
LATOA: Load-Aware Task Offloading and Adoption in GPU
Hossein Bitalebi

KTH Royal Institute of Technology
Sweden, Stockholm

hobita@kth.se

Vahid Geraeinejad
KTH Royal Institute of Technology

Sweden, Stockholm
vahidg@kth.se

Farshad Safaei
Shahid Beheshti University

Iran, Tehran
f_safaei@sbu.ac.ir

Masoumeh Ebrahimi
KTH Royal Institute of Technology

Sweden, Stockholm
mebr@kth.se

ABSTRACT
The emerging new applications, such as data mining and graph
analysis, demand extra processing power at the hardware level.
Conventional static task scheduling is no longer able to meet the
requirements of such complicated applications. This inefficiency
is a major concern when the application is supposed to run on a
Graphics Processing Unit (GPU), where millions of instructions
should be distributed among a limited number of processing cores.
A non-optimal scheduling strategy leads to unfair load distribution
among the GPU’s processing cores. Consequently, while busy cores
are stalled due to the lack of resources, waiting for their data from
the main memory, other cores are idle, waiting for busy cores to
complete their tasks. Our study introduces LATOA, a Load-Aware
Task Offloading and Adoption method that tackles this problem
by reducing both stall and idle cycles. LATOA is the first study
moving from static to dynamic task scheduling based on run-time
information obtained from theMiss Status Holding Register (MSHR)
tables. In LATOA, all processing cores are dynamically tagged with
critical, neutral, or relaxed states. Then, irregular warps with low
locality properties are detected and offloaded from critical cores
(going to the stall state) to relaxed ones (going to the idle state).
Based on our experiments, LATOA reduces the number of stall
cycles on average by 24% and increases the neutral states on average
by 38%. In addition, with negligible hardware overhead, LATOA
improves system performance and power efficiency on average by
26% and 7%, respectively.

KEYWORDS
GPU, cache access, offloading, adoption, unbalanced load distribu-
tion, irregularity, locality, stall cycle
ACM Reference Format:
Hossein Bitalebi, Vahid Geraeinejad, Farshad Safaei, andMasoumeh Ebrahimi.
2023. LATOA: Load-Aware Task Offloading and Adoption in GPU. In 15th
Workshop on General Purpose Processing Using GPU (GPGPU ’23), Febru-
ary 25, 2023, Montreal, Canada. ACM, New York, NY, USA, 7 pages. https:
//doi.org/10.1145/3589236.3589243

This work is licensed under a Creative Commons Attribution International
4.0 License.

GPGPU ’23, February 25, 2023, Montreal, Canada
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0776-6/23/02.
https://doi.org/10.1145/3589236.3589243

Figure 1: An overall scheme (a) GPU platform; (b) Application
running on GPU

1 INTRODUCTION
Graphics Processing Unit (GPU) is renowned for its ability to run
thousands of threads at the same time in the form of Thread Level
Parallelism (TLP) [10]. Figure 1(a) shows a conventional GPU ar-
chitecture according to the NVIDIA term. The architecture consists
of Streaming Multiprocessors (SMs), each with a register file, an L1
private cache, and several Streaming Processors (SPs) to form Sin-
gle Instruction Multiple Thread (SIMT). If data cannot be provided
by the L1 cache, requests would be sent to the memory controller
through the interconnection network to access the L2 cache and
the main memory.

From the application perspective, an application is composed of
several kernels, as shown in Figure 1(b). Each kernel is divided into
multiple thread blocks (TB). TB is the smallest unit of assignment to
the cores. During the execution of an application, one or several TBs
may be assigned to a processing core by the TB scheduler. Further,
each TB is divided into several warps where the execution of warps
is independent of each other. Each warp is composed of a number of
threads that, in the utilized architecture, is equal to the number of
SPs. Then, each thread is assigned to one SP for parallel execution.
The warp scheduler aims to order warps to reduce execution time
and enhance thread-level parallelism.

If the execution of a warp stalls due to the L1 miss, the process-
ing core proceeds with the execution of the next warp. In case all

7

https://doi.org/10.1145/3589236.3589243
https://doi.org/10.1145/3589236.3589243
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3589236.3589243
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3589236.3589243&domain=pdf&date_stamp=2023-06-20


GPGPU ’23, February 25, 2023, Montreal, Canada Hossein Bitalebi, Vahid Geraeinejad, Farshad Safaei, and Masoumeh Ebrahimi

Figure 2: Average processing core’s stall cycles during the
application execution

warps stall, waiting for their data from the lower levels of the mem-
ory hierarchy, the entire core goes to the stall state. Our primary
analysis (see Table 2 for simulation setup), depicted in Figure 2,
shows that the average stall cycles of cores are very large under
different examined applications (listed in Table 1). As can be seen
from this figure, the stall rate ranges from 25% in LIB and RAY to
around 75% in the BFS benchmark. On average, 40% of cores are
stalled, waiting for their memory requests to be responded to. The
execution of an application will not be finished until all processing
cores complete their duties. Thereby, slow cores become a barrier to
performance. This has motivated us to propose a solution to reduce
the number of stall states of the processing cores and thus improve
GPU performance. We propose a Load-Aware Task Offloading and
Adoption method (LATOA) to balance the load among the GPU
processing cores based on run-time information. LATOA provides
a simple yet effective approach to determine irregular warps for
offloading from critical cores (red SMs in Figure 1(a)) to the neigh-
boring relaxed cores (blue SMs in Figure 1(a)). With this scheme,
LATOA not only affects the system’s performance by providing
balanced load distribution among the SMs but also improves the
locality property of a critical SM by offloading the irregular warps
at run-time.

To the best of our knowledge, this is the first effort to dynamically
determine the status of the processing cores at run-time, determine
suitable warps for offloading, and send the selected warps to the
relaxed cores for adoption. The main contributions of this paper
are as follows:

• We monitor the execution behavior of the GPU cores to de-
termine their states in terms of load pressure at run-time and
whether a core is close to its stall or idle state. Accordingly,
cores are dynamically tagged with one of the three states:
Relaxed, Neutral, and Critical. We define threshold values
based on the information of the L1 missed status table.

• We propose a mechanism to determine the warps that should
be offloaded, with the aim of bringing the most benefit to the
critical core and avoiding them from entering the stall state.
In addition, we select a relaxed core among the neighboring
cores to adopt the warps with the goal of preventing the core
from entering an early idling state.

• We perform an extensive set of analyses on a large set of
benchmark suits, confirming the superior benefits of LATOA
over the baseline and a state-of-the-art method in achieving
dynamic load balancing. LATOA is able to reduce the num-
ber of stall cycles and improve the system performance on
average by 24% and 26%, respectively.

2 RELATEDWORK
In recent years, GPU has played a significant role in accelerating
new emerging applications such as speech recognition, image and
video classification, and data analysis. Enormous studies and efforts
have been dedicated to improving GPU efficiency in processing
these intricate applications [17, 18]. In the following, we review
some of these studies.

Task Scheduling: Efficient task and resource scheduling and
management have always been an important area of research. Sev-
eral studies have tried to optimize the warp scheduler within a
processing core to maximize TLP [7, 8, 20]. Various techniques have
been proposed to efficiently allocate TBs to the processing cores
[14, 22, 23]. However, these works have mostly focused on distribut-
ing TBs among the processing cores based on static compile-time
information. In other words, they have neglected the consequences
of static TB distribution on different cores at run-time.

Resource Utilization: Despite the potential of parallel process-
ing in GPU, the TLP rate could drop significantly due to stall cycles.
There are numerous studies to facilitate GPU application execution
by improving TLP [16]. Most of these works demand extra process-
ing and storage resources despite the fact that there are noticeable
unutilized resources available due to the processing cores’ stall
cycles. Another group of studies has suggested utilizing available
resources while waiting for the response from the main memory
[12, 15, 19, 25]. NURA [6] has proposed a resource-sharing process
to take advantage of the stalled cores’ resources such as shared
memory and register file in favor of active cores. Zorua et al. [24]
has developed a compiler-based approach to utilize the shared mem-
ory as the swap space for context switching among TBs through
virtualizing the resources. Kim et al. [13] proposed warp instruction
reuse, allowing repeated warp instructions to reuse the results of
previous computations instead of re-executing similar instructions.
Chao et al. [26] has focused on increasing the register file size to
improve the TLP rate by utilizing the shared memory space as a
register file. In [2], the impact of distributing the processing cores
on the memory hierarchy levels has been studied, which showed
to enhance near-memory processing and thus performance.

3 BACKGROUND AND MOTIVATION
In this section, we first explain the functionality of the MSHR table
which is an important resource to extract run-time information.
Then, we shortly explain the issue of static task scheduling in GPU.

3.1 MSHR Table
Each cache bank at different levels of the memory hierarchy holds
a table called Miss Status Holding Register (MSHR), which keeps
the status of the missed cache accesses. Figure 3 shows an MSHR
table that is used in a conventional GPU. MSHR is composed of
several entries, where each entry contains the cache block address
and the number of slots. A slot holds the information on the missed
accesses, such as requester ID, format bits, offset bits, and the data
buffer.

Cache misses can be classified into two categories: 1) Primary
miss: indicating that the existing cache lines do not contain the
newly requested address, and thus a new MSHR entry must be
assigned to the new request. Entry-Pointer (in Figure 3) is used

8



LATOA: Load-Aware Task Offloading and Adoption in GPU GPGPU ’23, February 25, 2023, Montreal, Canada

Figure 3: A conventional MSHR table in GPU

to track the number of primary misses; and 2) Secondary miss:
showing that the newly requested address shares the same cache
line as the previous miss(es). In that case, no new entry will be
assigned to the request in MSHR since the cache line is already
in progress to be provided. Instead, a new slot in the matching
entry is allocated to the request. Slot-Pointer (in Figure 3) is used
to trace the number of filled slots of an entry [9]. As shown in the
figure, memory requests are issued in the FIFO fashion, with Entry
1 always being the next memory request to be transmitted. After a
request is issued, all entries will be shifted down.

As long as there are empty entries in MSHR, the cache can accept
new misses from the processing cores. However, if all entries are
filled up, the core has to be stalled as it cannot proceed with the next
instruction with a miss access. Irregular memory requests are one
of the main reasons leading to early MSHR overflow and core stalls.
Irregularity refers to a memory request that is not synchronized
with most existing requests (i.e., low locality rate among different
memory requests). In this case, an entire entry should be allocated
to the address block needed by the irregular request, while due to
request irregularity, this address block might not be used by current
and probably future memory requests. This is similar to entries 1
and 8 in Figure 3 with a single slot filled in. In this study, the warps
that produce irregular memory requests are named irregular warps.
As another consequence, when the data block is returned back, the
cache controller may have to evict one of the current data lines,
which might be highly demanded, and bring in a new one with a
lower chance of reuse [27].

3.2 Processing Cores’ Load Unbalance
As previously mentioned, the execution of an application is finished
when all processing cores have completed their duties. This puts the
slower cores as a barrier to performance. Our study confirms the fact
that different processing cores within a GPU do not follow the same
execution time. While some cores are busy with handling irregular
requests (e.g., branch predictions), others are relaxed. These busy
cores usually spend a considerable number of stall cycles waiting for
a response from the main memory associated with their irregular
memory requests. On the other hand, cores that are not stuck in the
trap of requests’ irregularity perform their duties normally without
facing any specific pipeline stalls. Nevertheless, these cores have
to remain idle until busy cores complete their tasks, thus suffering
from under-utilization.

The issue is due to the fact that conventional TB scheduling
methods rely on compile-time information, trying to equally dis-
tribute TBs among the processing cores [1]. However, the execution

behavior and the processing time of a TB cannot be accurately pre-
dicted at the compile time due to the uncertainty of input values
and conditional branches. Therefore, we argue that tasks should be
fairly assigned to cores based on run-time information rather than
distributed equally based on compile-time information. LATOA
takes advantage of the MSHR table to make run-time decisions in
order to uniform load balancing among all processing cores.

4 WARP OFFLOADING/ADOPTION
Despite the enormous processing potential of GPU owing to the
power of task parallelism, the processing cores might switch to
the stall state for many execution cycles. This might happen due
to resource limitations where all entries of the MSHR table are
filled in and waiting for the data from the lower memory hierarchy
levels. To reduce the stall states, we detect the processing cores that
are more likely to get stalled and offload their irregular warps to
the relaxed cores, which might face idle cycles. LATOA consists of
three major steps, explained as follows:

4.1 Candidate Cores for Offloading
We tag the cores with three states as Critical, Neutral, and Relaxed.
Whenever a core is likely to switch to the stall state, we name it
a critical core. On the contrary, the core that is away from the
irregularity issues and may enter an idle state is named a relaxed
core. There is a third type of core that we call a neutral core.
These cores are neither critical nor relaxed. Our ultimate goal is
to enable all cores to operate in their neutral state. According to
our evaluations, the number of unresponded memory requests in
a processing core is directly linked to the state of the core. The
number of filled entries in the MSHR table is a reliable indicator
that a core is close to go to the stall or idle state.

We divide the number of MSHR entries (i.e., 64 in our experi-
ments) into three equal levels to categorize processing cores into
one of the three aforementioned processing states. The cores with
the filled entries between zero and 1/3 of the total number of MSHR
entries (i.e., 21 in our experiment) are tagged as relaxed; the cores
with filled entries between 1/3 to 2/3 are tagged as neutral, and the
cores with filled entries of more than 2/3 are tagged as critical. To
hold the core state, a 2-bit flag is considered to store one of three
states. The processing core is relaxed, neutral, and critical if the
flag is set to 00, 01/10, or 11, respectively.

When a core is tagged as critical, certain warps should be se-
lected for offloading, which could benefit the critical core the most.
This is done by exploring the irregularity rate of the L1 missed
memory requests through the MSHR table information, which will
be discussed next.

4.2 Candidate Warps for Offloading
Now that we have identified the critical cores, we must select suit-
able warps for offloading, as random warp offloading may hurt the
overall performance by imposing extra overhead. We provide a
mechanism to determine the warps that generate irregular memory
accesses within a critical processing core and offload them into the
relaxed cores.

4.2.1 Instruction Type. Various types of instructions are required to
complete the execution of an application. For example, conditional

9



GPGPU ’23, February 25, 2023, Montreal, Canada Hossein Bitalebi, Vahid Geraeinejad, Farshad Safaei, and Masoumeh Ebrahimi

instructions, such as Jump, are performed without needing any
operands. Furthermore, instructions responsible for calculating
effective addresses do not need to access any memory hierarchy
levels. In this study, we consider warp as a potential candidate for
offloading if all of the threads within the warp are running the same
instruction with two independent operands which need to access
one of the memory hierarchy levels (L1, LLC, or main memory).
An example of a two-operand instruction is “Addition”. With two-
operand instructions, four cache patterns exist as hit-hit, hit-miss,
miss-hit, and miss-miss. Except for the hit-hit pattern, which will
be immediately responded to, the address block(s) of the cache miss
access(es) has to be stored in the corresponding entry(s)/slot(s) of
the MSHR table. In sum, two-operand instructions with at least one
miss access are considered the candidates for offloading. Among
these candidates, the ones with irregular memory access requests
are selected for offloading as will be discussed in the next subsection.

4.2.2 Warps Irregularity. During task scheduling, some process-
ing cores may receive the portion of the application that imposes
divergent execution flow and repeatedly calls for data blocks that
are not located in the cache lines. In other words, the rate of the
locality property among the memory requests becomes very low
[3, 4]. As a result, data blocks that are currently located in the cache
(after the costly data movement from the main memory) cannot be
reused effectively and should be evicted from the cache lines due to
the variety of the demanded data blocks. Under this circumstance,
the cache fails to work efficiently in dealing with irregular parts
of the application, and the rate of cache misses will dramatically
increase. Consequently, MSHR entries are quickly filled up, which
leads to the core stall.

To identify irregular warps, we utilize the number of filled slots
in an MSHR table, which we believe is a beneficial criterion of the
(ir)regularity of the requested address block. The larger number of
filled slots in an entrymeans a better regularity of the corresponding
memory block, whereas the small number of filled slots indicates a
poor locality. Accordingly, we count the number of filled slots of
an entry and compare it to a threshold value. The threshold value
is considered to be 25% of the total number of slots in an entry,
confirmed experimentally to be a suitable threshold.

Thereby, an entry is counted as unpopular if it is filled by less
than or equal to 25% of its total number of slots. Considering an
MSHR table with 16 slots per entry, similar to our experiments,
the threshold value will be 4. If the number of filled slots of the
examined entry is greater than 4, it implies the memory access is
regular, and thus the importance of the data block. So, it is desirable
to bring the required data block to the cache rather than offloading
the corresponding warp to another core. However, a value less
than 4 indicates the unpopularity of the data block, and thus warps
belonging to all slots in that entry are counted as irregular and thus
offloaded. Consequently, the entire entry will be emptied. In case
the cache access pattern of an offloaded warp is miss-miss, then the
second slot should also be discarded from the corresponding entry
and slot of the MSHR table.

4.3 Offloading Warps
As was mentioned already, warps’ execution is independent of each
other, so there is not any dependency problem with offloading.

Table 1: Benchmarks’ specification

Name Abrr. Suite Name Abrr. Suite
Breadth first search BFS Rodinia LIBOR LIB CUDA
Kmeans KMN Rodinia Ray tracing RAY CUDA
Neural network NN Rodinia Scan SCN CUDA
SRAD SRA Rodinia Fast walsh FWT CUDA

transform
Reduction RED Rodinia Weather WP CUDA

prediction
Mummergpu MUM Rodinia StoreGPU STO CUDA
Hotspot HS Parboil

Table 2: GPU configuration

Parameter Baseline GPU configuration
Total cores 56 processing cores
Per core 32 warp width, 8 TBs, 1536 threads, 32768 registers

48 KB scratchpad memory, round robin TB scheduling
L1 data cache 32 KB, 4-way, 128B block size, MSHR: 64 entry, 16 slots
LLC (L2) cache 8 x 128K, 16-way,
Memory FR-FCFS scheduler, DDR3-1333H, 8 memory channel
Core, L2 clock 700 MHz, 700 MHz
Interconnect 2D mesh, XY routing, 1 core/node, 4 VCs,

4 routing latency, 1 channel latency

When a warp is offloaded to another SM, all its valid data is also
offloaded to the new SM. On the host side, the offloading behaves
like a normal warp that has finished all its executions and should
be terminated. On the guest side, it looks like a new warp has been
assigned to the SM with some initial values.

LATOA suggests offloading warps from Entry 7 of the MSHR
table (see Figure 3). The reason is that offloading from the oldest
requests (i.e., Entry 1 to 6) may cause pipeline stalls in the archi-
tecture (the concept is out of the scope of this paper). On the other
hand, offloading from one of the newest filled entries (e.g., Entry 8)
is unsuitable as the later requests may demand the same address
block, leading to more filled slots for that entry in the future.

4.4 Candidate Core for Warp Adoption
Now that we have identified the critical cores and the irregular
warps for offloading, we need to find a suitable relaxed core for
adopting warps. This, in turn, prevents the relaxed core from en-
tering an early idling state. Offloading a warp without considering
the core’s position in the network may lead to additional network
traffic. To minimize the offloading overhead to the interconnection
network, relaxed cores will only be selected among the neighboring
cores.

Considering a mesh topology (see Figure 1), each router is con-
nected to four neighbors except for the border and corner cores. To
this end, each core is equipped with a 4-bit register to hold the state
of its neighbors, where 1-bit is allocated to each neighbor. When a
core switches to the relaxed state, it propagates a positive signal to
its neighbors, showing that the core is ready to adopt warps. On
the contrary, when a core exits the relaxed state, it propagates a
negative signal to the neighbors, announcing that the core is no
longer interested in adopting a new warp. The critical core checks
its 4-bit status register in a specific order (e.g., East, North, West,
and South) to find the first relaxed core for offloading its warps. To
maintain locality in the new host, the warps will be offloaded to
the selected core until it is no longer in its relaxed state.

10



LATOA: Load-Aware Task Offloading and Adoption in GPU GPGPU ’23, February 25, 2023, Montreal, Canada

5 EVALUATION
In this section, LATOA is evaluated and analyzed in various aspects,
including performance, power efficiency, processing core states, and
cost overhead. In addition to the baseline, LATOA is compared with
one of the state-of-the-art schemes, CLAMS [11]. In CLAMS, each
core is given a ranking, calculated by dividing the number of ready-
warps by the total number of warps (i.e., ready and block warps) in
a core, which is a value between 0 and 1. This ranking is carried
out by packets to the memory controller where memory requests
are prioritized based on their rankings (or ranking range). In this
way, requests from critical cores will be served earlier, balancing
the execution time of all cores.

5.1 Simulation Setup
LATOA is implemented by GPGPU-Sim v3.2 [1], a cycle-accurate
simulator according to the Fermi-liked architecture. We have used
various benchmarks from different benchmark suits such as Rodinia
[5], Parboil [21], and CUDA SDK [28], listed in Table 1. As shown
in Table 2, the baseline architecture has 56 processing cores, and
each core has a 32 KB private L1 data cache. Cores have access to
8*128 KB shared L2 cache through the interconnection network.

5.2 Performance Evaluation
Figure 4 illustrates performance reports normalized to the baseline,
evaluated on various benchmark suites. The system performance
is reported based on the Instruction-Per-Cycle (IPC) criterion. In
comparison to the baseline, LATOA has successfully increased the
system performance by a maximum of 48% and an average of 26%.
On average, LATOA has achieved 15% better performance improve-
ment than CLAMS over all the benchmarks. Applications like SCN,
MUM, NN, KMN, and FWT are considerably memory intensive.
Which means, they frequently generate memory requests during
the execution. In addition, the load pressure of their processing
cores follows an unbalanced behavior where some cores are relaxed
while others are critical. Such applications with unbalanced load
pressure characteristics at the run time are more likely to take ad-
vantage of LATOA. SCN and MUM, as the representatives of this
group, successfully achieved 48% and 43% performance improve-
ment compared to the baseline, respectively. As is clear from the
figure, even though the BFS application is also memory intensive,
LATOA has not been capable of improving the performance by
more than 4%. The reason is that during the execution of BFS, al-
most all processing cores are in their critical states and there are
not enough relaxed cores for adopting their warps.

Among the tested applications, RAY is heavily sensitive to lo-
cality property among the memory requests. As was mentioned,
LATOA improves the locality property of processing cores by of-
floading irregular requests, thus leaving more space to hold in-use
data blocks. That is why the performance of RAY has significantly
improved by around 20%. On the other hand, LATOA is unable
to improve the performance of STO as STO is severely process
intensive, and most of its requested data is provided by the shared
memory.

Figure 4: Performance evaluation

Figure 5: Power evaluation

5.3 Power Consumption
Figure 5 demonstrates the power efficiency based on Instruction
per Joule (Ins/J) that is normalized to the baseline. LATOA succeeds
in reducing power consumption, on average, by 7% (Ins/J). This
achievement is mainly due to increased data block reusability in crit-
ical cores, lower queuing delay in injection buffers, and lower static
and leakage power consumption because of the reduced stalled
and idle cycles. Contrary to LATOA, CLAMS imposes extra power
overhead on the system by an average 3%. This inefficiency is due
to the complexity of calculating the criticality ranking of processing
cores and additional bytes added to the memory request packets.

5.4 Processing Core States
Various applications usually show different execution behavior.
This makes predicting their demands based on static information a
difficult task to achieve. Due to static task scheduling, some process-
ing cores have to tolerate more load pressure than others. Figure
6(a) depicts processing cores’ states during the application execu-
tion for all the utilized benchmarks. In this figure, the upper portion
of the bars (in red color) demonstrate the average critical state of
all cores for the corresponding application, whereas the middle and
lower portions of the bars (in white and blue colors, respectively)
demonstrate the average neutral and relaxed states of all cores,
respectively. Based on the obtained results, the processing cores
are in their relaxed, neutral, and critical states on average by 29%,
23%, and 48%, respectively, in the baseline architecture. Despite
the significant rate of cores in their critical state, there is a con-
siderable number of processing cores that are relaxed. Therefore,
some processing cores are highly susceptible to switching into the
stall state due to a lack of resources while others may switch to the
idle state with free resources. LATOA, on the other hand, explores
the processing core states at run time and offloads some irregular
instructions from critical cores to relaxed ones.

Figure 6(b) shows the advantage of LATOA in balancing the
load distribution among processing cores by increasing the neutral
states. The average relaxed state and critical state are decreased
by 18% and 20%, respectively. Consequently, LATOA increases the

11



GPGPU ’23, February 25, 2023, Montreal, Canada Hossein Bitalebi, Vahid Geraeinejad, Farshad Safaei, and Masoumeh Ebrahimi

Figure 6: Core state during the applications’ execution.

neutral state of the cores to 61% from that of 23% in the baseline
architecture.

5.5 Hardware Overhead
LATOA imposes negligible cost overhead to the system due to
its simple implementation both in offloading and adoption mech-
anisms. The number of filled entries should be compared with
pre-defined threshold values (i.e. 1/3 and 2/3 of the total number
of entries, as explained in Section 4.1) to determine core states. A
2-bit register per core should be added to hold one of the three core
states. Moreover, for detecting the (ir)regularity of an entry in a
critical core, the number of filled slots should be compared with a
pre-defined threshold value (i.e., 1/4 of the total number of slots, as
discussed in Section 4.2). In both computations, a 6-bit comparator
is sufficient, considering an MSHR table with 64 entries and 16 slots
per entry. We have utilized an already existing comparator in the
MSHR baseline architecture, thus adding no extra overhead. To hold
the state of the neighboring cores, each core has to be equipped
with a 4-bit register.

6 CONCLUSION
This paper tackled the task scheduling issue in GPUs, which results
in a considerable number of the stall and idle cycles in the process-
ing cores. We observed that the cores with higher load suffer from
stall cycles when all entries of their MSHR are filled. On the other
hand, cores with lower loads undergo a short execution cycle and
were forced to go to the idle state until all other cores completed
their duties. We proposed LATOA to detect cores entering the stall
or idle states using the rich run-time information of the MSHR ta-
ble. Then, we proposed an approach to carefully detect and offload
irregular warps with low locality properties. This strategy not only
leaves some MSHR entries empty to prevent the core from switch-
ing to the stall state but also improves the locality property among
current and future requests by avoiding unnecessary eviction of in-
use data blocks from the cache. LATOA showed promising results
by reducing the critical and relaxed states by 20% and 18% while
improving the performance and power efficiency on average by,
26% and 7%.

ACKNOWLEDGMENTS
The research was supported by STINT project MG2018-8007.

REFERENCES
[1] Ali Bakhoda, George L Yuan, Wilson WL Fung, Henry Wong, and Tor M Aamodt.

2009. Analyzing CUDA workloads using a detailed GPU simulator. In IEEE
symposium on ISPASS. IEEE, 163–174.

[2] Hossein Bitalebi, Vahid Geraeinejad, and Masoumeh Ebrahimi. 2022. Near LLC
versus near main memory processing. In Proceedings of the 14th Workshop on
General Purpose Processing Using GPU. 1–6.

[3] Hossein BiTalebi and Farshad Safaei. 2021. LARA: Locality-aware resource
allocation to improve GPU memory-access time. The Journal of Supercomputing
77, 12 (2021), 14438–14460.

[4] Hossein Bitalebi and Farshad Safaei. 2022. Criticality-aware priority to accelerate
GPU memory access. The Journal of Supercomputing (2022), 1–26.

[5] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W Sheaffer, Sang-
Ha Lee, and Kevin Skadron. 2009. Rodinia: A benchmark suite for heterogeneous
computing. In IEEE symposium on workload characterization (IISWC). Ieee, 44–54.

[6] Sina Darabi, Negin Mahani, Hazhir Baxishi, Ehsan Yousefzadeh-Asl-Miandoab,
Mohammad Sadrosadati, and Hamid Sarbazi-Azad. 2022. NURA: A Framework
for Supporting Non-Uniform Resource Accesses in GPUs. Proceedings of the ACM
on Measurement and Analysis of Computing Systems 6, 1 (2022), 1–27.

[7] Cong Thuan Do, Hong Jun Choi, Sung Woo Chung, and Cheol Hong Kim. 2020.
A novel warp scheduling scheme considering long-latency operations for high-
performance GPUs. The Journal of Supercomputing 76, 4 (2020), 3043–3062.

[8] Ahmed ElTantawy and Tor M Aamodt. 2018. Warp scheduling for fine-grained
synchronization. In IEEE Symposium on High Performance Computer Architecture
(HPCA). IEEE, 375–388.

[9] Yongbin Gu and Lizhong Chen. 2019. Dynamically linked MSHRs for adaptive
miss handling in GPUs. In Proceedings of the ACM International Conference on
Supercomputing. 510–521.

[10] SunpyoHong andHyesoon Kim. 2009. An analytical model for a GPU architecture
with memory-level and thread-level parallelism awareness. In Proceedings of the
36th Symposium on ISCA. 152–163.

[11] Adwait Jog, Onur Kayiran, Ashutosh Pattnaik, Mahmut T Kandemir, Onur Mutlu,
Ravishankar Iyer, and Chita R Das. 2016. Exploiting core criticality for enhanced
GPU performance. In Proceedings of the 2016 ACM SIGMETRICS International
Conference on Measurement and Modeling of Computer Science. 351–363.

[12] Farzad Khorasani, Hodjat Asghari Esfeden, Amin Farmahini-Farahani, Nuwan
Jayasena, and Vivek Sarkar. 2018. Regmutex: Inter-warp gpu register time-sharing.
In Symposium on ISCA. IEEE, 816–828.

[13] Keunsoo Kim and Won Woo Ro. 2018. WIR: Warp instruction reuse to minimize
repeated computations in GPUs. In IEEE Symposium on HPCA. IEEE, 389–402.

[14] Ang Li, Shuaiwen Leon Song, Weifeng Liu, Xu Liu, Akash Kumar, and Henk Cor-
poraal. 2017. Locality-aware CTA clustering for modern GPUs. ACM SIGARCH
Computer Architecture News 45, 1 (2017), 297–311.

[15] Zhongjin Li, Victor Chang, Haiyang Hu, Maozhong Fu, Jidong Ge, and Francesco
Piccialli. 2021. Optimizing makespan and resource utilization for multi-DNN
training in GPU cluster. Future Generation Computer Systems 125 (2021), 206–220.

[16] Zhen Lin, Hongwen Dai, Michael Mantor, and Huiyang Zhou. 2019. Coordinated
CTA combination and bandwidth partitioning for GPU concurrent kernel exe-
cution. ACM Transactions on Architecture and Code Optimization (TACO) 16, 3
(2019), 1–27.

[17] Seyed Morteza Nabavinejad, Sherief Reda, and Masoumeh Ebrahimi. 2021. Batch-
Sizer: Power-Performance Trade-off for DNN Inference. In Proceedings of the 26th
Asia and South Pacific Design Automation Conference (ASPDAC ’21). 819–824.

[18] Seyed Morteza Nabavinejad, Sherief Reda, and Masoumeh Ebrahimi. 2022. Co-
ordinated Batching and DVFS for DNN Inference on GPU Accelerators. IEEE
Transactions on Parallel and Distributed Systems (2022).

[19] Roger Pujol, Hamid Tabani, Leonidas Kosmidis, EnricoMezzetti, JaumeAbella Fer-
rer, and Francisco J Cazorla. 2019. Generating and exploiting deep learning
variants to increase heterogeneous resource utilization in the nvidia xavier. In
Euromicro Conference on ECRTS, Vol. 23.

[20] Jayati Singh, Ignacio Sañudo Olmedo, Nicola Capodieci, Andrea Marongiu, and
Marco Caccamo. 2022. Reconciling QoS and concurrency in NVIDIA GPUs via
warp-level scheduling. In Design, Automation & Test in Europe Conference &
Exhibition (DATE). IEEE, 1275–1280.

[21] John A Stratton, Christopher Rodrigues, I-Jui Sung, Nady Obeid, Li-Wen Chang,
Nasser Anssari, Geng Daniel Liu, and Wen-mei W Hwu. 2012. Parboil: A revised
benchmark suite for scientific and commercial throughput computing. Center for
Reliable and High-Performance Computing 127 (2012), 27.

[22] Devashree Tripathy, Amirali Abdolrashidi, Laxmi Narayan Bhuyan, Liang Zhou,
and Daniel Wong. 2021. Paver: Locality graph-based thread block scheduling for
gpus. ACM Transactions on TACO 18, 3 (2021), 1–26.

[23] Devashree Tripathy, Amirali Abdolrashidi, Quan Fan, DanielWong, andManoran-
jan Satpathy. 2021. Localityguru: A ptx analyzer for extracting thread block-level

12



LATOA: Load-Aware Task Offloading and Adoption in GPU GPGPU ’23, February 25, 2023, Montreal, Canada

locality in gpgpus. In 2021 IEEE International Conference on Networking, Architec-
ture and Storage (NAS). IEEE, 1–8.

[24] Nandita Vijaykumar, Kevin Hsieh, Gennady Pekhimenko, Samira Khan, Ashish
Shrestha, Saugata Ghose, Adwait Jog, Phillip B Gibbons, and Onur Mutlu. 2016.
Zorua: A holistic approach to resource virtualization in GPUs. In IEEE/ACM
Symposium on MICRO. IEEE, 1–14.

[25] Myung Kuk Yoon, Keunsoo Kim, Sangpil Lee, Won Woo Ro, and Murali An-
navaram. 2016. Virtual thread: Maximizing thread-level parallelism beyond
GPU scheduling limit. ACM SIGARCH Computer Architecture News 44, 3 (2016),

609–621.
[26] Chao Yu, Yuebin Bai, Qingxiao Sun, and Hailong Yang. 2018. Improving thread-

level parallelism in GPUs through expanding register file to scratchpad memory.
ACM Transactions on TACO 15, 4 (2018), 1–24.

[27] Qi Yu, Bruce Childers, Libo Huang, Cheng Qian, Hui Guo, and Zhiying Wang.
2020. Coordinated page prefetch and eviction for memory oversubscription
management in gpus. In IEEE IPDPS. IEEE, 472–482.

[28] Cyril Zeller. 2011. Cuda c/c++ basics. NVIDIA Coporation (2011).

13


	Abstract
	1 Introduction
	2 Related Work
	3 Background and Motivation
	3.1 MSHR Table
	3.2 Processing Cores' Load Unbalance

	4 Warp Offloading/Adoption
	4.1 Candidate Cores for Offloading
	4.2 Candidate Warps for Offloading
	4.3 Offloading Warps
	4.4 Candidate Core for Warp Adoption

	5 Evaluation
	5.1 Simulation Setup
	5.2 Performance Evaluation
	5.3 Power Consumption
	5.4 Processing Core States
	5.5 Hardware Overhead

	6 Conclusion
	Acknowledgments
	References

