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ABSTRACT
Multi-GPU systems are considered as one of the most promising
scalable accelerator systems. There have been several studies that
tackled communication and scheduling efficiencies with a small-
scale multi-GPU system (mostly with four GPU modules). In this
paper, we examine scalability by increasing the number of GPUs.
Our observations show that multi-GPU systems are yet to be scal-
able, mainly due to Non-Uniform Memory Access (NUMA) effects;
furthermore, the state-of-the-art aggressive page distribution is one
of the main reasons that increase slow remote accesses.
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1 INTRODUCTION
With the advancement of interconnect and packaging technologies,
various types of multi-GPU systems have debuted. Multi-GPU sys-
tems provide larger memory capacity through disaggregated but
virtually unified memories equipped with individual GPUs, and
higher parallel computing power by allowing individual jobs to be
scheduled across GPUs. The most important performance bottle-
neck of multi-GPU systems is NUMA and Remote Direct Memory
Access (RDMA) latency. To reduce remote accesses, several studies
explored various hardware approaches such as cooperative thread
array (CTA) scheduling, first-touch page allocation, RDMA cache
for remote requests, coalesced RDMA requests, and lookup filters
for TLB [1, 2]. Some studies leveraged software approaches, such as
CTA colocation and remote address translation reduction through
compile-time index analysis. Most of these studies evaluated their
ideas on systems with a fixed number of GPUs. Though the NUMA
effect can be evaluated on a small-scale system, it is unclear if the
same results can be consistently observed in larger systems.

In this study, we examine the scalability of multi-GPU systems.
We evaluate the performance of various workloads by increasing
the number of GPUs. The GPUs are configured to use the first touch
page placement and locality-aware CTA allocation [1]. We observe
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Figure 1: Evaluated Multi-GPU System

that only few workloads show scalable performance with more
GPUs. The vast majority of workloads either derive zero to even
negative speedup. The bottleneck mainly comes from application-
agnostic page placement. In some applications, the first-touch page
placement leads to imbalance page distribution such that the GPU
monopolizing most of the hot pages should provide data for the
other GPUs. In some other applications, even when the pages are
evenly distributed, a few excessively shared pages lead to high re-
mote accesses, which cannot be reduced through page-level data
placement because excessively accessed shared data are within
a small number of pages that cannot be distributed across GPUs.
Therefore, we believe there needs a smarter data distribution algo-
rithm that accommodates various application characteristics. The
detailed characterizations are described in the following section.

2 METHODOLOGY
We used a cycle-level simulator, MGPUSim [3], to model a multi-
GPU system. We configured GPUs based on AMD GCN3 architec-
ture. The baseline architecture is illustrated in Figure 1. We exam-
ined scalability while integrating 2, 4, 6, 8, and 10 GPUs through
an NVLink-like connection with 768 GBps bidirectional bandwidth.
Each GPU is equipped with 16 Shader Arrays (SAs), and each SA
consists of four Compute Units (CUs). L1 vector caches are private
to each CU and L1 scalar caches are shared by all CUs in an SA.
We selected a wide range of applications from different benchmark
suites, including AES, FIR, KM, PR from Hetero-Mark; MM2, ATAX
from Polybench; BS, MT, SC from AMD APP SDK; GUPS from
HPCC benchmark, and S2D, SpMV from SHOC benchmark. We
classified the applications based on memory intensity: Low (misses
per kilo instructions (MPKI) < 100), Medium (100 ≤ MPKI < 1000),
and High (1000 ≤ MPKI) as shown in Figure 2.

3 OBSERVATIONS AND ANALYSIS
Performance Scalability: Interestingly, some applications showed
worse performance when using more GPUs. In Figure 2, PR, MM2,
and SpMV show increasing execution time with more GPUs. We
observed that one of the reasons for these counter-intuitive results
is related to remote memory accesses. Figure 3 shows the number
of incoming and outgoing RDMA requests per GPU when running
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Figure 2: Execution Time Normalized by a 2 GPU System

PR on 4 to 10 GPUs. In all cases, there is one (or two) GPU(s) that
receives most of the RDMA requests from the others (GPU 1 when
using 4, 6, and 8 GPUs and GPU 3 when using 10 GPUs). The other
GPUs barely receive any RDMA requests. This means that PR uses
excessively accessed shared pages that cannot be distributed across
GPUs even with the state-of-the-art first-touch page distribution
algorithm [1]. Considering the execution concurrency among the
GPUs, the frequently accessed pages should’ve been distributed
to multiple GPUs. However, in PR, only one or two GPUs have
all the shared pages, which means that the shared data are likely
to be within a small number of pages that cannot be partitioned
and mapped to multiple GPUs under page-based memory mapping.
Such an imbalance RDMA traffic hinders parallelism because a cer-
tain GPU should handle a significant amount of the system-wide
memory accesses. Also, the other GPUs encounter longer memory
access latency due to the remote memory accesses.
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Figure 3: Per-GPU RDMA Traffic of PR

PageDistribution: Onemight think that the imbalanced RDMA
traffic is sourced by unfair page distribution. The first-touch page
distribution migrates a page from the CPU memory to a GPU’s
memory that accesses the page for the first time. Once the page is
allocated in one of the GPU memory, it is not migrated to anywhere
else. Further accesses to the page from remote GPUs are handled
through RDMA. Therefore, there can be imbalanced page alloca-
tions. However, in most of the applications, the pages were almost
evenly distributed as can be seen in the row marked with "Others"
in Figure 4. Each color in the pie charts represents the fraction of
all pages allocated in each GPU. Even in PR, pages were distributed
evenly across GPUs. This confirms our understanding about PR that
there is a small number of pages that are excessively shared across
GPUs while the vast majority of pages are accessed less frequently
and privately. Some applications such as GUPS, MT, S2D, and MM2
showed uneven page distribution as can be seen in Figure 4. In
these applications, the number of incoming RDMA calls is almost
proportional to the number of pages maintained in each GPU. This
means that these applications make certain GPU to be a bottleneck
as a data provider due to the first-touch algorithm’s greedy page
fetching strategy. When S2D is running on 8 GPUs, GPU 6 main-
tains almost half of the total pages, and hence the RDMA requests,

Figure 4: Page Distribution Across GPUs
as well as DRAM accesses of GPU 6, are several orders of magni-
tude higher than the other GPUs as can be seen in Figure 5. This
is different from PR case, where pages were evenly distributed but
encountered uneven RDMA calls due to a handful of excessively
accessed shared pages. Some studies proposed an RDMA cache to
reduce remote accesses [1]. But, as in Figure 5(a), writes are also
increased, which means that RDMA caches will exhibit high cache
misses due to frequent invalidations. These imbalanced RDMA re-
quests caused by shared page monopoly made a locality-agnostic
static page distribution (pages are evenly distributed across GPUs)
outperform the first-touch page distribution, as plotted in Figure 6.
From these observations, we believe a smarter page distribution
algorithm is needed that accommodates different memory access
patterns of various workloads.
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(a) DRAM Accesses
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(b) RDMA Requests

Figure 5: DRAM and RDMA Requests of S2D on 8 GPUs

(a) Execution Time (b) RDMA Requests

Figure 6: Stats with First-Touch over Static Page Distribution

4 CONCLUSION
The emerging Multi-GPU shows new performance characteristics
and optimization opportunities. This study shows unresolved limi-
tations such as scalability and imbalance in RDMA accesses, DRAM
accesses, page distribution across GPUs. Those problems need to
be addressed by future research.
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