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ABSTRACT 1 INTRODUCTION

General Purpose Graphics Processing Units (GPGPU) are used in
most of the top systems in HPC. The total capacity of scratchpad
memory has increased by more than 40 times in the last decade.
However, existing optimizations for stencil computations using tem-
poral blocking have not aggressively exploited the large capacity of
scratchpad memory. This work uses the 2D Jacobian 5-point itera-
tive stencil as a case study to investigate the use of large scratchpad
memory. Unlike existing research that tiles the domain in a thread
block fashion, we tile the domain so that each tile is large enough to
utilize all available scratchpad memory on the GPU. Consequently,
we process several time steps inside a single tile before offloading
the result back to global memory. Our evaluation shows that our
performance is comparable to state-of-the-art implementations, yet
our implementation is much simpler and does not require auto-
generation of code.
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When observing the previous generations of GPUs, Nivida GPUs
for instance, there is a clear trend of increase in the cache capacity.
Especially the volume of scratchpad memory (or shared memory
in CUDA [2]) increased from 720 KB in K20 (2013) to 17.30 MB in
A100 (2020). The latest H100 (2023) GPU even pushes max usable
shared memory to be 29.83 MB to more than 200 KB per stream
multiprocessor(SM).

GPU optimizations that are commonly used in HPC applications
were designed mostly assuming that scratchpad memory is not
larger than 100 KB per stream multiprocessor [3]. There is a poten-
tial in leveraging the untapped scratchpad memory to aggressively
optimize for data locality.

In this work, we use a case study kernel commonly used in HPC
applications, namely 2D Jacobian 5-point iterative stencil, to fully
take advantage of the scratchpad memory for tiling data in an un-
usual way. More specifically, we run each of the tiles in a serial
fashion one after the other while aggressively using the shared
memory to run each tile entirely from shared memory. We use
device-wide synchronization to resolve the spatial dependency be-
tween thread blocks. We demonstrate a new approach to leverage
the large capacity of shared memory by proposing a temporal block-
ing stencil scheme that optimizes for peak data locality, i.e. running
the entire problem from shared memory. Our method is much sim-
pler than complex temporal blocking schemes; iterative kernels that
use our methods can be manually written, unlike complex temporal
schemes that require auto-generation of code.

2 RELATED WORK

Temporal blocking [1, 4] tiles the domain and processes the domain
with in combined time steps. Due to space limitations, we mainly
review StencilGen [4] and AN5D [1]. Both works used 2.5D or 3.5D
tiling and relied on code auto generation for performance optimiza-
tion. In addition, they relied on overlapped tiling within thread
blocks. They did not exploit the inter thread block data exchange
pattern. Regarding the usage of scratchpad memory, StencilGen
stores all combined time steps in scratchpad memory; AN5D uses
scratchpad memory conservatively for double buffer. As a result, in
the j2d5pt double-precision kernel. StencilGen and AN5D consumed
about 4.32 MB and 0.864 MB scratchpad memory, respectively. So,
both AN5D and StencilGen left most of the scratchpad memory
untapped, and are overly complex to implement.
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Listing 1: Pseudo code for j2d5pt stencil kernel function
//kernel function don 't assume whether ptr_in and ptr_out is in
device memory or scratchpad memory
__device__ void j2d5pt(ptr_in, ptr_out, loc_x,
x = threadldx.x;
t[ILP+2]; //ILP: instruction level parallel
for(y=0; y< ILP+2; y++){
t[y]=ptr_in[x, y+ind_y-1];
for( y=0; y< ILP; y++){
result[y]=ptr_in[x+loc_x -1,y+1+loc_y ]+W
+ptr_in[x+loc_x+1,y+1+loc_y]+E
+t[y-1+1]«S
+t[y+1]« C
+t[y+1+1]«N;

loc_y){

}

}
for( y=0; y< ILP; y++){
ptr_out[x+loc_x ,y+loc_y] = result[y];
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Figure 1: How DTB processes the tiles. DTB loads the tile to
populate the scratchpad memory with the input, processes T
time steps, and then stores the results to the output address.
DTB processes tiles in a serial order.

3 DEEP TEMPORAL BLOCKING (DTB)
3.1 Basic function

Listing 1 shows the base kernel function we used in this case
study. We only modified the input and output pointer location to
use scratchpad memory. In this kernel, we move the time loop from
the host side to he be inside the kernel. Next, we tile the domain of
the problem spatially and run the tiles in a serial fashion. For each
tile, we run it entirely to completion, over all its time steps, before
we start on the next tile.

3.2 Dependency Between Thread Blocks

We use the CUDA grid-level barrier to ensure that each thread
block can exchange the halo region correctly. We use the bulk
synchronous parallel (BSP) model.

3.3 Processing the Tiles in Order

After we load a tile into the scratchpad memory, we process the
tile for several time steps (temporal blocking) before moving to the
next tiling. Figure 1 shows the process.

4 EVALUATION

We compare DTB with StencilGen [4] and AN5D [1], the state-
of-the-art implementations for temporal blocking for stencils (a
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Figure 2: Comparing the performance of DTB with other
state-of-the-art temporal blocking implementations (SOTAs),
i.e., StencilGen [4] and AN5D [1]. The temporal blocking
depth (number of time steps) is marked inside the parenthe-
ses. DTB runs a 8592 x 8328 domain. DBT_pruned, StencilGen,
and AN5D run 81922 domain size. We use the valid domain
to evaluate the performance. DTB shows comparable perfor-
mance with other SOTAs.

domain size of 8192%). We used 8592 x 8328 to run the DTB. We
also report a pruned version that considers 81922 as a valid domain
size. Figure 2 shows the result: the performance of DTB is compa-
rable to that of state-of-the-art temporal blocking implementations
(SOTAsS).

5 CONCLUSION

In this work, we discuss a case study on the use of scratchpad
memory for DTB on the j2d5pt stencil. Instead of applying a com-
plex temporal blocking implementation, we just tile the domain
so that each tile fully occupies the scratchpad memory. Evaluation
shows that DTB is compatible with other SOTAs. We anticipate
that DTB could perform even better on a larger scratchpad memory
architecture, which would be explored in future work.
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