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ABSTRACT
Harmful Algal Blooms (HABs) present significant environmental
and public health threats. Recent machine learning-based HABs
monitoring methods often rely solely on unimodal data, e.g., satel-
lite imagery, overlooking crucial environmental factors such as
temperature. Moreover, existing multi-modal approaches grapple
with real-time applicability and generalizability challenges due to
the use of ensemble methodologies and hard-coded geolocation
clusters. Addressing these gaps, this paper presents a novel deep
learning model using a single-model-based multi-task framework.
This framework is designed to segment water bodies and predict
HABs severity levels concurrently, enabling the model to focus on
areas of interest, thereby enhancing prediction accuracy. Our model
integrates multimodal inputs, i.e., satellite imagery, elevation data,
temperature readings, and geolocation details, via a dual-branch ar-
chitecture: the Satellite-Elevation (SE) branch and the Temperature-
Geolocation (TG) branch. Satellite and elevation data in the SE
branch, being spatially coherent, assist in water area detection and
feature extraction. Meanwhile, the TG branch, using sequential
temperature data and geolocation information, captures tempo-
ral algal growth patterns and adjusts for temperature variations
influenced by regional climatic differences, ensuring the model’s
adaptability across different geographic regions. Additionally, we
propose a geometric multimodal focal loss to further enhance rep-
resentation learning. On the Tick-Tick Bloom (TTB) dataset, our
approach outperforms the SOTA methods by 15.65%.

CCS CONCEPTS
• Information systems → Geographic information systems; •
Computing methodologies→ Computer vision; Neural net-
works; • Applied computing → Environmental sciences.
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1 INTRODUCTION
HABs are a growing environmental and public health concern.
These events can lead to severe consequences, such as oxygen
depletion in water bodies, massive fish kills, and the release of
harmful toxins contaminating drinking water. Given HABs’ rapid
onset and impacts, timely interventions are crucial. Central to early
intervention efforts is the precise prediction of HABs occurrence.

Traditional methods of monitoring HABs, such as manual sam-
pling and Sonde Buoys, lack scalability for vast regions and are
labor-intensive. Recently, machine learning techniques have emerged,
predominantly focusing on unimodal data, e.g., satellite imagery [1].
However, this singular focus often misses crucial environmental
factors such as temperature variations, compromising prediction
accuracy. The shift to multi-modal data has seen methods like the
ensemble approach in [2], which leveraged satellite images and
elevation data but overlooked temperature data. Another ensemble
in [3] combined KNN and GBDT models, utilizing geolocation and
temperature data. While promising, both of them depend on hard-
coded geolocation clusters and ensemble models, facing challenges
in model generalizability and real-time applicability.

To address these challenges, we propose the first work integrat-
ing four modalities using deep learning: satellite imagery, elevation
data, temperature data, and geolocation data. Recognizing the dis-
tinct characteristics of these modalities, we strategically split them
into two branches. The SE branch captures spatial features from
satellite and elevation data, while the TG branch focuses on tem-
poral temperature patterns and regional variations. Experimental
results show that all the four modalities significantly contribute to
HABs severity prediction. This architecture is further enhanced by
our proposed geometric multimodal focal loss, which supervises
individual branches, ensuring optimal representation learning. This
design enhances the robustness of our model, allowing for a com-
prehensive understanding of HABs’ intricate dynamics.

2 METHODOLOGY
2.1 Model Architecture
Satellite-Elevation (SE) Branch: Satellite imagery provides de-
tailed visual insights into water bodies, capturing essential at-
tributes such as color and texture. Elevation data, while not a di-
rect predictor of HABs severity, complements satellite imagery
by enhancing water body segmentation. By emphasizing areas of
relatively lower elevation, it pinpoints potential water regions, rein-
forcing the model’s focus of learning. For this reason, we combine
them in the SE branch using an early fusion strategy for efficiency.
We concatenate satellite imagery and elevation data along the chan-
nel axis to form the SE branch input, as shown in Fig. 1. This branch
utilizes a UNet architecture with the Swin-Transformer [7] as the
encoder. The Swin-Transformer is capable of handling long-range
dependencies in spatial data, effectively detecting water bodies and
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integrating elevation data. This produces the spatial representation:
the embedding𝑀S,E, shown in Fig. 1.

Temperature-Geolocation (TG) Branch: Temperature plays a
key role in algal growth dynamics. Our model incorporates hourly
temperature values from the 14 days leading up to the event date,
offering a detailed temporal profile. Yet, the impact of temperature
on algal growth can vary with geographic locations due to regional
climatic differences and other environmental factors. Thus, to con-
textualize the temperature data, geolocation data, represented as
latitude and longitude coordinates, is integrated. In the TG branch,
geolocation data is transformed into a 24-bit binary code using
Geohash [4]. After being mapped into a geo-feature space by a
linear layer, this high-level geo-feature is combined with the high-
level features generated by the temperature BiLSTM-Transformer
[6]. The combined features are then processed through another
Transformer module [5] to derive a robust temporal representation
of the HABs dynamics: the embedding𝑀T,G, shown in Fig. 1.

Figure 1: End-to-End architecture of the proposed model
2.2 Multi-modal Focal Loss
Inspired by Focal loss, our proposed multi-modal focal loss dynam-
ically adjusts the loss contribution from each branch according to
its prediction confidence. Specifically, if one branch can confidently
classify a sample correctly, the contribution from the other branch
to the overall loss will be moderated.

𝑀𝐹𝐿S,E (𝑝𝑡 , 𝑞𝑡 ) = −𝛼𝑡 (1 − 𝑞𝑡 ∗
√
𝑝𝑡 · 𝑞𝑡 )𝛾 𝑙𝑜𝑔 (𝑝𝑡 ) (1)

𝑀𝐹𝐿T,G (𝑞𝑡 , 𝑝𝑡 ) = −𝛼𝑡 (1 − 𝑝𝑡 ∗
√
𝑝𝑡 · 𝑞𝑡 )𝛾 𝑙𝑜𝑔 (𝑞𝑡 ) (2)

In the above equations, 𝑝𝑡 and 𝑞𝑡 represent the predicted proba-
bilities of the true class for a sample via Subnet 𝑀S,E and Subnet
𝑀T,G. The scaling factor 𝛼𝑡 balances the contribution of positive
and negative samples, while 𝛾 serves as a focusing parameter, mod-
ulating the rate at which easy samples are down-weighted.

To generate the final prediction of HABs severity levels, the
embeddings from the SE branch and the TG branch are concatenated
and fed into Subnet 𝑀S,E,T,G. The three subnets, shown in Fig. 1,
consist of stacked fully connected layers with dropout. The overall
loss combines Dice loss, Cross Entropy loss (𝐶𝐸), and multi-modal
focal losses.While bothmulti-modal focal losses and𝐶𝐸S,E,T,G target
severity prediction, the final result comes from Subnet𝑀S,E,T,G only.

3 EXPERIMENTS AND RESULTS
The TTB dataset underpins our HABs severity assessment. Each
sample in this dataset comprises a satellite image, elevation data,
sequential temperature readings, a pair of latitude and longitude

coordinates, a HABs occurrence date, and the corresponding ground
truth severity level. Both the satellite image and its associated
elevation data span a 2km x 2km geographic area. The temperature
data comprises 336 consecutive hourly readings leading up to the
HABs event. The TTB dataset is distributed across four U.S. regions:
south (6,730 samples), west (2,502 samples), northeast (875 samples),
and midwest (1,581 samples). Severity levels are categorized from
1 (no algal bloom) to 5. They constitute 42.1%, 19.9%, 17.4%, 20.2%,
and 0.4% of the total, respectively. For evaluation purposes, the
dataset was partitioned into training, validation, and test sets at a
ratio of 8:1:1. This split was carefully done while maintaining the
same region and severity class distributions in each of these subsets.

Table 1: Results
Modality Model RA-RMSE
𝑀S LightGBMSOTA[1] 1.4078
𝑀S,T,Others EnsembleSOTA[3] 1.0690
𝑀S,E,Others EnsembleSOTA[2] 0.8762
𝑀S Swin-Trans-UNet 0.8901
𝑀S,E Swin-Trans-UNet 0.8186
𝑀S,E,T Swin-Trans-UNet, BiLSTM-Trans 0.7898
𝑀S,E,T,G Swin-Trans-UNet, BiLSTM-Trans 0.7391

The results of our proposed model in comparison to SOTA meth-
ods [1–3] are shown in Table 1. In this table, ‘𝑀 ’ denotes Modality,
where the subscripts S, E, T, G, Others represent satellite image, ele-
vation, temperature, geolocation, and additional modalities (such
as hand-crafted geographic cluster index [2, 3]), respectively. We
adopt the same Region-Averaged Root Mean Squared Error (RA-
RMSE) from [1–3] as the metric (a lower value is better). Our
model exhibits an impressive performance by achieving the lowest
RA-RMSE of 0.7391, which is 15.65% lower than SOTAmethods. The
ablation study shows that the incorporation of additional modalities
consistently enhances the performance. This highlights the inher-
ent advantage of a multimodal approach over unimodal methods,
emphasizing the importance of leveraging diverse data sources for
a holistic understanding and prediction of HABs severity.

4 CONCLUSION
We introduce a novel deep learning model that integrates multi-
ple modalities for HABs prediction. Our model’s performance on
the TTB dataset underscores its potential as a leading tool in the
fight against HABs. As we move forward, several avenues beckon
further exploration. Incorporating additional modalities (e.g., wind,
humidity), further refinement of our multimodal fusion loss, and
the exploration of other deep learning architectures could further
enhance the model’s predictive capabilities.
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