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ABSTRACT
GPU architectures have become popular for executing general-
purpose programs which rely on having a large number of threads
that run concurrently to hide the latency among dependent instruc-
tions. This approach has an important cost/overhead in terms of low
data locality due to the increased pressure on the memory hierarchy
of the many threads being run concurrently and the extra cost of
storing and managing the on-chip state of those many threads.

This paper presents SOCGPU (Simple Out-of-order Core for
GPU), a simple out-of-order execution mechanism that does not re-
quire register renaming nor scoreboards. It uses a small Instruction
Buffer and a tiny Dependence matrix to keep track of dependen-
cies among instructions and avoid data hazards. Evaluations for
an Nvidia Tesla V100-like GPU show that SOCGPU provides a
speed-up of up to 2.3 in some machine learning programs and 1.38
on average for a variety of benchmarks, while it reduces energy
consumption by 6.5%, with only 2.4% area overhead.

CCS CONCEPTS
• Computer systems organization → Parallel architectures.
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1 INTRODUCTION
GPU architectures have become popular for executing general-
purpose programs [1] in addition to graphics workloads. These
architectures have many cores, also known as Streaming Multipro-
cessor (SM) in Nvidia terminology, that share an L2 cache. Each
core is normally subdivided into different sub-cores (usually 4).
Each sub-core has an issue scheduler in charge of dispatching in-
structions into the different SIMD (single instruction multiple data)
units local to each sub-core, and a local register file for reading
and writing operands. Current GPUs issue instructions in program
order from an Instruction Buffer and use a Scoreboard to solve any
potential hazards caused by dependencies among instructions.

GPUs rely on a highly-multithreaded approach in order to hide
the latency among dependent instructions. While the oldest in-
struction of a thread is stalled waiting for its operands to be ready,
the scheduler issues instructions from other independent threads.
This approach may be effective but at the expense of significant
overhead. Since the execution latency of some instructions such as
memory instructions is very high, a huge number of threads must
be run concurrently to hide these high latencies. In Figure 1, we
show the speed-up of an up-scaled version with 128 warps (and
double the register file size) against the baseline (64 warps). As can
be seen, having more warps does not improve the performance of
most applications. Running a huge number of threads concurrently

has an important overhead in terms of the extra cost of storing
and managing the state of those many threads on-chip. Besides,
it increases the pressure on the memory hierarchy, since it has to
store the working set of those many threads, which results in a
decrease in its effectiveness to exploit locality, and thus in extra
cache misses that have an important overhead in terms of energy
consumption and performance.
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Figure 1: Speed-up of the baseline with 128 warps per SM.

On the other hand, out-of-order (OoO) architectures are very
popular in the CPU field. They allow issuing instructions without
following the program order while ensuring program correctness,
which can potentially hide the latency among dependent instruc-
tions but in a different/complementary manner to multithreading.
In this case, while some instructions are stalled waiting for their
operands, other instructions of the same thread can be issued since
the scheduler is not constrained to issue instructions in program
order.

In this work, we propose SOCGPU (Simple Out-of-order Core
for GPUs), a simple out-of-order issue mechanism that does not
require register renaming. This mechanism increases the energy
consumption of the issue logic but this overhead is more than offset
by the overall reduction in energy consumption of the whole GPU.
Overall, SOCGPU provides an average increase in performance of
38% and a reduction of energy of 6.5% with a minor cost in extra
area of 2.4%.

The rest of this paper is organized as follows. In section 2 we
present some background. The implementation of the SOCGPU
scheme is presented in section 3. In section 4 we describe the eval-
uation methodology that is later used in section 5 to analyze the
benefits of the proposed scheme. Section 6 discusses some related
work, and we conclude in section 7.
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2 BACKGROUND
OoO execution is prevalent in traditional CPUs. It allows reordering
the issue of instructions to minimize pipeline bubbles caused by
dependencies and structural hazards while ensuring the correctness
of the program. There are many different OoO proposals for CPUs
since pioneer designs in the 60s [17] [18]. Our work is inspired
by early work by Goshima et al. [6] that presents an instruction
scheduling scheme that uses matrices to represent the dependencies
between instructions. Later, that matrix scheduler was improved
by Sassone et al. [16] to provide better scalability or performance.

GPU programming models are based on having a huge amount
of threads that are arranged into Cooperative Thread Arrays (CTA).
Each CTA is mapped to a core (aka Streaming Multiprocessor or
SM for short). Threads in a CTA can easily get synchronized and
share data through a configurable scratchpad memory inside each
SM, normally referred to as Shared Memory.

Once a kernel (a task executed in a GPU) is launched, CTAs are
assigned to SMs. Threads in a CTA are grouped into sets (typically
of 32 or 64 threads each), that are referred to as warps (also known
as wavefronts). All threads in a warp execute in parallel in a lockstep
mode, which is known as SIMT (single instruction multiple threads)
execution mode. Each SM has various sub-cores and the warps
of each CTA are distributed among them. A sub-core is a simple
compute unit (like a CPU) that issues instructions in order from a
set of warps using a particular scheduling policy. An example of a
popular issue policy in the literature is Greedy Then Oldest (GTO)
[15].

All the threads of a warp advance at the same pace. Warp di-
vergence appears in the case of conditional branches since some
threads have to execute the taken path whereas others require to
execute the not taken path. This means that both paths need to be
serially executed, or executed in an interleaved manner. This warp
divergence can be managed through a SIMT stack [4] that stores
the different program counters (PCs) and re-convergence PCs of
the entries, although other solutions are also possible [3].

3 SOCGPU
SOCGPU is a micro-architectural proposal focused on modifying
the issue stage of GPGPUs. Nowadays, GPGPUs issue instructions
in program order. SOCGPU is a lightweight technique that issues
instructions out-of-order with very small extra hardware require-
ments. In particular, unlike other alternatives, SOCGPU does not
use register renaming in order to simplify the hardware.

SOCGPU identifies ready instructions that can be issued in each
warp and chooses one instruction among all of them. An instruction
is a candidate to be selected if it fulfills several requirements: not
having unresolved dependencies with previous instructions, not
having been issued, and not being younger than the re-convergence
PC of the current pointed entry of the SIMT unit. Moreover, memory
instructions cannot be younger than an outstanding barrier and
only loads can be reordered between them.

In Figure 2, we can see a block diagram of the proposed ar-
chitecture for a single warp. In gray rectangles, we can see the
involved pipeline stages. The already available components used in
the baseline architecture are depicted in blue, whereas the added

components are in orange. White arrows are used to point to activi-
ties related to the SIMT unit. Finally, in green, we can see backward
connections from the write-back stage to components in previous
stages.

The scheme consists of three different phases. In the first phase,
we insert a new instruction from the Decode stage ( 1○) in the
Instruction Buffer and the Dependence matrix. We first check if
the new instruction is dependent on previous instructions that are
stored in the Instruction Buffer. Once we know its dependencies,
we store the new instruction in any free entry of the Instruction
Buffer and the dependencies associated with this instruction are
stored in the Dependence matrix ( 2○).

The main extra component of SOCGPU is the Dependence ma-
trix, which has a row and a column associated with each entry
of the Instruction Buffer. The content of each cell of this matrix
is a single bit that indicates if the entry associated with the row
depends on the entry associated with the column. An instruction
can be issued only when all the columns of its associated row are
clear, which is determined by a NOR gate of all its entries. This
structure replaces the scoreboards used in the baseline architecture.

Decoded instructions are simultaneously placed in the Instruc-
tion Buffer and the Dependence matrix in the first empty entry
available regardless of the program order. In Figure 3, we can see an
example of a Dependence matrix of size 4. The diagonal is always
filled with 0 because an entry cannot have a self-dependence. In this
example, the Instruction Buffer and their corresponding rows in the
Dependence matrix contain 4 instructions that are not consecutive
and are placed in no particular order. Instructions at entries 0 and
3 are candidates for being issued because they do not have any
dependence pending to be resolved. However, instruction at entry
1 will not be a candidate to be issued until the instruction at entry
0 finishes its execution (i.e., it reaches the write-back stage).

An instruction A depends on a previous instruction P in the
following cases:

• A’s destination register is the same as any source or desti-
nation operand of P (WAR and WAW dependencies).

• Any of the source operands of A is the same as the destina-
tion register of P (RAW dependence).

• If A is a memory instruction and P is a barrier in order
to maintain the semantics of barriers in the programming
model.

• If A is a store and P is a load or a store.
• If A is a load and P is a store.
• If A is a branch, or a return from a function call because they

can produce a change in the control flow that provokes a
flush in the Instruction Buffer. Therefore, we need to ensure
that older instructions such as P are issued before this event.

• If P is a branch, or a return from a function call. Branches
can cause a modification in the control flow. Consequently,
instructions younger than P such as A must not be exe-
cuted until the branch is solved. Returns from functions are
similar case to branches.

If any of the previous cases is detected, a 1 is stored in the
cell corresponding to the row associated with A and the column
associated with P to mark the dependence of A with P.
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Figure 2: SOCGPU architecture diagram.
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Figure 3: Dependence matrix structure.

In the second phase, instructions are issued. First, in the instruc-
tion ready checking, we inspect which entries can be a candidate to
be issued. An entry is a candidate if it fulfills three requirements:

• It is valid and has not been issued ( a1○).
• It has no dependencies with other instructions. In other

words, the whole row in the Dependence matrix associated
with that entry has all columns set to 0 ( a2○).

• The next PC of the instruction is not greater or equal to the
current SIMT unit’s entry re-convergence PC ( a3○), unless
it is the oldest instruction. This requirement is to avoid
executing instructions that should not be executed because
of a change in the program’s control flow. That change in
the control flow is caused by reaching a re-convergence
point. In the case of being the oldest instruction in the
Instruction Buffer, it is allowed to be issued because it is
the instruction in charge of triggering changes to the SIMT
unit.

Once we know which entries can be issued ( b○), only one of
them is selected as the candidate instruction for each warp. This is
done by the local instruction policy, following a particular heuristic.
Specifically, the first entry of the Instruction Buffer (in physical
ascending order) with an instruction ready, valid, and not issued is
chosen regardless of its seniority. Once the candidate is chosen, it is
sent to the issue scheduler ( c○). Each cycle, this scheduler chooses
only one warp to be issued depending on the issue policy (e.g.,
GTO). After issuing an instruction (d1○), its corresponding entry in
the Instruction Buffer is marked as issued (d2○).

The third phase is applied when an instruction reaches the write-
back stage. First, the valid bit in its corresponding entry of the
Instruction Buffer is cleared (E1○). Second, all the cells of the column
of the Dependence matrix associated to that entry are set to 0s (E2○)
to clear all dependencies with other instructions.

In the baseline, the Instruction Buffer has two entries per warp,
and the fetch stage retrieves two instructions when it is empty and
the fetch logic chooses this warp. Only the oldest instruction in the
Instruction Buffer is considered as a candidate to be issued. Once
an instruction is issued, the corresponding entry is freed.

In SOCGPU the instructions must be kept in the Instruction
Buffer until they reach the write-back stage to check dependencies
correctly. Besides, a larger Instruction Buffer allows for more op-
portunities to discover ready instructions. Therefore, in our studies
we assume a default size of eight, unless otherwise stated.

In Figure 2, we can see the different fields of each entry of the
Instruction Buffer. The number of required bits of each field is
represented in brackets. Some fields are the same as in the baseline
design: validity, PC, source and destination register identifiers and
the type of instruction (load, store, barrier, branch, and function
returns). In addition to them, we need extra fields to know if the
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entry has been issued, and a field with its seniority with respect
to the other entries. Furthermore, each entry keeps the expected
not taken next PC of each instruction, which is used to manage
the control flow through the SIMT unit properly. In particular, an
instruction can be issued only if its next PC field is not greater than
or equal to the re-convergence PC at the elected entry of the SIMT
unit unless it is the oldest entry.

Sometimes, a flush of the Instruction buffer is required. In par-
ticular, a flush of a warp is triggered when a branch, a return from
a function call, or an instruction that reaches re-convergence is
issued, and its next not taken PC is different than the PC pointed by
the SIMT unit. When this happens, it means that there is a change
in the program control flow due to a modification in the SIMT unit.
The SIMT unit can be altered when a branch pushes new entries
or there is a change of the chosen entry in the SIMT unit. Also,
when the issued instruction reaches a re-convergence point and
therefore it is popped. Once a flush is triggered, all the entries in
the Instruction Buffer that have not been issued are eliminated, and
the issued ones will be squashed when they reach the write-back
stage.

Note that GPUs do not need to recover a precise state in case
of exceptions. Therefore, a Re-order Buffer (ROB) is not required.
Moreover, write-backs do not need to be in order, as it already
happens in the baseline. For example, an instruction i can write
much later than an instruction i+1 if the latter has lower execution
latency or has left the OPC stage earlier than the first one and there
is no dependence between these instructions.

4 EVALUATION METHODOLOGY
To get performance metrics, we have modeled the baseline and
the SOCGPU architectures through the Accel-sim [9] simulation
infrastructure. Our baseline configuration resembles anNvidia Tesla
V100. We use the SASS trace execution mode, but we have also used
the PTXmode to verify that OoO execution is correct. Also, we have
extended AccelWattch [8] to get average energy measurements of
the baseline and our proposal in addition to power.

We have enhanced the simulator and its tools to make it more
accurate for our purposes. First, we have updated the simulator
to take into account all types of dependencies. For this purpose,
we extended the tracer tool to include the use of predication regis-
ters which are omitted in the original simulator and are important
to model an out-of-order execution pipeline. Predication instruc-
tions write into a destination register, and a predication register
is treated as a source operand when an instruction is predicated.
Moreover, we have added an extra scoreboard to the baseline model
called the WAR scoreboard to correctly handle WAR dependencies
since the original simulator ignored these dependencies, as reported
elsewhere[12]. When an instruction is issued, the source operands
of this instruction are marked in this scoreboard. Once the instruc-
tion reaches the WB stage, it clears the bits of the register source
operands in the scoreboard.

We can see the main configuration parameters in Table 1 for
both the baseline and our proposal. The benchmarks used belong
to Rodinia 3.1 [2] and Deepbench[13] suites. In Table 2, we can see
the complete list of benchmarks.

Table 1: GPU specification

Parameter Value

Clock 1530𝑀𝐻𝑧

SP/DP/INT/SFU/MEM/Tensor Units per SM 4/4/4/4/1/4
Warps per SM 64

Number of registers per SM 65536
Warp Width 32

Issue Scheduler policy GTO
Number of SMs 80
Sub-cores per SM 4

Number of Collector Units per sub-core 2
L1/Shared cache size 128 KB

L2 cache size 6 MB
Memory Partitions 32

SOCGPU Instruction Buffer Size 8

Table 2: Selected benchmarks

Rodinia 3.1 Deepbench

b+tree conv_train
backprop conv_inference

bfs gemm_train
dwt2d gemm_inference
gaussian rnn_lstmtrain
hotspot rnn_lstm_inference

hybridsort rnn_gru_train
kmeans rnn_gru_inference
lud
nn

particlefilter_float
pathfinder
srad_v1

5 RESULTS
In this section, we analyze the benefits and overheads of SOCGPU
with respect to the baseline. We first evaluate performance, then
we evaluate area and energy consumption.

5.1 Performance
Figure 4 shows the speed-up of SOCGPU over the baseline archi-
tecture. For some Deepbench benchmarks, such as rnn_gru_train
or conv_train, SOCGPU achieves a huge speed-up, 2.3 and 1.6
respectively. For the Rodinia 3.1 benchmarks, speed-ups are still
important although lower than for Deepbench, and only for two
benchmarks, kmeans and particlefilter_float, SOCGPU shows a mi-
nor performance slowdown compared to the baseline. On average,
the speed-up of SOCGPU is 1.38.

The benefits of SOCGPU are reduced if the program has many
branches, or return calls because these instructions limit the size
of the effective instruction window. Each time that any of these in-
structions is found, SOCGPU does not consider any further younger
instruction as a candidate for issue, until this instruction has been
issued. We call this kind of dependency Stop. Moreover, the benefits
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Figure 4: Speed-up of SOCGPU versus the baseline.

of out-of-order execution depend on the amount of RAW,WAW, and
WAR dependencies. In the case of the last two (WAW and WAR),
they can be mitigated through a renaming mechanism if avail-
able. In Figure 5, we can see the average number of dependencies
(WAW-WAR, RAW and Stop) among instructions in the Instruction
Buffer. This figure depicts for each instruction how many depen-
dent instructions (and the type of dependence) it encounters in the
Instruction Buffer when it is inserted. As the percentage of Stop
and RAW dependencies in Deepbench is much lower than in most
Rodinia benchmarks, which is the main reason why the speed-up
of SOCGPU is much higher for Deepbench than for Rodinia. The
correlation coefficient between Speed-up and RAW dependencies is
−0.73, indicating a high correlation. The fewer RAW dependencies
we find in a benchmark, the more performance we obtain.
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Figure 5: Average number of dependencies per instruction
in the Instruction Buffer by type of dependence.

5.2 Area and Energy Consumption
Our baseline architecture resembles an Nvidia Tesla V100, which
has a die size of 815𝑚𝑚2 [14].

The power and area overhead has been computed by modeling
the baseline (scoreboards and Instruction Buffers) and the SOCGPU
hardware components that are needed for the issue of instructions
in Verilog with the same target clock of the Nvidia Tesla V100 in
boost mode (1530 𝑀𝐻𝑧, [14]). The overhead of SOCGPU is com-
puted by subtracting the power/area of the baseline from the one
obtained for SOCGPU. The design is performed for one warp and is
replicated for all the warps in each SM (64 in an Nvidia Tesla V100)
and all the SMs (80 in an Nvidia Tesla V100). The library used to
synthesize the design is the SAED14nm of Synopsys,[11] and the
software used is Synopsys Design Compiler. Then, the functional
behavior was checked with RTL test benches.

Regarding the area, we obtain that the area overhead of SOCGPU
is 2.4%, which represents a very small overhead given the huge
benefits in performance (1.38x on average).

About the power, we get a total power overhead of 3.26𝑊 . We
have integrated the power obtained through design tools into Accel-
wattch [8]. Moreover, we have modified Accelwattch to obtain the
average energy consumption from the original average power con-
sumption. In Figure 6, we can see the percentage of energy savings
due to the use of SOCGPU. On average, SOCGPU consumes about
6.5% less energy than the baseline. Looking at the graph in more
detail, we can see that the benchmarks for which SOCGPU saves
more energy are the ones that have obtained a higher speed-up (up
to 41.9% energy reduction in rnn_gru_train). On the other hand,
benchmarks that have a slight slowdown or the performance im-
provement is low, consume more energy (up to 24.7% more energy
consumption in backprop).

In conclusion, SOCGPU not only significantly improves perfor-
mance, by 1.38x on average, but it also reduces energy consumption,
by 6.5% on average. These important benefits come with a very
small cost of a 2.4% extra area, due to the simplicity of the proposed
design, so we believe that SOCGPU represents a better design al-
ternative for GPGPU cores than the in-order cores that have been
traditionally used.

6 RELATEDWORK
There have been many works focused on improving instruction
scheduling in GPGPUs. A few of these works have also considered
out-of-order approaches in GPGPUs. Warped Preexecution [10] is
capable of continuing to issue independent instructions when the
first long-latency stall appears. It has two execution modes, the N-
mode which is in-order, and when a long-latency operation appears,
it changes to P-mode. In this second mode, it continues to fetch and
decode successive instructions that do not have any dependencies.
After the long latency operation is completed, the warp switches
back from P-mode to N-mode. Another approach is HAWS [5]
which modifies the compiler to introduce some hints. The compiler
adds these hints to point to instructions without dependencies, and
the scheduler starts to fetch these instructions when a long latency
operation causes a stall. Both works are known as Dual-Operation
Mode (DOM) techniques due to having two execution modes. The
latest work in this area is LOOG [7], which uses CUs as reservation
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Figure 6: Energy savings of SOCGPU with respect to the base-
line.

stations. The above three related works have in common the use
of register renaming to solve dependencies, whereas our proposal
does not require it.

7 CONCLUSIONS
In this paper, we propose SOCGPU, a scheme that can issue instruc-
tions out-of-order in a GPU core with minimal area overhead and
without using register renaming. We show that a very small Instruc-
tion Buffer and Dependence matrix can provide important benefits
in performance and energy consumption. SOCGPU achieves a 1.38
speed-up and 6.5% energy saving on average with only 2.4% area
overhead. Overall, these results show that SOCGPU represents a
better design alternative for GPGPU cores than the in-order cores
that have traditionally been used.
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