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Debugging is a core skill required by programmers, yet we know little about how to effectively teach the

process of debugging. The challenges of learning debugging are compounded for novices who lack experience

and are still learning the tools they need to program effectively. In this work, we report a case study in which

we used a think-aloud protocol to gain insight into the behaviour of three students engaged in debugging

tasks. Our qualitative analysis reveals a variety of helpful practices and barriers that limit the effectiveness of

debugging. We observe that comprehension, evidence-based activities, and workflow practices all contribute

to novice debugging success. Lack of sustained effort, precision, and methodical processes negatively impact

debugging effectiveness. We anticipate that understanding how students engage in debugging tasks will aid

future work to address ineffective behaviours and promote effective debugging activities.
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1 INTRODUCTION

Debugging programs has been identified as an essential programming skill [24, 77]. Unfortunately,
despite the continued presence of debugging in the Software Development Fundamentals of the
ACM curriculum [30, 38], it remains a neglected part of computing education practice. After
decades of literature calling for approaches to teach debugging [16, 17, 40, 46, 70], we still have
no clear guidance on what to teach and how to teach it [71]. A part of the issue is that debugging
programs is a complex cognitive process [8]. When a program has a bug, further development is
prevented until the bug is fixed. This means that poor debugging practices can block students from
progressing in their learning.

There have been decades of studies investigating how students learn to debug [41, 70, 72], includ-
ing multiple think-aloud studies examining student debugging [28, 55, 72, 94]. However, despite
extensive work on understanding student debugging, there are few detailed, qualitative studies
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of the debugging practices of novice programmers. Many of the previous studies were conducted
prior to the adoption of now-common programming languages and development environments.
Our exploratory study uses Python and the IDLE development environment, a context that has be-
come increasingly common in higher education [82]. Much of the previous work on understanding
student errors justifiably focused on compilation errors since they prevent students from obtain-
ing any information about their programs [6, 22, 64]. As an interpreted language, Python provides
a different context for students, and the errors are not always analogous with other commonly
taught languages such as Java [74]. In this work, we investigate student debugging using several
frameworks found in the debugging literature, including various approaches to the debugging
process [21, 39, 53, 66, 95] and ways of classifying debugging behavior [66].

Our study of three students adopts a think-aloud protocol to understand how students debug in a
first-year programming course taught in Python. Students in the course were taught a debugging
process, provided with several worked examples, and then asked to complete paper-and-pencil
debugging lab activities. Several weeks later, students were invited to participate in a think-aloud
debugging session not associated with the class. Our aim was to observe students debugging in an
unstructured manner without external direction.

The activities that participants were given to debug varied from a simple off-by-one looping
exercise used as a warm-up to a complex multi-function implementation of the rainfall problem
with several bugs. The bugs injected into the programs were discussed in previous literature on
novice student errors [4, 5, 13, 31, 36, 42, 61, 63, 83, 88] and commonly seen by us in the classroom.
The participants were provided with buggy code and with several test cases demonstrating the
bugs present. There was no direct guidance or suggestions provided to the students about how to
approach the debugging process beyond the in-class lab activity.

Our goal was to observe and understand effective and ineffective debugging practices employed
by students who were relatively inexperienced in both programming and debugging. In this article,
we use the term novice to refer to students in their first year of study in tertiary programming
courses. Our research questions are as follows:

RQ1: What novice debugging practices are effective?
RQ2: What novice debugging practices are ineffective?

By understanding the processes and practices that students default to when debugging in an un-
structured activity, we hope to gain understanding about the alignment of the practices with exist-
ing frameworks for debugging. As a result of this work, we summarise several effective practices
used by students and also observe a lack of precision, failure to follow through, and an inability to
compensate for nonexistent or fragile knowledge, which contributes to inefficient debugging. We
conclude by offering several suggestions for teaching debugging.

The main contributions of this study are providing rich and detailed accounts of three novice
students engaged in debugging practices (of which there are few other similar case studies),
providing evidence of both effective and ineffective practices, suggesting teaching activities to
develop effective novice programmer processes, and providing a set of themes for future analysis
of novice debuggers.

2 RELATED LITERATURE

2.1 Knowledge and Process

An early review of debugging literature by Ducasse and Emde [25] identified seven different kinds
of knowledge required to locate bugs, four of which relate to program comprehension. A subse-
quent review of debugging literature by McCauley et al. [65] confirmed the importance of program
comprehension in the debugging process.
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Schaafstal et al. [79] describe debugging as a specialised version of troubleshooting. In one
framework for troubleshooting, Jonassen and Hung [39] distinguish between domain knowledge,
which would include understanding of the syntax and semantics of a programming language,
and system knowledge. Program comprehension is critically important in the development of the
system knowledge that is required to debug that system (i.e., the program). However, although
program comprehension is necessary for effective debugging, it is not sufficient [1] — the process
used to engage in debugging is critically important. A case study documenting a student’s natural
debugging behaviour found that the student had relevant domain knowledge, but the main factor
impacting the processes used was student attention rather than domain knowledge [52].

Zeller’s debugging steps, elaborated in [21] and [53], describe an iterative process that involves:

(a) Observing a failure (i.e., a difference between the expected and actual behaviour).
(b) Proposing an explanation for the failure.

(i) Conducting experiments to test the explanation by collecting more observations.
(ii) Modifying the explanation until it describes the precise cause of the failure.

(c) Correcting the program and evaluating the correction.

The most complex of these steps is typically (b), in which a programmer develops a hypothesis
for the cause of the faulty behaviour. This step typically involves gathering further information.
The way a programmer goes about collecting this information and formulating a resultant hypoth-
esis depends on the strategy the programmer employs.

Metzger [66] describes debugging as the process of determining why a given set of inputs causes
an unacceptable behaviour in a program and what must be changed to cause the behaviour to be
acceptable — this aligns with step (b). In describing different aspects of the debugging process,
Metzger distinguishes between debugging strategies, debugging heuristics, and debugging tactics.
These distinctions have utility in viewing debugging though an educational lens, but the term
heuristics is already used in other computer science contexts and may introduce confusion when
used as a category here. To minimise possible confusion, we use the term scaffolding as an alter-
native. This term aligns with the activities described by Metzger [66] as heuristics, but conveys
the purpose of the activities in an educational context more appropriately as a bridge between the
low-level tactics and high-level strategies. We therefore organize the related work about debugging
processes according to the categories of strategies, scaffolding, and tactics.

2.2 Strategies

Metzger [66] characterizes debugging strategies as general approaches that consist of three parts:
a set of assumptions, a control structure, and an evaluation mechanism. The evaluation is a self-
reflective process that is critically important, as it provides information about the success of the
strategy. This information can be used to decide when a different strategy should be employed.
Such strategies include algorithmic approaches such as depth-first or breadth-first searches, pro-
gram slice analysis, deductive analysis, and inductive analysis.

Strategies are broad, high-level approaches that might be more typically associated with experts,
and although novice debugging literature uses the term strategy, it is often used to refer to activities
that would fall into other categories described by Metzger [66]. However, several studies do refer
to broad strategies that are adopted by novice programmers.

Jonassen and Hung [39] identify both forward and backward reasoning as strategies that are
deployed for debugging by both experts and novices. Several studies reported that when trying
to understand the intended functionality of a program written by others, novices tended to use
forward reasoning [28, 41]. Contrasting with these findings, Yen et al. [94] reported that students
debugging programs authored by others in the C language tended to use backward reasoning. It is
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possible that the nature of the bug and the language in use may influence the strategies employed
by students.

Eranki and Moudgalya [26] focused on teaching one technique, known as program slicing. This
strategy involves slicing the program into small code fragments to aid debugging comprehension.
Another strategy deployed by successful students was taking the time to consider a variety of
alternative causes for the bug rather than simply working on one or two hypotheses [29, 55].
Weighing up the likelihood of different alternative cases and the possible cost of investigating
each requires a strategic lens.

2.3 Scaffolding

Scaffolding activities are the rules of thumb that may guide debugging practices. This includes
approaches such as building an understanding of the overall problem structure; explaining the
problem to someone else; identifying key features of the problem; categorizing the problem (for
example, in terms of efficiency, robustness, correctness); using testing to narrow the problem; and
stabilizing the problem.

Explaining: Explaining a problem, or how the code works, to another person can improve
the understanding of a problem, or reveal misunderstanding about code. Asking students to
explain their problem (and/or code) to a tutor can improve debugging by making the student
mental model more explicit [62]. The “rubber-duck” debugging approach, the act of verbal-
izing how the code works, is a scaffolding approach used by professional software develop-
ers [86] that has also been adopted by teachers [10]. Liu et al. [55] evaluated self-explanation
quality, finding that it was strongly linked to problem-solving ability in a debugging game,
and Rezel [76] reported that self-explanations were an effective scaffold for problem-solving.

Causal reasoning: The ability to make connections between the symptoms of a bug and pos-
sible causes allows a software developer to narrow the range of code that they consider,
which is an important aspect of effective bug location [41]. Causal reasoning may be used
in conjunction with explaining discussed earlier but shifts the focus to explanations of re-
lationships between components in the system and the generation of hypotheses based on
causal reasoning about the symptoms.

2.4 Tactics

Tactics are specific actions that involve the code more directly. These include actions such as read-
ing the source code, adding a statement to print the contents of a variable, using tools present
in debuggers to generate additional information, adding assertions to code to make assumptions
explicit, and printing the contents of a data structure.

Prior work on debugging shows that several common tactics are typically employed successfully
by students.

Print statements: These can be used to support understanding of flow of control by providing
an external representation of program execution. Statements are often used when entering
a function call to trace or “log” the flow of control. Print statements are also used to make
the contents of variables visible to the programmer in real time as the program is executed.
Several observational studies report that students deploy this tactic successfully [2, 23, 28,
29, 41, 55, 70, 75].

Code tracing: One of the most effective tactics employed by students was code tracing [28,
29, 35, 41, 45, 54]. Code tracing is effective because it allows the programmer to comprehend
the step-by-step execution of the code. This helps to identify the impact of mistakes in the
code.
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Patterns: Jonassen and Hung [39] describe a framework in which prior experience plays an
important role in identifying faults. Several studies investigating the debugging behaviour of
introductory programming students observed the use of pattern matching in which students
changed code that “didn’t look right” based on the code that they have previously seen or
written [28, 29, 35, 70].

Seeking help: Students of introductory programming were observed seeking additional in-
formation to verify or gain understanding of programming concepts. Students used pro-
gramming language documentation and online resources [23, 29, 70], but consulting formal
textbooks was rare [70].

Bug localization: Four studies saw students isolating the code to discover the problematic
area through commenting out or altering code [15, 16, 23, 70].

Use of breakpoints: Breakpoints were rarely used or not mentioned [16].

2.5 Ineffective Practices

Students who were learning programming employed several approaches that were ineffective.

Tinkering: Many studies describe novices making changes to the code using a trial-and-error
approach, that is, changing the code based on intuition rather than a causal chain of reason-
ing [15, 16, 28, 29, 55, 70]. Such behaviour suggests a lack of understanding of the code or a
lack of hypotheses about the cause of the bug.

Printing: Although print statements can be used effectively, Murphy et al. [70] observed stu-
dents printing uninformative statements (e.g., “hello”) at various places in the code that con-
veyed limited information about flow of control. For example, one student wrote the same
print statement in both conditions of an if-else statement, resulting in an ineffective appli-
cation of a useful tactic.

Patterns: Although experience is critically important in forming “intuition” about a bug, the
limited experience of introductory students can hamper debugging when students believe
that their code looks “suspicious” and remove correct code [55].

2.6 Think-Aloud Studies

One method used to better understand the cognitive processes involved in a given activity is the
“think-aloud” protocol, in which students are asked to verbalize their thought processes as they
perform a task. Researchers typically record and transcribe the verbalizations for qualitative analy-
sis. Analysing these verbalizations provides insight into the cognitive processes that occur during
an activity, and can capture strategies, intentions, observations, and emotions [87].

Several studies of student debugging have used the think-aloud protocol [2, 16, 28, 29, 55, 70,
72, 78, 94]. For some studies, the researcher simply observed and took a video or audio record-
ing [94], while others asked prescribed questions such as “What are you doing now?”, “Can you
explain what you just did?” and “What else have you tried in the past?” [2]. A study comparing
third-year students and expert programmers using the think-aloud protocol while debugging a C
program found that novices tended to use trial and error when they were unsure how to progress,
while experts had a more systematic approach [94]. A think-aloud study of debugging physical
systems [37] found that it was important for students to build a mental model that integrated
different sources of information.

Think-aloud protocols have also been used to investigate debugging practices used by pro-
fessional programmers, although there are few such studies. For example, Lawrance et al. [49]
observed ten professional programmers debugging a real-world open-source program and used
the observations to propose a programmer debugging workflow, and Grigoreanu et al. [32]
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used the think-aloud protocol to investigate debugging approaches that IT professionals used in
PowerShell.

2.7 Teaching Students to Debug

Li et al. [53] adapted a general troubleshooting framework for use in the debugging domain. The
authors suggested that students should be explicitly taught the general steps of constructing the
problem space, identifying the fault symptoms, diagnosing the fault, and generating and verifying
solutions. Whalley et al. [91] combined this general approach with debugging using the scientific
method advocated by Zeller [95] to explicitly prompt students to think about debugging using
paper-based exercises. In a study of the student work product, they found that students could use
test case information to localize simple bugs, but it was unclear how useful students would find
the process in more complex situations. Further work showed that despite struggling to debug
effectively, most students did not apply the more structured process they were taught and did
not always appear to be aware of their own debugging shortcomings. Almost universally, the
participants lacked a formal approach for debugging, describing their approaches instead in vague
ways. The authors suggest that better understanding of the gaps between student perceptions of
debugging and their practices may help educators to teach debugging effectively [92].

Several experimental studies showed that students benefit from formal debugging training, pri-
marily in a classroom setting [2, 17, 26, 45, 85]. In these studies, the training aimed to explicitly
teach novices debugging strategies and about the kinds of bugs they may encounter. The train-
ing also allowed novices to gain more experience with debugging. The training included spoken
tutorials [26, 45], video- and text-based approaches for explaining debugging strategy [85], and
supervised debugging exercises [2]. Notably, two studies found that novices benefited when their
most common errors were incorporated in the debugging exercises [2, 45]. Chmiel and Loui [17]
implemented the widest variety of teaching activities in addition to debugging exercises: collabora-
tive assignments, reflective memos, debugging logs, and development logs. All of these debugging
training studies revealed improvements in student learning, such as their decision-making [85],
knowledge [85], and time spent debugging programs [17].

A small number of tools designed to teach debugging have been reported in the literature. Lee
and Wu [50] developed a model, DebugIt, and a system called DebugIt:Loop in which students
engaged in supervised debugging exercises involving loops. Carter [14] developed ITS-Debug, an
intelligent tutoring system to teach debugging, and demonstrated that students using the system
learned debugging skills. Lee [51] developed an educational debugging game called Gidget, which
was effective at teaching students introductory programming concepts using a bespoke text-based
language. Ladebug [60] adapted the PythonTutor system [33] to provide exercises in which stu-
dents determined which line contained a bug, and were able to edit lines containing bugs to correct
them. Miljanovic and Bradbury [67] developed the RoboBUG game to teach students debugging.
They found that the game environment was most effective at teaching debugging for students with
little previous experience, but some students found the environment frustrating. More recently,
Venigalla and Chimalakonda [89] developed G4D, a debugging game in which students debug C
code to control a character searching for treasure. Although students were positive about the tool,
the impact on debugging was not measured. Overall, there are few tools designed specifically to
teach debugging and, although evaluations are generally positive, the evaluations focus on general
satisfaction and broad programming skills rather than specific debugging strategies.

There are some observations about student debugging to guide progress in the area. Ah-
madzadeh et al. [1] found that good programmers who were weak debuggers lacked an
understanding of the program structure. The participants attributed their poor performance to
the fact that they were debugging code written by others rather than their own. Similarly, Katz
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and Anderson [41] found that students have difficulty locating bugs in programs, particularly
when debugging code written by others. They reported that students take longer to understand
the system when it has not been written by them. However, as difficult as it may be for them,
students believe that debugging exercises that incorporate common novice bugs can help their
understanding of programming concepts [2].

2.8 Self-regulation and Debugging

While self-regulated learning of novice programmers is not the focus of our investigation, we ac-
knowledge the growing body of work in the area here and briefly reflect on our observations with
respect to self-regulated learning later in the discussion. It is now generally accepted that self-
regulation plays an important role in learning to program [7, 57, 59, 73] and researchers have re-
ported on positive correlations between self-regulation of learning and programming performance
[81]. One study of novice programmers noted that not all types of self-regulation help students pre-
vent errors in their code [57]. The authors reported that the ability to plan and simulate algorithms
led to better problem solving and less errors in code while verbalisation and self-explanations led
to a small increase in errors. They also noted that novice programmers can self-regulate but do
so inconsistently. Most papers, like these, tend to focus on programming and problem solving in
general rather than specifically on debugging. However, there are a few papers that focus more
on debugging. One such study analysed student reflections [92] on debugging immediately after
performing debugging tasks. The students had been taught a process for debugging prior to un-
dertaking the debugging tasks. Like Wert et al. [90], the authors reported that many students had
strong emotional reactions to debugging, especially when they encountered difficulties. Wert et al.
[90] went on to highlight persistence when programming as a key factor contributing to success
for novices. Students react to challenges and associated negative emotions differently, falling into
one of two categories: either they persist (are “movers” [72]) or they give up (are “stoppers” [72]).

Whalley et al. [92] also noted that despite students acknowledging that their debugging strate-
gies were suboptimal, their opinions on the utility of a formal structured debugging process, like
the one taught, were mixed. This finding is supported by an earlier study in which a simple brain-
storming defect localisation strategy was taught [47]. The authors reported a link between using
the strategy and number of features implemented. They argued by inference that perhaps only
learners with strong self-regulation skills find such strategies helpful and that learners with weaker
self-regulation cannot see that their own strategies may not be the best and that they need to use
better strategies.

3 METHOD

In this section, we present the context of the study and the method used to collect and analyse the
data.

3.1 Course Activities

Participants were recruited from a first-year Python programming course offered at a mid-sized,
urban, research-focused university in New Zealand. None of the members of the research team
were instructors for the course. Before enrolling in the course, students are expected to be able to
read and comprehend code, perform simple code tracing exercises and write solutions to simple
programming problems. Students may enter this course directly from high school with an adequate
background or may enter after completing a tertiary level introductory programming course (typ-
ically also in Python). The course covers a recap of programming principles before moving to data
structures in the second half of the course. Due to the varied background of students, it cannot be
assumed that all students have been taught debugging prior to enrollment.
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Table 1. Participant Demographics

Participant Sex Major Age Languages

320 female CS and IS 21 Python
420 male Geophysics 21 MATLAB, C, C++, Python, R
520 male CS 18 Python
620 male CS 19 Python
820 male CS 19 Java, MATLAB, C, Python

Hugin male CS 28 Python, C++

Djengo male CS 18 MATLAB, Python

1220 male CS and IT management 19 Python
1320 male Engineering and CS 17 Python, C++, Javascript
JoJo male CS and commerce 21 MATLAB, Python

2620 male CS and IT management 18 Python, Javascript
2820 male Pure maths 22 Python, Java, Javascript, MATLAB, C
3620 male CS 20 Python, Java

The course was conducted in the summer semester of 2020, which consists of six weeks of
formal in-person classes. There were 103 students enrolled in the class during the semester. The
course required participation in 20 laboratories conducted as formal two-hour classes. The first 10
minutes provided a presentation that set the context for the activities that followed. The fifth lab-
oratory of the course focused on debugging strategies. It consisted of a presentation that taught a
debugging process using a worked example, followed by three activities in which students collab-
orated on paper-based problems for approximately 20 minutes. The remainder of the laboratory
involved students working individually on computer-based debugging exercises (i.e., correcting
small programs containing bugs).

3.2 Participant Recruitment Protocol

At the start of the debugging laboratory, the research team extended an invitation to students to
participate in this research study. Students were provided with an information sheet describing the
research and the processes involved in a think-aloud study. The research team members were avail-
able during the class session to answer questions. Towards the end of the lab, interested students
were asked to provide their name and email to a member of the research team. The research team
then followed up with these potential participants by email and scheduled a think-loud interview
session for those who were interested in participating.

3.3 Think-Aloud Protocol

Sessions were conducted in person with one participant and two members of the research team
present. One researcher interacted with the participant during the think-aloud while the other took
observational notes. Each session lasted approximately 60 minutes and involved (1) a background
questionnaire, (2) a familiarisation exercise, (3) debugging exercises, and (4) a brief post think-aloud
retrospective interview.

On arrival, the participants were briefed about the think-aloud protocol. We instructed partici-
pants to say everything that went through their mind as they read and solved the debugging prob-
lems. At this point, participants were given a chance to ask questions. Then, written informed
consent was obtained and demographic data gathered related to gender identity, age, prior pro-
gramming knowledge, and confidence with programming and debugging. This demographic data
information is summarised in Table 1. The participants selected for the case study are in bold.
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Table 2. Participant Reported Confidence

Participant Write Code Trace Code Debug Programs Problem Solve Python Syntax
320 slightly slightly slightly somewhat somewhat
420 very very somewhat very very
520 somewhat slightly slightly very very
620 somewhat somewhat somewhat somewhat slightly
820 very somewhat somewhat very very

Hugin slightly somewhat somewhat somewhat slightly
Djengo somewhat somewhat somewhat somewhat slightly

1220 somewhat very slightly somewhat very
1320 somewhat somewhat somewhat very slightly
JoJo very somewhat somewhat somewhat somewhat
2620 somewhat somewhat somewhat somewhat somewhat
2820 somewhat slightly slightly very not at all
3620 very slightly very slightly slightly

The participants were asked to rate their confidence in their programming and problem-solving
abilities using a four-point Likert scale of very, somewhat, slightly, and not at all. They also an-
swered five questions about their confidence with writing code, tracing code, debugging programs,
problem solving, and their knowledge of Python syntax. This information is summarised in Table 2.
The participants selected for the case study are in bold.

After completing the demographic questions, screen recording was turned on. The full computer
screen and the participants’ verbalisations were captured. This recording captured everything the
participant and interviewer said, everything the participant typed, all the windows that a partic-
ipant had open and any interactions with those windows. If at any time participants remained
silent for more than one minute, they were reminded to speak out loud about what they thinking
or doing. We had no expectation that the participant utterances would all be coherent. In instances
in which utterances were incoherent, the observer researcher made a note. These instances were
explored in the retrospective interview held at the end of the think-aloud session. In this retrospec-
tive interview, the relevant code, exercise descriptions and sections of recordings were visited to
support the participants’ recollection.

To help participants practice thinking aloud, we provided participants with a simple warm-up
debugging exercise that was a variant of a problem encountered early in the debugging laboratory.
After the warm-up exercise, the students were given a dictionary processing problem and then
three variants of Soloway’s Rainfall problem [84]. These activities are described in more detail in
Section 3.3.1. After completing an exercise, participants received the next exercise to work on until
the interview time was up, the participant decided to stop, or all four problems were successfully
debugged. The number of debugging activities presented were dependent on the students, with
more successful participants completing all four of the exercises and the least successful partici-
pants working on only two of the exercises.

3.3.1 Debugging Activities. Students had some familiarity with the problem context of the dic-
tionary processing and rainfall problems because they were based on the exercises completed
during their debugging laboratory. Although students had seen similar code for the dictionary
problem, the bugs were new. In the laboratory, students were given the function headers and main
method of the rainfall problem but no implementation. Thus, they were unfamiliar with the buggy
code presented here.

The warm-up activity is a function that takes as parameters a string representing a piece of text
and two integers start and end. The purpose of the function is to create a substring starting at
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index start and going up to and including index end. The buggy function provided to participants
is given here.

def substring(text , start , end):

substring = ""

index = start

while index < end:

substring += text[index]

index += 1

return substring

This implementation of the function has a mistake in the while loop, stopping the loop short
one index, a mistake marked here in blue. Off-by-one errors have been identified in previous work
as being problematic for students [27, 31]. The participants were also presented with test cases
and output, which can be seen in the appendix.

The first of the study exercises was a variation of the frequency dictionary problem seen in
the debugging lab for the programming course. The function in the think-aloud protocol takes a
dictionary with key-value pairs representing people and their votes and creates a new dictionary
that represents the number of times each vote appeared in the parameter dictionary.

def record_votes(vote_dict ):

votes = {}

for k in vote_dict:

if vote_dict[k] in vote_dict:

votes[vote_dict[k]] += 1

else:

votes[vote_dict[k]] = 1

return votes

In this version of the function, there are two errors. The capitalization of the values in the orig-
inal dictionary should be ignored when recording votes. There is also an error in the if statement
inside the loop. The function should be checking if vote_dict[k] is in the new dictionary votes
rather than in the existing dictionary vote_dict. Previous work has shown that while errors associ-
ated with accessing dictionaries are less common than other errors, they persist longer in student
solutions [83]. All of the problematic parts of the function are marked here in blue.

The implementation of the first rainfall problem, called Rainfall A in the remainder of the article,
comprised 13 functions. Here, we provide the code for the functions critical to understanding the
bugs found in this solution. Note that the doc strings have been truncated from the original and
that all function without bugs are omitted due to space constraints.

def clean_entire_data(raw_data ):

""" Given a list of strings , return a list with valid lists of numbers """

clean_data = []

for raw_month in raw_data:

month_measurements = convert_monthly_data (raw_month)

clean_month = clean_monthly_data(month_measurements)

clean_data.append(month_measurements)

return clean_data

def get_histogram_row(row_label , value ):

""" Generates a single row of a histogram given the label and value """

fill_char = 'X' #character to fill histogram bar

bar = fill_char * int(round(value ))

return f'{ row_label }: {bar} ({ value :.1f})'

def main(filename = 'raw -data.txt '): #default value

""" Analyse the rainfall data stored in 'raw -data.txt ' """

#Read the data file

data = read_data(filename)

#clean the data by keeping only valid (non -negative) values

data = clean_entire_data(data)
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#calculate the average values for each month

averages = get_all_monthly_averages(data)

#calculate summary yearly statistics

maximum , minimum , median , mean = get_statistics(averages)

#output the results

print_results(averages , maximum , minimum , median , mean)

#Execute the main function of this module

main('raw -data.txt ')

In this implementation, there is a single incorrect line in the clean_entire_data function.
Rather than appending clean_month, which contains the cleaned data, the function appends
month_measurements, which retains negative values, marked in blue in the provided code. This
produces negative values in the output of the program, which can be seen in the appendix.

In the second version of the rainfall problem, called Rainfall B, the clean_entire_data func-
tion is corrected to append the list cleaned of negative values. Instead, there is a mistake in the
get_histogram_row function. Rather than rounding a value before converting to an int, the func-
tion directly converts to an int which causes a truncation problem. This bug is marked in blue in
the code listing. Problems with integer division, which is a similar problem to this bug, have been
observed in previous work [5, 27, 36] The two function that differed in Rainfall B from Rainfall A
are given next. Again, the doc strings have been truncated and all function that are not directly
involved with the debugging activity are omitted.

...

def clean_entire_data(raw_data ):

""" Given a list of strings , return a list with valid lists of numbers """

clean_data = []

for raw_month in raw_data:

month_measurements = convert_monthly_data (raw_month)

clean_month = clean_monthly_data(month_measurements)

clean_data.append(clean_month)

return clean_data

...

def get_histogram_row(row_label , value ):

""" Generates a single row of a histogram given the label and value """

fill_char = 'X' #character to fill histogram bar

bar = fill_char * int(value)

return f'{ row_label }: {bar} ({ value :.1f})'

The resulting output, which can be seen in the appendix, produces an incorrect number of values
in the histograms printed by the program.

For the third rainfall implementation, called Rainfall C, several functions were completely rewrit-
ten and five separate bugs were introduced. Again, only the crucial function have been provided
here, and the doc strings have been shortened.

def clean_monthly_data(data):

""" return a list of all the non -negative values in data """

i = 0

while i < len(data):

if data[i] < 0:

data.pop(i)

i += 1

def get_all_monthly_averages(data):

""" Calculate the monthly average rainfall and return a list of averages """

monthly_rainfall = []

for month in data:

average = get_single_month_average(month)

monthly_rainfall.append(average)

while len(monthly_rainfall) <= 12: #in case the file doesn 't have all months

monthly_rainfall.append (0)

return monthly_rainfall
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def get_median(averages ):

""" Given a list of numbers , return the median value of that list """

averages.sort()

size = len(averages)

if size % 2 == 1:

median = averages[size // 2]

else:

median = (averages[size // 2 - 1] + averages[size // 2]) / 2

return median

def get_statistics(averages ):

""" Return the maximum , minimum , median and mean rainfalls """

maximum = max(averages)

minimum = min(averages)

mean = get_mean(averages)

median = get_mean(averages)

return maximum , minimum , mean , median

def main(filename = 'raw -data.txt '): #default value

""" Analyse the rainfall data stored in 'raw -data.txt ' """

#Read the data file

data = read_data(filename)

#clean the data by keeping only valid (non -negative) values

data = clean_entire_data(data)

#calculate the average values for each month

averages = get_all_monthly_averages(data)

#calculate summary yearly statistics

maximum , minimum , median , mean = get_statistics(averages)

#output the results

print_results(averages , maximum , minimum , median , mean)

#Execute the main function of this module

main('raw -data.txt ')

The bugs in this implementation are:

• In the clean_monthly_data function the list data are not returned. Further, the variable i
should only be incremented if the pop does not occur.
• In the get_all_monthly_averages function, the while loop that appends extra zeros should

be deleted.
• In the get_statistics function, the variable median is being assigned to a call to get_mean

when the function that should be called is get_median.
• In the get_statistics function, the variables are returned in the wrong order. The return state-

ment should return maximum, minimum, median, mean.
• The get_median function is sorting a list, which impacts the printing of the histogram. A

copy of the list should be sorted to avoid this.

Problems with return values from functions have been observed and analysed frequently in pre-
vious work [4, 5, 42, 88], although the shuffling of types that occurs in the get_statistics function
is only possible in a language such as Python. Providing an incorrect number of parameters [63]
or providing correct parameters but in the wrong order [13] has also been observed in previous
work, both of which are related errors. Finally, erroneously modifying a list that has been passed
as a parameter is a bug related to pass-by-value versus pass-by-reference variables, something that
has also been studied previously [42, 61].

All of the bugs have been marked in blue in the code listing. Note that an additional bug is that
clean_monthly_data is missing a return.
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Table 3. Progress by Participants on Debugging Activities

Participant Warm up Dictionary Rainfall A Rainfall B Rainfall C

320 Completed Stopped Completed Completed Stopped
420 Completed Stopped Completed Completed Stopped
520 Completed Gave up Completed Out of time Not started
620 Completed Stopped Completed Not started Not started
820 Completed Stopped Completed Completed Gave up

Hugin Completed Gave up Gave up Not started Not started

Djengo Completed Completed Completed Completed Completed

1220 Completed Completed Completed Stopped Not started
1320 Completed Completed Completed Completed Stopped
JoJo Completed Completed Completed Completed Not started

2620 Completed Completed Completed Completed Not started
2820 Completed Completed Completed Completed Stopped
3620 Completed Completed Completed Completed Stopped

3.3.2 Participant Progress and Study Selection. The progress of each participant in the study on
the activities is presented in Table 3. The participants marked as having completed an activity were
able to correct all of the bugs in the provided code. Participants who were stopped by the research
team were making insufficient progress on the debugging activity and did not show signs of being
able to make further progress. Participants marked as giving up indicated that they wished to stop
working on the specified activity. Participants who are marked as running out of time reached
the end of the time allocated for the think-aloud without completing the activity but were still
appearing to make some progress. Those marked as not starting ran out of time before the activity
could be started. The participants selected for analysis in the study are in bold.

All participants completed the warm-up exercise. Only one participant (Djengo) was able to
complete all of the debugging activities. Five of the 13 participants were able to complete all but
one of the activities (1320, JoJo, 2620, 2820, and 3620). Four of the participants were able to complete
two of the four activities (320, 420, 820, and 1220). Two of the participants were able to complete
one of the four activities (520 and 620). One participant, Hugin, was unable to complete any of the
study activities.

When selecting participants for analysis in this case study, the goal was to choose participants
who covered the spectrum of ability across the participant pool. The participant who completed
all of the activities (Djengo) was chosen. One participant was chosen from the group who com-
pleted all but one activity (JoJo). The participant who was not able to complete any study activi-
ties (Hugin) was also chosen. In the latter case, Hugin was chosen because his spoken English was
stronger than either participant who was able to complete one study activity. We felt that choosing
a participant with a poorer performance but better English skills would provide more insight for
a think-aloud study.

3.4 Reflexive Thematic Analysis Process

The purpose of thematic analysis is to develop a shared understanding of the underlying patterns
of meaning across a dataset. These patterns are generated through a rigorous process of data famil-
iarisation plus an iterative process composed of data coding and theme development. Here, we use
a reflexive thematic analysis [11, 12] in which theme development is directed and both reflects the
content of the data and examines the deeper underlying assumptions within a theme. In this form
of thematic analysis, the themes are the end point or outputs of the analysis. Both the analysis
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techniques and philosophy of research are qualitative, making this Big Q [44] thematic analysis.
This approach means that positivist approaches, such as the creation and use of a fixed code book
to code the data and measurement of coding agreement, are not part of our analysis. Choosing
this approach means that there is a focus on researcher immersion and deep engagement with the
data, codes, and themes in a flexible, open exploratory process. Coding is fluid and codes evolve
throughout the analysis process as the researcher’s conceptions of the data grow though multi-
ple passes of the data. The aim is to represent the researcher’s conceptualisation of the data. The
depth of interpretive engagement means that the analysis and themes reflect the researcher’s cul-
tural membership, theoretical assumptions, and epistemological viewpoint. The following points
outline the six phases in our implementation of Braun and Clarke’s [11] reflexive thematic analysis
approach.

(1) Familiarisation with the data – Each researcher independently recorded a timeline of
significant events by viewing and reviewing the video and reading and rereading the inter-
view transcripts. This phase allowed the researchers to become immersed in the data. The
complete think-aloud data for all three participants was transcribed and analysed.

(2) Coding – Each researcher independently coded significant events or anchors within the
data. In this phase, a complete set of labels was derived that were then collated by consensus.
An in-depth discussion between the researchers informed an iterative revision of labels that
involved the splitting, renaming, and merging of labels from the individually derived codes
to build a single set of labels. As this process was undertaken, the data were repeatedly
revisited and reinterpreted as needed to ensure that the labels were representative of the
researchers’ understanding.

(3) Generating initial themes – The researchers collaboratively generated candidate themes
through an iterative refinement process. In practice, this initial theme-forming phase over-
lapped to some extent with the prior phase in which refinement of the labels led to better
understanding of the data and its associated underlying assumptions. Themes then began to
be conceptualised.

(4) Reviewing themes – This phase involved merging, splitting, and discarding themes as the
viability of each theme was evaluated by the researchers against the research aims and ques-
tions. During this phase, approaches to grouping the themes into overarching thematic con-
cept areas was explored and consensus reached on a final classification schema.

(5) Defining and naming themes – This phase involved finalising the name, scope, and focus
of each theme through consensus.

(6) Writing up – This final phase tells the story of each theme through analytic narrative and
extracts from the interviews. Finally, this narrative was analysed in the context of existing
literature in the area.

It is important to note that while these phases are presented sequentially, each phase builds on the
prior phases. This means that the analysis is a recursive process, with movement back and forth
between the phases.

Several challenges arose during the analysis. Some participants did not articulate their thoughts
readily and needed to be prompted — in such situations, we were occasionally unable to determine
their motivations for a given action. Additionally, we needed to be careful not to infer a particular
cause for a behaviour we observed. For example, we often wanted to ascribe some form of hypoth-
esis generation to an utterance or an observed action, but there was not sufficient evidence for this.
This meant that when we attempted to reach consensus on an observation labelled as related to
hypothesis generation, we ended up deciding on a lower-level tactic such as bug localisation. In
the end, the hypothesis label was removed from the analysis.
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Table 4. Summary of Themes and Sub-themes

Comprehension (see 4.1)

Understanding tools (see 4.1.1)
Understanding the requirements (see 4.1.2)
Understanding the issue (see 4.1.3)
Understanding faulty code (see 4.1.4)

Activities (see 4.2)
Speculating cause (see 4.2.1)
Bug localization (see 4.2.2)
Code modification (see 4.2.3)

Workflow (see 4.3)
Context switching (see 4.3.1)
Systematic (or not) (see 4.3.2)
Sustained (or not) (see 4.3.3)

In Section 4, we present the themes and their narratives. The analysis of narrative and how it
relates to the existing literature is presented in Section 5.

3.5 Acknowledging Researchers’ Positionality

Coding in reflexive thematic analysis is an active and reflexive process that is inevitably seen
through the lens of the researchers. This research approach involves a reduction of participants to
their verbal utterances and the researchers’ interpretation of those utterances. Thus, it is important
to acknowledge the researchers’ own perspectives and positioning. Two of the researchers were
women and one was a man. All three researchers are experienced computer science education
researchers and teachers with around 90 years of combined experience. Over the years, all three
researchers have taught introductory programming using a variety of programming languages
and pedagogies. Two of the three researchers were visiting researchers from other institutions
and were “outsiders” [18]. They did not have the same connections to the institution as the other
researcher. While the third researcher was from the institution where data was collected, the re-
searcher was not involved in the design or delivery of the course. One of the “outsider” researchers
was learning Python for the first time at the time of the study, giving the research team two dif-
ferent lenses of interpretation, one of which was closer to the experiences of the participants.
This insight at times during the analysis challenged the unintentional assumptions of the other
researchers. The other researchers brought years of experience of teaching and programming in
Python. Their experiences provided a broader overview and deeper insight into the difficulties
faced by students learning to debug Python.

4 RESULTS

Our thematic analysis resulted in three themes — Comprehension, Activities, and Workflow — and
ten sub-themes. These themes and sub-themes are summarized in Table 4.

4.1 Comprehension

This theme collates participant practices related to understanding a debugging problem. The theme
includes four sub-themes of observations related to understanding the tools needed for debugging
the problems, understanding the requirements of the code for each problem (i.e., intent of the
program), understanding the buggy code, and understanding the problems that arise as a result of
running the buggy code.

4.1.1 Understanding Tools. This sub-theme encompasses instances in which the participants
demonstrate a lack or presence of knowledge and understanding of the tools needed to be able to
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troubleshoot and debug code. These tools include the programming language and the development
environment. This includes skills such as running and executing code in IDLE and approaches to
navigating the Python documentation or the use of the Internet to access programming language
information and relevant code examples.

Programming language: All three participants showed some fragility with respect to the Python
language constructs needed for the tasks in this study. However, they all had basic programming
syntax knowledge and were able to print and use familiar functions. The difference between the
participants lay in differences in their degree of knowledge of Python and in their ability to cope
with any gaps in their knowledge. Even the strongest student, Djengo, struggled a little with dic-
tionaries and was unclear on key versus value saying, “Uh, so if two keys hit the same value, or is it
the two values have the same key, then they will be added to the output?” It is worth noting here that
while dictionaries were covered in the course from which participants were recruited for the study,
there was little hands-on practice in programming using dictionaries. Hugin repeatedly remarked
that he was “not good at dictionaries”. He was unable to access values from a dictionary and had no
strategy for finding out how this could be done. He did not attempt to read the documentation or
search the Internet for information. After 23 minutes, Hugin gave up on the dictionary problem,
stating that he was “quite stumped”.

Two of the participants, Djengo and JoJo, failed to investigate library functions in the provided
faulty code that they were unsure of. In addition, there were incidences in which reading up on a
library function or data structure would have helped the participants to understand the buggy code.
For example, Hugin confused keys and values in the dictionary problem and did not understand
how the sum() function worked in Rainfall A.

Only Djengo was able to successfully cope with fragile Python language knowledge by search-
ing the web for help. When working on the Rainfall B problem, he was unsure of the rounding
functions provided in Python, remarking: “so possibly it would be ceil, I think ... is it ceiling? I feel
like that’s a Python function, but it is not going purple, which would indicate to me that it’s incorrect”.
IDLE on the university machines has syntax highlighting configured so that known functions are
rendered in purple text. In this case, the call to ceil was not highlighted. Djengo then ran the code
and checked the IDLE output and noted “maybe it’s [ceil] not defined, true [reading the NameError],
it is not defined”. Djengo then shifted to a browser and searched “round up in python 3”. After
reading two Stack Overflow entries about rounding, he selects a third site and realises “Oh, it’s
math.ceil that’s the issue. Okay. Just got to import”. While using ceil did not solve the problem,
employing ceil gave Djengo additional information that quickly led him to a correct solution.

There were a few instances in which the other participants unsuccessfully searched for a library
function that they felt should exist and wanted to use. For example, in the dictionary problem,
Hugin tried to find a function to capitalise the first letter of a word online, noting “So I’d [sic] need
to find the syntax for ‘how to capitalize the first letter of a string in python’”. He read the first entry
on the search results “So you go string.capitalize() ... first character is in lowercase ... I don’t know if
that lowercases, everything else”. He failed to recognize that he really wanted a function to convert
the entire word to lowercase.

Environment: We observed several environmental factors that affected a student’s ability to un-
derstand and debug the program code, such as the spatial layout of information, familiarity with
the integrated development environment (IDE), and efficient use of the environment.

At the start of each exercise, Djengo arranged the windows so that all of the information
he needed to work on the problem was visible. JoJo did not consistently organize his screen

real estate, but when solving Rainfall A, he positioned the windows to allow the Python file and
input file to be viewed simultaneously. JoJo also tended to add blank lines to the code, mentioning
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“I like to have spaces just to make it easier to read”. There were no instances when Hugin worked to
optimize the visibility of the various open windows or code layout.

Both Djengo and JoJo were able to use IDLE to execute and test code with reasonable com-
petency. They could run code, translate the test cases provided as text files, execute the tests and
interpret much of the test output. They could easily cope with syntax errors and recognise the
difference between syntax errors and semantic errors as they occurred during debugging. Djengo
noted “Um, usually the error messages are pretty helpful, some IDEs even let you like click on it and
it will go directly to the line, which is very useful”. Interestingly, the participants tended to rely on
printing to debug rather than using the debugging tools provide by IDLE. However, Hugin demon-
strated limited knowledge of IDLE, and of the process of executing code in an IDE. Importantly,
he did not know how to call the function he was debugging using the test case information pro-
vided and persisted in making changes without executing any code. A member of the research
team needed to point out how to copy the example tests in the problem description into the IDLE
window where they could be executed.

We also observed processes that were more or less efficient. For example, Hugin always
killed the IDLE window rather than reloading the file and re-running the code. In contrast, when
checking the histogram length while debugging Rainfall B, Djengo cut and pasted the output from
the code to compare with the expected output rather than manually counting the Xs as the other
participants did. Djengo used this efficient approach strategically and only when the number of
Xs was too long to readily compare the histogram bars in situ (see Appendix A.3 for histogram
representation), commenting “there are different amounts of Xs. I can see here [highlighting with the
cursor actual output for March] this has four and that [expected for March] has five ... some of them
have more than they should ah, um, but its not consistent ... I’m going to copy this long one and paste
it in here for a second ...”

4.1.2 Understanding the Requirements. This sub-theme encompasses observations that relate
to understanding the intended requirements of the program.

Reading the provided specification: Both Djengo and JoJo read function docstrings before exam-
ining a function’s code. All three participants read the programs’ specifications but with different
attention and comprehension observed. Djengo, who was the best at debugging, tended to begin
to tackle a problem by first reading the entire program specification and spent time reading test
cases and input data. He tended to favour reading over printing to understand code and did not use
printing to support his reading. For example, when first encountering Rainfall A, he first looked
at the test case’s expected output and mentioned “So this looks like some sort of histogram would be
my guess” but then quickly shifted to reading the specification, periodically cross-checking with
the test case and information about the input file data supplied in the program header comment,
stating “... it’ll be useful to know how the data is stored so that how it’s going to be read. Oh each line
is a month, I think... with the days separated by spaces ... uh, some lines are left blank. If no data was
collected that month. ... Hmm, the data collected is intermittent. So the number of measurements in
different months may be different”. In contrast, JoJo’s reading tended to be inconsistent, quick, and
cursory. He appeared to prefer to jump into debugging and frequently returned to the specification
to check his understanding of the intent of the code. Hugin also read the descriptions given for
functions but he did not demonstrate understanding of the function’s purpose.

Using test cases to understand intent: All three participants used the test cases as examples to
understand the purpose of the program. JoJo started by focusing on the test case function call and
its output: “Okay. So, the first thing, I guess I’d looked at the, um, thing that’s being run ... So it says d1
and then there’s a bunch of names ...”. JoJo went on to express a loose theory about the code purpose:
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“Oh, Okay, it’s kind of a count, so it counts the number of times the name is in the dictionary.” He then
read the specification and returned to the test case highlighting the dictionary’s first key/item pair
and uttered “Oh, so it’s someone choosing someone else?”

4.1.3 Understanding the Issue. This sub-theme comprises activities that relate to building an
understanding of the issue(s) that arise when the buggy code is executed using the test case data
and how issue(s) identified relate to the intent of the code.

Reading error messages: Of the three participants, only Djengo was observed reading syntax
error messages and using them to determine problems in the code. In the warm-up exercise, he
attempted to run the test case without supplying the data to the function “So, first I guess I will
run it to see if there are any errors”. He then copied substring(data,0,4) from the test case file
into the IDLE editor and ran the code and got a NameError, uttering “Uh, so it says name data is
not defined. So, I would look for, uh, what line is that? Sub-string data? Zero four. All right. ’Cause I
haven’t got my data. That’s probably not the intended bug.”

Identifying symptoms: We observed all three participants comparing the actual and expected
outputs of the test cases provided to identify bug symptoms. All three participants were able to
identify the symptoms. For example, Hugin concluded from examining the test case outputs for
Rainfall A that “So it looks to me by comparing them they are wrong they are off. This one’s negative.”
Djengo, after reading the code specification, always looked at the test cases. In the dictionary
problem, he immediately noticed that the actual and expected outputs were the same and so moved
on to the second test case. “So it’s expecting Simone 2 and Andre 1, but it’s getting Simone and Simone.
So the issue here is that, um, the two different values, Simone and capital Simone [SIMONE] are being
treated as different when they should be treated as the same thing”. Here, the symptoms observed are
the incorrect vote count and the incorrect capitalization of the “Simone” key in the actual output.
After examining the actual and expected output and the doc strings at the top of the Rainfall A
problem, JoJo concluded that the issue with the code was the negative values, saying “so, since I’m
getting negative values so that should be a problem here.”

Identifying the issue from test case data: Both JoJo and Djengo were able to generalize based on
the provided test case data. For example, JoJo quickly realised the dictionary problem was related
to the case of the letters in each of the words in the input data. He noted the differences between
the second test case’s actual and expected outputs: “Okay. Oh yeah. And it’s considering the two
Simones as different because one is capitalized [Simone] and one is lowercase [simone] but it should
be the same. Okay, I see.” Hugin examined the first test case, correctly noting that there was no
difference between actual and expected output. When examining the second test case, he noted
“So, it seems to be that it’s registering keys as different keys if they’re capital or if they had lowercase.”
Unlike the other two participants, while Hugin attempted to generalize from a single case to a
more general problem, his generalizations were poorly focused. For example, he summarised that
“the keys are different if they have a different case”. This is true but doesn’t really get to the crux of
the problem.

When tackling the Rainfall A problem, Djengo was able to generalize based on the monthly
rainfall output being too low that the Rainfall A program was not ignoring negative values.
This comparison between actual and expected output then quickly led Djengo directly to
speculations about the cause of the bug: “So, what happens when it runs? Um, the actual and
expected output differ quite a bit. Um, so, what are the issues? So, the first issue seems to be that
the histograms have the incorrect amount of Xs. Um, I assume because it’s getting the incorrect
data. So, the monthly high is correct, the monthly low is incorrect because it’s not ignoring negative
values”.
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4.1.4 Understanding Faulty Code. This sub-theme groups activities related to understanding
how the buggy code has been built, including understanding the program flow and building a
mental model of the buggy code.

Understanding program flow: Attempts to understand the flow of the code were made. Both
Djengo and JoJo made attempts to follow the execution path by printing function inputs and out-
puts. When Djengo was trying to understand the flow of the program, he first read the main
function and then printed the output of each function in order to determine the flow of data and
location of the error. At one point while working on Rainfall A Djengo comments “So, um, if I
didn’t know what data was at a particular instance before it entered or exited a definition, I’d print
data to check what it is.” This suggests that his approach to understanding the data flow changes
with the complexity of the problem.

In contrast, Hugin does not attempt to understand how the functions in the Rainfall A problem
fit together before commencing debugging. He made no attempt to trace the program flow. He
was observed jumping around in the code seemingly at random and reading bits of code in iso-
lation without knowing how the pieces were related. In fact, Hugin never examined the main
function of the rainfall problem. When Hugin was working on Rainfall A, he mentioned that
clean_monthly_data should be doing something, but couldn’t see how it would change the data,
indicating that he could not see the overall flow of data through the problem. Hugin alone at-
tempted to understand the content of specific variables, commenting “I’ve tried [to locate the bug]
by printing the averages that I’m getting off [incorrect]”.

Building a mental model: Djengo was seen building a mental model of the program by under-
standing how the parts connect. He also tended to summarise in his own words the purpose
of these parts using the output of functions to connect and verify the purpose of the parts. For
example, when looking at the clean_monthly_data function in Rainfall A, he summarised
the function’s purpose: “So, this is getting all the non-negative values”. Djengo, however, did
not always build a full mental model of the program and its parts before attempting to fix the
bug. In Rainfall A, he focused on looking for the location of the code that read in the data
without scanning/reading through the program to get an overall idea of structure. As a result,
it took a while before he decided to read the main function. In contrast, Hugin was often
unable to connect the results the code was producing to what he was seeing in the actual and
expected test outputs. JoJo seemed unable to connect the function documentation to the function
behaviour.

Checking: We observed participants checking or verifying their understanding of a particular
aspect of the buggy code. This included checking the documentation or running code to see how
a function works. We observed both static and dynamic forms of checking.

Static activities included renaming variables, rewriting code, reading code, reading comments,
and reading the provided test case output. JoJo often renamed variables, although the renaming
did not always produce improved understanding. For example, when trying to understand the dic-
tionary problem, he changed the name of the variable controlling the loop from k to names_pair,
commenting that it was a better description for the value in the variable. Unfortunately, that vari-
able is actually holding the keys in the parameter dictionary, not key-value pairs. JoJo justified the
modification by saying “It might be waste of time, but I like to do it if I have time just to make it
easier for me so I understand what’s going on more clearly”. After reading the second test case for the
dictionary problem and comparing the actual and expected output, Djengo was able to speculate
on a solution: “Uh, so you’d want to put them all into a sort of unified format so that, regardless of
case, they all get put into the same thing.”
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Dynamic interactions involve activities such as printing, executing test cases, and creating new
test cases that are used by the participants to build an understanding of the code they are trouble-
shooting. For example, when working on Rainfall A, Djengo was attempting to locate the issue
with negative values in the output. He commented: “All the time I find that it’s just easy to print
things to see if it’s actually getting what you’d expect it to get.” Later, while working on the same
problem, he said: “So, what I might do is just print the data here to see if that is actually where it it
occurring.” One example of testing the buggy code with the test case data provided to verify the
test case’s actual output is when JoJo executed the code using the provided test cases and mentally
mapped the input test data (d2) to the function parameter (vote_dict), uttering “Um, so, now to
check the code, so, it takes vote_dict, which is the dict_2 in this case.” JoJo used print statements
a lot to understand code. He focused on dynamic behaviour during code execution, which allowed
him to see variable states, rather than reading documentation and code.

4.2 Activities

This theme includes the debugging activities related to the steps, strategies, and processes for
debugging the faulty code that the participants were provided and includes speculating about the
cause of a bug, bug localization, and code modification.

4.2.1 Speculating Cause. This sub-theme encompasses activities that indicate an attempt to
speculate about the cause of a bug. JoJo and Djengo both speculated about the cause of bugs in the
provided code, although the degree with which they were systematic about their speculation dif-
fered. Djengo did not debug until he had speculated about what was wrong. Djengo also speculated
first and then tested his hypothesis. However, the speculation lacked precision, and he formed only
a partial theory about the bug cause. For example, in Rainfall B, Djengo identified a problem in
number of Xs in the histograms. But he didn’t try to figure out the specific issue (i.e., truncation)
and was happy to locate and correct code knowing that it was “something to do with rounding”.
The closest he came to forming a hypothesis was to note “and it might have to round down or up.
Maybe it’s doing that wrong.”

JoJo was less specific about his hypotheses, for example, indicating that the problem in the
dictionary function was with capitalization but not being specific about whether the capitalization
was in the keys or the values. JoJo’s hypotheses were often only partially specified or, in some cases,
not specified at all. For example, when debugging Rainfall A, he was unable to locate the problem
with the actual output and decided to examine the code. He then stopped himself, remarking “ ...
since I can’t tell the difference between thing I was like, maybe I could check the code, but then if I
don’t know what’s wrong, I don’t know what to look for in the code. ... Let me go check the differences
again.” After examining the actual output again he commented “it’s one short so it’s a rounding
error ... So it’s printing one less x for the rounding”. He did not name a specific issue regarding the
rounding and its relationship to the histogram before moving back to examining the code.

When Hugin developed hypotheses about bugs, they were incomplete and/or flawed. For ex-
ample, for one of the rainfall problems, he speculated “... it looks like it isn’t reading the negative
values properly” but he was not precise about which function might be causing the problem. Even
when his speculation was correct, for example, in the warm-up problem where he suggested that
<= should be used rather than <, he failed to follow through on testing the hypothesis by running
the corrected code.

4.2.2 Bug Localization. Participants used observations about the actual versus expected output
and understanding of the purpose of functions to help them locate potential bugs in the code. Their
efficiency and effectiveness at doing this varied, however.
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When working on the Rainfall A problem, Djengo attempted to locate where the problem with
negative numbers was occurring. He decided that adding print statements would help, saying he
was “... just zeroing in on where the issue is”. Unfortunately, he stopped just before the line with
the bug in the clean_entire_data function and moved to examining the rest of the code. After
scrolling briefly, he commented “I feel like I’m looking in the wrong place”. He moved to the main
function and commented that he was “just working my way backwards through the codes to see
if I can find where the error might initially occur”. After a few minutes, this backward approach
brought him to reconsider the clean_entire_data function, where he discovered the bug. Upon
discovering the bug, he remarked: “That took a lot longer than I expected”. In the Rainfall B prob-
lem, Djengo observed an error in the actual output, noting “so, it looks like everything is correct
apart from the amount of Xs being printed”. He immediately concluded that he should consider the
function that printed the histogram, using his knowledge of the structure of the program.

JoJo was somewhat effective in bug localization, actively searching for functions based on their
expected behaviour. When working on Rainfall A, he observed that the actual output had negative
values when it shouldn’t and then commented: “clean_monthly_data. Given a list of numbers
return a list of all non-negative values. Oh, so, since I’m getting negative values, so, that should be a
problem here.” In the Rainfall B problem, JoJo concluded that the issue was with rounding and the
display of the histogram. He then began reading the documentation and code for the functions
involved in the printing of the histogram.

Hugin was the least effective in bug localization. In the dictionary problem, he was able to
identify capitalization of keys as a problem and then move to the correct location in the func-
tion, remarking “So, I’d look in here where it is adding the keys, which is, this part here on the else
statement.” When debugging the Rainfall A program, Hugin actively sought the location in the
code that dealt with negative values. However, he was inefficient in trying to find the buggy code,
scrolling through the provided code rather than systematically searching for particular functions.
He repeatedly talked about functions passing information to other functions, but he never looked
at the main function, where each of the functions were being called and information was shared
between the functions. Hugin also did not appear to have any overall strategy for locating bugs in
larger programs.

4.2.3 Code Modification. This sub-theme encompasses the approaches and techniques that par-
ticipants used when modifying the code while debugging. The issues observed when the code was
modified fell into three clear types of activities: trial-and-error, rewriting code, and deleting code.

In general, the participants were not systematic about code modification. Djengo would begin
to trace code to understand bugs but would change the code before completely reading it. He
would also generate incomplete hypotheses about bugs, such as that the number of Xs in the
histogram for Rainfall B were incorrect, but did not try to figure out that the specific issue was
truncation before moving on to correct the code. In modifying code during debugging, JoJo would
introduce new bugs, for example, a test using greater than rather than greater than or equal to or
the use of the equality operator rather than the assignment operator. He would at times then fail
to find his own bugs in the modified code. Hugin had similar problems as JoJo, except that the
new bugs were more significant, for example, looping through an empty dictionary or dividing
by a nonexistent variable.

Trial-and-error. All of the participants seemed to take a trial-and-error approach to code modi-
fication to some degree. Djengo would change unfamiliar code without knowing what it does or
what the change might do, for example, changing += using a list to append, which is equivalent.
He remarked on occasion that he was making the changes “just in case”. However, both of the
weaker debuggers took a trial-and-error approach more often. JoJo was particularly likely to make
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speculative changes to code. He would make edits to code without having a clear idea why those
edits were being made. JoJo also made changes to functions in the rainfall problem that replicated
existing functions, showing that he made changes before understanding the structure of the entire
program. JoJo also commonly removed edits from code without understanding why the edits were
failing to correct the problem. However, Hugin was the most egregious in making unsubstantiated
edits. For example, in the dictionary problem, Hugin changed a key to lowercase but changed the
key in the original dictionary rather than the key in the dictionary being built by the function.
Because Hugin had weak testing ability, he was unable to detect this issue. In Rainfall A, Hugin
observed that the actual output did not match the expected output. Thus, he changed an operator
from greater than to greater than or equal to just in case that made a difference. The error, how-
ever, had nothing to do with the operator. Hugin also failed to follow through on failed bug fixes,
reverting to the original code rather than exploring why the fixes did not work.

Rewriting code. JoJo’s first approach when encountering code that he did not understand was
to rewrite it. “And I’m not 100% sure of how this is working. So, I’ll just do what I need to do and I’ll
just comment and rewrite it the way that I’d do it”. He would delete provided code and rewrite it
when he could not see any error with the code but believed that there might be a problem. Only
when his rewrite of the code did not produce any change in the behaviour of the function would
he move on to consider other possibilities for bugs. Interestingly, he drew a connection between
having time to rewrite code and his confidence in debugging, commenting “that’s one thing I find
with coding is I’m more confident if I have lots of time, but in a test condition where you don’t have
enough time to rewrite the whole code or you’re not allowed to then it’s like, yeah ...”

In the Rainfall A problem, Hugin opted to rewrite code rather than spend time attempting to
understand the existing code. When trying to identify why negative values were appearing in the
output, he focused on the get_single_month_average function. Believing that the problem had
to do with the built-in sum function used in that function, he changed the function to use a for
loop to add up the non-negative values in the list provided to the function. Since his modification
was equivalent to the code he deleted (and because the error was not in that function), the change
did not have any impact on the results, which he discovered by running the program.

Deleting code. When working on the Rainfall A problem, JoJo remarked on his inefficiency with
respect to print statements, noting “maybe my method isn’t that great because I’m wasting a lot of
time going back and deleting print messages that I put earlier, and then when the code is very long
like this, I forget where it was ...”.

As mentioned in the trial-and-error section, Hugin often removed changes to code when they
did not appear to have helped. Unfortunately, because his testing skills were weak, there was often
no evidence indicating that the changes were or were not effective. For example, while trying to
debug the dictionary problem, he changed the for loop over the parameter dictionary to move over
the items (e.g., the key-value pairs) rather than the keys but deleted the edit before either using it
or testing any possible change as a result of making the edit.

4.3 Workflow

This theme focuses on observations about debugging behaviours and how systematic the students
were across the debugging tasks, including the sub-themes of context switching, being systematic
(or not), and working in a sustained way (or not).

4.3.1 Context Switching. This sub-theme resulted from participants switching between mul-
tiple sources of information and often involved comparing or referencing between these sources.
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The comparing or referencing was sometimes systematic and other times done in an ad-hoc
manner.

When Djengo began work on Rainfall A, he first observed that the output showed a histogram.
He moved from looking at the output to reading a doc string in the file, observed that the problem
involved reading from a file, and noted “it’ll be useful to know how the data is stored so that I’ll know
how it’s going to be read”. He examined the structure of the input file and commented “so, each line
is a month, I think... with the days separated by spaces”. He then read in the doc string that lines
may be blank if no data was collected that month, moved the cursor to select the text file with the
data, and verified that there were blank lines in the file. He then moved to considering how the
actual and expected output differed, focusing on the monthly high and low values. He observed
that negative values were not being ignored.

JoJo was observed to be shifting frequently between reading, printing, and checking outputs
when trying to build understanding in more complex problems. Unfortunately, his context switch-
ing was not always systematic. Like Djengo, JoJo began the Rainfall A problem by examining the
sample output provided. He saw that in the actual output there was a negative value whereas in
the expected output there was not. He switched to reading the doc string at the top of the file
containing the code. Once he concluded that the problem was with negative values, he started
reading the first function in the file, which was clean_monthly_data and, after reading the doc
string, concluded that the problem must have been in that function. However, before he could ver-
ify anything about the function, he decided that he needed to learn more about how the file was
read and jumped to a new part of the program, saying “so, the reason why I’m looking for opening
the files ... is that ... you need to open the file first to get the file contents out before you can clean it ...”
JoJo switched from the function that was cleaning the data to one reading the data without having
a good reason to do so.

4.3.2 Systematic (or not). How systematic the participants were varied widely. Some of the
less systematic behaviours seen in participants include jumping to conclusions, trial and error,
and guessing.

Djengo was the most systematic in his debugging approach and became more systematic with
increasing problem size (lines of code and number of bugs). In a few instances, Djengo was hasty
and “fixed” code without due consideration. He then had to go back and reconsider the changes
he had made to the code. For example, in the Rainfall C problem, he added a += operator in a
location that would not work. When that approach failed, he tried instead to use append on the list.
However, he did test these changes and other changes during debugging and was able to go back
and rectify the issues he had introduced to the code during his early debugging attempts. While
Djengo exhibited some good techniques, he didn’t put these together into a consistent systematic
approach. For example, he did not systematically print and check input and output from functions.
Djengo tended to trace the code to understand the program flow and functions but often changed
the code before he had completed reading and tracing it. At times, he failed to follow through on
an idea. At times, Djengo was observed jumping from function to function in Rainfall A and not
reading the code or documentation before switching to another function.

JoJo articulated the need to identify the problem before debugging but lacked a methodological
approach to locating bugs. He sometimes looked for the bug source before reading the program
or the requirements. He would start reading but then abandon that process part way through. At
times while working on the rainfall problem, JoJo did not understand the structure of the entire
program but made changes to parts of the program anyway. In one instance, JoJo made changes
that replicated functions already present elsewhere in the program. Overall, JoJo lacked a method-
ical approach to locating bugs. In Rainfall A, he was observed jumping from function to function
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Table 5. Effective Practices

Practice Examples
Theme: Comprehension

Using print to examine variable contents Djengo (4.1.4)
Seeking help in online documentation Djengo (4.1.1)
Using environment cues, such as syntax colouring Djengo (4.1.1)
Organizing work space to maximize visible information Djengo and JoJo (4.1.1)
Improving readability of code with superficial changes JoJo (4.1.1, 4.1.4)
Executing tests to determine whether code is correct Djengo and JoJo (4.1.1)
Reading docstrings and requirements before code Djengo and JoJo (4.1.2)
Identifying differences between expected and actual output All (4.1.3)
Generalizing from specific cases to the issue All (4.1.3)
Speculating the cause of an issue Djengo and JoJo (4.1.3)
Reading error messages Djengo (4.1.1, 4.1.3)
Tracing code and understanding control flow and data flow Djengo and JoJo (4.1.4)
Building a mental model of the program Djengo (4.1.4)
Verifying understanding of program state Djengo and JoJo (4.1.4)

Theme: Activities
Speculating on the cause of an issue Djengo and JoJo (4.2.1)
Using print to examine variable contents Djengo (4.2.2)
Using system knowledge to localize bugs Djengo and JoJo (4.2.2)

Theme: Workflow
Cross-checking to verify understanding Djengo and JoJo (4.3.1)

checking everything but the last line in a function. JoJo also failed to read the main function
to understand how functions work together. He did not apply effective debugging processes
consistently.

4.3.3 Sustained (or not). Of the three students, Djengo was the one who most clearly demon-
strated sustained activity. He continued working even when unsure of what he was doing. When
his working hypothesis about a bug cause or location was shown to be false he stopped checking
data flow and this seemed to affect his confidence. However, he continued working and wanted
to complete the tasks he had been given, working beyond the time allocated for the debugging
session.

Hugin demonstrated the least amount of sustained activity. After working on the dictionary
problem for about 10 minutes, he said “Okay, so ... I’m quite stumped here to be honest.” The re-
searcher offered to allow him to move to the next problem or to review the debugging process
taught in the class as a help in moving forward. He opted for the debugging process, spent less
than 2 minutes reading the process, and tried to use it before commenting “Do you mind if we move
on to a different one?” He similarly stopped working on the Rainfall A problem.

4.4 Summary

Table 5 summarizes the effective debugging practices observed. Table 6 summarizes the issues that
corresponded with ineffective debugging practices.

5 DISCUSSION

In this section, we connect our study findings to prior work focusing on knowledge, mental models,
strategies, scaffolding approaches, and tactics. We then discuss the implications of our findings for
teaching Python debugging in introductory courses.
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Table 6. Issues Observed

Issue Examples

Theme: Comprehension
Fragile knowledge of language All (4.1.1)
Poor searching for documented functions Hugin (4.1.1)
Lack of familiarity with IDE features Hugin (4.1.1)
Jumping to conclusions from single data point Hugin (4.1.3)
Lack of methodological approach - jumping around ad hoc Hugin (4.1.4)

Theme: Activities
Introducing new bugs during code modification Hugin and Jojo (4.2.3)
Making changes speculatively (trial and error) All (4.2.3)
Not testing changes JoJo and Hugin (4.2.3 )
Lack of precision in speculation of cause All (4.2.1)
Rewriting code that was not understood JoJo and Hugin (4.2.3)

Theme: Workflow
Lack of methodological approach - jumping around ad hoc JoJo (4.3.2)
Lack of sustained activity Hugin (4.3.3)

5.1 Domain Knowledge

Debugging is a process that requires several kinds of knowledge to be effective. Students in
introductory programming courses are still learning the domain knowledge (i.e., the syntax and
semantics of a programming language) which Jonassen and Hung [39] describe as a necessary
prerequisite for troubleshooting. Similarly, Katz and Anderson [41] assumed that program compre-
hension is a precursor to debugging. However, it remains unclear how much domain knowledge
is necessary. Although we were not specifically investigating student knowledge of Python, our
observations allow us to infer aspects of their knowledge from their actions. All of the participants
demonstrated an understanding of basic programming skills, but we also observed elements of
fragile knowledge in all three cases. Despite this fragile knowledge, all three participants were able
to engage in debugging activities to some extent. Our observations suggest that although some
programming knowledge is necessary, and fragile understanding may reduce the effectiveness of
debugging, strong procedural knowledge could compensate for gaps in domain knowledge.

5.2 Mental Models

The literature on novice programmers, while differing on the definition of mental models, is gen-
erally in agreement that novice programmer mental models are flawed and ineffectual [9, 43]. We
refer the reader to a recent review of the literature on programmers’ mental models for a compre-
hensive look at this area of research [34].

O’Dell [71] argued that all programs represent complex changes in state of a system over time
and that programmers must therefore rely on mental models of the system during program de-
velopment in order to be able to problem solve and reason about the behaviour of a program.
These mental models are, in this context, considered to be approximations of the system. Our
findings suggest that our participants lacked reliable mental models. However, there was some
evidence that Djengo was able to build a reasonable mental model of the buggy program by con-
necting the program parts through an analysis of program flow and function input and output (see
Section 4.1.4). In some cases, our participants believed that their flawed, incomplete, or inconsis-
tent mental models were correct, which led them along a problem solving path that was incorrect
and would not solve the bug. Occasionally, it appeared that their flawed mental models resulted in
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changes that introduced new bugs into the code. Even more problematic is when a mental model
has been formed that is correct in a different context but does not fully align with a bug that stu-
dents encounter during programming. O’Dell [71] highlighted the importance when debugging of
recognising when a mental model needs to be discarded in order to develop a viable hypothesis —
“Mental models can be used to intuit the causes of some bugs, but for the more difficult problems,
relying on the mental model to describe the problem is exactly the wrong thing to do: the mental
model is incorrect, which is why the bug happened in the first place. Throwing away the mental
model is crucial to forming a sound hypothesis.” (p. 8). Perhaps the fact that the students had yet
to form reliable mental models and lacked the experience to know when their mental models were
irrelevant to a bug explains why we observed the students focusing on lower-level tactics rather
than hypothesis generation.

5.3 Procedural Knowledge of Debugging

Lewis [52] reported that the focus of student attention, rather than domain knowledge, was the
main factor in the debugging success. Although our observations support the importance of stu-
dent attention, we found that procedural knowledge about how to learn effectively is important
for students with fragile knowledge to progress. This includes finding explanations of code ele-
ments in Python documentation, using the Internet to search for code examples, and executing
code to verify understanding. As observed in Section 4.1, lack of domain knowledge prevented
Hugin from identifying a bug in code that used dictionaries, but Djengo was able to overcome
his lack of domain knowledge by looking up documentation and testing code fragments to build
understanding. This procedural knowledge focuses on developing and verifying understanding
of the domain, and is distinct from the procedural knowledge required to debug code when the
domain is well understood. Our observations suggest that these two distinct kinds of procedural
knowledge are required for novice programmers to effectively debug, and more emphasis should
be placed on explicitly teaching such procedures in introductory courses.

We observed that when debugging a program, novices need to have procedural knowledge to
effectively use the tools at their disposal. Both Djengo and JoJo attended to the organization of
their work space (i.e., arrangement of windows and code), and were able to use the IDE provided
to execute code. They also engaged in a modify-and-test cycle in which the code was executed
after every change. These organizational processes that maximise information displayed may
reduce cognitive load imposed by the need to remember information that is off-screen when
switching windows. Similarly, executing code after a single change reduces the need to remember
a sequence of changes and may also reduce cognitive overhead. This may contribute to effective
debugging.

By comparison, Hugin made no attempt to organize the work space and frequently interacted
inefficiently with the IDE. He made several changes to the code before executing it and appeared
unfamiliar with the process to execute a function. This lack of familiarity with procedures used
to effectively write and execute code in an IDE caused difficulty for Hugin when asked to debug
code in that same environment.

5.4 Strategies

We did not observe clear evidence of high level strategies, either explicitly articulated or implicit
in the observed student behaviours. The rainfall problem involved many functions and (relatively)
complex flow of control that provided opportunity to demonstrate different strategies. Despite
the opportunity for strategic debugging practices, we saw limited evidence that participants used
different strategies on different problems. This is perhaps because the application of strategies
requires experience beyond that typically acquired by introductory programmers. LaToza et al.
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[48] show that even experienced developers who have acquired a range of debugging strategies
are more successful when they are supported to focus on explicit debugging strategies.

5.5 Scaffolding

We found some evidence of general approaches that would be helpful in debugging – that is, ap-
proaches that would scaffold the debugging process. Djengo, who was the most effective at de-
bugging, spent time understanding the purpose of the different functions in the rainfall variants
and the relationship (i.e., the flow of control) between them. However, JoJo and Hugin did not
familiarize themselves with the code and subsequently produced duplicated code that was found
in other parts of the program. The lack of systematic program comprehension may be explained
by difficulties in building mental models due to poor programming schema. The cognitive load
imposed by modelling a program with many functions may exceed the capacity of some introduc-
tory students. This suggests that visual models may improve understanding of code structure and
could potentially improve debugging processes.

Self-explanations are reported to be an effective practice for debugging [10, 55, 86]. Although
the think-aloud data provided several examples of students developing their understanding of the
code (see Section 4.1.4) and speculating about code output (see Section 4.2.1), we observed fewer
examples of self-explanations extending to generating hypotheses about the cause of a bug — an
important step in the heuristics for debugging described by Zeller [95]. When students speculated
about the cause of a bug, the hypotheses lacked precision (see Section 4.2.1). This lack of precision
in hypothesis generation may be a consequence of imprecise descriptions of the observed symp-
toms of the bug (see Section 4.1.3). For example, Djengo observed that “some of them [histogram
bars] have more [Xs] than they should”, but doesn’t describe precisely that bars with a fractional
part greater than 0.5 have 1 more X than they should.

Further, we observed that all of the participants could form hypotheses (see Section 4.1.3) using
the difference between actual and expected output. This is consistent with findings reported in
previous work involving pencil-and-paper exercises [91]. In this study, Djengo and JoJo were able
to generalize from the cases in some problems despite a general lack of precision. However, they did
not test their hypotheses by executing code. Instead, all students proceeded to attempt to localize
the bug by reading the code.

Participants rarely took the time to consider multiple possible sources for bugs. They would
focus on a single possible bug, only moving on to other hypotheses when that possibility was
ruled out or they were unable to make progress with it due to other factors. This observation is
consistent with the work of Fitzgerald et al. [29], in which only one of their participants mentioned
considering alternatives.

5.6 Tactics

Our observations of student debugging practices provided numerous examples of what Metzger
[66] describes as tactical behaviour. Participants demonstrated deliberate actions (such as printing
the value of a variable) that were used to improve their understanding of code. These tactics might
be considered the “building blocks” that underpin effective debugging practices. However, the
tactics used by students appear to be a collection of techniques they have acquired in isolation and
they do not appear to use them methodically.

Although students were taught code tracing, and were encouraged to use Online Python
Tutor [33] as an aid for code tracing during their course instruction, it is interesting that we
saw no evidence of formal code tracing on paper or the use of Online Python Tutor to provide
a visualization of the machine state while executing code. Although we did see examples of code
tracing, it was not systematic and students did not explicitly record memory state while tracing
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the program execution. It is possible that more explicit instruction and further practice with code
tracing activities, as suggested in [93], may be needed for students to transfer their learning and
deploy the techniques they learned in class more systematically.

5.7 Implications for Teaching

We observed no relationship between self-reported confidence and programming ability or debug-
ging behaviour. The participants did not take a systematic approach to debugging and particu-
larly to program comprehension. They made changes on a trial-and-error basis and often deleted
changes without understanding whether they were correct or incorrect. Their activities were often
in the form of tinkering. These findings are consistent with those reported by Ko et al. [47], who
found that most students engaged in rapid cycles of editing and testing without deep understand-
ing of the code, partly due to a sense that more systematic application of strategies slowed them
down but also because they were not confident deploying strategies without help. This suggests
that students have not acquired processes that support them to debug efficiently, and a greater
focus on teaching debugging processes is needed. Because Python is interpreted and comes with
a built-in interactive development environment, implementing a greater focus on testing small
pieces of code may be easier for instructors and students.

Many of the issues that we observed derived from a lack of precision, lack of persistence, and lack
of a methodical systematic approach. These are characteristics that relate to student meta-cognitive
and self-regulation [58, 90]. Our findings align with the view advanced by Loksa and Ko [57]
that there may be value in explicitly teaching self-regulation skills in introductory programming
courses, but further work is needed to confirm the impact of such approaches.

Our study provides insight into the debugging approaches used by students and has revealed
some possible avenues for teaching students to more effectively debug their programs, which com-
plements suggestions arising from debugging research investigated in other contexts [47], such as
explicit code tracing on paper [93]. Our findings suggest that teachers using Python in introduc-
tory courses may improve student debugging practices by:

• Eplicitly teaching processes for overcoming fragile knowledge (e.g., using documentation,
testing code fragments to improve comprehension). The help function in Python makes ac-
cess to documentation seamless in the built-in IDLE environment. As mentioned previously,
the interactive nature of IDLE also encourages the testing of small pieces of code.
• Ensuring that students are familiar with standard development environments in courses that

use specialised environments for assessment. The ease of using IDLE makes this suggestion
simpler for both instructors and students.
• Teaching students to organize their windows and environments to maximize displayed in-

formation and reduce cognitive load.
• Encouraging students to generate precise descriptions of the symptoms when identifying the

problem.
• Providing a visual model of programs with many functions to support program comprehen-

sion and flow of control.

6 LIMITATIONS

This case study recruited participants from a single institution, and reports a small number of
cases in depth. All three participants identified as male, and all reported that they had previously
been exposed to programming languages other than Python. The results are therefore highly con-
textualized and may not generalize broadly to other institutions, particularly if the instructional
approach in those courses differs substantially. As with all case study research, the context is im-
portant when considering transferability and relevance of findings.
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Students in this course mainly use an automated assessment environment (CodeRunner [56]) to
develop their code for the practice exercises and assessments in the course. Those students who
work exclusively within the web-based tool may not have developed familiarity with standard
IDEs.

Additionally, the course instructional design focuses on students writing many small programs,
an approach that has proven successful in other institutions [3]. However, it may be possible to
debug code that involves only a small number of lines effectively by inspection. The CodeRunner
system used by students to submit assessed exercises runs automated tests to provide correctness
feedback. It is therefore possible that the teaching context supports students to debug by inspection
and minimize testing.

The concept of “rubber-duck” debugging is used in industry [86] and education [10], and ele-
ments of think-aloud practices are evident in pair programming approaches that have been shown
to be effective [69]. Therefore, it is possible that the think-aloud methodology used to collect infor-
mation for this study has impacted on the debugging performance of students. However, debug-
ging processes that involve explicit articulation of the problem are claimed to improve understand-
ing and insight, suggesting that the performance of students in this study may be more effective
than typical. Therefore, we expect that the issues and poor practices evident in the observations
are perhaps underrepresented compared with typical student practices.

In this study, we asked students to debug programs authored by the researchers. In a previous
study [92], we reported that students considered debugging code written by others to be different
than code they had authored, perhaps resulting in different approaches.

7 CONCLUSION

In this work, we presented a case study involving an in-depth analysis, at a single point in time, of
three novice programmers debugging code using a think-aloud observation protocol. These three
students were selected to illustrate diversity of debugging performance: one relatively effective
at debugging, one with average debugging practices, and one whose debugging was largely inef-
fective. This work contributes to the body of knowledge as one of the few articles that examines
the debugging activities of novices without external guidance. We explored student debugging
activities using a thematic analysis approach. This analysis resulted in the definition of a set of
themes for future analysis of novice debuggers and we aligned the student debugging activities
we observed with those reported in the literature.

Our observations revealed certain characteristics, such as self-awareness and perseverance, that
led to student success during debugging. These are themes that have not historically been explored
to any great extent in the context of debugging but are themes often explored in the broader pro-
gram comprehension literature. More recently, there has been growing interest in explicitly ad-
dressing the interaction between emotional state, mindset, programming identity, and debugging
strategies [19–21, 68, 80].

The current literature focuses more on debugging process rather than looking closely at the
intertwining of knowledge, affective traits, and debugging ability for novices.

Several debugging tactics emerged in our analysis, including what we consider to be sponta-
neous tactics such as organisation of work space to see all relevant information. The student who
exhibited this unguided tactic proved to be the most successful at debugging.

There was a notable connection between fragile programming knowledge, the inability to use
the development environment, and a lack of success in debugging among the novice programmers
observed in this study. Moreover, some personal characteristics had real impact on the participants’
debugging ability. The most successful of the three debuggers demonstrated perseverance and a
more methodical approach to debugging than the other two in this study. Our observations also
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support the notion that procedural knowledge and strategies for filling in knowledge gaps are a
prerequisite for debugging success. However, we would note that this is only true if the student is
persistent and perseveres when faced with debugging roadblocks.

We found that there was some link between debugging tactics used and complexity of the debug-
ging task. The most successful participant tended towards more of a systematic approach as the
problem became more complex. As a result, we suggest that encouraging effective debugging prac-
tices requires not only time but also exposure to larger debugging problems for which a systematic
approach is required to successfully eliminate the bugs.

All three students had some effective practices and tactics. This is encouraging because it demon-
strates that students have taken the first steps towards effective debugging practices despite the
tactics being applied sporadically. We anticipate that pedagogies building on these tactics may be
effective for novice programmers.

Finally, there is a modest body of work comparing experts’ and novice programmers’ debugging
processes. However, our results suggest that some debugging practices that should be taught to
students are not necessarily practices reported in the literature on expert debugging. For example,
we feel that there is value in explicitly teaching students to organize their work environment (win-
dows) to maximize information display. However, experts typically use professional development
environments that assist in this organization. Therefore, work space knowledge is not typically
reported in literature on expert debuggers. Further research explicitly articulating implicit expert
practices that would benefit novice debuggers is warranted.

7.1 Future Work

An interesting extension of this work would be to map a timeline for each participant that shows
how much time the novice debuggers spend on different debugging activities. This would help
us to identify learning trajectories, the barriers that impact on student progression, and the effort
spent on particular activities. Understanding these barriers and the ordered steps that students
take when debugging has the potential to lead to more effective teaching practices.

Future researchers should consider pushing the boundary of unstructured and unguided studies
and observe novice debuggers debugging their own code on fairly substantial novice programming
tasks containing their own naturally occurring bugs. Such studies might include in-depth investi-
gations into the role of self-regulation in the development of effective novice debuggers. Another
interesting area for study might be further investigation into the roles of metacognition, grit, and
affective learning as a predictors of debugging success.

Another aspect worthy of study is pair-debugging and whether it is an effective learning expe-
rience for building debugging skills. This introduces the potential to explore novice debugging in
the context of theories related to socially shared regulation and co-regulation.

Finally, our study revealed potentially complex interactions between domain and procedural
knowledge (e.g., using Google to look up missing elements of domain knowledge). A study to
explore these interactions in more depth may provide valuable insights.

APPENDIX

A TEST CASES FOR DEBUGGING EXERCISES

A.1 Warm-up Exercise

The participants were given two separate sample runs of the warm-up function, provided here.

data = 'supercalifragilisticexpialidocious'

substring(data, 0, 4)
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Expected output:
'super'

Actual output:
'supe'

data = 'supercalifragilisticexpialidocious'

substring(data, 5, 19)

Expected output:
'califragilistic'

Actual output:
'califragilisti'

A.2 Dictionary

The first test case shown to the participants for the dictionary problem does not reveal any bugs in
the code, as it works perfectly. The second test case provided reveals the issue with capitalization,
recording differing votes for capitalized versus lowercase strings. The third test case was provided
to reveal the problem with the check in the if statement. Here, because the wrong dictionary is
being checked, the function raises an exception since ‘Amber’ is not a key in the dictionary d3
provided as a parameter.

d1 = {'Gertrude': 'Simone', 'Prudence': 'Andre', 'Amber': 'Chad'}

record_votes(d1)

Expected output:
{'Simone': 1, 'Andre': 1, 'Chad': 1}

Actual output:
{'Simone': 1, 'Andre': 1, 'Chad': 1}

d2 = {'Gertrude': 'simone', 'Prudence': 'Andre', 'Amber': 'SIMONE'}

record_votes(d2)

Expected output:
{'Simone': 2, 'Andre': 1}

Actual output:
{'simone': 1, 'Andre': 1, 'SIMONE': 1}

d3 = {'Gertrude': 'Amber', 'Prudence': 'Andre', 'Amber': 'Erin',
'Erin': 'Amber'}

record_votes(d3)

Expected output:
{'Amber': 2, 'Andre': 1, 'Erin': 1}

Actual output:
Traceback (most recent call last):

File "<pyshell#7>", line ..., in <module>
record_votes(d3)

File ..., line ..., in record_votes
votes[vote_dict[k]] += 1

KeyError: 'Amber'

A.3 Rainfall A
For the Rainfall A problem, participants were provided with a single test case and resulting output.

raw data file contents:
10 10 6 -20 25 13 12 10 10 20 -32
5 6 2 -27 3 1 3 0 0 0 2
0 0 34 0 0 0 2 1
20 25 -34 26 27 28 10 15
20 32 2 10 2
56 43
12 19 5 0 24 0 52 43 10
8 2 -10 -30 -1 1

10
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Expected output:
----- Monthly Rainfall -----
J: XXXXXXXXXXXXX (12.9)
F: XX (2.2)
M: XXXXX (4.6)
A: XXXXXXXXXXXXXXXXXXXXXX (21.6)
M: XXXXXXXXXXXXX (13.2)
J: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX (49.5)
J: XXXXXXXXXXXXXXXXXX (18.3)
A: XXXX (3.7)
S: (0.0)
O: XXXXXXXXXX (10.0)
N: (0.0)
D: (0.0)
----- Summary Statistics -----
Monthly high: 49.5
Monthly low: 0.0
Monthly median: 7.3
Monthly mean: 11.3

Actual output:
----- Monthly Rainfall -----
J: XXXXXX (5.8)
F: (-0.5)
M: XXXXX (4.6)
A: XXXXXXXXXXXXXXX (14.6)
M: XXXXXXXXXXXXX (13.2)
J: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX (49.5)
J: XXXXXXXXXXXXXXXXXX (18.3)
A: (-5.0)
S: (0.0)
O: XXXXXXXXXX (10.0)
N: (0.0)
D: (0.0)
----- Summary Statistics -----
Monthly high: 49.5
Monthly low: -5.0
Monthly median: 5.2
Monthly mean: 9.2

A.4 Rainfall B
For the Rainfall B problem, participants were also provided with a single test case and resulting
output.

Expected output:
----- Monthly Rainfall -----
J: XXXXXXXXXXXXX (12.9)
F: XX (2.2)
M: XXXXX (4.6)
A: XXXXXXXXXXXXXXXXXXXXXX (21.6)
M: XXXXXXXXXXXXX (13.2)
J: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX (49.5)
J: XXXXXXXXXXXXXXXXXX (18.3)
A: XXXX (3.7)
S: (0.0)
O: XXXXXXXXXX (10.0)
N: (0.0)
D: (0.0)
----- Summary Statistics -----
Monthly high: 49.5
Monthly low: 0.0
Monthly median: 7.3
Monthly mean: 11.3

Actual output:
----- Monthly Rainfall -----
J: XXXXXXXXXXXX (12.9)
F: XX (2.2)
M: XXXX (4.6)
A: XXXXXXXXXXXXXXXXXXXXX (21.6)
M: XXXXXXXXXXXXX (13.2)
J: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX (49.5)
J: XXXXXXXXXXXXXXXXXX (18.3)
A: XXX (3.7)
S: (0.0)
O: XXXXXXXXXX (10.0)
N: (0.0)
D: (0.0)
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----- Summary Statistics -----
Monthly high: 49.5
Monthly low: 0.0
Monthly median: 7.3
Monthly mean: 11.3

A.5 Rainfall C
Like the other rainfall problems, the participants were given a single test case and resulting output.

Expected output:
----- Monthly Rainfall -----
J: XXXXXXXXXXXXX (12.9)
F: XX (2.2)
M: XXXXX (4.6)
A: XXXXXXXXXXXXXXXXXXXXXX (21.6)
M: XXXXXXXXXXXXX (13.2)
J: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX (49.5)
J: XXXXXXXXXXXXXXXXXX (18.3)
A: XXXX (3.7)
S: (0.0)
O: XXXXXXXXXX (10.0)
N: (0.0)
D: (0.0)
----- Summary Statistics -----
Monthly high: 49.5
Monthly low: 0.0
Monthly median: 7.3
Monthly mean: 11.3

Actual output:
----- Monthly Rainfall -----
J: (0.0)
F: (0.0)
M: (0.0)
A: (0.0)
M: (0.0)
J: (0.0)
J: (0.0)
A: (0.0)
S: (0.0)
O: (0.0)
N: (0.0)
D: (0.0)
----- Summary Statistics -----
Monthly high: 0.0
Monthly low: 0.0
Monthly median: 0.0
Monthly mean: 0.0

Because of the number of bugs in the code, it was not expected that this test case would be sufficient
for the participants to complete the debugging. The debugging of Rainfall C would require several
interactive rounds of debugging and execution of the corrected code.
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