2306.03336v1 [cs.DC] 6 Jun 2023

arXiv

Exploiting Scratchpad Memory for Deep Temporal Blocking

A case study for 2D Jacobian 5-point iterative stencil kernel (j2d5pt)

Lingqi Zhang Mohamed Wahib Peng Chen Jintao Meng
Tokyo Tech RIKEN R-CCS AIST SIAT
AIST Japan RIKEN R-CCS China
Japan Japan
Xiao Wang Toshio Endo Satoshi Matsuoka
ORNL Tokyo Tech RIKEN R-CCS
USA Japan Tokyo Tech
Japan
ABSTRACT 1 INTRODUCTION

General Purpose Graphics Processing Units (GPGPU) are used in
most of the top systems in HPC. The total capacity of scratchpad
memory has increased by more than 40 times in the last decade.
However, existing optimizations for stencil computations using tem-
poral blocking have not aggressively exploited the large capacity of
scratchpad memory. This work uses the 2D Jacobian 5-point itera-
tive stencil as a case study to investigate the use of large scratchpad
memory. Unlike existing research that tiles the domain in a thread
block fashion, we tile the domain so that each tile is large enough to
utilize all available scratchpad memory on the GPU. Consequently,
we process several time steps inside a single tile before offloading
the result back to global memory. Our evaluation shows that our
performance is comparable to state-of-the-art implementations, yet
our implementation is much simpler and does not require auto-
generation of code.

CCS CONCEPTS

« Computing methodologies — Vector/ streaming algorithms;
Massively parallel algorithms;

KEYWORDS
GPGPU, Temporal Blocking, Iterative Stencil Solvers

ACM Reference Format:

Lingqi Zhang, Mohamed Wahib, Peng Chen, Jintao Meng, Xiao Wang,
Toshio Endo, and Satoshi Matsuoka. 2023. Exploiting Scratchpad Memory
for Deep Temporal Blocking: A case study for 2D Jacobian 5-point iterative
stencil kernel (j2d5pt). In 15th Workshop on General Purpose Processing Using
GPU (GPGPU ’23), February 25, 2023, Montreal, Canada. ACM, New York,
NY, USA, 2 pages. https://doi.org/10.1145/3589236.3589242

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

GPGPU ’23, February 25, 2023, Montreal, Canada

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0776-6/23/02...$15.00
https://doi.org/10.1145/3589236.3589242

When observing the previous generations of GPUs, Nivida GPUs
for instance, there is a clear trend of increase in the cache capacity.
Especially the volume of scratchpad memory (or shared memory
in CUDA [2]) increased from 720 KB in K20 (2013) to 17.30 MB in
A100 (2020). The latest H100 (2023) GPU even pushes max usable
shared memory to be 29.83 MB to more than 200 KB per stream
multiprocessor(SM).

GPU optimizations that are commonly used in HPC applications
were designed mostly assuming that scratchpad memory is not
larger than 100 KB per stream multiprocessor [3]. There is a poten-
tial in leveraging the untapped scratchpad memory to aggressively
optimize for data locality.

In this work, we use a case study kernel commonly used in HPC
applications, namely 2D Jacobian 5-point iterative stencil, to fully
take advantage of the scratchpad memory for tiling data in an un-
usual way. More specifically, we run each of the tiles in a serial
fashion one after the other while aggressively using the shared
memory to run each tile entirely from shared memory. We use
device-wide synchronization to resolve the spatial dependency be-
tween thread blocks. We demonstrate a new approach to leverage
the large capacity of shared memory by proposing a temporal block-
ing stencil scheme that optimizes for peak data locality, i.e. running
the entire problem from shared memory. Our method is much sim-
pler than complex temporal blocking schemes; iterative kernels that
use our methods can be manually written, unlike complex temporal
schemes that require auto-generation of code.

2 RELATED WORK

Temporal blocking [1, 4] tiles the domain and processes the domain
with in combined time steps. Due to space limitations, we mainly
review StencilGen [4] and AN5D [1]. Both works used 2.5D or 3.5D
tiling and relied on code auto generation for performance optimiza-
tion. In addition, they relied on overlapped tiling within thread
blocks. They did not exploit the inter thread block data exchange
pattern. Regarding the usage of scratchpad memory, StencilGen
stores all combined time steps in scratchpad memory; AN5D uses
scratchpad memory conservatively for double buffer. As a result, in
the j2d5pt double-precision kernel. StencilGen and AN5D consumed
about 4.32 MB and 0.864 MB scratchpad memory, respectively. So,
both AN5D and StencilGen left most of the scratchpad memory
untapped, and are overly complex to implement.

https://doi.org/10.1145/3589236.3589242
https://doi.org/10.1145/3589236.3589242

GPGPU 23, February 25, 2023, Montreal, Canada

Listing 1: Pseudo code for j2d5pt stencil kernel function
//kernel function don 't assume whether ptr_in and ptr_out is in
device memory or scratchpad memory
__device__ void j2d5pt(ptr_in, ptr_out, loc_x,
x = threadldx.x;
t[ILP+2]; //ILP: instruction level parallel
for(y=0; y< ILP+2; y++){
t[y]=ptr_in[x, y+ind_y-1];
for(y=0; y< ILP; y++){
result[y]=ptr_in[x+loc_x -1,y+1+loc_y]+W
+ptr_in[x+loc_x+1,y+1+loc_y]+E
+t[y-1+1]«S
+t[y+1]« C
+t[y+1+1]«N;

loc_y){

}

}
for(y=0; y< ILP; y++){
ptr_out[x+loc_x ,y+loc_y] = result[y];

Time step K+T

Store to T Domain

global memory

Scratchpad Tlmell step TlmeTs(ep
memory of a
whole GPU
2
Load from L halo .
global memory Domain

Time step K

Tiles Processed in Serial Order

Figure 1: How DTB processes the tiles. DTB loads the tile to
populate the scratchpad memory with the input, processes T
time steps, and then stores the results to the output address.
DTB processes tiles in a serial order.

3 DEEP TEMPORAL BLOCKING (DTB)
3.1 Basic function

Listing 1 shows the base kernel function we used in this case
study. We only modified the input and output pointer location to
use scratchpad memory. In this kernel, we move the time loop from
the host side to he be inside the kernel. Next, we tile the domain of
the problem spatially and run the tiles in a serial fashion. For each
tile, we run it entirely to completion, over all its time steps, before
we start on the next tile.

3.2 Dependency Between Thread Blocks

We use the CUDA grid-level barrier to ensure that each thread
block can exchange the halo region correctly. We use the bulk
synchronous parallel (BSP) model.

3.3 Processing the Tiles in Order

After we load a tile into the scratchpad memory, we process the
tile for several time steps (temporal blocking) before moving to the
next tiling. Figure 1 shows the process.

4 EVALUATION

We compare DTB with StencilGen [4] and AN5D [1], the state-
of-the-art implementations for temporal blocking for stencils (a

Lingqi Z. et al.
300
225 215 204 230
»
] 200
3
& 100
0
DTB (40) DTB_pruned (40) StencilGen(4) ANS5D(10)

Figure 2: Comparing the performance of DTB with other
state-of-the-art temporal blocking implementations (SOTAs),
i.e., StencilGen [4] and AN5D [1]. The temporal blocking
depth (number of time steps) is marked inside the parenthe-
ses. DTB runs a 8592 x 8328 domain. DBT_pruned, StencilGen,
and AN5D run 81922 domain size. We use the valid domain
to evaluate the performance. DTB shows comparable perfor-
mance with other SOTAs.

domain size of 8192%). We used 8592 x 8328 to run the DTB. We
also report a pruned version that considers 81922 as a valid domain
size. Figure 2 shows the result: the performance of DTB is compa-
rable to that of state-of-the-art temporal blocking implementations
(SOTAsS).

5 CONCLUSION

In this work, we discuss a case study on the use of scratchpad
memory for DTB on the j2d5pt stencil. Instead of applying a com-
plex temporal blocking implementation, we just tile the domain
so that each tile fully occupies the scratchpad memory. Evaluation
shows that DTB is compatible with other SOTAs. We anticipate
that DTB could perform even better on a larger scratchpad memory
architecture, which would be explored in future work.

ACKNOWLEDGMENTS

This work was supported by JSPS KAKENHI under Grant Number
JP21K17750. This paper is based on results obtained from a project,
JPNP20006, commissioned by the New Energy and Industrial Tech-
nology Development Organization (NEDO). This research used
resources at the Oak Ridge Leadership Computing Facility, a DOE
Office of Science User Facility operated by the Oak Ridge National
Laboratory. The authors wish to express their sincere appreciation
to Jens Domke, Aleksandr Drozd, Emil Vatai and other RIKEN R-
CCS colleagues for their invaluable advice and guidance throughout
the course of this research. Finally, the first author would also like to
express his gratitude to RIKEN R-CCS for offering the opportunity
to undertake this research in an intern program.

REFERENCES

[1] Kazuaki Matsumura, Hamid Reza Zohouri, Mohamed Wahib, Toshio Endo, and
Satoshi Matsuoka. 2020. AN5D: automated stencil framework for high-degree
temporal blocking on GPUs. In CGO °20: 18th ACM/IEEE International Symposium
on Code Generation and Optimization, San Diego, CA, USA, February, 2020. 199-211.
https://doi.org/10.1145/3368826.3377904

[2] Nvidia. 2022. CUDA Programming guide. https://docs.nvidia.com/cuda/cuda-c-
programming- guide/index.html

[3] Prashant Singh Rawat. 2018. Optimization of stencil computations on GPUs. Ph.D.
Dissertation. The Ohio State University.

[4] Prashant Singh Rawat, Miheer Vaidya, Aravind Sukumaran-Rajam, Mahesh Ravis-
hankar, Vinod Grover, Atanas Rountev, Louis-Noél Pouchet, and P Sadayappan.
2018. Domain-specific optimization and generation of high-performance GPU
code for stencil computations. Proc. IEEE 106, 11 (2018), 1902-1920.

https://doi.org/10.1145/3368826.3377904
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

	Abstract
	1 Introduction
	2 Related work
	3 Deep temporal blocking (DTB)
	3.1 Basic function
	3.2 Dependency Between Thread Blocks
	3.3 Processing the Tiles in Order

	4 Evaluation
	5 Conclusion
	Acknowledgments
	References

