resident) index, due to inefficient disk utilization and overwhelming disk accesses. Although

subtrees in the index can be merged into larger partitions (e.g., 128MB) [68] to reduce random I/Os,

it still incurs substantial overhead to store and load its large internal index structure and introduce

many application limitations at the same time.

We term the aforementioned problems as the proximity-compactness trade-off. Both proximity

and compactness contribute to similarity search since proximity provides closer series to the query

and compactness provides more candidate series when visiting a node.

The binary index structure aims at providing compact child nodes, but impairs the accuracy of

query results, whereas the full-ary structure splits the node to preserve the proximity of series

inside nodes, but fails to provide leaf nodes of high fill factors (i.e., compactness). As a result, both

structures fail to exploit the proximity-compactness trade-off, limiting their performance on search

accuracy and also building efficiency.

In this work, we break the limits of a single fixed fanout for the iSAX-family indexes and propose

an adaptive split strategy that leads to a multi-ary index structure. Specifically, we design a novel

objective function to estimate the qualities of candidate split plans in the aspects of both proximity

and compactness. We use the average variances of data on selected segments to measure the intra-

node series proximity and the variance of fill factors of child nodes to measure the compactness.

Moreover, we propose an efficient search algorithm comprised of three speedup techniques to find

the optimal split plan according to our quality estimation.

Besides the index structure design, we identify two other problems of the iSAX-index family

preventing the best exploitation of the novel adaptivemulti-ary index structure. The first observation

is that when the fanout is large (e.g., the first layer in the binary structure and all layers in the

full-ary structure), data series are often distributed among the child nodes in a highly imbalanced

way, which cannot be entirely avoided, even when we choose the best split plan. That is, most data

series concentrate on only a few nodes while most nodes are slight in size. It usually leads to a

large number of small nodes that impair the performance of the resulting index. The other problem

is that the common iSAX index building workflow splits a node by relying only on the distribution

of a tiny portion of data, which actually makes the splitting decisions sub-optimal for the data as

a whole. For example, iSAX2+ tries to balance two child nodes in splitting according to the first

𝑡ℎ + 1 series (i.e., split once it is full), but the final average fill factor is usually less than 20% as

verified in our experiments.

To avoid these two problems, we design a flexible and efficient index-building workflow along

with a leaf packing algorithm. Benefiting from the static segmentation of iSAX, our workflow

can collect the global SAX word tables without incurring any additional overhead, and make our

adaptive split strategy better fit the whole dataset. Moreover, our leaf node packing algorithm can

pack small sibling leaves without losing the pruning power, contributing to fewer random disk

accesses during index building and querying.

In summary, by combining the adaptive split strategy with the new index building workflow, we

present our data series indexing solution, Dumpy (named after its short and compact structure).

Dumpy advances the State-Of-The-Art (SOTA) in terms of index building efficiency, approximate

search accuracy, and exact search performance, making it a fully-functional and practical solution

for extensive data series management and analysis applications.
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Moreover, generally as a space-partition-based approach, Dumpy also suffers from a common

boundary issue [17, 24]. That is, the kNN of a query may locate in the adjacent node or subtree and

near the partition boundary. Since we only search one to several nodes, these true neighbors may

be missing. To alleviate this effect, we propose a variant of Dumpy, Dumpy-Fuzzy, which transfers

the hard partition boundary to a fuzzy range, and adopts a duplication strategy in each split to

further improve the search accuracy, at the cost of a small overhead on index building and storage.

Our contributions can be summarized as follows.

(1) We identify the inherent proximity-compactness trade-off in the structural designs of the current

SOTA iSAX-index family, and demonstrate that it limits the quality of approximate query results,

as well as the index building efficiency.

(2) We present Dumpy, a novel multi-ary data series index that hits the right balance of the

proximity-compactness trade-off by adaptively and intelligently determining the splitting strategy

on-the-fly.

(3) We design a powerful and efficient index-building workflow for the iSAX-index family with a

novel leaf packing algorithm to handle data skewness and achieve robust performance.

(4) We devise Dumpy-Fuzzy to further improve search accuracy by proper data duplication.

(5) Our experimental evaluation with a variety of synthetic and real datasets demonstrates that

Dumpy and its variants provide consistently faster index building times (4x on average), and higher

approximate query accuracy (65% higher MAP on average) than the SOTA competitors, with query

answering times in the order of milliseconds.

2 RELATEDWORK
[Data series indexes] Dozens of methods have been proposed to index massive data series

collections [21, 22]. Among these, the SAX-based indexes [45] have gained popularity and achieved

SOTA performance. Following the initial iSAX [56] index, iSAX2.0 and iSAX2+ [12, 13] provide faster

index building through novel bulk loading and node splitting strategies, ADS [70] optimizes the

combined index building and query answering time, ULISSE [39] supports subsequence similarity

search, SEAnet [63] improves query results quality for high-frequency time series using deep

learning embeddings, while DPiSAX [66], Odyssey [14], PARIS [50], MESSI [51], SING [52], and

Hercules [19] exploit distribution and modern hardware parallelism. These indexes all inherit the

original binary structure of iSAX, which limits their intra-node series proximity.

ADS [70], as a query-adaptive index, builds and materializes only the leaf nodes visited by the

examined queries. However, in the case of a huge query workload that visits all leaf nodes of the

index, ADS becomes the same as an iSAX index, with the same query answering properties. On the

contrary, as a data-adaptive index, Dumpy adapts its structure based on the data collection rather

than the queries. Therefore, its performance is independent of workloads. (We omit ADS in the

experiments since it is not superior to iSAX2.0 and DSTree [21].)

TARDIS [68] first notices the drawbacks of the binary structure and proposes a full-ary structure

along with a size-based partitioning strategy to merge different subtrees to be applied in a dis-

tributed cluster. However, TARDIS is only for analyzing a static dataset and the enormous structure

decreases the building and query efficiency. We implement a stand-alone version of TARDIS in

our experiments. Coconut [33, 34] builds a B+-tree after sorting the dataset using the InvSAX

representations and gains remarkable performance improvement from sequential I/Os in bulk

loading. However, the sequential layout on disk will be destroyed by further insertions, and the

scan-based exact-search algorithm requires a complete InvSAX table to be kept in memory and

the raw dataset in place. And it seems no easy way to restore the classical tree-based pruning in

Coconut. Hence, we do not include Coconut in our experiments.
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DSTree [65] achieves remarkable search accuracy by adopting a highly adaptive summarization

EAPCA and increasing the number of segments on the fly.While the side effect is that DSTree cannot

skip costly split operations on raw data series. Bulk loading algorithms andmany other optimizations

we mentioned are therefore hard to be applied on DSTree. As evaluated in our experiments, Dumpy

provides higher-quality query results than DSTree even on the static summarization iSAX, with a

much faster building time.

[High-dimensional vector indexes] According to recent studies [21, 22], similarity search al-

gorithms for data series and high-dimensional vectors could be employed interchangeably. Rep-

resentative algorithms for high-dimensional vector search include proximity graph-based meth-

ods [41, 42, 62], showing excellent query performance on small datasets, but consuming excessive

time and memory to build and store the graph. Now they are not easy to scale in billion-scale

datasets in commodity machines [23, 24, 57]. Product quantization family methods [6, 25, 28, 47]

achieve better query performance on minute-level near-exact search than data series indexes in

advanced research. However, the building time is still over one magnitude slower than DSTree [22].

LSH (Local Sensitive Hashing) family methods [26, 27, 36, 40, 58], though providing probabilistic

guarantees, have been shown to fall behind data series indexes in terms of time and space [22].

3 BACKGROUND
We first provide some definitions necessary for the rest of this paper, and then explain the iSAX

summarization and index.

Definition 1 (Data Series). A data series 𝑠 = {𝑝1, 𝑝2, . . . , 𝑝𝑙 } is a sequence of points 𝑝𝑖 = (𝑥𝑖 , 𝑡𝑖 )
where each point is associate with a value 𝑥𝑖 and a position 𝑡𝑖 , satisfying that 𝑡1 < 𝑡2 < · · · < 𝑡𝑙 . 𝑙
denotes the length of data series 𝑠 .

In this paper, we assume a data series database 𝑑𝑏 contains numerous data series of equal length

𝑛. We use the kNN (k-Nearest Neighbor) query to denote a specific similarity search query with an

explicit number of nearest neighbors.

Definition 2 (𝑘NNQuery). Given an integer 𝑘 , a query data series 𝑞 and a distance measure 𝑑𝑖𝑠𝑡 ,
a kNN Query retrieves from the database the set of series 𝑅 = {𝑟1, 𝑟2, . . . , 𝑟𝑘 } such that for any other
series 𝑠 in the database and any 𝑟𝑖 ∈ 𝑅, 𝑑𝑖𝑠𝑡 (𝑟𝑖 , 𝑞) ≤ 𝑑𝑖𝑠𝑡 (𝑠, 𝑞).

The choice of the distance measure depends on the particular application. However, Euclidean

Distance (ED) is one of the most popular, widely studied and effective similarity measures for

large data series collections [18]. We also support Dynamic Time Warping (DTW) [53] in the

meanwhile as the inherent property of the iSAX index family [49]. Besides the exact 𝑘NN query,

the approximate kNN query that accelerates the query processing by checking a small subset of

the whole database has attracted intensive interest from researchers. The approximate query result,

𝐴 = {𝑎1, . . . , 𝑎𝑘 }, is expected to be close to the ground truth result 𝑅.

[iSAX summarization] In this paper, we build Dumpy using the iSAX summarization tech-

nique [56]. iSAX is a dynamic prefix of SAX words, and SAX is a symbolization of PAA (Piecewise

Aggregate Approximation) [32]. We briefly review these techniques with the example in Figure 1.

PAA(𝑠 ,𝑤 ) divides data series 𝑠 into𝑤 disjoint equal-length segments, and represents each segment

with its mean value. Hence, PAA reduces 𝑠 to a lower-dimensional summarization. As the black

solid line shown in Figure 1(a), PAA(𝑠 ,3)=[0.28,-0.31,-0.49].

SAX(𝑠 ,𝑤 ,𝑐) is the representation of PAA by 𝑤 discrete symbols, drawn from an alphabet of

cardinality 𝑐 . The main idea of SAX is that the real-value space can be split by 𝑐 − 1 breakpoints

(subject to 𝑁 (0, 1)) into 𝑐 regions, that are labeled by distinct symbols. For example, when 𝑐=4 the

available symbols (represented in bit-codes) are {00,01,10,11}. SAX assigns symbols to the PAA

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 111. Publication date: May 2023.
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(a) SAX of 𝑠 (b) An iSAX word of 𝑠

(c) Split on segment 2 (d) Split on all segments

Fig. 1. (a) and (b) are the PAA, SAX and iSAX representation (𝑤 = 3, 𝑏 = 3). (c) and (d) are the node splitting
for the iSAX-index family in two- and full-ary structures, respectively.

coefficients on each segment. In Figure 1(a), SAX(𝑠 ,3,8)=[100,011,010]. The SAX word represents a

region formed by the value ranges in𝑤 segments, drawn in orange background. iSAX(𝑠 ,𝑤 ,𝑐) uses

variable cardinality (≤ 𝑐) in each segment. That is, an iSAX word is a prefix of the corresponding

SAX word. The iSAX word in Figure 1(b) is iSAX(𝑠 ,3,8)=[1,01,0]1. Due to the decreased cardinality of

the alphabet, an iSAX word represents a larger range (more coarse-grained) than the corresponding

SAX word.

[iSAX index family] The iSAX index family [45] uses the tree structure to organize data series,

which consists of three types of nodes. The root node representing the whole value space, points to

at most 2
𝑤
child nodes by splitting on all𝑤 segments. Each internal node contains the common

iSAX word of all the series in it, and pointers to its child nodes. Each leaf node, besides the common

iSAX word, stores the raw data and SAX words of every series in it. When the size of a leaf node

exceeds the leaf size threshold 𝑡ℎ, the leaf gets transferred into an internal node, and all series in it

are split accordingly. There are two splitting strategies in the iSAX-index family. One is the binary

split (see Figure 1(c)) which splits a node by doubling the cardinality of the iSAX symbol on one
segment. These two refined iSAX words representing smaller space on one segment, are assigned

to two new leaf nodes.

Considering a node contains the iSAX word in Figure 1(b) (i.e., [1,01,0]) as an example. The binary

strategy splits on the second segment and generates two new leaves with iSAX words [1,010,0] and

[1,011,0], respectively. The classical iSAX index [56] adopts the binary split that leads to a binary

tree structure below the first layer. The second strategy is to split on all𝑤 segments (i.e., double

the cardinality of the iSAX symbol on each segment) and generate at most 2
𝑤
child nodes (see

1
A special case for the symbol of iSAX word is ∗, at which segment we use only one symbol ∗ (𝑐 = 1) to represent the whole

value range.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 111. Publication date: May 2023.
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(a) Skewed region: a and b are wrongly
grouped in node 1-011-0

(b) Even region: b and c are correctly
grouped in node 10-01-01

Fig. 2. Illustration of the adverse effect of skewed splits to the intra-node series proximity. Series b and c are
similar to one another, while series a is dissimilar to them.

Figure 1(d)). This split mode generates a totally full-ary structure, adopted by the recently proposed

iSAX-family index, TARDIS [68].

4 PROXIMITY-COMPACTNESS TRADE-OFF
We now present the proximity-compactness trade-off, based on the analysis of the binary and

full-ary index structures. More specifically, we claim that neither of them can achieve a high leaf

node fill factor (i.e., high compactness) and high intra-node series similarity (i.e., high proximity)

simultaneously, which limits the index building efficiency and the approximate query accuracy.

[Proximity problem of binary structures] In a binary structure index like iSAX, the SOTA

splitting strategy [12] targets to balance the number of series in the two child nodes, by choosing

a segment on which the mean value is close to the breakpoint. However, this strategy leads to

skewed splits: it may split on several specific segments multiple times, leading to an iSAX word with

several very high-granularity and other very low-granularity segments. This situation is depicted

in Figure 2(a), where segment 2 has been split three times, while the other segments only once.

Choosing segment 2 may be the best choice for the parent node, yet, this choice is not beneficial

for the overall proximity of the series inside the child node. In our example, the series b and c are
similar overall, but not grouped together due to the slight difference in segment 2, whereas the

distant series a and b are grouped into the same node.

Intuitively, this happens because the split decision considers the similarity of the series in an

individual segment (segment 2 in Figure 2(a)), while proximity is determined by the overall similarity

among series across all segments. In other words, all segments should be of approximately the

same granularity to better reason about similarity (or equivalently, proximity). On the contrary, a

node with a more even subdivision as in Figure 2(b), will successfully group series b and c together.
It is important to note that, given a binary fanout, no splitting strategy can provide balanced splits

while avoiding the skewness problem. Thus, binary fanout structures inherently suffer from the

proximity problem.

[Compactness problem of full-ary structures] Contrary to the binary fanout, a full-ary struc-

ture [68] splits a node on all segments. Hence, it intrinsically avoids the skewness problem by

creating a strictly even region. However, it quickly generates too many small nodes with low fill

factors, severely damaging the index compactness. Table 1 in our experiments shows the fill factor

of a full-ary structure (TARDIS) is below 0.5% on four public large datasets. Consequently, the

resulting index cannot provide enough candidate series in approximate search, leading to low

accuracy when visiting a handful of nodes. In terms of efficiency, although merging subtrees into

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 111. Publication date: May 2023.
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(a) Random walk (b) DNA

Fig. 3. Node size distribution in the first layer on two 100GB datasets (𝑤 = 16).

larger partitions can significantly reduce random I/Os, storing and loading the enormous structure

in a partition file incurs heavy overhead on index building and querying, let alone such dense node

packs almost prevent further insertions.

5 DUMPY
In this section, we introduce our solution Dumpy. Based on a novel adaptive multi-ary structure,

Dumpy can hit the right balance of the proximity-compactness trade-off.

In the following, we introduce our basic idea in Section 5.1 and describe the workflow of Dumpy

building in Section 5.2. In Section 5.3 we present the adaptive split strategy and the leaf node

packing algorithm in Section 5.4. In Section 5.5 and 5.6, we describe the searching and updating

algorithm of Dumpy, respectively.

5.1 Index Structure and Design Overview
Dumpy organizes data series hierarchically and adopts top-down inserting and splitting as in other

SAX-based indexes. Once a node 𝑁 is full (its size 𝑐𝑁 exceeds the leaf node capacity 𝑡ℎ), Dumpy

adaptively selects 𝜆𝑁 segments and splits node 𝑁 on these segments to generate child nodes. So

the fanout of 𝑁 ≤ 2
𝜆𝑁

.

We demonstrate an example Dumpy tree with𝑤 = 4 segments in Figure 4. The internal node of

Dumpy 𝑁 maintains a list of chosen segments, 𝑐𝑠𝑙 (𝑁 ) = [𝑐𝑠1, 𝑐𝑠2, . . . , 𝑐𝑠𝜆𝑁 ] where 𝑐𝑠𝑖 is the id of

segments (numbered from 1 to𝑤 ), and 𝑐𝑠𝑙 (𝑁 ) is sorted by the id of segments in ascending order.

When we concatenate the increased bit of each symbol on 𝑐𝑠𝑙 (𝑁 ), we can get a 𝜆𝑁 -length bit-code,

denoted by sid in Dumpy. Node 𝑁1 is an internal node with iSAX word [0,1,1,1]. 𝑐𝑠𝑙 (𝑁1) = [1, 3, 4]
means 𝜆𝑁1

=3 and we split 𝑁1 on segments 1, 3, 4.

In the physical layout, a leaf node corresponds to continuous disk pages storing the raw series

and SAX words. An internal node maintains a hash table to support tree traversal, named routing
table, mapping sid to its corresponding child node.

We now present the intuitions behind our adaptive node splitting algorithm. To find the best

balance between the proximity-compactness trade-off, we design an objective function to evaluate

each possible split plan, where we use the variance of data on certain subspace to estimate the

proximity of series inside child nodes and use the variance of fill factors of leaf nodes to surrogate

the compactness. Considering the whole search space is 2
𝑤
+1, we first eliminate unpromising

plans and then employ the relationship between different split plans to accelerate searching (cr.

Section 5.3).

To better facilitate our adaptive splitting algorithm, we propose a new index-building workflow

based on the information of all series (cr. Section 5.2). The building workflow of previous SAX-based
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Fig. 4. Index structure (𝑤=4) and building workflow.

indexes split a node once it is just full, i.e., the 𝑡ℎ+1 series arrives. Considering a node in the index

may be mapped by much more series than 𝑡ℎ, the conventional split decisions will lose effect as the

first 𝑡ℎ + 1 series soon become a small portion of all series falling into this node.

Last but not least, even if supported by the optimal adaptive splits, there might still exist a large

number of small leaf nodes. This is coming from the fact that data series, similar to high-dimensional

vectors, are usually unevenly distributed, generating many different dense and sparse regions [35].

Figure 3 shows the node size distribution in the first layer of iSAX-type indexes. >60% nodes in

Rand and >80% nodes in DNA have <100 series while <2% nodes cover 80% series. To fully avoid

this problem, we propose a novel leaf node packing algorithm, to provide high-quality leaf packs

by bounding the maximal demotion bits of them (cr. Section 5.4).

5.2 Workflow of Dumpy Building
The index-building workflow of Dumpy is demonstrated in Figure 4. Dumpy follows the most

advanced building framework of the iSAX-family index [71] but changes two key designs that

provide a better index structure and higher building efficiency. The classical framework is a two-

pass procedure. In the first pass, it reads data series in batch from the raw dataset and computes

the SAX words of each series. Then the SAX words are inserted into the destination leaf node one

by one and nodes will be split once it is full. After the first pass, the index structure is in its final

form. In the second pass, data series are again read in batch, routed to the correct leaf nodes, and

written to corresponding files finally.

[Split nodes using a complete SAXword table]One key point of the aforementioned framework

is to only keep the SAX words in the index (the first pass) and use the SAX words to split nodes,

which takes full advantage of the static property of iSAX summarization and significantly reduces

disk I/Os. Dumpy further extends this workflow by separating the SAX words collection and node

splitting into two non-overlapping steps, i.e., only collecting all SAX words into a SAX table in the

first pass and then using the SAX table to build the index structure before the second pass. Hence,
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Algorithm 1 Dumpy Construction

Input: Dataset 𝑑𝑏, leaf node capacity 𝑡ℎ, parameters 𝑟 ,𝜌

Output: Dumpy root 𝑁𝑟

1: for each series 𝑠 read in order from 𝑑𝑏 do
2: Compute SAX word of 𝑠 , and insert it into SAX table𝑇𝑠𝑎𝑥
3: Initialize root 𝑁𝑟 .

4: 𝑆𝑝𝑙𝑖𝑡 (𝑁𝑟 ,𝑇𝑠𝑎𝑥 , 𝑡ℎ)
5: 𝑁𝑜𝑑𝑒𝑃𝑎𝑐𝑘𝑖𝑛𝑔 (𝑁𝑟 , 𝑟 , 𝜌, 𝑡ℎ) and label the new leaf node.

6: Initialize an empty hash table as 𝑏𝑢𝑓

7: for each series 𝑠 read in order from 𝑑𝑏 do
8: if 𝑏𝑢𝑓 is full then
9: flush data in 𝑏𝑢𝑓 to corresponding leaf node files.

10: leaf node 𝑁𝑙 = 𝑁𝑖 .𝑟𝑜𝑢𝑡𝑒2𝐿𝑒𝑎𝑓 (𝑇𝑠𝑎𝑥 [𝑠 ])
11: 𝑏𝑢𝑓 [𝑁𝑙 ] .𝑖𝑛𝑠𝑒𝑟𝑡 (𝑠,𝑇𝑠𝑎𝑥 [𝑠 ])
12: flush 𝑏𝑢𝑓 and clear it.

13: free(𝑇𝑠𝑎𝑥 )

14: return 𝑁𝑟

when splitting a node, we know the exact size and the distribution of the series inside it, making

our adaptive splitting algorithm take effect actually as we expect.

[Write to disk after leaf node packing] A large fanout usually generates numerous small nodes

before leaf node packing, as shown in Figure 3. Considering in the second pass we flush the series

of each relevant leaf node in a batch, the number of leaf nodes approximately decides how many

random disk writes per batch. To reduce random writes, before materializing leaves as in the second

pass, Dumpy merges sibling small leaf nodes in a proper way to be bigger packs and builds a routing

table for the internal node. Then in the second pass, the series will directly be routed to the leaf

pack by the routing table, largely reducing the random disk writes.

We now present the complete Dumpy index construction workflow using Algorithm 1. In Stage

1, the SAX table is built from the raw dataset (lines 1-2), and in Stage 2 the root node is initialized

(line 3). In Stage 3, the adaptive split is first executed on the root node, and then recursively on all

internal nodes whose size exceeds 𝑡ℎ (line 4 and Algorithm 2). In Stage 4, we traverse the index tree

and pack leaf nodes under the same parent (line 5 and Algorithm 3). Now we finish the construction

of index structure. In stage 5 we materialize leaves (line 6-12). Line 6 prepares a buffer for leaf nodes.

Then the raw series are read from the disk, routed to leaf nodes, and cached in the buffer along

with its SAX words (lines 7, 10-11). Once the buffer is full, it flushes data to the corresponding file

of each node (lines 8-9).

5.3 Adaptive Node Splitting
We now present our adaptive strategy of determining fanouts and splits (on which segments) based

on the SAX words of all relevant series. Our strategy is to select the best split plan based on a novel

objective function, which considers the proximity of series inside child nodes and the compactness

of child nodes at the same time. Since the number of all possible split plans is as large as 2
𝑤 − 1,

we also propose an efficient search algorithm by restricting the candidate space and reusing the

shared information.

5.3.1 Objective Function. Our objective function targets to achieve the best balance between the

trade-off of proximity and compactness. We measure the proximity based on the average variances

of data on candidate segments. And to measure compactness, we consider both the variance of

fill factors of child nodes and the ratio of overflowed nodes to pursue a balanced split and avoid

the bias for small or large fanouts. We now give the formal definition of the proposed objective

function, and then introduce the design principles in detail.
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(a) Balanced split with large variance (b) Imbalanced split with large variance

(c) Balanced split with small variance (d) Imbalanced split with small variance

Fig. 5. Four typical scenarios while choosing the segments to split. The grey points represent the same set of
data series under four different split plans. The blue points are the query series.

Given a node 𝑁 containing 𝑐𝑁 series X𝑁 = {𝒙1, 𝒙2, . . . , 𝒙𝒄𝑵 } where 𝒙 𝒊 = 𝑆𝐴𝑋 (𝑠𝑖 ,𝑤, 𝑐) is the
SAX word of series 𝑠𝑖 and 𝑥𝑖𝑗 is 𝑗-th symbol of 𝒙 𝒊

, and a split plan 𝑐𝑠𝑙 (𝑁 ) = [𝑐𝑠1, 𝑐𝑠2, . . . , 𝑐𝑠 |𝑐𝑠𝑙 (𝑁 ) |],
we first project each series of X𝑁 onto the segments of 𝑐𝑠𝑙 (𝑁 ) and get X′

𝑁 , that is, 𝑥
′𝑖
𝑗 = 𝑥𝑖𝑐𝑠 𝑗 for

any 𝑖 and 1 ≤ 𝑗 ≤ |𝑐𝑠𝑙 (𝑁 ) |. Then our objective function is as follows:

𝑚𝑎𝑥
𝑐𝑠𝑙 (𝑁 )

𝑒

√︃
1

|𝑐𝑠𝑙 (𝑁 ) |𝑉𝑎𝑟 (X′
𝑁 ) + 𝛼 ∗ 𝑒−(1+𝑜)𝜎𝑭

(1)

where 𝑒 is the Euler’s number, the variance of projected data is defined as𝑉𝑎𝑟 (X′
𝑁 ) = 1

𝑐𝑁

∑𝑐𝑁
𝑖=1

∥𝒙 ′𝒊−
𝝁∥2 and 𝝁 is a vector of mean values of data on each chosen segments

2
, 𝑜 ∈ [0, 1] is the ratio of

overflowed child nodes (size > 𝑡ℎ), 𝜎𝑭 is the standard deviation of the fill factors of child nodes,

and 𝛼 is a weight factor to balance the influence of these two measurements.

The first term estimates the proximity of a split plan. It evaluates the average variance of relevant

data series on the projected SAX space, which is equivalent to the average distance of all the data

series to their centroid, i.e., the mean vector 𝝁. The variance is an indicator of data informativeness

on certain dimension [9, 25, 47], considering large variances usually mean large information

entropy [55]. We also explain this in Figure 5. Since different plans may choose different numbers

of segments, we divide the variance by the number of chosen segments to make the evaluation fair.

The second term is to evaluate the compactness of a split plan. The standard deviation of fill

factors of child nodes prevents extremely imbalanced splits and avoids the severe data skewness

like Figure 3: the value will be very large in this case. Informally, the vector of fill factors is defined

as 𝑭 = (𝐹1, 𝐹2, . . . , 𝐹2|𝑐𝑠𝑙 (𝑁 ) | ) where 𝐹𝑖 = 𝑐𝑁𝑖
/𝑡ℎ and 𝑁𝑖 is the 𝑖-th child node. However, it shows bias

for small fanout, which generates fewer but larger child nodes and leads to an unnecessary deep

tree. To resolve this problem, we add a penalty term (1+𝑜) that uses the ratio of overflowed child

nodes to avoid the bias for plans of small fanout.

2
We use the midpoint of the range represented by the SAX symbol to calculate the mean value and other statistics.
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We further illustrate the heuristic behind the objective function in Figure 5, where we present

four different split plans for the same group of data series. Without loss of generality, we assume

all plans choose two segments, i.e., |𝑐𝑠𝑙 (𝑁 ) | = 2. Then we project the relevant data on a two-

dimensional SAX space (different spaces for different plans). The plan chosen by our objective

function is Figure 5(a), which has a large variance and balanced child nodes. The plan in Figure 5(b)

is inferior to Figure 5(a) due to the imbalance of child nodes, which leads to lower search accuracy

for a lack of sufficient candidate series. The problem of the plan in Figure 5(c) is its small variance,

which means that series are rather close to each other in these dimensions, on which the distance

between series contributes little to the whole distance that is accumulated by all 𝑤 dimensions.

That is, the distance of query and series in this subspace (small or large) is not informative for

their actual distance in the whole space. Specifically, close series in this subspace may have a

large distance actually. Therefore, the proximity of the series inside a node is crucially weakened.

Figure 5(d) shows a worst split plan candidate, and our objective function can easily eliminate it.

5.3.2 Find the Optimal Split Plan. A naive solution to finding the optimal split plan under our

objective function is to iterate and evaluate all 2
𝑤
-1 split plans. To evaluate the objective function

of each plan, it needs at least four passes of all series, rendering the CPU calculation a bottleneck

in index building. To reduce the complexity, we propose a novel searching algorithm composed

of three practical speedup techniques, that are, pre-computing the variance for each segment,

restricting the search space by a user-defined fill-factor range, and hierarchically computing the

sizes of child nodes. We first present each technique in detail, then wrap them up in the complete

node splitting algorithm in Algorithm 2.

[Pre-compute variance]We find that in the first term of the objective function, 𝑉𝑎𝑟 (X′
𝑁 ) can

be computed by linearly accumulating the variance of data on each segment.

𝑉𝑎𝑟 (X′
𝑁 ) =

∑︁
𝑐𝑠∈𝑐𝑠𝑙 (𝑁 )

𝑉𝑎𝑟 (Π𝑐𝑠 (X𝑁 )) (2)

where Π𝑐𝑠 (X𝑁 ) indicates the projection of X𝑁 onto segment 𝑐𝑠 .

Proof. ∑︁
𝑐𝑠∈𝑐𝑠𝑙 (𝑁 )

𝑉𝑎𝑟 (Π𝑐𝑠 (X𝑁 )) =
1

𝑐𝑁

∑︁
𝑐𝑠

𝑐𝑁∑︁
𝑖=1

(𝑥𝑖𝑐𝑠 − 𝜇𝑐𝑠 )2

=
1

𝑐𝑁

𝑐𝑁∑︁
𝑖=1

∑︁
𝑐𝑠

(𝑥𝑖𝑐𝑠 − 𝜇𝑐𝑠 )2 =
1

𝑐𝑁

𝑐𝑁∑︁
𝑖=1

∥𝒙 ′𝒊 − 𝝁∥2 = 𝑉𝑎𝑟 (X′
𝑁 )

Hence, we can pre-compute the variance of data series on each segment when we start to split a

node. When evaluating a specific plan, we simply fetch the corresponding segments’ variances and

sum them up with constant complexity.

[Restrict the search space]Wenow consider pruning impractical plans based on simple heuristics.

Taking two extreme cases as examples: a plan that splits a node of size 𝑡ℎ+1 on𝑤 segments will

generate excessively small nodes, and a plan that splits a million-sized node on one segment will

generate two huge nodes of size far exceeding 𝑡ℎ. Hence, it is natural to restrict the average fill

factor of child nodes to be in a reasonable range and avoid the particular evaluation. We introduce

a pair of parameters 𝐹𝑙 , 𝐹𝑟 to bound the average fill factor of child nodes. Then the range of the

number of chosen segments |𝑐𝑠𝑙 (𝑁 ) | can be deduced as

max(1, log 𝑐𝑁

𝐹𝑟 ∗ 𝑡ℎ
) ≤ |𝑐𝑠𝑙 (𝑁 ) | ≤ min(𝑤, log

𝑐𝑁

𝐹𝑙 ∗ 𝑡ℎ
) (3)
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Fig. 6. Hierarchically compute child node sizes for each candidate split plan.

In practice, we empirically set 𝐹𝑙 = 50% and 𝐹𝑟 = 300%, which generally achieves 16x speedup

and 99% accuracy on average. The acceleration is especially remarkable on relatively small nodes,

whose pruned search space is very small.

[Hierarchically compute sizes of child nodes] So far for each plan, we still need to iterate all

the data series to get the sizes of child nodes. We observe that if a split plan 𝑐𝑠𝑙𝑖 (𝑁 ) is a subset of
another plan 𝑐𝑠𝑙 𝑗 (𝑁 ), then the size distribution of child nodes of plan 𝑐𝑠𝑙 𝑗 (𝑁 ) can be reused to

calculate the distribution of plan 𝑐𝑠𝑙𝑖 (𝑁 ). Supposing 𝑐𝑠𝑙𝑖 (𝑁 ) = [1] and 𝑐𝑠𝑙 𝑗 (𝑁 ) = [1, 2] (the upper
left part in Figure 6), and the sizes of four child nodes under 𝑐𝑠𝑙 𝑗 (𝑁 ) are 𝑐𝑁00

= 300, 𝑐𝑁01
= 60,

𝑐𝑁10
= 23, 𝑐𝑁11

= 25, (nodes are represented by their 𝑠𝑖𝑑s), then the sizes of two child nodes under

𝑐𝑠𝑙𝑖 (𝑁 ) can be computed as 𝑐𝑁0
= 300 + 60 = 360 and 𝑐𝑁1

= 23 + 25 = 48. Since the whole 𝑤

segments are a superset of split plans, we first compute child node sizes for𝑤 segments as a base

distribution in each split and then traverse other plans in a depth-first manner, starting from the

plan with the largest fanout to the smallest. Hence, we can reuse the size distribution we have

gained in a hierarchical way and avoids traversing all the series for each plan.

We summarize our splitting strategy in Algorithm 2. The backbone is in lines 4-13 and 19-42 while

lines 14-16 split data according to the split plan and lines 17-18 recursively split the overflowed

child nodes. We first prepare the data variance on each segment (lines 4-6) and the base distribution

(lines 7-10), and then determine the range of the fanout (line 11). Then we evaluate each split plan

in a hierarchical way (lines 19-42) with a hash set to avoid duplicated evaluation. Lines 21-26 iterate

each combination from the base plan as the current split plan and compute its distribution. After

that, the objective function is evaluated to update the best-so-far answer. Finally, the sub-plans of

the current plan are evaluated similarly.

5.4 Leaf Node Packing
As mentioned in Section 5.1, data series are usually distributed unevenly in child nodes when

the fanout is large, leading to a large number of small leaf nodes and hence, degeneration of the

indexing performance. TARDIS [68] adopts a node-size-based strategy to merge subtrees into a

partition, while Coconut [33] proposes a sorting technique for iSAX words, both of which crucially

weaken or even abandon the pruning power of resulting index. To tackle this problem, we propose a

simple yet effective algorithm to pack small leaf nodes without losing the pruning ability of packed

nodes.

The intuition is to minimize the value range in the SAX space occupied by the packed nodes, i.e.,

make them have the tightest iSAX representation. Tighter iSAX representation directly translates

to higher pruning power. For example, merging two nodes with 𝑠𝑖𝑑 0010 and 0100 is better than

merging 0010 and 0101, since we demote two bits and get 0 ∗ ∗0 instead of demoting three bits and
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Algorithm 2 Split

Input: node 𝑁 , SAX table𝑇𝑠𝑎𝑥 , leaf node capacity 𝑡ℎ

1: if 𝑁 is root node then
2: 𝑐𝑠𝑙 (𝑁 ) = [1, 2, . . . , 𝑤 ]
3: else
4: segVar = []

5: for 𝑖 = 1 to 𝑤 do
6: segVar.push(variance of data in segment 𝑖)

7: Initialize 𝑏𝑎𝑠𝑒𝐷𝑖𝑠𝑡 as a list of size 2𝑤 : [0,0,...,0].

8: for each data series 𝑠 in 𝑁 do
9: 𝑠𝑖𝑑 , _ = 𝑝𝑟𝑜𝑚𝑜𝑡𝑒𝑖𝑆𝐴𝑋 (𝑖𝑆𝐴𝑋 (𝑁 ),𝑇𝑠𝑎𝑥 [𝑠 ], [1, 2, ..., 𝑤 ])
10: 𝑏𝑎𝑠𝑒𝐷𝑖𝑠𝑡 [𝑠𝑖𝑑 ]++
11: Calculate 𝜆𝑚𝑎𝑥 ,𝜆𝑚𝑖𝑛 according to Equation 3

12: Initialize 𝑣𝑖𝑠𝑖𝑡 as an empty set

13: 𝑐𝑠𝑙 (𝑁 ) = calcDist(𝑏𝑎𝑠𝑒𝐷𝑖𝑠𝑡 , [1, 2, ..., 𝑤 ], 𝜆𝑚𝑎𝑥 , 𝜆𝑚𝑖𝑛 , 𝑣𝑖𝑠𝑖𝑡 , 𝑠𝑒𝑔𝑉𝑎𝑟 , null)

14: for each data series 𝑠 in 𝑁 do
15: 𝑠𝑖𝑑 , 𝑖𝑠𝑎𝑥𝑛𝑒𝑤 = 𝑝𝑟𝑜𝑚𝑜𝑡𝑒𝑖𝑆𝐴𝑋 (𝑖𝑆𝐴𝑋 (𝑁 ),𝑇𝑠𝑎𝑥 [𝑠 ], 𝑐𝑠𝑙 (𝑁 ))
16: Insert 𝑠 to 𝑁 .𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 [𝑠𝑖𝑑 ]
17: Label 𝑁 .𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 [𝑠𝑖𝑑 ] with 𝑖𝑠𝑎𝑥𝑛𝑒𝑤
18: for each of 𝑁 ’s child node 𝑁𝑖 satisfying 𝑐𝑁𝑖

> 𝑡ℎ do
19: 𝑆𝑝𝑙𝑖𝑡 (𝑁𝑖 ,𝑇𝑠𝑎𝑥 , 𝑡ℎ)

Function calcDist(𝑏𝑎𝑠𝑒𝐷𝑖𝑠𝑡 , 𝑏𝑎𝑠𝑒𝑃𝑙𝑎𝑛, 𝜆𝑐𝑢𝑟 , 𝜆𝑚𝑖𝑛 , 𝑣𝑖𝑠𝑖𝑡 , 𝑠𝑒𝑔𝑉𝑎𝑟 ,𝑏𝑠 𝑓 )

20: if 𝜆𝑐𝑢𝑟 < 𝜆𝑚𝑖𝑛 then
21: return 𝑏𝑠 𝑓

22: for each combination of cardinality 𝜆𝑐𝑢𝑟 from 𝑏𝑎𝑠𝑒𝑃𝑙𝑎𝑛 as 𝑐𝑠𝑙𝑐𝑢𝑟 do
23: if 𝑣𝑖𝑠𝑖𝑡 does not contain(𝑐𝑠𝑙𝑐𝑢𝑟 ) then
24: Initialize 𝐷𝑖𝑠𝑡 as a list of size 2𝜆𝑐𝑢𝑟 : [0,0,...,0]

25: for each 𝑖𝑡𝑒𝑚 in 𝑏𝑎𝑠𝑒𝐷𝑖𝑠𝑡 do
26: 𝑠𝑖𝑑𝑛𝑒𝑤 = extract bits in 𝑐𝑠𝑙𝑐𝑢𝑟 from 𝑖𝑡𝑒𝑚.𝑠𝑖𝑑

27: 𝐷𝑖𝑠𝑡 [𝑠𝑖𝑑𝑛𝑒𝑤 ]+=𝑖𝑡𝑒𝑚.𝑠𝑖𝑧𝑒

28: Compute 𝑠𝑐𝑜𝑟𝑒 using Equation. 1

29: if score > 𝑏𝑠 𝑓 .score then
30: 𝑏𝑠 𝑓 = 𝑐𝑠𝑙𝑐𝑢𝑟

31: calcDist(𝐷𝑖𝑠𝑡 ,𝑐𝑠𝑙𝑐𝑢𝑟 , 𝜆𝑐𝑢𝑟 -1, 𝜆𝑚𝑖𝑛 , 𝑣𝑖𝑠𝑖𝑡 , 𝑠𝑒𝑔𝑉𝑎𝑟 , 𝑏𝑠 𝑓 )

32: 𝑣𝑖𝑠𝑖𝑡 .insert(𝑐𝑠𝑙𝑐𝑢𝑟 )

33: return 𝑏𝑠 𝑓

Function promoteiSAX(iSAX word 𝑖𝑠𝑎𝑥 , SAX word 𝑠𝑎𝑥 , chosen segments list 𝑐𝑠𝑙 )

34: 𝑠𝑖𝑑 = 0

35: 𝑖𝑠𝑎𝑥𝑛𝑒𝑤 = 𝑖𝑠𝑎𝑥

36: for each segment 𝑠𝑒𝑔 in 𝑐𝑠𝑙 do
37: 𝑛𝑏 = 𝑙𝑒𝑛 (𝑖𝑠𝑎𝑥 [𝑠𝑒𝑔])
38: 𝑠𝑖𝑑 = 𝑠𝑖𝑑 << 1 + the (𝑛𝑏 + 1)-th bit of 𝑠𝑎𝑥 [𝑠𝑒𝑔]
39: 𝑖𝑠𝑎𝑥𝑛𝑒𝑤 [𝑠𝑒𝑔] = first 𝑛𝑏 + 1 bits of 𝑠𝑎𝑥 [𝑠𝑒𝑔]
40: return 𝑠𝑖𝑑 , 𝑖𝑠𝑎𝑥𝑛𝑒𝑤

getting the coarser 0 ∗ ∗∗. We define the demotion bits as the different bits between the 𝑠𝑖𝑑s of

two or more nodes considered to be merged into the same pack. In our node packing algorithm,

we limit the number of demotion bits to be smaller than 𝜌𝜆, where 𝜌 is a user-defined parameter

trading off pack quality and fill factor. Specifically, given a list of packs and a small node 𝑁 to be

packed, we decide 𝑁 ’s belonging by the demotion cost, which is defined as the increased number of

demotion bits of the pack if we add 𝑁 into it. A leaf node pack forbids any node’s insertion request

if it will make the pack demote more than 𝜌𝜆 bits or overflow (size > 𝑡ℎ). Finally, if no existing pack

can satisfy the requirements to insert 𝑁 , we will create a new pack and insert 𝑁 into it.

The details of this algorithm are shown in Algorithm 3. We first sum the sizes of all small leaf

nodes (lines 1-5) and randomly initialize the pack list with ⌊𝑠𝑢𝑚_𝑠𝑖𝑧𝑒/𝑡ℎ⌋ leaf nodes, which is the

least number to hold the small nodes (line 6). Then we iterate all the other small nodes and select

or create a pack for them (lines 7-20). For node 𝑁 , we check each of the existing packs in the pack

list and select the one with the least demotion cost (lines 14-16, 19-20). When the pack demotes

more than 𝜌 ∗ 𝜆𝑁𝑝
bits, we simply give up this choice (lines 11-12). Besides, we also ensure the size
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Algorithm 3 Node Packing

Input: parent node 𝑁𝑝 , small node threshold 𝑟 , demotion ratio 𝜌 , leaf capacity 𝑡ℎ

1: 𝑛𝑜𝑑𝑒𝑠 = [], 𝑠𝑢𝑚_𝑠𝑖𝑧𝑒 = 0

2: for each of 𝑁𝑝 ’s child node 𝑁𝑙 that is not splitted do
3: if 𝑐𝑁𝑙

< 𝑟 ∗ 𝑡ℎ then
4: 𝑛𝑜𝑑𝑒𝑠 .push(𝑁𝑙 )

5: 𝑠𝑢𝑚_𝑠𝑖𝑧𝑒 += 𝑐𝑁𝑙

6: Initialize pack list 𝑝𝑙 with ⌊𝑠𝑢𝑚_𝑠𝑖𝑧𝑒/𝑡ℎ⌋ leaf nodes
7: for each node 𝑁 in 𝑛𝑜𝑑𝑒𝑠 do
8: 𝑏𝑠 𝑓 = (null, 𝜆𝑁𝑝 )

9: for each pack 𝑝 in 𝑝𝑙 do
10: 𝑝′ = 𝑝.𝑖𝑛𝑠𝑒𝑟𝑡 (𝑁 )
11: if 𝑐′𝑝>𝑡ℎ or number of demotion bits of 𝑝′ > 𝜌 ∗ 𝜆𝑁𝑝 then
12: continue

13: else
14: 𝑐𝑜𝑠𝑡 = increased number of demotion bits in 𝑝′

15: if 𝑐𝑜𝑠𝑡 < 𝑏𝑠 𝑓 .cost then
16: 𝑏𝑠 𝑓 = (𝑝 , 𝑐𝑜𝑠𝑡 )

17: if 𝑏𝑠 𝑓 .pack == null then
18: 𝑝𝑙 .push(new pack initialized with 𝑁 )

19: else
20: 𝑏𝑠 𝑓 .pack.insert(𝑁 )

21: update 𝑁𝑝 ’s routing table

22: for each of 𝑁𝑝 ’s child node 𝑁𝑖 satisfying 𝑐𝑁𝑖
> 𝑡ℎ do

23: 𝑁𝑜𝑑𝑒𝑃𝑎𝑐𝑘𝑖𝑛𝑔 (𝑁𝑖 , 𝑟 , 𝜌, 𝑡ℎ)

of all the packs will not exceed 𝑡ℎ leading to new splits (lines 11-12). When there is no qualified

pack, we will create a new pack initialized with node 𝑁 (lines 17-18). Finally, we update the routing

table of 𝑁𝑝 .

The definition of small nodes can be defined by use cases. For a static dataset, the small node

threshold 𝑟 can be set to 1 to improve performance, while in a dynamic dataset, 𝑟 can be set

dynamically according to the historical updating frequency. That is, small 𝑟 for intensive updating

use cases and vice versa.

5.5 Search Algorithm
Dumpy supports two styles of query answering algorithms. The first style follows the classical

pruning-based search algorithm [22]. As a SAX-based index, Dumpy can conduct an efficient search

(including the exact, 𝛿-𝜖-approximate search and etc. [22, 56]) by pruning irrelevant leaf nodes using

lower-bounding distances of iSAX words [22, 56]. Besides that, Dumpy also supports traditional

approximate search, i.e., querying one target leaf node. Moreover, we extend it to allow searching

more nodes, called extended approximate search, to improve query answer quality while maintaining

response time in milliseconds. We limit the search range of extended approximate search in the

smallest subtree of the target leaf node to reduce the complexity and avoid traversing the whole tree

and evaluating the nodes one by one as in the bound-based search style. Benefiting from Dumpy’s

multi-ary structure and fill factor, it brings prominent improvement in search accuracy.

As shown in Algorithm 4, the input includes an additional parameter that restricts the visited

node number. The search process starts from the root node and ends with a node that has fewer

nodes than the input or an empty node (lines 1-4). Then we sort the sibling of the ending node

according to their lower bound distance (as described in [56] for ED and [49] for DTW) in ascending

order (line 5). Finally, we iterate the sorted sibling nodes or subtrees until reaching the maximal

visited node number and return 𝑘NN (lines 6-9, the concrete search procedure is omitted since it is

the same as in other search algorithms).

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 111. Publication date: May 2023.



111:16 Zeyu Wang et al.

Algorithm 4 Extended Approximate Search

Input: root node 𝑁𝑟 , node number 𝑛𝑏𝑟 , query series 𝑞

1: node 𝑁 = 𝑁𝑟

2: while 𝑁 != null and 𝑁 .leafNbr > 𝑛𝑏𝑟 do
3: 𝑠𝑖𝑑 = 𝑝𝑟𝑜𝑚𝑜𝑡𝑒𝑖𝑆𝐴𝑋 (𝑖𝑆𝐴𝑋 (𝑁 ), 𝑆𝐴𝑋 (𝑞), 𝑐𝑠𝑙 (𝑁 ))
4: 𝑁 = 𝑁 .𝑟𝑜𝑢𝑡𝑖𝑛𝑔𝑡𝑎𝑏𝑙𝑒 [𝑠𝑖𝑑 ]
5: sort 𝑁 ’s siblings according to lower bound distance into list 𝑙

6: while number of searched nodes < 𝑛𝑏𝑟 do
7: 𝑁𝑐 = pop the head node of 𝑙

8: fetch all nodes rooted at 𝑁𝑐 and search the series inside

9: return 𝑘NN among the visited series

5.6 Updates
As a fully functional index, Dumpy also supports updates (insertion and deletion) besides bulk

loading. A major difference is that Dumpy no longer collects the information of all series beforehand

on a dynamic dataset. Though, since all the SAX words are stored in leaves along with the raw

series (as the same with iSAX-index family [56]), we can re-organize the index structure when an

internal node’s fanout and size do not satisfy the constraint in Equation 3.

Specifically, we read all the SAX words in the leaves rooted at this node and follow the same

workflow in Algorithm 1. Note that this process can be executed in a background thread without

blocking the front-end service. During this period, the query series of updates will come into both

the old structure and the new but unfinished one. Once the background work is finished, we replace

the old subtree with the new subtree, and free all the space occupied by the old one. Another

difference is when the query series falls into a full pack. Then we can simply extract the target leaf

node in the pack and redo the node packing for the siblings after a large number of such extractions.

These operations are very fast since these small nodes usually cover a small number of series.

The deletion is almost the same as the iSAX-index family [56, 70]. In particular, we mark the

deleted data series in the corresponding leaf via a bit-vector and further insertions can exploit the

space occupied by the deleted series while queries ignore these entries. When a node is empty, we

free the occupied space. The only difference for Dumpy is to update the routing table.

5.7 Complexity Analysis
In this section, we first analyze the time complexity of index building and querying, and then

analyze the space complexity.

[Time complexity] As a disk-based index, the time cost of Dumpy depends on both in-core

complexity and disk accesses. In the following, we first discuss the theoretical time cost in index

building and then querying.

The complexity of Dumpy index building could be summed over sub-modules. In the adaptive split

algorithm, let node 𝑁 is to be split, and |𝑐𝑠𝑙 (𝑁 ) | is between 𝜆𝑚𝑖𝑛 and 𝜆𝑚𝑎𝑥 according to Equation 3.

Then the cost of computing the variance of each segment, the base distribution and the routing target

is 𝑂 (4𝑤𝑐𝑁 ). The number of calculations of the 𝑐𝑎𝑙𝑐𝐷𝑖𝑠𝑡 function is

(
𝑤

𝜆𝑚𝑎𝑥

)
∗ 2𝑤 +∑𝜆𝑚𝑎𝑥−1

𝑖=𝜆𝑚𝑖𝑛

(
𝑤
𝑖

)
2
𝜆𝑖+1

,

where the first term corresponds to evaluating all possible plans of the max fanout, i.e., using 𝜆𝑚𝑎𝑥

segments (cf. Figure 6, level Hier 1 of the hierarchy), and the second term to evaluating all possible

plans of smaller fanouts (cf. Figure 6, level Hier 2). In the leaf node packing algorithm, given that

the final pack number is 𝑛𝑝 , the time complexity of node packing is 𝑂 (2𝜆𝑁 ∗ 𝑛𝑝). In summary, the

total in-core complexity is 𝑂 (∑𝑁 (4𝑤𝑐𝑁 +
(

𝑤
𝜆𝑚𝑎𝑥

)
∗ 2𝑤 +∑𝜆𝑚𝑎𝑥−1

𝑖=𝜆𝑚𝑖𝑛

(
𝑤
𝑖

)
2
𝜆𝑖+1 + 2

𝜆𝑁 ∗ 𝑛𝑝)).
Random disk writes can have a significant cost when building Dumpy (cf. Figure 4, Stage 5).

Assume the number of data series in the database is |𝑑𝑏 |, the number of leaf nodes is 𝑛𝑙 and the
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memory buffer can contain 𝐵 series. In each batch, Dumpy generates 𝑛𝑙 random writes at most,

and in total, 𝑂 ( |𝑑𝑏 |
𝐵

∗ 𝑛𝑙 ) random writes for the whole index building.

For querying, the approximate search goes down a single path from the root node to a target leaf

node. Let the length of this path be |𝑝 |; then the cost is 𝑂 ( |𝑝 |𝑤). The I/O cost is a single disk read

of size 𝑂 (𝑡ℎ). Compared to the iSAX indexes (with binary fanout), the length |𝑝 | of the Dumpy

path is 2/𝜆x smaller, where 𝜆 denotes Dumpy’s average fanout. In addition to the target leaf node

search cost, the complexity of the exact search comprises of 𝑂 ((1 − 𝑝𝑟 ) ∗ 𝑛𝑙 ) random disk reads of

size 𝑂 (𝑡ℎ), where 𝑝𝑟 is the pruning ratio, and 𝑂 (𝑤 ∗ 𝑛𝑡𝑜𝑡𝑎𝑙 log𝑛𝑡𝑜𝑡𝑎𝑙 ) in-core calculations, where
𝑛𝑡𝑜𝑡𝑎𝑙 is the total number of nodes.

In practice, Dumpy is a more compact index (smaller 𝑛𝑙 and 𝑛𝑡𝑜𝑡𝑎𝑙 values) than other SAX-based

indexes (cf. Section 7.1), and therefore, faster in both building and querying times.

[Space complexity] The space occupied by Dumpy (in addition to the raw data size) is as follows.

The SAX words are persisted on disk, occupying ⌈𝑤𝑏 ∗ |𝑑𝑏 |/8⌉ bytes. The internal nodes of the
index store the routing table, the iSAX word, and the list of segments used in the split (i.e., the

chosen segments), for a total of

∑
𝑁 (8 ∗ 2𝜆𝑁 + 𝑤𝑏/8 + 𝜆𝑁 ) bytes. The leaf nodes store a single

iSAX word summary, for a total of 𝑛𝑙 ∗ (𝑤𝑏/8) bytes. Since the number of nodes is small, Dumpy

introduces very little additional storage in practice.

6 DUMPY-FUZZY
As partition-based indexes, data series indexes also suffer from the so-called boundary issue in
approximate search [17, 24]. That is, the data series located near the boundary of a query’s resident

node are also good candidates, but cannot be considered in approximate search since they may be

located in different subtrees. To overcome this problem, we propose a variant of Dumpy, named

Dumpy-Fuzzy, that views the static partition boundary (i.e., the SAX breakpoints) as a range (fuzzy

boundary) and places the series lying on this range into the nodes of both sides. Dumpy-Fuzzy

further improves the approximate search accuracy compared with Dumpy at the expense of a small

overhead on index building and disk space.

Specifically, Dumpy-Fuzzy adds a duplication procedure after splitting. For each newly-generated

internal node 𝑁 , it checks the series lying on 𝑁 ’s neighboring nodes (i.e., the nodes whose 𝑠𝑖𝑑

is 1-bit different from 𝑁 ) and duplicates the series near the boundary into itself. For example, a

node with 𝑠𝑖𝑑 = 000 will check the series of neighboring nodes 100 on the first chosen segment

and duplicate the series that are very close to 000 into 000. The same process applies to nodes 010

and 011 on the second and third chosen segments, respectively.

We introduce a hyper-parameter 𝑓 ∈ (0, 1), the fuzzy boundary ranges regarding the original

node ranges, to control which series is qualified to be duplicated. In addition, duplication also

applies after leaf node packing. The series near the boundaries of a leaf pack can also be placed

redundantly into the pack in the same way as above. we ensure that no additional split will be

introduced in this procedure (i.e., the leaf pack will not overflow).

Note that Dumpy-Fuzzy does not damage Dumpy’s pruning power for exact search. Duplicated

series do not change the iSAX words of nodes or packs. Hence, the lower bound calculations

are kept the same. Therefore, without violating the pruning-based exact search, Dumpy-Fuzzy

improves the approximate search accuracy by examining more promising candidates.

We also claim that neither binary nor full-ary structures can easily adopt similar fuzzy boundary

optimizations. In a binary structure, since each leaf node has only one sibling node, it is prone

to produce excessive duplication series and generate more splits. This results in a deeper index,

which rather decreases the search accuracy. As for the full-ary structure, the excessive number

of leaf nodes translates into an overwhelming number of replication destinations, introducing
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unacceptable storage overhead. We have experimentally verified these observations but omit the

results and the detailed algorithms due to the lack of space.

7 EXPERIMENTS
[Environment] Experiments were conducted on an Intel Core(R) i9-10900K 2.80GHz 10-core CPU

with 4*32GB 2400MHz main memory, running Windows Subsystem of Linux (Ubuntu Linux 20.04

LTS). The machine has a Samsung PCIe 2TB SSD (default), and a Seagate SATAIII 7200RPM 2TB

HDD. Our codes are available at https://github.com/DSM-fudan/Dumpy.

[Datasets]We use one synthetic and three real datasets. All series are z-normalized before indexing

and querying. In each dataset, we prepare 200 queries that are not part of the dataset to ensure

sufficient hardness [73], and obtain the ground truth kNN results using brute-force search. Rand
is a synthetic dataset, generated as cumulative sums of random walk steps following a standard

Gaussian distribution 𝑁 (0, 1). It has been extensively used in the existing works [2, 21, 22, 72]. We

generate 50-800 million Rand series of different lengths (50GB-800GB). DNA [1] is a real dataset

collected from DNA sequences of two plants, Allium sativum and Taxus wallichiana. It comprises

26 million data series of length 1024 (∼113GB). The second real dataset, ECG (Electrocardiography),

is extracted from the MIMIC-III Waveform Database [30]. It contains over 97 million series of

length 320 (∼117GB), sampled at 125Hz from 6146 ICU patients. The last real dataset, Deep [61],

comprises 1 billion vectors of size 96, extracted from the last CNN (convolutional neural network)

layers of images.

[Algorithms] In the iSAX-index family, we take iSAX2+ as the SOTA binary structure [22]. We

also implement a stand-alone version of TARDIS as the SOTA full-ary structure and use 100%

sampling percent. DSTree [65] is also included as one of the SOTA data series indexes [22]. For

simplicity, Dumpy-Fuzzy with parameter 𝑓 is abbreviated as Dumpy-𝑓 . To evaluate the quality of

these indexes, we implement extended approximate search, as well as pruning-based search.

All the codes are open-source, implemented in C/C++, and compiled by g++ 9.4.0 with -O3

optimization. We use the optimized versions of DSTree and iSAX2+ [21].

[Parameters] We set the number of segments 𝑤 = 16, SAX cardinality 𝑐 = 64 (i.e., 𝑏 = 8), and

the leaf size threshold 𝑡ℎ = 10000. The memory buffer size for index building is set to 4𝐺𝐵 unless

specified. The replication times of each series in Dumpy-𝑓 is set to at most 3.

[Measures] Similar with other works [4, 22, 47], we use Mean Average Precision (MAP) [60] as

the accuracy measure, which is defined as the mean value of AP on a group of queries. For query

𝑠𝑞 , AP equals to
1

𝑘

∑𝑘
𝑖=1 𝑃 (𝑠𝑞, 𝑖) ∗ 𝑟𝑒𝑙 (𝑖), where 𝑃 (𝑠𝑞, 𝑖) is the ratio of true neighbors among the top-𝑖

nearest results and 𝑟𝑒𝑙 (𝑖) is 1 if the 𝑖-th nearest result is the true exact 𝑘NN result and 0 otherwise.

It can be proved that MAP is equivalent to the average recall rate when the returned results are

sorted by the actual distances. Another similarity measure we use is the average error ratio which

measures the difference between approximate and exact results, commonly used in approximate

search [4, 68], and defined as
1

𝑘

∑𝑘
𝑖=1

𝑑𝑖𝑠𝑡 (𝑎𝑖 ,𝑠𝑞 )
𝑑𝑖𝑠𝑡 (𝑟𝑖 ,𝑠𝑞 ) . We measure both ED and DTW, where the DTW

warping window size is set to 10% of the series length as a common setting [49, 53].

7.1 Index Building
7.1.1 Efficiency. First, we evaluate the index building efficiency in four datasets on SSD, and the

results are shown in Figure 7(a). In all four datasets, Dumpy outperforms the other three methods by

a large margin, i.e, 5.3 times faster than DSTree, 3.8 times than iSAX2+ and 2.5 times than TARDIS

on average. Dumpy-𝑓 only incurs small overheads (about 38%) on Dumpy and is considerably faster

than DSTree and iSAX2+. The advantage of Dumpy mainly comes from the reduction of random

disk writes. As shown in Figure 7(b), the number of random writes (#Rand.) of iSAX2+ is ∼3.5x
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(a) Building time across four datasets on SSD (b) Disk writes in building (c) Building time on HDD

Fig. 7. Index building (4GB memory)

Table 1. Index structure statistics

Dataset Method #Leaves #Nodes Height Fill factor Index Size (MB)
1

Rand

iSAX2+ 73563 86945 20 13.59% 16

DSTree 17847 35693 32 56.03% 9

TARDIS 8516867 8520065 3 0.11% 732

Dumpy 14106 19418 7 70.89% 3

DNA

iSAX2+ 42906 47885 25 6.14% 9

DSTree 5833 11665 43 45.16% 3

TARDIS 1011436 1312989 5 0.26% 278

Dumpy 4367 6228 9 60.32% 1

ECG

iSAX2+ 69786 74042 9 13.98% 14

DSTree 20740 41479 48 47.04% 13

TARDIS 3178628 3182368 4 0.33% 749

Dumpy 12112 15050 7 80.55% 3

Deep

iSAX2+ 68096 71188 8 19.08% 11

DSTree 16324 32647 33 61.26% 8

TARDIS 824458 827094 3 0.27% 546

Dumpy 11590 13664 8 86.28% 3

1
Size of in-memory index structure only.

more than DSTree and ∼17x more than Dumpy and TARDIS, making it the dominating factor

in index building time than the number of writing bytes (#Seq.) in both SSD and HDD. Though

TARDIS also enjoys low I/O costs for its compact and large partition, it needs more CPU time to

serialize the enormous index structure into each partition. Results on HDD in Figure 7(c) are similar

to those on SSD.

We present the detailed index information in Table 1. Dumpy has the fewest leaf nodes (i.e., the

highest fill factor) which verifies the good compactness of Dumpy. That of DSTree is slightly larger

than Dumpy, and that of iSAX2+ is generally >3x more than DSTree. It verifies the complexity

analysis in Section 5.2. Noting that the index building time of DSTree is even longer than iSAX2+

(Figure 7(a)), due to its high CPU cost and large writing bytes incurred by EAPCA calculations.

TARDIS generates million-level leaves and has a low fill factor for its full-ary structure. These

nodes are organized in large partitions where each partition is 128MB, as the setting of [68].

7.1.2 Scalability. Next, we test the scalability in Rand datasets by increasing data size from 50GB

to 800GB, and series length from 256 to 16384. When the dataset size is varied, the series length is

kept constant at 256, whereas the dataset size is kept at 100GB when the length is varied, as the

same design with the benchmark [21].
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(a) On data series length (b) On dataset size

Fig. 8. Index scalability (32GB memory)

Figure 8 presents the index building time with 32GB memory. Dumpy has the best scalability in

both cases. In a linear regression test for the building time and dataset size, Dumpy’s coefficient of

determination 𝑅2
is 0.9904, verifying its linear growth of the building time. The reason is that the

number of leaves increases linearly as the dataset scales up, indicating a nearly constant average

fill factor. This also supports the complexity analysis. The performance when varying series length

also follows this rule.

7.2 Query Processing
In this section, we verify the accuracy of the query processing.

7.2.1 Approximate Search. First, we evaluate the accuracy of approximate results across four

datasets.

[Search one node] We compare these approaches when searching one node to obtain the approx-

imate top-𝑘 result on three datasets with ED distance, and results are shown in Figure 9. It can be

seen that Dumpy consistently outperforms other approaches. Specifically, Dumpy improves the

average accuracy by 84%, 46%, 11% and reduces the average error ratio by 7.3%, 3.4% and 1.4% on

three datasets compared with TARDIS, iSAX2+ and DSTree respectively. TARDIS has the lowest

performance, due to its low fill factor. iSAX2+ suffers from insufficient intra-node series proximity,

characterized by the number of uneven nodes as described in Figure 5 (>20% leaf nodes have one

segment using more than 4 bits than other segments). Moreover, Dumpy-Fuzzy has higher accuracy

than Dumpy and other approaches, which verifies our duplication strategy.

[Search multiple nodes] In Figure 10, we compare the accuracy of searching multiple nodes (1 to

25) for top-1 result with ED distance. The MAP value of Dumpy and Dumpy-𝑓 increases remarkably

faster than the competitors, attributed to our multi-ary structure that provides closer sibling nodes.

When visiting 25 nodes, Dumpy and Dumpy-𝑓 improve the accuracy by 58%, 65% and reduce the

average error ratio by 3.6% and 3.7% on average of four datasets respectively compared with the

second-best approach, DSTree. We also compare the accuracy as the series length varies (Figure 11).

The accuracy on different lengths shares similar rankings.

Figure 12 shows the average query time of different approaches for approximate top-50 queries.

It can be seen that Dumpy has a similar query processing time with iSAX2+ and is faster than

DSTree. That is, our approach can achieve higher accuracy with a smaller time cost. TARDIS is

much slower because it pays lots of time to deserialize the large index partition.

Our results show that Dumpy can achieve 60%-70% MAP within 100ms on TB-level datasets,

while its index building time is 4x faster than the SOTA competitors. These results demonstrate

that Dumpy fulfills the requirements of many kNN-based applications.
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(a) Rand (b) DNA (c) ECG

(d) Rand (e) DNA (f) ECG

Fig. 9. Approximate search under ED (search one node).

(a) Rand (b) DNA (c) ECG

(d) Rand (e) DNA (f) ECG

Fig. 10. Extended approximate search under ED (k=1).

[Upper bound of approximate NN distance] Dumpy (like any other index) does not provide

any accuracy guarantees for its (ng-)approximate search results [21, 22]. Nevertheless, we can

provide an upper bound for the distance between the approximate NN and the query series. This
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Fig. 11. Extended approx. Search vs. series lengths
(search 25 nodes)

Fig. 12. Query time
Fig. 13. Histogram of up-
per bounds of the distance

(a) 𝑘 = 1 (b) 𝑘 = 50

Fig. 14. Efficiency v.s. accuracy

(a) MAP (b) Avg. error ratio

Fig. 15. Approx. Search under DTW

(a) Effect of 𝑤 (b) Effect of 𝛼

Fig. 16. Influence of parameters

(a) On index building (b) On Search Accuracy

Fig. 17. Influence of 𝑓

upper bound can be interpreted as the worst-case accuracy of the approximate search results of

Dumpy.

Given the target leaf node, this upper bound distance is defined as

√︃
𝑙
𝑤

∑𝑤
𝑖=1 𝑟𝑎𝑛𝑔𝑒

2

𝑖
, where 𝑟𝑎𝑛𝑔𝑒𝑖

is the distance between two breakpoints in the 𝑖-th segment. It corresponds to the distance when

the query and the nearest neighbor series are located on the opposite boundaries of each segment.

In Figure 13, we use a histogram to show the distribution of these upper bound distances for the

leaf nodes of the Dumpy and iSAX indexes. The histogram shows that over 80% of the iSAX leaf

nodes have loose bounds (60-64), whereas over 60% of the Dumpy leaves have tight bounds (40-60).

This is because Dumpy chooses to split the coarser segment, which leads to a smaller worst-case

distance than iSAX.

[Efficiency vs accuracy]We extend the approximate search to all leaf nodes with lower bound

pruning to evaluate the indexes’ response time under the whole MAP range. The results are
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depicted in Figure 14. Benefiting from the high-proximity nodes and compact index structure,

Dumpy surpasses its competitors in both low and high-precision intervals.

[Searching under DTW] In this experiment, we compare the accuracy under DTW distance in

Figure 15. Due to the inherent hardness, the precision is lower than ED generally. However, Dumpy

and Dumpy-𝑓 still achieve better precision and error ratio under DTW. Since the absolute distance

of DTW is smaller than ED, the differences in the error ratio among all the methods tend to be

smaller (except for TARDIS).

[Influence of parameters] We also investigate the influence of parameters on the accuracy,

including the number of segments𝑤 , the weight factor 𝛼 in the objective function Equation. 1 and

boundary ratio 𝑓 for Dumpy-Fuzzy.

In Figure 16(a), we vary 𝑤 for iSAX and Dumpy and observe that the best iSAX performance

(when 𝑤 = 16) is still worse than Dumpy (with any number of segments 𝑤 ∈ {12, 16, 20}). This
is explained by Dumpy’s strategy to search for better-quality splits that fully exploit the iSAX

summarization power of the available segments. We also observe that in both indexes, fewer

segments tend to degrade the precision of iSAX summarizations, whereas more segments produce

a large number of leaf nodes, which harms the index performance.

In Figure 16(b), when 𝛼 increases from 0 to 0.3, the fill factor also keeps increasing, from 59%

to 75%. The precision first increases since visiting more series in a node, and then decreases due

to the reduction of intra-node proximity. As shown in Figure 5, when 𝛼 decreases, the split plan

tends to be like Figure 5(c), which means that the series in a node is not that similar. The sweet

point for the precision occurs when 𝛼 is about 0.2, which is used across different datasets in our

experiments, showing the robust performance.

Second, we evaluate the stability of Dumpy-Fuzzy regarding different 𝑓 , the fuzzy boundary

ratio. In Figure 17(a) we observe that the number of leaves and the building time increases slowly

as 𝑓 increases. In Figure 17(b) (𝑘 = 5), the precision and error ratio improve with 𝑓 increasing

to 10%, and remain relatively stable then. It implies that Dumpy-Fuzzy is stable regarding 𝑓 , and

choose 𝑓 =10 for ECG and Deep and 𝑓 =30 for Rand and DNA.

7.2.2 Exact Search. We evaluate the exact search efficiency of Dumpy against other methods in

Table 2. Since TARDIS does not support exact 𝑘NN search in the original paper, we implement a

similar algorithm as the iSAX-index family. But only the node summarized with iSAX words can

be pruned during searching. The results are reported using the average of 40 queries with 𝑘 = 50

under ED and DTW. Overall, Dumpy achieves the best efficiency in all cases. It is worth noting

that although DSTree has a higher pruning ratio than Dumpy, the response time is still slower

than Dumpy. The reason is as follows. DSTree takes a longer time to compute the lower bound

of distance due to computing the standard deviation frequently. iSAX2+ suffers from the low fill

factor and needs to read about 3 times nodes more than Dumpy and DSTree.

7.3 Complete Workloads
Finally, we compare different approaches when inserting new data series (Figure 18). We omit

TARDIS since it is designed for the static dataset and not easy to be extended. To be fair, we

implement all methods using a single thread (even though Dumpy is multi-threaded). We use

different synthetic workloads consisting of 100 exact queries, and a total of 100 million series,

where queries are interleaved by a batch of insertions. The results show Dumpy outperforms

the competitors for all workloads, thanks to its compact structure. Although the re-splitting and

re-packing procedures add an additional cost, this cost is balanced by the efficiency improvements

that these two designs bring along. Moreover, Dumpy shows better performance when the initial
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Table 2. Exact Search. For response time, the first number in the brackets is the I/O time while the second is
the CPU time.

Method Resp. time (s) #Loaded Nodes Pruning ratio

Rand-ED

iSAX2+ 65 (50+15) 7595 81.51%

DSTree 33 (20+13) 2027 86.06%

TARDIS 53 (15+38) 1665744 59.30%

Dumpy 17 (12+5) 2641 83.70%

Rand-DTW

iSAX2+ 151 (85+66) 18660 72.58%

DSTree 79 (24+65) 3678 75.12%

TARDIS 208 (22+186) 2846868 49.24%

Dumpy 58 (18+40) 3997 73.61%

DNA-ED

iSAX2+ 42 (26+16) 1077 91.04%

DSTree 21 (16+5) 326 94.00%

TARDIS 40 (11+29) 161959 71.64%

Dumpy 12 (10+2) 433 91.69%

DNA-DTW

iSAX2+ 116 (60+56) 2163 87.77%

DSTree 63 (18+45) 497 90.93%

TARDIS 143 (16+127) 194645 68.78%

Dumpy 53 (14+39) 528 89.41%

Fig. 18. Update performance (4GB memory)

batch size increases (while iSAX and DSTree show worse performance), because fewer insertions

incur fewer re-splitting and re-packing actions.

8 CONCLUSIONS AND FUTUREWORK
We propose a novel multi-ary data series index Dumpy with an adaptive split strategy that hits

the right balance in the proximity-compactness trade-off. A variant of Dumpy, Dumpy-Fuzzy can

achieve even higher accuracy by clever partial duplication. Experiments with a variety of large,

synthetic and real datasets demonstrate the efficiency, scalability, and accuracy of our solutions.

In future work, we plan to extend Dumpy to support subsequence matching. By designing a

proper cost function and an efficient evaluation algorithm, Dumpy’s adaptive splitting strategy can

enhance the SOTA subsequence matching index, ULISSE [39], with higher-proximity nodes and

hence better performance. Moreover, by absorbing the parallel paradigms of ParIS [50], SING [52]

and TARDIS [68], Dumpy’s overall performance can be further improved by exploiting modern

hardware.
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