Lightweight Register File Caching in Collector Units for GPUs

Mojtaba Abaie Shoushtary, Jose Maria Arnau, Jordi Tubella Murgadas, Antonio Gonzalez
Polytechnic University of Catalonia
Barcelona, Spain

ABSTRACT

Modern GPUs benefit from a sizable Register File (RF) to provide
fine-grained thread switching. As the RF is huge and accessed fre-
quently, it consumes a considerable share of the dynamic energy of
the GPU. Designing a large, high-throughput RF with low energy
consumption and area for GPUs is challenging. In this paper, an
energy-efficient hierarchical RF design for GPUs, called Malekeh,
is introduced. Malekeh keeps registers in energy-efficient small
caches and maximizes cache efficacy by using lightweight policies
and supporting adaptive algorithms. The policies’ effectiveness is
improved by leveraging register reuse distance information pro-
vided by the compiler as a hint. Malekeh reduces the RF reads by
48.5% and dynamic energy by 29.1%. It also improves performance
by 9.6% with a negligible overhead of 0.04% in area.

CCS CONCEPTS

« Computer systems organization — Parallel architectures.

KEYWORDS
GPU, Cache, Register File, Compiler Guided

1 INTRODUCTION

Modern Graphics Processing Units (GPUs) rely on swift thread
switching to hide stalls. Conventionally, GPUs have been using
large Register Files (RFs) to implement fast thread switching.

Since GPUs’ RF is huge and accessed frequently, it consumes
considerable dynamic energy. For example, RF consumes 24% of the
dynamic power of an NVIDIA Volta GV100[6]. It makes optimizing
the RF energy efficiency appealing.

Previous works have proposed caching mechanisms to reduce
the energy consumption of the RF in GPUs[3-5, 11]. An RF cache is
smaller than the RF banks and is closer to the consumer pipelines.
Therefore, provided a high hit ratio, the cache potentially saves
energy and improves performance.

In this work, an RF cache mechanism called Malekeh is intro-
duced. Malekeh is a low-cost, hierarchical RF architecture caching
registers within existing operand buffering structures called Operand
Collector Units (OCUs). Conventionally, OCUs keep read operands
before dispatching the instruction, though, not function as a cache.
Malekeh turns the OCUs into a cache with minor changes to cap-
ture the temporal reuses of the registers with negligible overhead
and avoid accessing the power-hungry RF banks.

Malekeh does not increase the number of OCUs to keep the
overhead low. Increasing the number of OCUs would lead to high
overheads due to: a) extra OCUs and b) a bigger OCU-bank inter-
connection network. Having a low OCU count keeps the overhead
small but makes capturing locality while sustaining performance
challenging since OCUs are time-shared by different warps, each
with its own private register set.

Writes

Figure 1: RF microarchitecture in GPUs

Which particular warp uses each OCU at a given point in time
depends on the instruction scheduling and OCU allocation policies.
Besides, Malakeh manages each OCU as a cache; therefore, effective
allocation, replacement, and write policies are crucial. All these
policies and their synergy determine the hit ratio, energy-saving,
and performance. Designing effective policies for such a system that
provide a high hit ratio and performance while being lightweight
is indispensable and challenging. Malekeh addresses this problem
with compiler-guided and lightweight policies tailored to maximize
energy-saving and performance.

Malekeh uses register reuse distance as a hint to implement ef-
fective management policies for the different components involved.
The reuse distance is computed by the compiler and passed to the
hardware. Our analysis shows that reuse distance significantly im-
proves the effectiveness of the policies, although passing its exact
value to the hardware would be very costly. Therefore, a practical
approximation for reuse distance is adopted which performs almost
as well as the precise value.

In addition, Malekeh benefits from a dynamic algorithm that
delays replacing certain OCUs that can potentially increase hit ratio
and performance. The algorithm reacts to runtime behavior coming
out of code characteristics. The goal of this dynamic algorithm is
to unleash the full available potential.

2 BACKGROUND

Conventional GPUs’ RF contains multiple single or double-ported
large banks instead of monolithic multi-ported ones with some
OCUs to buffer read registers before dispatching the instruction to
the EUs, Figure 1.

OCU stores some metadata, such as Warp ID, in addition to a
valid bit, a ready bit, and a data field per source operand of the
issued instruction. The data field stores the fetched register value
for any source operand whose valid bit is set. The ready bit indicates
that the register value has been received. Typically, a warp has 32
threads, each accessing 32-bit operands, so the data width needs
1024 bits.

When the instruction issue scheduler issues a new instruction,
the OCU allocator determines the target OCU and reserves it until
all the source operands are ready. At this moment, the instruction

© Owner/Author | ACM} 2023. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version
of Record was published in The 15th Workshop on General Purpose Processing Using GPU (GPGPU 2023): February 25, 2023, Montreal, Canada, http://

dx.doi.org/10.1145/3589236

Reads

NC]

Writes

To Issue Scheduler &
CCU allocator

@

(3} Metadata [3)
Warp ID Instruction
=======

Cache Table
Tag 1] Lock 1| Reuse Distance 1[LRU 1| Data 1 |}
Tag 2| Lock 2| Reuse Distance 2 [LRU 2| Data 2
Tag 3[Lock 3| Reuse Distance 3[LIRU3| Data 3

6 © O : © [2]
Tag NLock N[Reuse Distance N[LRU N[Data N |

Operand Collector Table
Valid 1[Ready 1] Index1 |
Valid 2 [Ready 2| Index2 |

e :0 o

Valid K[Ready K| _IndexK |
[R]
To Issue To Dispatch
Ccu Allocator Scheduler
(b)

Figure 2: Malekeh microarchitecture: (a) RF microarchitec-
ture; (b) Caching Collector Units (CCU)

in the OCU is eligible to dispatch. The OCU is released once its
instruction is dispatched.

The number of source operand slots in each OCU depends on the
ISA. We use Turing ISA that includes HMMA instructions requiring
7 source operand slots at maximum[9].

3 MICROARCHITECTURE

Malekeh requires minor microarchitecture modifications and ISA
extensions to pass information to the hardware, as explained in this
section.

3.1 Register File

There are four main differences compared to the baseline architec-
ture shown in Figure 2a. 1) replacing OCUs with a unit with caching
capabilities, named Caching Collector Units(CCUs), 2) providing
a write pathway through the crossbar to a dedicated port named
D, 3) adding tri-state buffer @ beside buffer @ controlled by the
arbiter to filter superfluous writes for more energy saving, and 4)
providing Warp ID, and the minimum reuse distance of the stored
live values to the issue scheduler/CCU allocator through port R.

3.2 Caching Collector Unit (CCU)

To exploit the locality in the RF accesses, OCUs are extended with
cache capabilities while keeping their functionality by adding min-
imal extra fields and a control unit, Figure 2b.

Each CCU has a port S to receive the read source operand values,
aport D to receive the value written to the instruction’s destination,
and a port R to exchange information between the CCU and the
Issue scheduler/CCU allocator.

Mojtaba Abaie Shoushtary, Jose Maria Arnau, Jordi Tubella Murgadas, Antonio Gonzalez

In addition, it contains Metadata, as the baseline, a Cache Table
(CT), an Operand Collector Table (OCT), some Multiplexers (MUXs)
to deliver source operands to the EU’s input latches, and a CCU
Control Logic.

The CT is the component providing the caching capability. It
reuses already existing data fields and adds a tag array to iden-
tify the cached registers; a lock bit to avoid replacing the slots
needed when dispatching the instruction; a reuse distance field
computed by the compiler and meant to guide cache policies, and
issue scheduler/CCU allocator; and Least Recently Used (LRU) pri-
ority information.

The overhead of extra fields is small because Malekeh reuses
data fields already existing in the baseline, the largest storage in
CCU with 1024 bits. The tag width is capped by Cuda to only 1 byte,
the lock is 1 bit and the reuse distance is approximated by only 1
bit showing the reuse is far or near compared to a threshold we call
RTHLD. The LRU is also only 3 bits as we empirically discovered
that more than 8 slots provide diminishing returns while adding to
the overhead.

The OCT makes CCUs still function as OCUs. Similar to the
baseline, they have valid and ready bits, although augmented with
index fields referring to the CT entries. The index field is only 3
bits, assuming the CT size of 8, and avoids storing redundant data.

The CCU Control Logic governs the CCU during CCU allocation,
source operand delivery, and destination write arrival.

The parts marked by @ are involved in CCU allocation which
has the following steps: 1) flushing CCU if the issued instruction’s
warp id mismatches that of the metadata; 2) updating metadata;
3) looking up all the source operands; 4) replacing and allocating
one slot to a source operand when it misses in the cache; 5) locking
all the source operands; 6) setting their reuse distance by encoded
information in the issued instruction; 7) updating LRU values; 8)
setting valid and index fields in OCT for all the source operands;
9) setting the ready bits for operands hit in the cache; and 10)
requesting missed source operands from RF banks.

The components denoted by @ are involved in source operand
delivery. Once a source operand value is received over port S, it
fills the corresponding slot in CT, and its affiliated ready bit in OCT
will also be set.

Block marked with @ are the ones that contribute to handling a
write request received at port D. When a write request arrives, the
CT is looked up first. In case of a miss, one entry is replaced and
allocated to the written value. Unlike source operands that receive
allocated slots after issue, slot allocation for writes is postponed to
after writeback when their value is produced. This helps Malekeh
to manage its small storage efficiently and to keep the overhead
low. The detailed policies used in the cache are explained in the
next section.

4 CACHE POLICIES

This section elaborates on cache policies that exploit the register
reuse distance information provided by the compiler. Our analysis
shows that the reuse distance improves cache policies’ effectiveness
significantly, so a practical binary approximation is proposed to
provide this information with minimal overhead. The binary ap-
proximation considers reuses above a predefined threshold, RTHLD,

Lightweight Register File Caching in Collector Units for GPUs

as far, and those below this threshold as near. The following sections
explain the cache replacement and write policies in particular.

4.1 Replacement Policy

The cache replacement policy uses the lock bit, reuse distance, and
LRU fields to select the replaced entry.

First, it excludes all the registers having the lock bit set. These
are the registers used as a source operand in the current instruc-
tion occupying the CCU. Replacing them would be detrimental
because all the source operands are needed when the instruction is
dispatched to the execution units.

After excluding the locked registers, the replacement policy
selects randomly among those registers with a far reuse distance,
if any exists. If all registers are marked as near, the replacement
candidate will be according to the LRU policy.

4.2 Write Policy

The destination register is always updated in the RF banks, but it
is updated in the CCU based on its reuse distance. Writing to the
RF banks for all the write requests allows replacing any CCU and
flushing its cache at any time.

Multiple write requests can arrive at a CCU at the same time
when different instructions of the same warp have different laten-
cies, and they finalize execution at the same time. Our analysis
showed that the benefits in performance and hit ratio of extra ports
are minimal, so Malekeh includes only one write port in the CCU
for destination operands. In case of multiple write requests, the
write policy selects the first write slot containing a near register
and discards the rest.

It is also possible that a write corresponds to a warp not having
any CCU allocated. It occurs when the write belongs to an instruc-
tion of a warp whose CCU has been replaced by another warp by
the time the write happens. In that case, the write request would
only be directed to the RF banks.

5 ISSUE SCHEDULING POLICY

Malekeh’s issue scheduling policy determines the warps selected to
issue an instruction at each cycle. Then, the CCU allocation policy
determines their target CCUs. The issue will be stalled if no CCU
can be allocated to the selected warps.

The issue scheduler is aware of the warp ids of the instructions
occupying each CCU and prioritizes the warps having data in any
CCUs over the others. This way, the chances of reuse are increased
because when a CCU is allocated to a new different warp, its CT
is flushed. Then, the future reuses to these flushed values must be
fetched from the RF banks.

Unlike the two-level issue schedulers proposed in the literature,
Malekeh does not limit the number of candidate warps. It only
partitions the warps into two categories, the warps having data in
the CCUs and the rest, and prioritizes one category over the other.
Within each category, the older warps have higher priority since
it favors the same warp unless having no ready instruction. This
way, the contention with younger warps is reduced which leads to
less cache trashing and potentially better performance for sensitive
applications.

6 CCU ALLOCATION POLICY

The CCU allocation policy determines the target CCU for each warp
selected by the issue scheduler. If there is currently a CCU allocated
to the same warp, it chooses this CCU; otherwise, a CCU will be
allocated to this warp, among those CCUs whose instructions have
already been dispatched, and its CT will be flushed.

Malekeh reduces this replacement penalty by first replacing the
CCU containing only far values. Then, if there is at least one near
value in the CCU, Malekeh tries to wait for some cycles. During
waiting time, the instructions of the same warp may finish, and
awake instructions that were not ready. In the next cycle, these
awaken instructions can reuse the data in the CCU whose CT would
have been flushed if we had not waited.

Long waiting may be detrimental to performance. Therefore,
a threshold, called STHLD, is introduced to limit the number of
waiting cycles. A local counter per core will be compared to STHLD
when CT has at least one near value. Only when the counter is
higher than STHLD will the CCU be replaced. Otherwise, the CCU
allocator is stalled and the counter is incremented.

It is possible to delay issuing instructions to gain hit ratio while
not harming performance because the ready instructions may not
be on the execution’s critical path. However, identifying the execu-
tion’s critical path by the compiler or during runtime is unfeasible
since it not only depends on data dependencies but also on hard-
ware resources. Malekeh uses a simple heuristic based on counting
the stall cycles and limiting them to a threshold (STHLD).

The higher the STHLD, the more the CCU allocator will wait and
the more bubbles it will generate, which on the one hand, improves
hit ratio, but damages performance.

The optimum value for STHLD maximizes both performance and
the hit ratio. This optimum value depends on the characteristics of
the code being executed. Malekeh uses an adaptive algorithm to
find the optimum value at run time, section 7.

7 ADAPTIVE ALGORITHM TO SET STHLD

Malekeh uses an adaptive scheme to dynamically set the STHLD
value which controls the CCU allocation policy’s efficacy. STHLD
affects both performance and hit ratio. Finding the optimum STHLD
depends on the characteristics of the running application over
time. Fortunately, since GPU applications are regular, and cores are
homogeneous, the application characteristics remain similar for
long intervals until the application phase changes.

Motivated by that, Malekeh partitions the execution time into
equal intervals and set the STHLD at the end of each interval. It
uses the IPC measured in the previous and current intervals to
modify the STHLD for the next interval. After several intervals, the
STHLD converges to its optimum point.

Figure 3a depicts the expected hit ratio as a function of STHLD.
As the STHLD increases, Malekeh delays replacing a CCU more.
During that period, some values might be reused that would have
been flushed otherwise. Therefore, the hit ratio monotonically in-
creases until reaching a saturation point. The saturation point is
the maximum reuse existing in the application.

Figure 3b shows the expected IPC as a function of STHLD. As
the STHLD increases, more accesses will be serviced directly by the
cache. Therefore, the IPC increases slightly. However, after some

Knee

-
Flat | Steep
Region | Region

Hit Ratio

STHLD STHLD

(a) (b)

Figure 3: Expected IPC and hit ratio when changing STHLD:
(a) Hit ratio, (b) IPC

Figure 4: Adaptive algorithm to dynamically set STHLD

STHLD After 4 Steps

19 __ LargeiPc
S@Change

IPC
1PC

Large IPC --Qk/-:rurge IPC

. Change R Change

1PC

STHLD STIHlD

(© (CY

Figure 5: Example of setting STHLD: (a) Initial curve and first
four steps, (b) Next steps when staying in the same curve, (c)
Next steps when transitioning to a curve with a narrower flat
region, (c) Next steps when transitioning to a curve with a
wider flat region.

point, the IPC begins to drop because of so many stalls generated.
We refer to this point as the knee point. Before the knee point is
called the flat region, and after that is called the steep region.

Based on these expectations, we propose an adaptive algorithm to
dynamically set the value of STHLD, a finite state machine depicted
in Figure 4. The state machine transitions are based on the relative
differences between the IPC of the current and the previous interval.
Small and large relative differences are denoted respectively by S
and L. If a transition happens regardless of the difference, it is shown
by an asterisk. The transitions trigger an increase or decrease of
STHLD by a delta shown on the transition edges.

The adaptive algorithm starts from state 1 and remains in state
6 until a large IPC change is detected.

The deltas applied by this state machine for a sample code are
shown in Figure 5. In this figure, the corresponding state is shown
by a number, and the deltas are represented by the arrow’s length.
The arrows showing steps taken in each state are colored the same
as the circled number showing the corresponding state. Figure
5 shows that the adaptive algorithm is designed to walk on the

Mojtaba Abaie Shoushtary, Jose Maria Arnau, Jordi Tubella Murgadas, Antonio Gonzalez

curve and, based on the IPC fluctuation, modify the STHLD until it
converges to the knee point. The knee point is the optimum STHLD.

In this example, the algorithm started on the curve shown in
Figure 5a and after four intervals with a small change in IPC, a
large change is detected. The large change could be due to moving
to the steep region of the same curve, Fig 5b, or a change in the
application phase that changes the curve to the curves shown in
Figs 5c¢ or 5d for the following next intervals.

The curve changes as the phase of the application changes be-
cause the characteristics of the application differ. The new curve
may have a narrower (Figure 5c) or wider (Figure 5d) flat region. In
case of moving to the curve with a narrower flat region, the current
STHLD will be in a steep region and the adaptive algorithm will
reduce it to reach the STHLD corresponding to the knee point of
the IPC curve. On the other hand, in the case of moving to the curve
with a long flat region, the current STHLD will be in the flat region,
so the adaptive algorithm will increase the STHLD to approach the
point leading to the knee point of the IPC curve.

In case of a large change, the dynamic algorithm takes a specu-
lative move by increasing STHLD to gain more hit ratio and moves
to state 3. If the new phase corresponds to the curve shown in
Fig 5d, the speculative move was correct and we benefit from the
increased IPC and hit ratio due to a higher STHLD in that interval.
On the other hand, if the phase has the same curve, Fig 5b, or the
curve shown in Fig 5c, we lose performance since the speculative
move was in the steep region where performance decreases when
STHLD is increased, but only for one interval. After realizing that
this speculative step is detrimental, the scheme decreases STHLD
and after some additional steps, it converges to the optimal point.

We empirically found that an interval size of 10000 cycles pro-
vides a good trade-off between performance and hit ratio.

8 METHODOLOGY

We used Accel-sim[7] modeling a scaled-down configuration based
on the Geforce RTX 2060[8] GPU with the parameters shown in
Table 1. We scaled down the number of SMs, the size of L2, and the
number of memory channels by one-third.

Table 1: Baseline GPU configuration used in this work

#SMs 10
#Threads/Warps per SM | 1024 / 32
RF Size 256 KB
Issue Scheduler GTO[10]
L2 Size 1 MB
L1/shared memory 64 KB

The benchmarks are selected from Rodinia[2] and Deepbench[1].
The former is representative of general-purpose computing ap-
plications, whereas the latter consists of modern deep learning
workloads.

We used accel-sim in trace mode and annotated the traces with
precise reuse distances and their binary approximation to evaluate
the binary approximation effectiveness.

To evaluate the dynamic energy of the RF, we extended the power
model provided in Accelwattch[6]. The model includes the arbiter,
crossbar, RF banks, and CCUs.

Lightweight Register File Caching in Collector Units for GPUs

BOW [Malekeh

e A o

)
T

—
—
e
Eebe
—_—
e,

T

e

vvvvvvvvvvvvvvvvvvvvvvvvvvv

e ow e oo =
ESEE%EES %g.‘zlulgfﬁlgl‘“‘|‘N'|:|:.|ﬁ|z|ﬁ|g
2289w = Eo £ E S5 S555ccd
S8 E 32 JSEs222egggeegeg
PRI 3-S5 5060006093006 g
z £28 599335559955
k] >>>22ggEEccc
EEEEE EEEE
E 66600 EEE-E-C T
£ ooV gaogug
s S & oo
aQ

parti

Figure 6: IPC normalized to the baseline

BOW [Malekeh

kmeans |———r—m

$ 5L L3 ERSSsTRY N Y Do DO
228 2a8as2=2 -T2 - W T Byt Tt o Bt Tt o B B st Tt
b 3 a3 T s 8 cgecccEsEccEESEEc
7 g £38 9% WS EBEEECEEEEESTES
ag T QT T o 1E8ccccccccc S cc
|4 £5=2=2 5530030393983 30a
-] E ‘_:..g .Dl.ﬂl.ﬂl-nl-nl.nl_ﬂl-ﬂl.nl.ﬂl.nl.ﬂl

o 2y fegecde

s §55SSEEEEEEE

R 00000 gga

© 5 oo bp %O

a3

Figure 7: RF cache hit ratio

We compare our work against BOW[3], a state-of-the-art pro-
posal for RF caching in GPUs. BOW replaces OCUs with buffers that
keep the source operand values of instructions in a sliding window.
It proposes forwarding register values between the instructions in
the sliding window instead of fetching them from RF banks to save
energy.

9 EVALUATION

In this section, we analyze the benefits and overheads of Malekeh
and compare it with BOW[3] which has a sliding window of three
instructions.

9.1 Performance

On the one hand, Malekeh may improve performance since the
registers found in the CCUs do not need to be retrieved again from
the RF, which is faster and also reduces the conflicts in the ports of
the RF banks. On the other hand, some policies used in Malekeh
have the potential to damage performance. In particular, when the
issue is stalled even if there are ready instructions, for the sake of
better reuse in the RF cache, performance may be penalized.
Figure 6 shows that Malekeh not only does sustain the IPC of
the baseline in all the benchmarks except b+tree, but it also im-
proves their IPC in many cases. It increases the IPC of the baseline
by 9.6% on average. The maximum improvement is achieved for

BOW OMalekeh

= dNMOdNdNDddND NG

3 CEETTHMST TSNS

= £S5 555s<
CSEC88EE8cess

o ggeececegegecceccecg

g B EEEEEEEEEE]

g e B B B e B B B

K > >

3 222ZZZEEEEEEE

235 S G688 GgEEERxECKE

£ 5 C0o000ggg

s & & & o

2g

Figure 8: RF dynamic energy normalized to the baseline

rnn_bench_i2 which is 59.5%. On the other hand, for the only bench-
mark in which IPC is reduced, b+tree, the IPC drop is less than
4%.

Malekeh improves BOW’s IPC by 5.4% on average and up to 46.3%
for rnn_bench_i2. On the other hand, BOW achieves a maximum
IPC improvement of 14.9% for conv_bench_t3, but still much lower
than that of Malakeh (36%).

Malekeh improves BOW’s IPC because it provides a higher hit
ratio. Generally, performance and hit ratio are correlated only when
there are no bottlenecks in other pipeline stages. In those cases,
Malekeh outperforms BOW as its hit ratio improvement is signifi-
cant.

9.2 Read Hit Ratio

Figure 7 depicts the achieved read hit ratio of the RF cache. On
average, Malakeh gets 48.5% of the register source operands from
the cache. The maximum hit ratio is for gaussian, which is about
77%, and the minimum is for particlefilter_naive, which is about
13.3%. Malekeh has a higher hit ratio than BOW by 28.1% on average
and up to 51.1% for Kmeans.

Malekeh surpasses BOW due to a) better RF cache and Issue
scheduling/CCU allocating coordination, b) more effective cache
management policies using reuse distance as a hint, c) an efficient
dynamic algorithm that maximizes both IPC and hit ratio, and d)
having less frequent flushes than BOW, which needs to flush the
cache every time a branch jumps to a new sliding window.

9.3 RF Dynamic Energy

Figure 8 shows the RF dynamic energy consumption normalized to
the baseline. Malekeh reduces a 9.6% reduction. The highest energy
saving of Malekeh is for rnn_bench_t2 with a 47.5% reduction and
the lowest is for particlefilter_naive with a 5.9% reduction.

Better energy saving of Malekeh versus BOW comes out of a)
a higher number of requests serviced directly by the RF cache, b)
a more efficient write policy avoiding unnecessary writes with no
reuse, which only consume energy without any compensations
coming out of future reuses, c) keeping the cache small and manag-
ing the space efficiently by eliminating redundant values through
indirect indexing d) benefiting from lightweight policies tailored to
maximize hit ratio and IPC with a small overhead d) simple cache
controlling mechanism using some extra fields instead of a complex

forwarding mechanism in BOW, whose complexity grows with
cache size and it consumes energy even in the case of hits to move
data between instructions of the sliding window.

9.4 Overheads

Malekeh is designed to keep the hardware overhead small. It neither
does increase the number of OCUs nor the amount of data that
they store nor the crossbar size. On the other hand, it requires some
extra storage in each OCU to keep some extra control fields, which
amount to 128 B per SM, or in other words, a 0.04% increase of the
area of an RF with 256 KB.

The adaptive algorithm is also designed to have minimal over-
head. It just stores the IPC of the last interval per chip. Therefore
only one extra register is needed to store the value provided by the
performance counter that measures IPC. The logic for the adaptive
algorithm is a finite state machine that runs at the end of each
interval. For the assumed interval size of 10000 cycles, the energy
overhead of it is negligible. The overhead of adding one bit to each
source and destination register is also small.

10 RELATED WORK

Gebhart et al.[4] propose an RF caching mechanism for GPUs hav-
ing clustered execution pipelines. An RF cache is added to each clus-
ter and filled only with the outputs of every operation. Malekeh’s
cache accommodates both source and destination registers in CCUs.

The authors extend their RF cache to be managed by the compiler[5].

A register allocation policy assigns registers to different levels of
the hierarchy to optimize energy efficiency. On the other hand,
Malekeh uses a more efficient hardware-controlled cache guided
by the compiler. Malekeh reacts to run time events while having
some future information about reuse provided by the compiler.

Asghari Esfeden et al.[3] proposed a forwarding operand mech-
anism implemented in the OCUs. A detailed comparison between
Malakeh and this work is presented in section 9.

Sadrosadati et al.[11] propose a cache added between the RF
banks and the OCUs. They prefetch the register values into the
cache and move them to the OCUs when needed. Malekeh im-
plements the cache inside the OCUs, so it avoids the overhead of
moving data from the cache to the OCUs.

11 CONCLUSIONS

In this paper, we have introduced Malekeh, a novel caching scheme
for the RF of GPUs that leverages the already existing storage in
operand collector units. To make this caching effective, Malekeh
leverages a cache-sensitive instruction scheduler and compiler in-
formation about the reuse of registers. We have shown that Malekeh
provides 9.6% IPC improvement, 48.5% RF cache hit ratio, and 29.1%
dynamic RF energy saving on average by introducing less than
0.04% area overhead.

ACKNOWLEDGMENTS

This work has been supported by the CoCoUnit ERC Advanced
Grant of the EU’s Horizon 2020 program (grant No 833057), the
Spanish State Research Agency (MCIN/AEI) under grant PID2020-
113172RB-100, and the ICREA Academia program.

Mojtaba Abaie Shoushtary, Jose Maria Arnau, Jordi Tubella Murgadas, Antonio Gonzalez

REFERENCES

[1] baidu. 2020. Deepbench: Benchmarking deep learning operations on different
hardware. https://github.com/baidu-research/DeepBench.

[2] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W. Sheaffer, Sang-
Ha Lee, and Kevin Skadron. 2009. Rodinia: A Benchmark Suite for Heterogeneous
Computing. In Proceedings of the IEEE International Symposium on Workload
Characterization (ISWC).

[3] Hodjat Asghari Esfeden, Amirali Abdolrashidi, Shafiur Rahman, Daniel Wong,
and Nael Abu-Ghazaleh. 2020. BOW: Breathing Operand Windows to Exploit
Bypassing in GPUs. In Proceedings of the 53rd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO).

[4] Mark Gebhart, Daniel R. Johnson, David Tarjan, Stephen W. Keckler, William J.
Dally, Erik Lindholm, and Kevin Skadron. 2011. Energy-efficient mechanisms
for managing thread context in throughput processors. In Proceedings of the 38th
Annual International Symposium on Computer Architecture (ISCA).

[5] Mark Gebhart, Stephen W. Keckler, and William J. Dally. 2011. A Compile-Time
Managed Multi-Level Register File Hierarchy. In Proceedings of the 44th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO).

[6] Vijay Kandiah, Scott Peverelle, Mahmoud Khairy, Junrui Pan, Amogh Manjunath,
Timothy G. Rogers, Tor M. Aamodt, and Nikos Hardavellas. 2021. AccelWattch:
A Power Modeling Framework for Modern GPUs. In Proceedings of the 54th
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO).

[7] Mahmoud Khairy, Zhesheng Shen, Tor M. Aamodt, and Timothy G. Rogers. 2020.
Accel-Sim: An Extensible Simulation Framework for Validated GPU Modeling. In
Proceedings of the 47th Annual International Symposium on Computer Architecture
(ISCA).

[8] NVIDIA. 2018. NVIDIA TURING GPU ARCHITECTURE. Retrieved Nov.
23, 2022 from https://images.nvidia.com/aem-dam/en-zz/Solutions/design-
visualization/technologies/turing-architecture/NVIDIA-Turing- Architecture-
Whitepaper.pdf

[9] Md Aamir Raihan, Negar Goli, and Tor M. Aamodt. 2019. Modeling Deep Learning
Accelerator Enabled GPUs. In Proceedings of the IEEE International Symposium
on Performance Analysis of Systems and Software (ISPASS).

[10] Timothy G. Rogers, Mike O’Connor, and Tor M. Aamodt. 2012. Cache-Conscious
Wavefront Scheduling. In Proceedings of the 45th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO).

[11] Mohammad Sadrosadati, Amirhossein Mirhosseini, Seyed Borna Ehsani, Hamid
Sarbazi-Azad, Mario Drumond, Babak Falsafi, Rachata Ausavarungnirun, and
Onur Mutlu. 2018. LTRF: Enabling High-Capacity Register Files for GPUs via
Hardware/Software Cooperative Register Prefetching. In Proceedings of the 23rd
International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS).

https://github.com/baidu-research/DeepBench
https://images.nvidia.com/aem-dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf

	Abstract
	1 Introduction
	2 Background
	3 Microarchitecture
	3.1 Register File
	3.2 Caching Collector Unit (CCU)

	4 Cache Policies
	4.1 Replacement Policy
	4.2 Write Policy

	5 Issue Scheduling Policy
	6 CCU Allocation Policy
	7 Adaptive Algorithm to Set STHLD
	8 Methodology
	9 Evaluation
	9.1 Performance
	9.2 Read Hit Ratio
	9.3 RF Dynamic Energy
	9.4 Overheads

	10 Related Work
	11 Conclusions
	Acknowledgments
	References

