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ABSTRACT
As the global transition towards renewable energy sources acceler-
ates, solar power becomes an increasingly important solution. Iden-
tifying and understanding the current distribution of solar panel
installations is crucial for future planning and decision-making
process. This paper introduces SolarDetector, a transformer-based
neural network model, which we developed and fine-tuned for the
accurate detection of solar panels. It achieves 91.0% mIoU for the
task of masking solar panels on SWISSIMAGE dataset.
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1 INTRODUCTION
Installation of solar panels is accelerating all over the world. For
example, according to official capacity numbers reported by Swiss
Federal Office of Energy, solar capacity has increased more than
200 times in Switzerland over the last 20 years from 18 megawatt
(MW) in 2001 to 3,655 MW in 2021 [23]. The period between 2020
and 2021 alone has seen an increase of 23% bringing the capacity
from 2,973 MW in 2020 to 3,655 MW in 2021. With the increase
of solar energy as a renewable energy source, there is more need
for efficient solar detection methods and visualizations at different
levels. This problem is challenging for many reasons. Solar panels
come with a huge variety of visual characteristics with different
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colors, shapes, and textures, making the process of detecting all
different kinds accurately burdensome.

There are several research works in the literature focusing on us-
ing computer vision for solar panel detection. These works present
various approaches on classification [13, 14, 16], object detection
[15], segmentation using common machine learning techniques
[20, 21, 30, 31, 34], and segmentation using CNN [17, 32].

The solar detection accuracy achieved by models in the literature
is barely satisfactory and can be improved. This paper develops a
model, SolarDetector, based on the latest transformer-swin archi-
tecture Mask2Former [2]. Experiments show that our developed
model achieves 91.0% mIoU on SWISSIMAGE dataset.

The rest of this paper is organized as follows. Section 2 highlights
related work. Sections 3 give details about the neural network
component. The experiments and results are illustrated in Section
4. Finally, Section 5 concludes the paper.

2 RELATEDWORK
There are several research works focusing on using computer vision
for detecting solar panels. Papers [13, 14, 16] proposed approaches
for classifying an image based on the presence or absence of solar
panels. These approaches lack the ability to identify the precise
location or surface areas of solar panels. There are other research
works [20, 21, 30, 31, 34] that utilize basic techniques such as SVM
and open-cv to detect solar panels based on common features such
as color and texture. These approaches fail to generalize well on
the different variety of solar panels’ visual characteristic that exists
in practice.

In [15], researchers developed a faster R-CNN neural network
to detect solar panels installed on roofs. The paper utilized an
object detection approach with a bounding box, which doesn’t
identify the exact surface area of solar panels. Paper [33] proposed
a segmentation approach using CNN, but it has low precision and
recall and more advanced CNN techniques have been available
since then. Paper [32] introduced the DeepSolar dataset, which is a
dataset having samples covering all US with negative and positive
labels. Researchers used the dataset to build a CNN classifier model
to indicate the presence or absence of solar panels. Furthermore,
they utilized a semi-supervised segmentation approach using a
greedy layer-wise training technique to estimate the boundary and
size of solar panels. A small portion of the data was also labeled with
ground truth masks and was used to evaluate this approach. The
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approach was used to build a database for solar panels in the whole
US. In [17], researchers utilized a Mask R-CNN model to perform
semantic segmentation on solar panels. They also proposed the
right angle algorithm to more accurately mask the sharp edges of
solar panels. They used the DeepSolar dataset introduced in [32]
to train their model and used it as a benchmark. Their approach
outperformed the results achieved in [32] setting new state-of-the-
art results on that dataset with IoU of 88.8%.

There are also many research works focusing on the area of
detecting anomalies and defects in solar panels. In [1] researchers
developed a real-time system to detect defects in photovoltaic (PV)
modules. The images are taken through a drone with two cameras,
a thermal and a Charge-Coupled Device CCD. The system then
utilizes fault detection algorithms to detect various faults in real-
time and send information to a ground station. In [12] researchers
used thermal infrared imaging to detect anomalies in PV modules.
Infrared video sequences are first collected and then sent to an
image-processing algorithm to segment the solar panels from the
background. Image preprocessing and pattern recognition are then
used to detect common anomalies like cracks. Hot panels are also
detected using DBSCAN clustering. In [22] researchers used deep
learning and machine learning techniques to extract features and
used feature classification to identify various types of defects. In
[28] researchers proposed the use of standard thermal image pro-
cessing and the Canny edge detection operator as diagnostic tools
for module-related faults. There are other research works as well
[25, 27] where researchers utilized machine learning techniques to
detect defects in solar panels.

3 SOLAR DETECTOR
This section gives details on the neural network model, SolarDe-
tector, which detects and masks the exact surface areas of solar
panels. SolarDetector is retrained and fine-tuned on solar panel-
specific training datasets. We also add augmentations during the
training process such as flipping, rotation, and random brightness
to diversify the training dataset and improve the model’s ability
to detect different variations of solar panels of different colors and
orientations. We consider different neural network architectures as
the potential starting backbone for the development of our SolarDe-
tector model. The architectures we consider are Mask R-CNN [26],
MaskFormer [3], and Mask2Former [2]. We evaluate and compare
the performance of the different fine-tuned models based on the
different architectures.

We evaluate the models’ performance using the mIoU metric
(mean Intersection-Over-Union), which is a standard metric for
measuring the accuracy of semantic segmentation models. This
metric is based on measuring the area of intersection over the area
of union between the detected mask and the ground truth mask.
Then this calculation is averaged across all images in the test dataset.
Equation (1) and (2) represent the calculation of this metric.

𝐼𝑜𝑈 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
(1)

where TP is the number of true positive pixels that are correctly
predicted as belonging to the target class (solar panel), FP is the
number of false positive pixels that are incorrectly predicted as
belonging to the solar panel class, and FN is the number of false

negative pixels that are incorrectly missed as being belonging to
the solar panel class.

𝑚𝐼𝑜𝑈 =

∑𝐿
𝑖=1𝑊 i ∗ 𝐼𝑜𝑈 i∑𝐿

𝑖=1𝑊 i
(2)

where L is the length of the test dataset, i is the index iterating
over each image of the training dataset, IoUi is IoU calculated for
the image i, and Wi is the weight for the image i which is the area
of the union.

We briefly explain the neural network architectures we consider
in the following sections.

3.1 Mask R-CNN
These networks are based on the Mask-RCNN framework [26]
and have the same network backbone based on ResNet but comes
with different network heads. We consider the following variations
within this architecture from detectron2 library [29] :

• Mask R-CNN R-101-C4-3x: Uses ResNet backbone with
101 layers. Feature extraction happens at the fourth convo-
lution layer (C4).

• Mask R-CNN R-101-DC5-3x: Uses ResNet backbone with
101 layers. It uses dilation to extract features at the fifth
convolution layer (DC5).

• Mask R-CNN R-50-FPN-3x: Uses ResNet backbone with
50 layers with an FPN head (Feature Pyramid Network). FPN
extracts features at different scales.

• Mask R-CNN R-101-FPN-3x: Uses ResNet backbone with
101 layers with an FPN head.

All these networks are pre-trained on the ImageNet dataset
which contains over 14 million images belonging to 1000 different
classes.

3.2 MaskFormer Models
This architecture is introduced in paper [3]. It is a transformer-
based and utilizes the SWIN architecture introduced in [19]. This
model family has models available with different sizes (tiny, small,
and large) and pre-trained either on the ade or coco dataset. Ade
dataset is more suitable for segmentation tasks. Thus, we consider
the following pre-trained variations within this architecture:

• maskformer-swin-tiny-ade [11]
• maskformer-swin-small-ade [10]
• maskformer-swin-large-ade [9]

3.3 Mask2Former Models
This architecture is an improvement on MaskFormer and is intro-
duced in paper [2]. It is a new transformer-swin-based architecture
that utilizes masked attention to extract localized features by con-
straining cross-attention within predicted mask regions. This model
family also has models available with different sizes (tiny, small, and
large) and pre-trained either on the ade or coco dataset. We consider
the following pre-trained variations within this architecture:

• mask2former-swin-tiny-ade [6]
• mask2former-swin-small-ade [7]
• mask2former-swin-large-ade [8]
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4 EXPERIMENTAL EVALUATION
In this section, we run experiments evaluating the performance of
our model across multiple dimensions. We begin by describing the
environment setup (Section 4.1). Then, we describe the different
datasets used (Section 4.2). After that, we present experiments for
developing and fine-tuning ourmodel (Section 4.3).Wemeasure and
report the performance using precision, recall, and mIoU metrics.

4.1 Experiment Setup
All evaluations are conducted on Colab environment using a ma-
chine with NVIDIA T4 GPU. All components are implemented in
Python. We use Pytorch as our neural network framework. To cal-
culate mIoU, precision, and recall metrics, we use the "evaluate"
module from Hugging Face [5], which provides implementations
for such metrics.

4.2 Datasets
We utilize dataset SWISSIMAGE [24] as an example of real-world
datasets for running many experiments. This dataset contains aerial
images covering the whole of Switzerland over the last few years
with specific regions being covered each year. Each tile from the
SWISSIMAGE dataset is 10,000 x 10,000 pixels at 10 cm resolution,
which means every tile covers an area of 1 km2. These tiles are
downloaded from the official website producing this dataset [24]
as a tif image. However, such a large resolution is extremely hard
to deal with and feeds into neural networks. Thus, we split every
tif file into 100 tiles of 1,000 x 1,000 pixels each.

We also develop our own annotated dataset from SWISSIMAGE
by selecting a random sample of images and labeling them to be
used for training, validation, and testing. We adopt the online tool
cvat.ai [4] to do the labeling. The tool then generates the labeled
data in COCO format [18].

Table 1 summarizes the details of this annotated dataset, which
we use extensively in the experiments section for retraining and
validating different neural network architectures.

Table 1: SwissImage Dataset

Dataset # Tiles # Annotated Instances

Training Set 1000 605
Validation Set 200 343

Test Set 300 110
Total 1500 1058

4.3 Evaluations for Fine-Tuning SolarDetector
In this section, we present various experiments on retraining and
fine-tuning different neural network architectures for the task of
solar panel segmentation. We train all models for 200 epochs using
a learning rate of 5e-5, batch size of 4, 4 workers for the data loader,
and using Adam optimizer. We add augmentations of random flip-
ping, rotation, and brightness contrast to diversify the training
datasets.

Neural Network Architectures Comparison. In this experi-
ment, we retrain different architectures on our SWISSIMAGE an-
notated dataset described in 4.2.

Table 2 presents these results. The inference time measurement
includes data loading and is calculated using T4 machines with 4
data loader workers and a batch size of 4.

We note from Table 2 that transformer-based architectures sig-
nificantly outperform the Mask R-CNN architecture by a wide
margin for comparable model sizes. This is attributed to the power
of transformer architectures and its ability to extract features us-
ing the attention mechanism which was found to be superior in
comparison to traditional convolutions methods. We also note that
Mask2Former outperformsMaskFormer significantly.Mask2Former
are slightly larger than their MaskFormer counterparts and they
extract localized features more efficiently using masked attention.
All different sizes of Mask2Former perform very closely to each
other. The tiny variation achieves 90.9% compared to 91.0% achieved
by the large variation. Fig. 1 presents an example of solar panels
detection by the model SolarDetector-Mask2Former-Tiny.

Figure 1: Example of Solar Panels Detection

In a detailed version of this work, we utilize this best performing
model in a comprehensive system to process large geospatial re-
gions to detect and quantify solar intensity. The system also utilizes
a pyramid spatial index for efficient querying of solar intensity for
any region represented by a spatial range query. We also include
generation of heat maps showing distribution of solar intensity, and
optimization algorithms to optimize the processing of geospatial
regions repeatedly over time.

5 CONCLUSION
In this paper, we developed and fine-tuned a transformer-based
neural network for detecting and masking solar panels. We con-
ducted experiments comparing the performance of different neural
network architectures on SWISSIMAGE dataset. Our model, So-
larDetector, achieves 91.0% mIoU on SWISSIMAGE dataset. As solar
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Table 2: Models Evaluation after Fine Tuning

Model # Parameters Time per Epoch (sec) GPU Memory (Training) Batch Inference Time (sec) P R mIoU

SolarDetector-R-50-FPN 43.9 millions 123 2.1 GB 0.29 70.3% 51.3% 42.2%
SolarDetector-R-101-FPN 62.9 millions 140 3.5 GB 0.31 84.7% 73.6% 62.8%
SolarDetector-R-101-C4 54.0 millions 138 4.2 GB 0.71 62.7% 93.7% 60.1%
SolarDetector-R-101-DC5 190.8 millions 150 6.1 GB 1.20 55.6% 40.0% 30.3%

SolarDetector-MaskFormer-Tiny 41.7 millions 208 5.4 GB 0.48 93.8% 78.9% 75.0%
SolarDetector-MaskFormer-Small 63.0 millions 287 7.1 GB 0.82 88.3% 90.2% 80.6%
SolarDetector-MaskFormer-Large 211.5 millions 475 14.5 GB 0.86 94.3% 86.2% 81.9%
SolarDetector-Mask2Former-Tiny 47.4 millions 277 9.1 GB 0.62 94.2% 96.3% 90.9%
SolarDetector-Mask2Former-Small 68.7 millions 312 10.6 GB 1.09 94.3% 95.1% 90.4%
SolarDetector-Mask2Former-Large 215.5 millions 668 14.7 GB 1.36 94.8% 95.8% 91.0%

energy continues to grow in importance, accurate models like So-
larDetector can empower users to analyze solar data from geospatial
images helping them to make informed decisions effectively.
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