
Efficient Nearest NeighborQueries on Non-point Data
Achilleas Michalopoulos

University of Ioannina, Greece

amichalopoulos@cse.uoi.gr

Dimitrios Tsitsigkos

University of Ioannina, Greece

dtsitsigkos@cse.uoi.gr

Panagiotis Bouros

Johannes Gutenberg University

Mainz, Germany

bouros@uni-mainz.de

Nikos Mamoulis

University of Ioannina, Greece

nikos@cs.uoi.gr

Manolis Terrovitis

Athena RC, Athens, Greece

mter@imis.athena-innovation.gr

ABSTRACT
Nearest neighbor (NN) queries are ubiquitous in spatial databases,

but have been studiedmainly for point data. Inspired by recent work

on indexing non-point objects for range queries, we propose a sec-

ondary partitioning scheme for space-partitioning indices, tailored

to NN search. Our scheme classifies the contents of each primary

partition into 16 secondary partitions, considering the begin and

end of objects with respect to the spatial extent of the primary

partition. Based on this, we design algorithms for both incremental

NN and 𝑘-NN search that avoid duplicate results and skip unneces-

sary computations. We compare our scheme to the state-of-the-art

indexing and find that it has a significant performance advantage.

CCS CONCEPTS
• Information systems→ Geographic information systems.

KEYWORDS
Spatial indexing, distance queries, non-point data

ACM Reference Format:
Achilleas Michalopoulos, Dimitrios Tsitsigkos, Panagiotis Bouros, Nikos

Mamoulis, and Manolis Terrovitis. 2023. Efficient Nearest Neighbor Queries

on Non-point Data. In The 31st International Conference on Advances in
Geographic Information Systems (SIGSPATIAL ’23), November 13-16, 2023,
Hamburg, Germany. ACM, New York, NY, USA, 4 pages. https://doi.org/10.

1145/3589132.3625609

1 INTRODUCTION
Large collections of non-point data are available in many scientific

and application domains, including Geographic Information Sys-

tems, graphics [7], medical science [15], and location-based services

[2]. Indexing non-point spatial data has been studied for decades

and has reached a high level of maturity [11]. However, the data

management model has shifted over the years. Up until 1-2 decades

ago, the dominant model was to store the data on disk in a single

machine and use hierarchical disk-based indices (e.g., the R-tree

ACM ISBN 979-8-4007-0168-9/23/11. . . $15.00

https://doi.org/10.1145/3589132.3625609

[5]). Nowadays, with memory chips being much bigger and cheaper,

we can store and index large spatial data collections in memory

[18]. In addition, given the advent of cloud computing, we can spa-

tially partition big spatial data collections to multiple machines and

store/index them in their main memories [1, 4, 14, 19, 20].

Space-oriented partitioning (SOP) indices (e.g., grid, quad-tree)
divide the space into spatially disjoint partitions. Data-oriented par-
titioning (DOP) indices allow overlapping partitions, such that each

object is assigned to exactly one partition. SOP indexing (especially

grids) are more preferable to DOP for large-scale indexing, because

partitions relevant to queries can be identified very fast; hence,

searches and updates are much faster compared to DOP indices

[8, 12, 13, 16, 17, 21]. Further, query evaluation over SOP partitions

can be easily parallelized; thus, SOP is the de facto approach in

distributed spatial data management systems [4, 19, 20, 22].

Two-layer partitioning. However, disjoint space partitioning by

SOP requires objects that intersect multiple partitions to be repli-

cated. Under this, the same object can be identified as a query result

in multiple partitions and so possible duplicates in query results

should be eliminated [3, 22]. Recently, Tsitsigkos et al. [18] pro-

posed a secondary partitioning approach for the filter-step of spatial
range queries on non-point objects. This approach divides the ob-

ject MBRs in each SOP partition into four classes based on whether

they begin inside the partition or not in each of the two space di-

mensions. Given a range query, only a subset of object classes in

each partition is selected, so that the result is guaranteed not to have

duplicates. Besides avoiding duplicate results, this approach also

reduces the number of comparisons in each partition significantly.

However, the aforementioned approach is not appropriate for

distance-based queries on non-point objects, e.g.,𝑘 nearest neighbor

(𝑘NN) queries. The problem in the secondary partitioning proposed

in [18] is that it is asymmetric, i.e., the four classes are determined

based on the begin point of the rectangle’s projection at each di-

mension, whereas the end point of the projection is ignored. A

workaround for distance range queries (called disk queries in [18])

is proposed, whereas 𝑘NN queries are not studied at all.

Contributions. We improve upon the secondary partitioning of

[18], by defining four classes per dimension (instead of two), which

capturemore precisely the position of a rectangle w.r.t. all directions.

As a result, in the 2D space, we end up with 16 classes of rectangles.

This does not bring any overhead in rectangular range queries,

as each of the 16 classes can be mapped to one of the original

four classes in [18] and the rectilinear range query algorithms can

SIGSPATIAL ’23, November 13–16, 2023, Hamburg, Germany
© 2023 Copyright held by the owner/author(s).

This work is licensed under a Creative Commons Attribution International 4.0
License.

https://doi.org/10.1145/3589132.3625609
https://doi.org/10.1145/3589132.3625609
https://doi.org/10.1145/3589132.3625609
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3589132.3625609&domain=pdf&date_stamp=2023-12-22

SIGSPATIAL ’23, November 13–16, 2023, Hamburg, Germany A. Michalopoulos et al.

Inside: The line starts and
ends inside the same tile T.

Starts In: The line starts inside
a tile T and ends after this.

Ends In: The line ends inside
a tile T and starts before this.

Covers: The line covers the
whole tile T.

Tile T-1 Tile T Tile T+1

0 0

0 1

1 0

1 1

line

line

line

line

Inside

Inside

Starts In Ends In Covers

Starts In

Ends In

Covers

0000 0001 0010 0011

0100 0101 0110 0111

1000 1001 1010 1011

1100 1101 1110 1111

x

y

Figure 1: Illustration of class decomposition

readily be applied. In contrast, the definition of the 16 classes brings

a significant performance improvement in evaluating NN queries.

We design algorithms for the filter step of NN queries on a grid

index which adopts our 16-classes secondary partitioning scheme.

For each query, we show which partitions are at each tile, such

that duplicates are avoided. We compare this enhanced grid index

against the best performing DOP index (the in-memory R-tree from

boost.org) using real data and demonstrate its superiority.

2 CLASS DECOMPOSITION
The two-layer partitioning in [18] was mainly designed for rectan-

gular range queries and not for distance-based, such as NN. Given

this, we next propose an extension which partitions a tile 𝑇 (or a

SOP partition in general) based on both the begin and end points of
the objects assigned to𝑇 . Figure 1 (left) shows the four cases for the

projection of an object 𝑜 w.r.t. the projection of a tile𝑇 whereto 𝑜 is

assigned. The object can be inside 𝑇 , start inside 𝑇 and end after 𝑇 ,

start before𝑇 and end inside𝑇 , or start before and end after𝑇 . The

four cases are encoded by two bits,. The first bit refers to the begin

point of the object’s projection and the second to the end point

of the projection. Bit value 0 denotes that the begin (end) point is

inside 𝑇 ; bit value 1 means that the end point is before (after) 𝑇 .

To encode the divisions of a tile (partition)𝑇 in the𝑑-dimensional

space, we need 2 · 𝑑 bits, i.e., two per dimension, since we have 𝑑

projections of𝑇 (and the objects); this results into 2
2𝑑

partitions. So,

in the 2D space, we have 2
4 = 16 classes of objects (i.e., secondary

partitions of a tile 𝑇), as shown in Figure 1 (right). In this figure, a

tile𝑇 is denoted by the darkgrey square and each of the 16 examples

show a case of an object 𝑜 (lightgrey rectangle), which belongs to

each of the 16 divisions. For example, the upper-left corner shows an

object to class 0000, as the object is inside the tile in both dimensions;

class 0001 means that the object is inside the tile in dimension 𝑥 ,

but starts inside and ends outside the tile in dimension 𝑦, etc.

Given the above classification, our proposed indexing scheme

partitions the objects (object MBRs) using a SOP index (e.g., a grid),

such that each object 𝑜 is assigned to all partitions (e.g., tiles) whose
spatial extent intersects 𝑜 . Within each tile, the assigned objects,

are re-partitioned into classes (i.e., 16 classes in the 2D space).

3 NEAREST NEIGHBOR QUERIES
We now discuss how to efficiently evaluate NN queries, without

producing duplicate results. In the following, we assume that the

query object 𝑞 is a point, but our NN methods can be applied also

for non-point query objects, in a straightforward manner. Our

methods work with all SOP indices (e.g., arbitrary grids, quad-trees,

k-d-trees, etc.), but for illustration purposes, we assume the input

Type 6 Type 7 Type 8

Type 3 Type 4 Type 5

Type 2Type 1Type 0

T
q

T

T T T

T

TTT

q

q q q

q

q q q

tile types sets of classes
Type 0 {0000,0010,1000,1010}

Type 1 {0000,0010,0100,0110,1000,1010,1100, 1110}

Type 2 {0000,0010,0100,0110}

Type 3 {0000,0001,0010,0011,1000,1001,1010,1011}

Type 4 ALL CLASSES

Type 5 {0000,0001,0010,0011,0100,0101,0110,0111}

Type 6 {0000,0001,1000,1001}

Type 7 {0000,0001,0100,0101,1000,1001,1100,1101}

Type 8 {0000,0001,0100,0101}

Figure 2: Tile types; grouping and distribution in space

set 𝑅 of objects (i.e., object MBRs) is indexed by a regular grid. The

domain of each dimension is divided into 𝑁 equi-width partitions.

Hence, we assume a 𝑁 × 𝑁 grid T , where each object is assigned

to all tiles (cells) that intersect it and the objects in each tile are

re-partitioned based on our classification scheme in Section 2.

Incremental NN search (distance browsing in [6]). In this case,

the number 𝑘 of desired NNs is not specified a priori. The user

retrieves the objects in increasing distance from the query object 𝑞.

Our incremental NN algorithm extends [13], which targeted only

point data. In a nutshell, the grid tiles are divided to groups based

on their orientation w.r.t. tile 𝑇𝑞 , which includes 𝑞, as shown by

the oblongs in Figure 2 (top-left). 𝑇𝑞 forms a group by itself. The 8

neighboring tiles of𝑇𝑞 are grouped to 4 groups, each having 2 tiles;

the next level of 16 tiles are grouped to 4 groups of 4 tiles each, etc.

In general, the 𝑛-th level of tiles around 𝑇𝑞 includes 8𝑛 tiles, which

are split to four tile groups on the top, bottom, left, and right of 𝑇𝑞 .

Our incremental NN algorithm (Algorithm 1) initializes a pri-

ority queue 𝑄 (minheap) with all objects in 𝑇𝑞 . 𝑄 is organized in

increasing order of the minimum Euclidean distance to 𝑞. Natu-

rally, objects that contain 𝑞 (if any) have distance 0. The algorithm

also adds to 𝑄 the 4 tile-groups 𝐺 that are neighbors to 𝑇𝑞 (level-1

tile-groups), using the minimum distance between 𝑞 and the ex-

tent of the tile-group (Function 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑖𝑛𝑔𝐺𝑟𝑜𝑢𝑝𝑠). It then runs

a while-loop, which incrementally yields the NNs of 𝑞. At each

iteration, the top element 𝑐 in 𝑄 is de-heaped. If 𝑐 is an object, then

𝑐 is returned as the next NN of 𝑞 (Line 16). If 𝑐 is a group of tiles,

then we add to 𝑄 (1) the neighboring group 𝑔 of 𝑐 at the next level

(𝑁𝑒𝑥𝑡𝐿𝑒𝑣𝑒𝑙𝐺𝑟𝑜𝑢𝑝 (𝑐)) and (2) each tile 𝑇𝑐 ∈ 𝑐 (Lines 7–10). The

neighboring (i.e., next-level) group of 𝑐 is the one having the same

direction as 𝑐 w.r.t. 𝑞 (i.e., to the left, right, top, or bottom) and it is

one level beyond 𝑐 w.r.t. 𝑞. Last (Lines 11-14), if 𝑐 is a tile, for some
of the classes, all their objects in 𝑐 are en-heaped to 𝑄 .

Figure 2 (top-right) shows how to define the 9 types of the tiles

depending on their relative direction w.r.t. the tile𝑇𝑞 which contains

𝑞. For each of these nine cell types, different classes are considered

as shown at the bottom of the same figure. For example, if tile 𝑐

is of type 6, only its objects in classes {0000,0001,1000,1001} are

en-heaped. This is because the objects in other classes are also

included in neighboring tiles which are closer to 𝑞, and hence these

objects have been added to 𝑄 earlier. Re-adding these objects to 𝑄

will produce duplicate results. Class selection for each tile 𝑐 based

on the relative direction of 𝑐 w.r.t.𝑇𝑞 is established by the following:

Efficient Nearest NeighborQueries on Non-point Data SIGSPATIAL ’23, November 13–16, 2023, Hamburg, Germany

ALGORITHM 1: Incremental NN Search

Input :query point 𝑞, grid index T of rectangle set 𝑅
Output :next NN of 𝑞 in 𝑅

1 𝑇𝑞 ← tile of T that contains 𝑞;

2 𝐺 ← 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑖𝑛𝑔𝐺𝑟𝑜𝑢𝑝𝑠 (𝑇𝑞) ;
3 𝑄 ← new Min-Heap; add to𝑄 (i) all rectangles of𝑇𝑞 and (ii) all 𝑔 ∈ 𝐺 ;

4 while𝑄 is not empty do
5 𝑐 ← 𝑄.𝑝𝑜𝑝 () ; // 𝑐 is next nearest heap element to 𝑞

6 if 𝑐 is a group of tiles then
7 𝑔← 𝑁𝑒𝑥𝑡𝐿𝑒𝑣𝑒𝑙𝐺𝑟𝑜𝑢𝑝 (𝑐) ;
8 𝑄.𝑝𝑢𝑠ℎ (𝑔) ;
9 foreach tile𝑇𝑐 ∈ 𝑐 do
10 𝑄.𝑝𝑢𝑠ℎ (𝑇𝑐) ;

11 else if 𝑐 is a tile then
12 𝑟𝑒𝑐𝑡𝐴𝑟𝑟 = get rectangles in 𝑐 based on tile type;

13 foreach rectangle 𝑟 ∈ 𝑟𝑒𝑐𝑡𝐴𝑟𝑟 do
14 𝑄.𝑝𝑢𝑠ℎ (𝑟) ;

15 else // 𝑐 is an object
16 output 𝑐 ; // 𝑐 is the next NN

Theorem 1. For each dimension 𝑑 , let 𝐵𝐸 be the pair of bits char-
acterizing the rectangle classes in a tile 𝑐 w.r.t. 𝑑 . If tile 𝑐 is before
(after) 𝑇𝑞 in dimension 𝑑 , all classes in 𝑐 with 𝐸 = 1 (𝐵 = 1) should
not be en-heaped to 𝑄 (Lines 12-14, Algorithm 1) to avoid duplicates.

Proof. If a class in tile 𝑐 has 𝐸 = 1 (𝐵 = 1), all the rectangles

in the class also appear in tile 𝑐𝑛𝑒𝑥𝑡 that follows (precedes) 𝑐 in

dimension 𝑑 . But, as 𝑐 is before (after) 𝑇𝑞 in dimension 𝑑 , 𝑐𝑛𝑒𝑥𝑡 is

guaranteed to be closer to 𝑞 than 𝑐 , which means the rectangles

will be already accessed when 𝑐𝑛𝑒𝑥𝑡 is processed. So, adding the

rectangles of this class to 𝑄 would produce duplicate results. □

Overall, the merit of the object classification in each tile is

twofold: (1) we avoid the need to detect and eliminate duplicate

results, and (2) we minimize the number of objects added to 𝑄 , as

each object is guaranteed to be en-heaped at most once.

𝑘-NN search. Knowing the number 𝑘 of desired neighbors allows

us to prune objects and tiles, and to control the size of the priority

queue𝑄 . For this, we maintain maxheap𝐻 with the 𝑘-NN objects so

far. The top 𝐻.𝑡𝑜𝑝 of 𝐻 holds the object with the 𝑘-th distance to 𝑞

found so far. Distance 𝐻.𝑡𝑜𝑝.𝑑𝑖𝑠𝑡 between 𝐻.𝑡𝑜𝑝 and 𝑞 can be used

as a bound for pruning. Hence,𝑄 contains only tiles and tile-groups

with a minimum distance to 𝑞 lower or equal to 𝐻.𝑡𝑜𝑝.𝑑𝑖𝑠𝑡 . This

greatly reduces the size of 𝑄 and may help to compute the 𝑘-NN

result faster than applying the incremental NN algorithm until 𝑘

objects have been returned. Algorithm 2 is a pseudo-code of our

𝑘-NN search procedure, which uses two heaps. Note that we start

pruning groups/tiles as soon as the size |𝐻 | of 𝐻 reaches 𝑘 .

4 EXPERIMENTAL EVALUATION
We conducted our analysis on a Intel(R) Core(TM) i9-10900K CPU,

clocked at 3.70GHz with 32 GB of RAM, running Ubuntu Linux

20.04.1. All indices were implemented in C++, compiled using gcc

(v9.4.0) with flags -O3, -mavx, and -march=native.

Setup. We used the ROADS and EDGES Tiger 2015 datasets [4].
1

ROADS contains 19M linestrings occupying 538MB; the projection

of an object covers 0.008% of the 𝑥-axis and 0.015% of the 𝑦-axis,

on average. EDGES contains 69M polygons occupying 1.6GB; each

1
http://spatialhadoop.cs.umn.edu/datasets.html

ALGORITHM 2: 𝑘-NN Search

Input :query point 𝑞, grid index T of rectangle set 𝑅

Output :𝑘-NNs of 𝑞 in 𝑅

1 𝑇𝑞 ← tile of T that contains 𝑞;

2 𝐺 ← 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑖𝑛𝑔𝐺𝑟𝑜𝑢𝑝𝑠 (𝑇𝑞) ;
3 𝐻 ← create 𝑘-maxheap and push to𝐻 all rectangles of𝑇𝑞 ;

4 foreach tile-group 𝑔 ∈ 𝐺 do
5 if |𝐻 | < 𝑘 or 𝑑𝑖𝑠𝑡 (𝑔,𝑞) < 𝐻.𝑡𝑜𝑝.𝑑𝑖𝑠𝑡 then
6 𝑄.𝑝𝑢𝑠ℎ (𝑔) ;

7 while𝑄 is not empty and (|𝐻 | < 𝑘 or𝑄.𝑡𝑜𝑝.𝑑𝑖𝑠𝑡 < 𝐻.𝑡𝑜𝑝.𝑑𝑖𝑠𝑡) do
8 𝑐 ← 𝑄.𝑝𝑜𝑝 () ;
9 if 𝑐 is a group of tiles then
10 𝑔← 𝑁𝑒𝑥𝑡𝐿𝑒𝑣𝑒𝑙𝐺𝑟𝑜𝑢𝑝 (𝑐) ;
11 if |𝐻 | < 𝑘 or 𝑑𝑖𝑠𝑡 (𝑔,𝑞) < 𝐻.𝑡𝑜𝑝.𝑑𝑖𝑠𝑡 then
12 𝑄.𝑝𝑢𝑠ℎ (𝑔) ;
13 foreach tile𝑇𝑐 ∈ 𝑐 do
14 if |𝐻 | < 𝑘 or 𝑑𝑖𝑠𝑡 (𝑡, 𝑞) < 𝐻.𝑡𝑜𝑝.𝑑𝑖𝑠𝑡 then
15 𝑄.𝑝𝑢𝑠ℎ (𝑇𝑐) ;

16 else if 𝑐 is a tile then
17 𝑟𝑒𝑐𝑡𝐴𝑟𝑟 = get rectangles in 𝑐 based on tile type;

18 foreach rectangle 𝑟 ∈ 𝑟𝑒𝑐𝑡𝐴𝑟𝑟 do
19 if |𝐻 | < 𝑘 or 𝑑𝑖𝑠𝑡 (𝑟, 𝑞) < 𝐻.𝑡𝑜𝑝.𝑑𝑖𝑠𝑡 then
20 𝐻.𝑝𝑢𝑠ℎ (𝑟) ;

21 return𝐻 ;

ROADS EDGES

10
-2

10
-1

10
0

10
1

10
2

1 2 3 4 5 6 7 8 9 10

T
im

e
[s

ec
]

partitions per dimension [x1000]

100
1000

10000

10
-2

10
-1

10
0

10
1

1 2 3 4 5 6 7 8 9 10

T
im

e
[s

ec
]

partitions per dimension [x1000]

100
1000

10000

Figure 3: Determining best grid granularity: incremental NN
search for 100, 1000 and 10000 browsing neighbors

object covers 0.004% of the 𝑥-axis and 0.007% of the 𝑦-axis. The

object coordinates in both datasets were normalized inside [0, 1].
We implemented our secondary partitioning over amain-memory

regular grid; we denote our scheme as 2-layer16. As a competitor,

we considered the state-of-the-art DOP index: an in-memory STR-

bulkloaded [9]R-tree, from the Boost Geometry library (boost.org).
2

The nodes of the constructed trees have a capacity of 16; this con-

figuration was reported to perform the best and confirmed through

testing. To assess the performance, we measure the average execu-

tion time of 10K queries over 10 runs, while varying the number of

neighbors. For incremental NN search, the neighbors are progres-

sively determined (Section 3); in 𝑘-NN search, we set 𝑘 accordingly.

Index tuning. We first study the best granularity for a grid that

uses our partitioning scheme. For this purpose, we considered only

the incremental NN search, for browsing the first 100, 1000, and

10000 neighbors. Figure 3 reports the total time for 10K queries for

different grid granularities, i.e., number of partitions per dimension.

In all cases, the search initially accelerates as the grid becomes finer

but slows down when the grid becomes too detailed. Under this,

we set the number of partitions per dimension to 3000 for ROADS

and to 4000 for EDGES, where the best performance was observed.

2
The benchmarks in [10] showed the Boost.Geometry R-tree outperforms the one in

libspatialindex.org. Also, the analysis in [18] showed that R-tree is the most efficient

DOP competitor, outperforming R*-tree (both from the Boost library).

http://spatialhadoop.cs.umn.edu/datasets.html

SIGSPATIAL ’23, November 13–16, 2023, Hamburg, Germany A. Michalopoulos et al.

ROADS EDGES

10
2

10
3

10
4

10
5

10
6

 5 10 50 100 500 1000

T
h

ro
u

g
h

p
u

t
[q

u
er

ie
s/

se
c]

number of browsed neighbors

2-layer16
R-tree

10
2

10
3

10
4

10
5

10
6

 5 10 50 100 500 1000

T
h

ro
u

g
h

p
u

t
[q

u
er

ie
s/

se
c]

number of browsed neighbors

2-layer16
R-tree

10
2

10
3

10
4

10
5

10
6

 5 10 50 100 500 1000

T
h

ro
u

g
h

p
u

t
[q

u
er

ie
s/

se
c]

number of desired neighbors k

2-layer16
R-tree

10
2

10
3

10
4

10
5

10
6

 5 10 50 100 500 1000

T
h

ro
u

g
h

p
u

t
[q

u
er

ie
s/

se
c]

number of desired neighbors k

2-layer16
R-tree

Figure 4: Incremental (top) and 𝑘-NN search (bottom)

ROADS EDGES

 0.5

 1

 1.5

 2

 2.5

 3

1 2 3 4 5 6 7 8 9 10

In
d
ex

in
g
 t

im
e

[s
ec

]

partitions per dimension [x1000]

 1
 2
 3
 4
 5
 6
 7
 8
 9

1 2 3 4 5 6 7 8 9 10

In
d
ex

in
g
 t

im
e

[s
ec

]

partitions per dimension [x1000]

R-tree
2-layer16

2-layer4 [32]

Figure 5: Indexing cost

Query processing. Figure 4 compares the throughput of our

2-layer16 partitioning against the R-tree, again for ROADS and

EDGES. The plots at the top row report on incremental search

while at the bottom, on 𝑘-NN. We observe that for both types of

NN search, 2-layer16 steadily outperforms the R-tree; the latter is
competitive only when a small number of neighbors are browsed

or requested on EDGES. Notice that the performance gap also

increases by the number of browsed neighbors up to one order

of magnitude, rendering 2-layer16 significantly more efficient for

complex query plans which require pipe-lining a large number

of NNs to the next operator. As another observation, the 𝑘-NN

2-layer16 algorithm is slightly faster than the incremental NN one.

As we discussed in Section 3, knowing the number of neighbors in

advance allows the 𝑘-NN algorithm to prune objects.

Indexing and maintenance. Figure 5 compares the indexing time

of our partitioning scheme 2-layer16 against the scheme in [18],

whichwe denote by 2-layer4. For reference, we also include the bulk-
loading cost for the R-tree. As expected, due to decomposing every

partition into 16 classes instead of 4, the new 2-layer16 scheme

exhibits a higher indexing time; 18% on average. Nevertheless, the

building cost of 2-layer16 is significantly lower than that of the

R-tree, especially for the default 3K-4K partitions and for the larger

EDGES dataset. Note that the index size of the two 2-layer schemes

is identical as the total number of entries inside the classes remains

the same. Last, regarding index maintenance, we expect a similar

trend to index building. Based on the analysis in [18], we expect

2-layer16 to outperform the R-tree for updates but exhibit slightly
higher time compared to 2-layer4, due to maintaining more classes.

5 CONCLUSIONS
We presented a secondary partitioning technique for space-oriented

partitioning indices that divides each partition into 16 classes based

on the begin and end points of the object MBRs with respect to the

partition boundaries. We proposed algorithms for NN search (both

incremental and 𝑘-NN) that take advantage of our technique to

compute query results efficiently and without producing duplicates.

Our evaluation on real datasets confirms the superiority of our

scheme compared to previous work. In the future, we plan to in-

vestigate more advanced distance-based queries, such as 𝜖-distance

joins, closest-pair queries and iceberg distance joins.

ACKNOWLEDGMENTS
Funded by the Hellenic Foundation for Research and Innovation

(HFRI) under the “2nd Call for HFRI Research Projects to support

Faculty Members & Researchers” (Project No. 2757) and EU’s Hori-

zon 2020 programme, MORE project (Grant Agreement No. 957345)

REFERENCES
[1] Ablimit Aji, FushengWang, Hoang Vo, Rubao Lee, Qiaoling Liu, Xiaodong Zhang,

and Joel H. Saltz. 2013. Hadoop-GIS: A High Performance Spatial Data Ware-

housing System over MapReduce. Proc. VLDB Endow. 6, 11 (2013), 1009–1020.
[2] Chen Cheng, Haiqin Yang, Irwin King, and Michael R. Lyu. 2012. Fused Matrix

Factorization with Geographical and Social Influence in Location-Based Social

Networks. In AAAI.
[3] Jens-Peter Dittrich and Bernhard Seeger. 2000. Data Redundancy and Duplicate

Detection in Spatial Join Processing. In IEEE ICDE. 535–546.
[4] Ahmed Eldawy and Mohamed F. Mokbel. 2015. SpatialHadoop: A MapReduce

framework for spatial data. In IEEE ICDE. 1352–1363.
[5] Antonin Guttman. 1984. R-Trees: A Dynamic Index Structure for Spatial Search-

ing. In ACM SIGMOD. 47–57.
[6] Gísli R. Hjaltason andHanan Samet. 1999. Distance Browsing in Spatial Databases.

ACM Trans. Database Syst. 24, 2 (1999), 265–318.
[7] Hugues Hoppe. 1996. Progressive Meshes. In ACM SIGGRAPH. 99–108.
[8] Dmitri V. Kalashnikov, Sunil Prabhakar, and Susanne E. Hambrusch. 2004. Main

Memory Evaluation of Monitoring Queries Over Moving Objects. Distributed
and Parallel Databases 15, 2 (2004), 117–135.

[9] Scott T. Leutenegger, J. M. Edgington, and Mario A. López. 1997. STR: A Simple

and Efficient Algorithm for R-Tree Packing. In IEEE ICDE. 497–506.
[10] Mateusz Loskot and Adam Wulkiewicz. 2019.

https://github.com/mloskot/spatial_index_benchmark.

[11] NikosMamoulis. 2011. Spatial Data Management. Morgan & Claypool Publishers.

[12] Mohamed F. Mokbel, Xiaopeng Xiong, and Walid G. Aref. 2004. SINA: Scalable

Incremental Processing of Continuous Queries in Spatio-temporal Databases. In

ACM SIGMOD. 623–634.
[13] Kyriakos Mouratidis, Marios Hadjieleftheriou, and Dimitris Papadias. 2005. Con-

ceptual Partitioning: An Efficient Method for Continuous Nearest Neighbor

Monitoring. In ACM SIGMOD. 634–645.
[14] Varun Pandey, Andreas Kipf, Thomas Neumann, and Alfons Kemper. 2018. How

Good Are Modern Spatial Analytics Systems? Proc. VLDB Endow. 11, 11 (2018),
1661–1673.

[15] Mirjana Pavlovic, Darius Sidlauskas, Thomas Heinis, and Anastasia Ailamaki.

2018. QUASII: QUery-Aware Spatial Incremental Index. In EDBT. 325–336.
[16] Suprio Ray, Rolando Blanco, and Anil K. Goel. 2014. Supporting Location-Based

Services in a Main-Memory Database. In IEEE MDM. 3–12.

[17] Darius Sidlauskas, Simonas Saltenis, Christian W. Christiansen, Jan M. Johansen,

and Donatas Saulys. 2009. Trees or grids?: indexing moving objects in main

memory. In SIGSPATIAL/ACM-GIS. 236–245.
[18] Dimitrios Tsitsigkos, Konstantinos Lampropoulos, Panagiotis Bouros, Nikos

Mamoulis, and Manolis Terrovitis. 2021. A Two-layer Partitioning for Non-point

Spatial Data. In IEEE ICDE. 1787–1798.
[19] Dong Xie, Feifei Li, Bin Yao, Gefei Li, Liang Zhou, and Minyi Guo. 2016. Simba:

Efficient In-Memory Spatial Analytics. In ACM SIGMOD. 1071–1085.
[20] Jia Yu, Zongsi Zhang, and Mohamed Sarwat. 2019. Spatial data management in

apache spark: the GeoSpark perspective and beyond. GeoInformatica 23, 1 (2019),
37–78.

[21] Xiaohui Yu, Ken Q. Pu, and Nick Koudas. 2005. Monitoring K-Nearest Neighbor

Queries Over Moving Objects. In IEEE ICDE. 631–642.
[22] Shubin Zhang, Jizhong Han, Zhiyong Liu, Kai Wang, and Zhiyong Xu. 2009.

SJMR: Parallelizing spatial join with MapReduce on clusters. In CLUSTER. 1–8.

	Abstract
	1 Introduction
	2 Class Decomposition
	3 Nearest Neighbor Queries
	4 Experimental Evaluation
	5 Conclusions
	Acknowledgments
	References

