
GuP: Fast Subgraph Matching by Guard-based Pruning
Junya Arai

junya.arai@ntt.com

Nippon Telegraph and Telephone

Corporation

Musashino-shi, Tokyo, Japan

Yasuhiro Fujiwara

yasuhiro.fujiwara@ntt.com

Nippon Telegraph and Telephone

Corporation

Atsugi-shi, Kanagawa, Japan

Makoto Onizuka

onizuka@ist.osaka-u.ac.jp

Osaka University

Suita-shi, Osaka, Japan

ABSTRACT
Subgraphmatching, which finds subgraphs isomorphic to a query, is

the key to information retrieval from data represented as a graph. To

avoid redundant exploration in the data, existing methods restrict

the search space by extracting candidate vertices and candidate

edges that may constitute isomorphic subgraphs. However, it still

requires expensive computation because candidate vertices induce

many subgraphs that are not isomorphic to the query. In this paper,

we propose GuP, a subgraph matching algorithm with pruning

based on guards. Guards are a pattern of intermediate search states

that never find isomorphic subgraphs. GuP attaches a guard on

each candidate vertex and edge and filters out them adaptively to

the search state. The experimental results showed that GuP can

efficiently solve various queries, including those that the state-of-

the-art methods could not solve in practical time.

CCS CONCEPTS
• Information systems→ Information retrieval query processing;
Graph-based database models.

KEYWORDS
subgraph isomorphism, graph query, graph algorithms

ACM Reference Format:
Junya Arai, Yasuhiro Fujiwara, and Makoto Onizuka. 2018. GuP: Fast Sub-

graph Matching by Guard-based Pruning. In Proceedings of Make sure
to enter the correct conference title from your rights confirmation email
(Conference acronym ’XX). ACM, New York, NY, USA, 14 pages. https:

//doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Similar to searching for a specific phrase within a document, search-

ing for a specific structure within a graph is one of the most fun-

damental operations in graph databases. This operation is for-

mally defined as subgraph matching. It enumerates all full em-

beddings, which map every vertex in a query graph to the ver-

tex of an isomorphic subgraph in a data graph. We refer to a

vertex in the query graph and the data graph as a query vertex

and a data vertex, respectively. Fig. 1 shows an example of query

graph 𝑄 and data graph 𝐺 . Letting (𝑢𝑖 , 𝑣 𝑗 ) denote an assignment
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Figure 1: Example of a query graph and a data graph

of query vertex 𝑢𝑖 to data vertex 𝑣 𝑗 , there exists full embedding

𝑀 = {(𝑢0, 𝑣1), (𝑢1, 𝑣4), (𝑢2, 𝑣7), (𝑢3, 𝑣10), (𝑢4, 𝑣0)}. Since subgraph

matching is NP-hard [15] and computationally expensive for com-

plex graphs, efficient methods have been studied for a long time

[3, 8, 14, 15, 20, 35–38].

Mainstream methods for subgraph matching perform a back-
tracking search, which is a recursive procedure that extends partial
embedding𝑀 with a new assignment of a query vertex and recurses

with extended𝑀 until𝑀 becomes a full embedding. The extension

is performed so that 𝑀 preserves isomorphism. If such an exten-

sion is impossible, the procedure returns to the caller, and the caller

tries extending𝑀 with another assignment. A partial embedding

is called a deadend if it is not extendable or fails to yield any full

embeddings in the subsequent recursions [32]. Since it is futile

to perform recursions with deadend partial embeddings, reducing

them is the key to improving the search performance.

To reduce futile recursions, most methods employ candidate

filtering [3]. For each query vertex 𝑢𝑖 , candidate filtering collects

data vertices that can be a destination of 𝑢𝑖 into 𝐶 (𝑢𝑖 ), a set of the
candidate vertices of𝑢𝑖 . One of the most primitive filters is based on

labels; it makes 𝐶 (𝑢𝑖 ) of the data vertices with the same label as 𝑢𝑖 .

To further remove unnecessary vertices, modern methods perform

matching with a tree or a directed acyclic graph (DAG) obtained

from a query graph [2, 3, 14, 15, 20]. They manage the candidate

vertices and the edges between them, which we call candidate edges,

in an auxiliary data structure such as a candidate space [14]. These
approaches achieve a significant speedup of the search.

However, even if candidate filtering is applied, backtracking still

suffers from numerous futile recursions. This is because candidate

filtering hardly captures a conflict between assignments, namely,

a constraint violation caused by a combination of multiple assign-

ments. Subgraph isomorphism requires that adjacent query vertices

𝑢𝑖 and 𝑢 𝑗 are assigned to adjacent data vertices, constraining the

combination of assignments of 𝑢𝑖 and 𝑢 𝑗 . This implies that a cycle

in a query graph must be mapped to a cycle in a data graph. Cycles
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are usually difficult to find because of the sparseness of real-world

graphs [7], and so partial embeddings tend to become deadends.

Moreover, embeddings must be injective; namely, each query vertex

must be assigned to a different data vertex. This globally constrains

the combination of assignments in a partial embedding. These con-

straints are not well captured in the extraction of 𝐶 (𝑢𝑖 ) because it
is based on the constraints on only 𝑢𝑖 without assumptions on the

assignments of the other query vertices. Thus, candidate filtering

fails to eliminate deadends due to conflicting assignments.

Our approach. We propose GuP, an efficient algorithm for sub-

graph matching. In contrast to candidate filtering that captures

constraints on a single vertex, GuP utilizes a guard to capture

constraints on a partial embedding. A guard is attached to each can-

didate vertex and candidate edge. If a partial embedding matches

the attached guard, GuP adaptively filters out that vertex or edge.

This enables early pruning of deadend partial embeddings before

detecting a violation of the constraints. In detail, GuP combines

two kinds of guards: a reservation guard and a nogood guard.
The reservation guards propagate the injectivity constraint for

checking it in earlier backtracking steps. Let us denote candidate

vertex 𝑣 of query vertex 𝑢𝑖 by (𝑢𝑖 , 𝑣), the same notation as an as-

signment. Intuitively, a reservation guard on (𝑢𝑖 , 𝑣) is a set of the
data vertices to be used in future extensions of partial embeddings

with assignment (𝑢𝑖 , 𝑣). The data vertices in the reservation guard

must be kept unassigned in a partial embedding before extending

it with (𝑢𝑖 , 𝑣); otherwise, it violates the injectivity constraint in the

subsequent extensions. Hence, we can filter out 𝑣 from 𝐶 (𝑢𝑖 ) in
such cases.

On the other hand, the nogood guards detect deadends by learn-

ing conflicting assignments from the deadends encountered before.

A nogood guard is attached to both candidate vertex and candidate

edge to exploit edges in a query graph for pruning. Conceptually, a

nogood guard is a set of assignments that conflict with the exten-

sion using that candidate vertex or edge. Thus, we can filter out

it if a partial embedding includes the assignments in the nogood

guard. GuP updates nogood guards on-the-fly during backtrack-

ing by discovering a nogood [34], a set of conflicting assignments.

Although a nogood is a widely-known concept for the constraint

satisfaction problem, only several studies [26, 27] applied it to sub-

graph matching. In this study, we introduce novel nogood discovery

rules and a search-node encoding for effective and efficient pruning.

Our nogood discovery rules offer a general nogood, which can be

found in many partial embeddings and hence offer high pruning

power. GuP also has a special rule for a nogood guard on edges,

while existing rules cannot produce a nogood that fits edge-based

pruning. Furthermore, a search-node encoding provides a compact

representation for a nogood guard and enables pruning without

increasing the time and space complexities.

GuP stores guards in a guarded candidate space (GCS), an aux-

iliary data structure with the guards. The experimental results

confirmed that guards significantly reduce futile recursions, and as

a result, GuP can process query graphs that cannot be processed

by the state-of-the-art methods even after spending an hour. Our

contributions introduced in this paper are summarized as follows:

(1) Pruning approach based on guards,

(2) Reservation, a pruning condition based on injectivity,

(3) Nogood discovery rules to obtain general nogoods, and

(4) Search-node encoding of a nogood guard.

Paper organization. Section 2 presents the background, and Sec-

tion 3 details our approach. Section 4 discusses the experimental

results, and we conclude this paper in Section 5.

2 BACKGROUND
In this section, we review related work and introduce the problem

definition and notations used in this paper.

2.1 Related Work
There are various problem settings and algorithms related to the

search of subgraphs, such as subgraph enumeration algorithms

for unlabeled graphs [21, 23, 24] and RDF query engines [17, 22,

39] for edge-labeled graphs. On vertex-labeled graphs, subgraph

containment algorithms [4, 6, 13] take a set of data graphs and find

ones with at least one embedding of a query graph, and subgraph

matching algorithms find all embeddings in a single data graph.

Approaches based on join operations [1, 28, 37] are mainly used for

subgraph homomorphism-based subgraph matching, which allows

duplicate assignments of query vertices to the same data vertex.

In contrast, subgraph isomorphism-based subgraph matching, the

focus of this paper, prohibits it. Since most algorithms for this

problem setting perform a backtracking search [38], we review

three popular approaches to improve the efficiency of backtracking.

Candidate filtering. Conventional filtering methods are based on

local features. Ullmann [38] employed label-and-degree filtering

(LDF), which collects data vertex 𝑣 as a candidate vertex of 𝑢𝑖 if 𝑣

has the same label as 𝑢𝑖 and 𝑣 has a degree greater than or equal to

that of 𝑢𝑖 . Neighborhood label frequency filtering (NLF) [3] checks

for every label 𝑙 if a candidate vertex of 𝑢𝑖 has label-𝑙 neighbors

not fewer than those of 𝑢𝑖 . For example, 𝑣13 in Fig. 1 is removed

from 𝐶 (𝑢0) because 𝑣13 has no label-𝐵 neighbor although 𝑢0 has

one label-𝐵 neighbor, 𝑢1. Recent methods employ LDF and NLF in

common, but they also perform pseudo-matching on nearby vertices

of a candidate vertex and a query vertex [16, 36, 40] or matching

with a spanning tree or a DAG built from a query graph [2, 3, 14,

15, 20]. All the previous approaches extract a candidate-vertex set

before backtracking and do not change it after that. In contrast,

GuP adaptively changes it depending on a partial embedding by

using guards.

Optimization of matching order. The size of the search space

varies depending on matching order, in which the destination of

query vertices is determined. This is because the destination of

query vertex 𝑢𝑖 must be chosen from data vertices adjacent to the

destinations of all the matched neighbors of 𝑢𝑖 . Many efforts have

been made to generate a good matching order that first decides

the destinations of query vertices with fewer candidate vertices

and keeps the search space of the remaining query vertices small

[3, 14–16, 33, 36]. However, we still do not have a method that can

generate a good order for arbitrary query graph and data graph

[19, 35]. Thus, it is important to reduce the number of candidate

vertices and edges.

Use of nogoods. A nogood was introduced by Stallman and Suss-

man in 1977 [34] and has been well studied in the AI community.

Pruning with nogoods is performed in two ways: backjumping
2
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Table 1: Notations
Symbol Definition

𝑢𝑖 , 𝑣 Query vertex and data vertex

𝑁 (𝑣) Neighbor set of a vertex

𝑁− (𝑢𝑖 ) Backward neighbor set: {𝑢 𝑗 ∈ 𝑁 (𝑢𝑖 ) | 𝑗 < 𝑖 }
𝑁+ (𝑢𝑖 ) Forward neighbor set: {𝑢 𝑗 ∈ 𝑁 (𝑢𝑖 ) | 𝑗 > 𝑖 }
𝐶 (𝑢𝑖 ) Candidate-vertex set of 𝑢𝑖
𝑀 (𝑢𝑖 ) Destination of 𝑢𝑖 under𝑀

𝑀 ⊕ 𝑣 Extension of𝑀 with 𝑣:𝑀 ∪ { (𝑢 |𝑀 |, 𝑣) }
𝑀 [𝐾 ] Restriction of𝑀 to 𝐾 : { (𝑢𝑖 , 𝑣) ∈ 𝑀 | 𝑢𝑖 ∈ 𝐾 }
𝑀 [: 𝑖 ] Restriction of𝑀 by ID filtering: { (𝑢 𝑗 , 𝑣) ∈ 𝑀 | 𝑗 < 𝑖 }
𝑉𝑄 [: 𝑖 ] Set of query vertices by ID filtering: {𝑢 𝑗 ∈ 𝑉𝑄 | 𝑗 < 𝑖 }

dom(𝑀 ) Domain of a mapping: {𝑢𝑖 | ∃𝑣, (𝑢𝑖 , 𝑣) ∈ 𝑀 }
Im(𝑀 ) Image of a mapping: {𝑣 | ∃𝑢𝑖 , (𝑢𝑖 , 𝑣) ∈ 𝑀 }
𝑅 Reservation guard on a candidate vertex

NV , NE Nogood guards on a candidate vertex and a candidate edge

[11, 30, 34] and nogood recording [12, 18, 34]. Backjumping aban-

dons deadends by escaping from ongoing recursions until the as-

signment shared with the last discovered nogood is changed. On

the other hand, nogood recording stores discovered nogoods in a

database and prunes partial solutions including a recorded nogood.

Backjumping was also independently proposed in the database

community. DAF [14] performs failing set-based pruning [14], and

VEQ [20] captures equivalences of vertices in backjumping, like

symmetricity-based nogood discovery [10]. GuP also performs back-

jumping, but unlike DAF and VEQ, pruning with nogood guards

is categorized as a nogood recording method. The combination of

backjumping and nogood recording enables GuP to eliminate more

search space.

2.2 Definitions
Table 1 lists the symbols used in this paper. We focus on vertex-

labeled simple undirected graphs, similarly to previous studies

[3, 8, 14, 15, 20, 35–38]. Note that our method can easily adapt to

other kinds of graphs, such as directed graphs and edge-labeled

graphs. Consider query graph 𝑄 = (𝑉𝑄 , 𝐸𝑄 , Σ, ℓ) and data graph

𝐺 = (𝑉𝐺 , 𝐸𝐺 , Σ, ℓ). 𝑉𝑄 and 𝑉𝐺 are sets of vertices, 𝐸𝑄 and 𝐸𝐺 are

sets of edges, Σ is a set of labels, and ℓ is a mapping of a vertex

to its label. We assume that the query vertices have consecutive

ID numbers, i.e., 𝑉𝑄 = {𝑢0, 𝑢1, 𝑢2, . . .}. If there is no ambiguity, we

use 𝑢𝑖 as a query vertex and 𝑣 as a data vertex without explicit

mention. 𝑁 (𝑢𝑖 ) and 𝑁 (𝑣) denote the sets of neighbors of 𝑢𝑖 and 𝑣 ,
respectively. Let the set of forward neighbors 𝑁+ (𝑢𝑖 ) = {𝑢 𝑗 | 𝑗 > 𝑖}
and the set of backward neighbors 𝑁− (𝑢𝑖 ) = {𝑢 𝑗 | 𝑗 < 𝑖}. For
arbitrary domain 𝑋 ⊆ 𝑉𝑄 , mapping 𝑀 : 𝑋 → 𝑉𝐺 is denoted by

binary relation𝑀 ⊆ 𝑋×𝑉𝐺 . dom(𝑀) and Im(𝑀) denote the domain

and the image of𝑀 , respectively. Notation𝑀 (𝑢𝑖 ) implicitly implies

assumption 𝑢𝑖 ∈ dom(𝑀). Given query graph 𝑄 and data graph 𝐺 ,

an embedding is defined as follows.

Definition 2.1 (Embedding). Mapping𝑀 : 𝑉𝑄 → 𝑉𝐺 is an embed-
ding of 𝑄 into𝐺 if and only if𝑀 satisfies the following constraints:

(1) Label constraint: ∀𝑢𝑖 ∈ 𝑉𝑄 , ℓ (𝑢𝑖 ) = ℓ (𝑀 (𝑢𝑖 )),
(2) Adjacency constraint: ∀(𝑢𝑖 , 𝑢 𝑗 ) ∈ 𝐸𝑄 , (𝑀 (𝑢𝑖 ), 𝑀 (𝑢 𝑗 )) ∈ 𝐸𝐺 ,
(3) Injectivity constraint: ∀𝑢𝑖 , 𝑢 𝑗 ∈ 𝑉𝑄 , 𝑖 ≠ 𝑗 ⇒ 𝑀 (𝑢𝑖 ) ≠ 𝑀 (𝑢 𝑗 ) .
Then, the problem definition of this paper is given as follows.

Definition 2.2 (Subgraph matching). Given query graph 𝑄 and

data graph 𝐺 , subgraph matching is a problem to enumerate all the

embeddings of 𝑄 in 𝐺 .

The three constraints in Definition 2.1 are referred to as the

constraints of isomorphism. An embedding is also called a full em-
bedding to emphasize the contrast to a partial embedding, which is

an embedding of an induced subgraph of 𝑄 . The length of partial

embedding𝑀 is the number of assignments in𝑀 , denoted by |𝑀 |.
An extension is a mapping made by extending a partial embedding

with an additional assignment. In contrast to partial embeddings,

extensions may violate the constraints of isomorphism.

In the following discussion, we assume that the matching order

is ascending order of query vertex IDs. This preserves the gener-

ality because renumbering vertex IDs can change the matching

order. Additionally, we assume that vertex IDs are numbered in a

connected order [36], that is, every query vertex except 𝑢0 has a

neighbor with a smaller vertex ID. Note that matching orders used

in subgraph matching usually satisfy this property [25, 35]. Under

our assumptions, partial embeddings and extensions of length 𝑘

always consist of assignments of 𝑢0, 𝑢1, . . . , 𝑢𝑘−1
. We denote an

extension of partial embedding𝑀 with an assignment to 𝑣 by𝑀 ⊕ 𝑣
i.e.,𝑀 ⊕ 𝑣 = 𝑀 ∪ {(𝑢𝑘 , 𝑣)} where 𝑘 is the length of𝑀 .

3 METHOD
We propose GuP, an efficient algorithm for subgraph matching.

GuP prunes deadend partial embeddings by filtering out unneces-

sary candidate vertices and edges adaptively to the assignments in

each partial embedding. The key idea is guards attached to each

candidate vertex and edge, which represent a filtering condition.

In the following sections, we first present the overview of GuP in

Section 3.1. Then, Sections 3.2 and 3.3 details a reservation guard

and a nogood guard, respectively, and the backtracking algorithm

using guards is described in Section 3.4. In addition, we introduce

a search-node encoding of nogood guards and briefly discuss an

approach for parallelization in Section 3.5. Finally, we analyze the

complexity of GuP in Section 3.6. All the examples in this section

consider query graph 𝑄 and data graph 𝐺 shown in Fig. 1.

3.1 Overview
GuP consists of the following steps.

(1) Guarded candidate space (GCS) construction: GuP builds a

GCS, an auxiliary data structure that organizes candidate

vertices, candidate edges, and guards. This step includes

candidate filtering and matching order optimization.

(2) Reservation guard generation: GuP populates the reservation

guards in the GCS by analyzing the connections between

candidate vertices.

(3) Backtracking search: GuP enumerates full embeddings using

the data in the GCS. Nogood guards are generated on-the-fly

and used for pruning along with reservation guards.

In the GCS generation step, GuP employs extended DAG-graph DP

[20] for candidate filtering and VC [36] for optimizing the matching

order. In the following, we assume that the query vertices are num-

bered in the optimized order. Note that an approach for candidate

filtering and matching order optimization is out of the scope of

this work, and guard-based pruning can be used in combination

with arbitrary existing approaches. Fig. 2 illustrates the GCS for 𝑄

and 𝐺 shown in Fig. 1. 𝑅 and 𝑁𝑉 shows a reservation guard and a

nogood guard attached to each candidate vertices. Nogood guards

3
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𝑣𝑣0 𝑣𝑣1
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𝑅𝑅

𝑁𝑁𝑁𝑁
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𝑅𝑅

𝑁𝑁𝑁𝑁

𝐶𝐶 𝑢𝑢1
𝑅𝑅
𝑁𝑁𝑁𝑁

Figure 2: Guarded candidate space for 𝑄 and 𝐺 in Fig. 1.
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Figure 3: Search tree for 𝑄 and 𝐺 in Fig. 1.

are also attached to candidate edges while they are omitted for

conciseness. All the candidate-vertex sets are simply a set of data

vertices with the same label, except that 𝑣13 is removed from𝐶 (𝑢0)
by NLF as described in Section 2.1. Similar to a candidate space, a

GCS provides all the information necessary for backtracking [14].

After the GCS construction, GuP generates a reservation guard and

then starts backtracking.

3.2 Reservation guard
This section first introduces an abstract concept of a reservation

and then presents an algorithm to generate a reservation guard.

3.2.1 Reservation. We begin with the fundamental definitions. Let

𝑄 [𝐼 ] be a subgraph of 𝑄 induced by 𝐼 ⊆ 𝑉𝑄 ,

Definition 3.1 (Inclusive descendant). Let 𝑢𝑖 , 𝑢 𝑗 ∈ 𝑉𝑄 . 𝑢 𝑗 is an
inclusive descendant of 𝑢𝑖 if and only if 𝑢𝑖 = 𝑢 𝑗 or 𝑢 𝑗 is an inclusive

descendant of some 𝑢𝑘 ∈ 𝑁+ (𝑢𝑖 ).

Definition 3.2 (Rooted subembedding). Let (𝑢𝑖 , 𝑣) be a candidate
vertex, 𝐼 be the set of all the inclusive descendants of 𝑢𝑖 , and 𝑀

be a set of assignments of 𝑢 𝑗 ∈ 𝐼 . 𝑀 is a subembedding rooted at

(𝑢𝑖 , 𝑣) if and only if (i)𝑀 is an embedding of 𝑄 [𝐼 ], (ii)𝑀 includes

assignment (𝑢𝑖 , 𝑣), and (iii)𝑀 (𝑢 𝑗 ) ∈ 𝐶 (𝑢 𝑗 ) holds for arbitrary 𝑢 𝑗 .
Condition (iii) makes sense because 𝑄 [𝐼 ] may be able to be

mapped to data vertices that are not candidate vertices for 𝑄 .

Definition 3.3 (Reservation). Let (𝑢𝑖 , 𝑣) be a candidate vertex and
𝑆 ⊆ 𝑉𝐺 . 𝑆 is a reservation of (𝑢𝑖 , 𝑣) if and only if an arbitrary

subembedding rooted at (𝑢𝑖 , 𝑣) contains an assignment to a data

vertex in 𝑆 .

In this definition, any superset of a reservation is also a reser-

vation. Additionally, an arbitrary set of data vertices, including an

empty set, is a reservation of candidate vertex (𝑢𝑖 , 𝑣) if there does
not exist any subembedding rooted at (𝑢𝑖 , 𝑣). For this reason, at
least one reservation can be defined for every candidate vertex.

Example 3.4. The inclusive descendants of 𝑢1 are 𝑢1, 𝑢2, 𝑢3,

and 𝑢4. As shown in the GCS (Fig. 2), the subembeddings rooted

at (𝑢1, 𝑣3) are {(𝑢1, 𝑣3), (𝑢2, 𝑣5), (𝑢3, 𝑣9), (𝑢4, 𝑣0)}, {(𝑢1, 𝑣3), (𝑢2, 𝑣7),
(𝑢3, 𝑣10), (𝑢4, 𝑣0)}, {(𝑢1, 𝑣3), (𝑢2, 𝑣8), (𝑢3, 𝑣11), (𝑢4, 𝑣1)}, and {(𝑢1, 𝑣3),
(𝑢2, 𝑣8), (𝑢3, 𝑣12), (𝑢4, 𝑣1)}. All of them contain an assignment to 𝑣0

or 𝑣1, and thus {𝑣0, 𝑣1} is one of the reservations of (𝑢1, 𝑣3).
GuP selects one of the possible reservations of (𝑢𝑖 , 𝑣) as reserva-

tion guard 𝑅(𝑢𝑖 , 𝑣). The definition of a reservation implies that, if a

partial embedding contains assignments to 𝑅(𝑢𝑖 , 𝑣), we cannot as-
sign inclusive descendants of𝑢𝑖 satisfying the injectivity constraint.

We formally state it as follows. Let𝑀 [: 𝑖] be {(𝑢 𝑗 , 𝑣) ∈ 𝑀 | 𝑗 < 𝑖}.
Definition 3.5 (Matching with a reservation guard). We say that

partial embedding 𝑀 matches 𝑅(𝑢𝑖 , 𝑣) if and only if 𝑅(𝑢𝑖 , 𝑣) ⊆
Im(𝑀 [: 𝑖]) holds.

Lemma 3.6. Let𝑀 be a partial embedding. Suppose that 𝑅(𝑢𝑖 , 𝑣)
is a reservation of (𝑢𝑖 , 𝑣) and 𝑀 matches 𝑅(𝑢𝑖 , 𝑣). Then, 𝑀 [: 𝑖] ∪
{(𝑢𝑖 , 𝑣)} is a deadend.

Proof. Wemake a proof by contradiction. Suppose that there ex-

ists full embedding 𝑀̂ such that 𝑅(𝑢𝑖 , 𝑣) ⊆ Im(𝑀̂ [: 𝑖]) and (𝑢𝑖 , 𝑣) ∈
𝑀̂ . Letting 𝐼 be the set of all the inclusive descendants of 𝑢𝑖 , 𝑀̂ [𝐼 ] is
a (𝑢𝑖 , 𝑣)-rooted subembedding. Hence, by Definition 3.3, there ex-

ists 𝑢 𝑗 ∈ 𝐼 such that 𝑀̂ (𝑢 𝑗 ) ∈ 𝑅(𝑢𝑖 , 𝑣). In addition, 𝑗 ≥ 𝑖 holds

because 𝑢 𝑗 is an inclusive descendant of 𝑢𝑖 . At the same time,

from 𝑅(𝑢𝑖 , 𝑣) ⊆ Im(𝑀̂ [: 𝑖]), there exists 𝑢𝑘 such that 𝑘 < 𝑖 and

𝑀̂ (𝑢𝑘 ) = 𝑀̂ (𝑢 𝑗 ) ∈ 𝑅(𝑢𝑖 , 𝑣). Since 𝑘 ≠ 𝑗 holds by 𝑘 < 𝑖 ≤ 𝑗 , 𝑀̂

violates the injectivity constraint, which is a contradiction. □

Letting 𝑖 = |𝑀 | and 𝑣 ∈ 𝐶 (𝑢𝑖 ),𝑀 ⊕ 𝑣 is a deadend if𝑀 matches

𝑅(𝑢𝑖 , 𝑣). We can filter out 𝑣 from 𝐶 (𝑢𝑖 ) by using this property.

3.2.2 Reservation Guard Generation. For effective pruning, we pre-
fer that R(𝑢𝑖 , 𝑣) is a reservation expected to be matched by many

partial embeddings. To generate such a reservation guard, GuP

employs two policies. First, GuP avoids generating a reservation

guard that cannot be matched by any possible partial embedding.

We utilize the following lemma to check it. Let 𝑉𝑄 [: 𝑖] = {𝑢 𝑗 |
𝑗 < 𝑖}, 𝐶−1 (𝑣) = {𝑢𝑖 | 𝑣 ∈ 𝐶 (𝑢𝑖 )}, 𝐶−1 (𝑆) = ⋃

𝑣∈𝑆 𝐶
−1 (𝑣), and

𝐶−1 (𝑣) [: 𝑖] = {𝑢 𝑗 ∈ 𝐶−1 (𝑣) | 𝑗 < 𝑖}.
Lemma 3.7. Let (𝑢𝑖 , 𝑣) be a candidate vertex and 𝑆 be its reserva-

tion. If 𝑆 holds (i) ∃𝑣 ′ ∈ 𝑆,𝐶−1 (𝑣 ′) [: 𝑖] = ∅ or (ii) ∃𝑆 ′ ⊆ 𝑆, |𝑆 ′ | >
|𝐶−1 (𝑆 ′) [: 𝑖] |, no partial embedding matches 𝑆 .
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Proof. We make a proof by cases. Regarding the case that 𝑆

holds condition (i), suppose that 𝑣 ′ ∈ 𝑆 holds 𝐶−1 (𝑣 ′) [: 𝑖] = ∅.
Then, we have 𝑣 ′ ∉ 𝐶 (𝑉𝑄 [: 𝑖]). Since arbitrary partial embed-

ding 𝑀 holds Im(𝑀 [: 𝑖]) ⊆ 𝐶 (𝑉𝑄 [: 𝑖]), we have 𝑣 ′ ∉ Im(𝑀 [: 𝑖]).
It follows that 𝑆 ⊈ Im(𝑀 [: 𝑖]). Regarding the case that 𝑆 holds
condition (ii), we argue by contradiction. Suppose there exists

partial embedding 𝑀 such that 𝑆 ⊆ Im(𝑀 [: 𝑖]). Since 𝑀 is an in-

jective mapping, we can have its inverse function 𝑀−1
. We have

𝑀−1 (𝑣 ′) ∈ 𝑉𝑄 [: 𝑖] and 𝑀−1 (𝑣 ′) ∈ 𝐶−1 (𝑣 ′) for all 𝑣 ′ ∈ Im(𝑀 [: 𝑖]),
and thus𝑀−1 (𝑣 ′) ∈ 𝐶−1 (𝑣 ′) [: 𝑖] holds. Since 𝑆 ⊆ Im(𝑀 [: 𝑖]) holds
by hypothesis, for all 𝑆 ′ ⊆ 𝑆 , we have 𝑀−1 (𝑆 ′) ⊆ 𝐶−1 (𝑆 ′) [: 𝑖],
and thus |𝑆 ′ | ≤ |𝐶−1 (𝑆 ′) [: 𝑖] | holds because |𝑀−1 (𝑆 ′) | = |𝑆 ′ |. This
contradicts supposition ∃𝑆 ′ ⊆ 𝑆, |𝑆 ′ | > |𝐶−1 (𝑆 ′) [: 𝑖] |. Therefore,
we have proved the statement. □

GuP considers a reservation to bematchable if it satisfies neither
condition (i) nor (ii) in Lemma 3.7.

Example 3.8. As shown in Example 3.4, {𝑣0, 𝑣1} is a reservation
of (𝑢1, 𝑣3). Let us check if this is matchable by using conditions

(i) and (ii) in Lemma 3.7. Both 𝐶−1 (𝑣0) and 𝐶−1 (𝑣1) are {𝑢0, 𝑢4},
and thus 𝐶−1 (𝑣0) [: 1] = 𝐶−1 (𝑣1) [: 1] = {𝑢0} ≠ ∅. Hence, condition
(i) is not held. However, we have |𝐶−1 ({𝑣0, 𝑣1}) [: 𝑖] | = |{𝑢0}| = 1,

which is less than |{𝑣0, 𝑣1}| (= 2). Therefore, condition (ii) is held,

and {𝑣0, 𝑣1} is not matchable as a reservation guard of (𝑢1, 𝑣3).

The second policy is to minimize the size of a reservation guard

(i.e., |𝑅(𝑢𝑖 , 𝑣) |) because a smaller reservation guard tends to be

matched by more partial embeddings. By definition, an arbitrary

candidate vertex (𝑢𝑖 , 𝑣) has a trivial reservation {𝑣} because any
subembeddings rooted at (𝑢𝑖 , 𝑣) contain 𝑣 . Although this is clearly

the smallest choice for𝑅(𝑢𝑖 , 𝑣), this does not reduce futile recursions
because it just performs an ordinary injectivity check that ensures

𝑣 is not used in a partial embedding. To obtain a non-trivial small

reservation, GuP generates candidates of reservation guards by

propagating the injectivity constraint in a bottom-up manner and

selects the smallest one as a reservation guard.

Definition 3.9 (Reservation guard candidate). Let (𝑢𝑖 , 𝑣) be a candi-
date vertex,𝑢 𝑗 ∈ 𝑁+ (𝑢𝑖 ), and𝑅(𝑢𝑖 , 𝑣) be a reservation of (𝑢𝑖 , 𝑣). The
reservation guard candidate of (𝑢𝑖 , 𝑣) regarding𝑢 𝑗 is the smallest set

of data vertices that is (i) matchable as a reservation guard of (𝑢𝑖 , 𝑣)
and (ii) a superset of {𝑣 ′} or 𝑅(𝑢 𝑗 , 𝑣 ′) \ {𝑣} for all 𝑣 ′ ∈ 𝑁 (𝑣) ∩𝐶 (𝑢𝑖 ).

Lemma 3.10. Let (𝑢𝑖 , 𝑣) be a candidate vertex and 𝑢 𝑗 ∈ 𝑁+ (𝑢𝑖 ).
Suppose that 𝑆 is a reservation guard candidate of (𝑢𝑖 , 𝑣) regarding
𝑢 𝑗 . Then, 𝑆 is a reservation of (𝑢𝑖 , 𝑣).

Proof. We argue by contradiction. Suppose that 𝑆 is not a reser-

vation of (𝑢𝑖 , 𝑣). It follows that there exists (𝑢𝑖 , 𝑣)-rooted subem-

bedding𝑀 that does not have an assignment to a vertex in 𝑆 . Since

𝑀 satisfies the adjacency constraint,𝑀 (𝑢 𝑗 ) ⊆ 𝑁 (𝑣) ∩𝐶 (𝑢 𝑗 ) holds.
By hypothesis, we have𝑀 (𝑢 𝑗 ) ∈ 𝑆 or 𝑅(𝑢 𝑗 , 𝑀 (𝑢 𝑗 )) \ {𝑣} ⊆ 𝑆 . Thus,
we proceed by cases. Regarding the case that 𝑀 (𝑢 𝑗 ) ∈ 𝑆 holds,
𝑀 has an assignment to a vertex in 𝑆 , which is a contradiction.

Regarding the case that 𝑅(𝑢 𝑗 , 𝑀 (𝑢 𝑗 )) \ {𝑣} ⊆ 𝑆 holds, let 𝐼 ′ be
the inclusive descendant set of 𝑢 𝑗 . 𝑀 [𝐼 ′] has an assignment to a

vertex in 𝑅(𝑢 𝑗 , 𝑀 (𝑢 𝑗 )) because𝑀 [𝐼 ′] is a subembedding rooted at

(𝑢 𝑗 , 𝑀 (𝑢 𝑗 )). In addition, since𝑀 maps 𝑢𝑖 to 𝑣 and satisfies the in-

jectivity constraint,𝑀 [𝐼 ′] does not have an assignment to 𝑣 . Hence,

𝑀 [𝐼 ′] has an assignment to a vertex in 𝑅(𝑢 𝑗 , 𝑀 (𝑢 𝑗 )) \ {𝑣} ⊆ 𝑆 ,

which is a contradiction. Therefore, 𝑆 is a reservation of (𝑢𝑖 , 𝑣). □

We can obtain reservation guard candidates via solving the vertex

cover problem.

Lemma 3.11. Let (𝑢𝑖 , 𝑣) be a candidate vertex, 𝑢 𝑗 ∈ 𝑁+ (𝑢𝑖 ), and
𝐸𝑅 = {(𝑣 ′,𝑤) | 𝑣 ′ ∈ 𝑁 (𝑣) ∩𝐶 (𝑢 𝑗 ),𝑤 ∈ 𝑅(𝑢 𝑗 , 𝑣 ′) \ {𝑣}}. (1)

Consider graph 𝐺𝑅 = (𝑉𝑅, 𝐸𝑅) where 𝑉𝑅 is a set of the data vertices
that appear in 𝐸𝑅 . In addition, suppose that 𝑆 ⊆ 𝑉𝐺 holds that (i) 𝑆 is
matchable as a reservation guard of (𝑢𝑖 , 𝑣) and (ii) 𝑆 is the minimum
vertex cover of𝐺𝑅 . Then, 𝑆 is the reservation guard candidate of (𝑢𝑖 , 𝑣)
regarding 𝑢 𝑗 .

Proof. Let 𝑣 ′ ∈ 𝑁 (𝑣) ∩𝐶 (𝑢 𝑗 ) and𝑤 ∈ 𝑅(𝑢 𝑗 , 𝑣 ′) \ {𝑣}. Since 𝑆 is
a vertex cover, 𝑆 contains either or both of 𝑣 ′ and𝑤 . If 𝑣 ′ ∉ 𝑆 , by the
definition of 𝐸𝑅 , we have𝑤 ∈ 𝑆 for all𝑤 ∈ 𝑅(𝑢 𝑗 , 𝑣 ′) \ {𝑣}. Hence,
𝑆 is a superset of {𝑣 ′} or 𝑅(𝑢 𝑗 , 𝑣 ′) \ {𝑣} for all 𝑣 ′ ∈ 𝑁 (𝑣) ∩𝐶 (𝑢 𝑗 ).
Since 𝑆 is the smallest set that is matchable and covers 𝐺𝑅 , it is the

reservation guard candidate of (𝑢𝑖 , 𝑣) regarding 𝑢 𝑗 . □

Since the reservation guard candidate must bematchable, it is not

necessarily defined for all the forward neighbors. If none of them

has a reservation guard candidate, GuP resorts to a trivial reser-

vation. Otherwise, the smallest one is chosen for the reservation

guard. Specifically, a reservation guard is defined as follows.

Definition 3.12 (Reservation guard). Let (𝑢𝑖 , 𝑣) be a candidate

vertex. The reservation guard on (𝑢𝑖 , 𝑣), denoted by 𝑅(𝑢𝑖 , 𝑣), is
defined as follows.

(1) If 𝑁+ (𝑢𝑖 ) = ∅ or the reservation guard candidate of (𝑢𝑖 , 𝑣)
regarding 𝑢 𝑗 is undefined for all 𝑢 𝑗 ∈ 𝑁+ (𝑢𝑖 ), 𝑅(𝑢𝑖 , 𝑣) = {𝑣}.

(2) Otherwise, 𝑅(𝑢𝑖 , 𝑣) is the smallest reservation guard candi-

date of (𝑢𝑖 , 𝑣) regarding 𝑢 𝑗 where 𝑢 𝑗 ∈ 𝑁+ (𝑢𝑖 ).

Example 3.13. Fig. 2 shows reservation guard 𝑅 of each candi-

date vertex. For example, 𝑅(𝑢2, 𝑣5) is obtained from the reservation

guards of forward-adjacent candidate vertices, 𝑅(𝑣3, 𝑣9), 𝑅(𝑢4, 𝑣0),
and 𝑅(𝑢4, 𝑣13), as follows. 𝑅(𝑢4, 𝑣0) and 𝑅(𝑢4, 𝑣13) is given by the

trivial reservations, {𝑣0} and {𝑣13}, respectively. Since 𝑢3 has only

forward neighbor 𝑢4, 𝑅(𝑢3, 𝑣9) is given by the reservation guard

candidate regarding𝑢4. It is the smallest matchable superset of {𝑣0}
or 𝑅(𝑢4, 𝑣0) \ {𝑣9} (= {𝑣0}), and thus 𝑅(𝑢3, 𝑣9) = {𝑣0}. Next, we
consider the reservation guard candidates of (𝑢2, 𝑣5) regarding 𝑢3

and 𝑢4. That regarding 𝑢3 is 𝑅(𝑢3, 𝑣9) \ {𝑣5} (= {𝑣0}) because {𝑣9}
is not matchable. Regarding 𝑢4, there does not exist a matchable su-

perset of both {𝑣0} and {𝑣13} because of condition (i) in Lemma 3.7

(𝐶−1 (𝑣13) [: 2] = ∅). Hence, the reservation guard of (𝑢2, 𝑣5) is given
by the candidate regarding 𝑢3, which is {𝑣0}.

Definition 3.12 provides a reservation guard effective for pruning,

but it still possibly produces a large reservation guard in theory.

Such reservation guards are not only rarely matched by partial

embeddings but also increase the cost of the reservation guard

generation and matching test. Thus, we introduce user-defined

parameter 𝑟 to specify the upper bound of the size of reservation

guards. Fortunately, our empirical study in Section 4.3.1 showed

that a reservation guard preserves its pruning power even if the

size is limited to 3 (i.e., 𝑟 = 3).
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Algorithm 1 Reservation guard generation

Input: Candidate-vertex set𝐶 and reservation size limit 𝑟

Output: Reservation guard 𝑅 (𝑢𝑖 , 𝑣) for all 𝑢𝑖 ∈ 𝑉𝑄 and 𝑣 ∈ 𝐶 (𝑢𝑖 )
1: for 𝑢𝑖 ∈ 𝑉𝑄 in reverse order and 𝑣 ∈ 𝐶 (𝑢𝑖 ) do
2: 𝑅 (𝑢𝑖 , 𝑣) ← {𝑣}
3: for 𝑢 𝑗 ∈ 𝑁+ (𝑢𝑖 ) do
4: Construct graph𝐺𝑅 from edge set 𝐸𝑅 (Eq. (1))

5: Find vertex cover 𝑆 over𝐺𝑅 s.t. |𝑆 | ≤ 𝑟 and 𝑆 is matchable

6: if such 𝑆 is found, and 𝑅 (𝑢𝑖 , 𝑣) = {𝑣} or |𝑅 (𝑢𝑖 , 𝑣) | < |𝑆 | then
7: 𝑅 (𝑢𝑖 , 𝑣) ← 𝑆

Algorithm 1 shows the pseudocode of the reservation guard gen-

eration. This algorithm computes 𝑅(𝑢𝑖 , 𝑣) in the descending order

of 𝑢𝑖 so that the reservation guards of all the forward-adjacent

candidate vertices are computed before 𝑅(𝑢𝑖 , 𝑣). The loop at line

3 computes 𝑆 , the reservation guard candidate of (𝑢𝑖 , 𝑣) regarding
𝑢 𝑗 ∈ 𝑁+ (𝑢𝑖 ). Since the vertex cover problem is NP-hard, GuP em-

ploys a 2-approximate algorithm described in [9], which iteratively

chooses an edge in 𝐸𝑅 and adds endpoints to 𝑆 until all the vertices

are covered. To find matchable 𝑆 whose size does not exceed 𝑟 , our

algorithm chooses an edge that keeps 𝑆 matchable by checking the

conditions in Lemma 3.7 and stops the iteration if |𝑆 | exceeds 𝑟 . If
such 𝑆 is found for at least one of 𝑢 𝑗 ∈ 𝑁+ (𝑢𝑖 ), the smallest one is

chosen for 𝑅(𝑢 𝑗 , 𝑣). Otherwise, 𝑅(𝑢 𝑗 , 𝑣) is set to trivial reservation

{𝑣}. We analyze the complexity of this algorithm in Section 3.6.

3.3 Nogood guard
This section first defines a nogood guard and then details the no-

good discovery rule for a nogood guard on vertices and edges,

respectively.

3.3.1 Definitions. A nogood guards is a set of assignments that

compose a nogood with a candidate vertex or the endpoints of

candidate edges where it is attached.

Definition 3.14 (Nogood). Set of assignment 𝐷 ⊆ 𝑉𝑄 × 𝑉𝐺 is a

nogood if and only if there does not exist any full embedding 𝑀

such that 𝐷 ⊆ 𝑀 .

For example, {(𝑢0, 𝑣0), (𝑢4, 𝑣0)} is a nogood because any partial

embedding including these assignments violates the injectivity

constraint.

Definition 3.15 (Nogood guard on vertices). Let (𝑢𝑖 , 𝑣) be a candi-
date vertex. A nogood guard on (𝑢𝑖 , 𝑣), denoted by NV (𝑢𝑖 , 𝑣), is a
subset of 𝑉𝑄 [: 𝑖] ×𝑉𝐺 such that NV (𝑢𝑖 , 𝑣) ∪ {(𝑢𝑖 , 𝑣)} is a nogood.

Definition 3.16 (Nogood guard on edges). Let ((𝑢𝑖 , 𝑣), (𝑢 𝑗 , 𝑣 ′)) be
a candidate edge. A nogood guard on ((𝑢𝑖 , 𝑣), (𝑢 𝑗 , 𝑣 ′)), denoted by

NE((𝑢𝑖 , 𝑣), (𝑢 𝑗 , 𝑣 ′)), is a subset of𝑉𝑄 [: 𝑖] ×𝑉𝐺 such that NE((𝑢𝑖 , 𝑣),
(𝑢 𝑗 , 𝑣 ′)) ∪ {(𝑢𝑖 , 𝑣), (𝑢 𝑗 , 𝑣 ′)} is a nogood.

Definition 3.17 (Matching with a nogood guard). We say that

partial embedding 𝑀 matches NV (𝑢𝑖 , 𝑣) or NE((𝑢𝑖 , 𝑣), (𝑢 𝑗 , 𝑣 ′)) if
and only if𝑀 is a superset of them.

Since a partial embedding including a nogood never yields any

full embeddings, nogoods are useful for pruning. Suppose that

𝑀 is a partial embedding of length 𝑖 . We can filter out candidate

vertex (𝑢𝑖 , 𝑣) if 𝑀 matches NV (𝑢𝑖 , 𝑣) because 𝑀 ⊕ 𝑣 is a superset

of NV (𝑢𝑖 , 𝑣) ∪ {(𝑢𝑖 , 𝑣)}. Similarly, we can filter out candidate edge

((𝑢𝑖 , 𝑣), (𝑢 𝑗 , 𝑣 ′)) if𝑀 matchesNE((𝑢𝑖 , 𝑣), (𝑢 𝑗 , 𝑣 ′)). Filtering out the
edge can be rephrased as prohibiting mapping query edge (𝑢𝑖 , 𝑢 𝑗 ) to
data edge (𝑣, 𝑣 ′) by two assignments (𝑢𝑖 , 𝑣) and (𝑢 𝑗 , 𝑣 ′). Such map-

ping makes a deadend because𝑀 ∪ {(𝑢𝑖 , 𝑣), (𝑢 𝑗 , 𝑣 ′)} is a superset
of NE((𝑢𝑖 , 𝑣), (𝑢 𝑗 , 𝑣 ′)) ∪ {(𝑢𝑖 , 𝑣), (𝑢 𝑗 , 𝑣 ′)}, which is a nogood.

To generate a nogood guard, we need to discover a nogood from

deadend partial embeddings encountered during the backtracking.

The following sections describe how to do it.

3.3.2 Nogood Guards on Vertices. If a partial embedding is a dead-

end, the set of all its assignments is a nogood by the definition.

However, such nogoods are ineffective for pruning because the

same partial embedding does not appear again during the search,

and so no partial embedding matches it. For higher effectiveness,

a smaller nogood is preferred because it is expected to be a sub-

set of more partial embeddings. Thus, we need to carefully drop

assignments irrelevant to the conflicts in a deadend.

A deadend violates some of the constraints of isomorphism.

To capture the adjacency constraint, we introduce a set of local

candidate vertices, which satisfy the adjacency constraint between

the assignments in a partial embedding.

Definition 3.18 (Local candidate-vertex set). Let 𝑀 be a partial

embedding. The local candidate-vertex set of 𝑢𝑖 under𝑀 , denoted

by 𝐶 (𝑢𝑖 ;𝑀), is a set of 𝑣 ∈ 𝐶 (𝑢𝑖 ) that holds, for all 𝑢 𝑗 ∈ 𝑁− (𝑢𝑖 ), (i)
𝑣 ∈ 𝑁 (𝑀 (𝑢 𝑗 )) and (ii)𝑀 does not match NE((𝑢 𝑗 , 𝑀 (𝑢 𝑗 )), (𝑢𝑖 , 𝑣)).

This definition uses a nogood guard on edges because we filter

out candidate edges if 𝑀 matches their guards. To satisfy the ad-

jacency constraint, a local candidate vertex is used for extending

𝑀 . In other words, local candidate-vertex sets confine the search

space. Hence, the assignments involved in the computation of a

local candidate-vertex set are relevant to generating a deadend. Con-

versely, the assignments that have no influence on a local candidate-

vertex set are irrelevant to a deadend, and so we can drop them to

reduce the size of nogood. Based on this idea, we define a bounding

set, which is a set of query vertices whose assignments determine

the local candidate-vertex sets.

Definition 3.19 (Bounding set). Let𝑀 be a partial embedding and

𝑢𝑖 ∈ 𝑉𝑄 . The bounding set of 𝑢𝑖 under 𝑀 , denoted by 𝐵(𝑢𝑖 ;𝑀),
is the union of 𝐵

adj
and 𝐵

guard
. 𝐵

adj
is the set of 𝑢 𝑗 ∈ 𝑁− (𝑢𝑖 )

such that 𝐶 (𝑢𝑖 ;𝑀 [: 𝑗]) ≠ 𝐶 (𝑢𝑖 ;𝑀 [: 𝑗 + 1]). 𝐵
guard

is the union of

dom(NE((𝑢 𝑗 , 𝑀 (𝑢 𝑗 )), (𝑢𝑖 , 𝑣))) for all combinations of 𝑢 𝑗 ∈ 𝑁− (𝑢𝑖 )
and 𝑣 ∈ 𝐶 (𝑢𝑖 ;𝑀 [: 𝑗]) such that𝑀 matches NE((𝑢 𝑗 , 𝑀 (𝑢 𝑗 )), (𝑢𝑖 , 𝑣)).

𝐵
adj

is a set of query vertices whose assignment reduces the size

of the local candidate-vertex set by its adjacency relation regardless

of guards. It is examined by condition𝐶 (𝑢 𝑗 ;𝑀 [: 𝑖]) ≠ 𝐶 (𝑢 𝑗 ;𝑀 [: 𝑖 +
1]), which says that 𝑢𝑖 is included in the bounding set if adding

assignment (𝑢𝑖 , 𝑀 (𝑢𝑖 )) changes the local candidate-vertex set of

𝑢 𝑗 . On the other hand, 𝐵
guard

is a set of query vertices whose

assignment commits in the match between𝑀 and nogood guards.

They are also involved in the decision of the local candidate-vertex

set because they are necessary to let𝑀 match the nogood guards

and filter out some edges.

Example 3.20. Let𝑀 = {(𝑢0, 𝑣0), (𝑢1, 𝑣3)} and assume that𝑀 do

not match any nogood guard on edges. Consider the bounding set of
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𝑢2 under𝑀 . We have 𝑁− (𝑢2) = {𝑢0, 𝑢1}. 𝐵adj
contains 𝑢0 because

𝐶 (𝑢2;𝑀 [: 0]) = {𝑣5, 𝑣6, 𝑣7, 𝑣8}, which differs from 𝐶 (𝑢2;𝑀 [: 1]) =
𝐶 (𝑢2; {(𝑢0, 𝑣0)}) = {𝑣5, 𝑣6, 𝑣7}. On the other hand, 𝐵

adj
does not

contain 𝑢1 because 𝑁 (𝑀 (𝑢1)) is a superset of 𝐶 (𝑢2;𝑀 [: 1]) and
thus 𝐶 (𝑢2;𝑀 [: 2]) = 𝐶 (𝑢2;𝑀 [: 1]). In addition, 𝐵

guard
= ∅ by as-

sumption. Therefore, we have 𝐵(𝑢2;𝑀) = {𝑢0}.

Lemma 3.21. Let𝑀 and𝑀′ be a partial embedding and 𝑢𝑖 ∈ 𝑉𝑄 .
If𝑀 [𝐵(𝑢𝑖 ;𝑀)] ⊆ 𝑀′, we have 𝐶 (𝑢𝑖 ;𝑀) ⊇ 𝐶 (𝑢𝑖 ;𝑀′).

Proof. We make a proof by contradiction. Suppose that there

exists 𝑣 ∈ 𝐶 (𝑢𝑖 ) such that 𝑣 ∈ 𝐶 (𝑢𝑖 ;𝑀′) and 𝑣 ∉ 𝐶 (𝑢𝑖 ;𝑀). From
𝑣 ∉ 𝐶 (𝑢𝑖 ;𝑀), there exists 𝑢 𝑗 ∈ 𝑁− (𝑢𝑖 ) ∩ dom(𝑀) that holds either
or both of (i) 𝑣 ∉ 𝑁 (𝑀 (𝑢 𝑗 )) and that (ii) NE((𝑢 𝑗 , 𝑀 (𝑢 𝑗 )), (𝑢𝑖 , 𝑣))
is matched by 𝑀 . Regarding case (i), we have 𝑢 𝑗 ∈ 𝐵(𝑢𝑖 ;𝑀) by
Definition 3.19 because 𝐶 (𝑢𝑖 ;𝑀 [: 𝑗]) ≠ 𝐶 (𝑢𝑖 ;𝑀 [: 𝑗 + 1]). Since
𝑀 [𝐵(𝑢𝑖 ;𝑀)] ⊆ 𝑀′ by hypothesis, 𝑀 (𝑢 𝑗 ) = 𝑀′ (𝑢 𝑗 ) holds. How-
ever, from 𝑣 ∈ 𝐶 (𝑢𝑖 ;𝑀′), we have 𝑣 ∈ 𝑁 (𝑀′ (𝑢 𝑗 )) = 𝑁 (𝑀 (𝑢 𝑗 )),
which is contradiction. Regarding case (ii), by Definition 3.19,

we have dom(NE((𝑢 𝑗 , 𝑀 (𝑢 𝑗 )), (𝑢𝑖 , 𝑣))) ⊆ 𝐵(𝑢𝑖 ;𝑀). By hypothe-

sis, 𝑀 [𝐵(𝑢𝑖 ;𝑀)] ⊆ 𝑀′ holds, and thus we have NE((𝑢 𝑗 , 𝑀 (𝑢 𝑗 )),
(𝑢𝑖 , 𝑣)) ⊆ 𝑀′ [: 𝑗]. However, from 𝑣 ∈ 𝐶 (𝑢𝑖 ;𝑀′), NE((𝑢 𝑗 , 𝑀 (𝑢 𝑗 )),
(𝑢𝑖 , 𝑣)) is not matched by 𝑀′, which is contradiction. Therefore,

we have 𝐶 (𝑢𝑖 ;𝑀) ⊇ 𝐶 (𝑢𝑖 ;𝑀′). □

In backtracking, each local candidate vertex is further checked

whether it causes a conflict in a partial embedding.

Definition 3.22 (Conflict). Let𝑀 be a partial embedding, 𝑘 be the

length of 𝑀 , and 𝑣 ∈ 𝐶 (𝑢𝑘 ;𝑀). Extension 𝑀 ⊕ 𝑣 has a conflict if
any of the following conditions hold.

(1) Injectivity conflict:𝑀 has an assignment to 𝑣 .

(2) Reservation-guard conflict:𝑀 matches 𝑅(𝑢𝑘 , 𝑣).
(3) Nogood-guard conflict:𝑀 matches NV (𝑢𝑘 , 𝑣).
(4) No-candidate conflict: There exists𝑢𝑖 (𝑖 > 𝑘) that has no local

candidate vertices under𝑀 ⊕ 𝑣 (i.e., 𝐶 (𝑢𝑖 ;𝑀 ⊕ 𝑣) = ∅).

We can discover a nogood from extensions if they have conflicts.

To indicate assignments that constitute a nogood, we introduce

mask 𝐾 ⊆ 𝑉𝑄 that gives a nogood of partial embedding or extension

𝑀 as 𝑀 [𝐾], where 𝑀 [𝐾] = {(𝑢𝑖 , 𝑣) ∈ 𝑀 | 𝑢𝑖 ∈ 𝐾}. The following
definition gives the mask for extensions that have conflicts.

Definition 3.23 (Conflict mask). Let𝑀 be a partial embedding, 𝑘

be the length of𝑀 , and 𝑣 ∈ 𝐶 (𝑢𝑘 , 𝑀). The conflict mask of extension
𝑀 ⊕ 𝑣 is ∅ if the extension has no conflict; otherwise, it is defined

for each conflict case as follows.

(1) Injectivity conflict. If 𝑢𝑖 ∈ dom(𝑀) holds 𝑣 = 𝑀 (𝑢𝑖 ), the
conflict mask is {𝑢𝑖 , 𝑢𝑘 }.

(2) Reservation-guard conflict. If𝑀 matches 𝑅(𝑢𝑘 , 𝑣), the conflict
mask is {𝑢 𝑗 | ∃𝑣 ′ ∈ 𝑅(𝑢𝑖 , 𝑣), (𝑢 𝑗 , 𝑣 ′) ∈ 𝑀} ∪ {𝑢𝑘 }.

(3) Nogood-guard conflict. Suppose that 𝑀 matches NV (𝑢𝑘 , 𝑣).
Then, the conflict mask is dom(NV (𝑢𝑘 , 𝑣)) ∪ {𝑢𝑘 }.

(4) No-candidate conflict. Suppose that 𝑢𝑖 has no local candidate

vertices under𝑀 ⊕ 𝑣 . Then, the conflict mask is 𝐵(𝑢𝑖 ;𝑀 ⊕ 𝑣).

Example 3.24. Let 𝑀 = {(𝑢0, 𝑣0), (𝑢1, 𝑣2), (𝑢2, 𝑣6)} and assume

that𝑀 do not match any nogood guards on edges.𝑀 ⊕ 𝑣11 has the

no-candidate conflict because 𝑣6 and 𝑣11 do not have any common

neighbor in𝐶 (𝑢4) and so𝐶 (𝑢4;𝑀 ⊕𝑣11) = ∅. Therefore, the conflict
mask of𝑀 ⊕ 𝑣11 is 𝐵(𝑢4;𝑀 ⊕ 𝑣11) = {𝑢2, 𝑢3}.

Lemma 3.25. Let𝑀 be a partial embedding, 𝑘 be the length of𝑀 ,
𝑣 ∈ 𝐶 (𝑢𝑘 , 𝑀), and 𝐾 be the conflict mask of 𝑀 ⊕ 𝑣 . If 𝑀 ⊕ 𝑣 has
conflicts, (𝑀 ⊕ 𝑣) [𝐾] is a nogood.

Proof. We make a proof for each conflict case. Regarding the
injectivity conflict, suppose that 𝐾 = {𝑢𝑖 , 𝑢𝑘 }. By Definition 3.23,

we have 𝑀 [𝑢𝑖 ] = 𝑣 , and thus (𝑀 ⊕ 𝑣) [𝐾] = {(𝑢𝑖 , 𝑣), (𝑢𝑘 , 𝑣)}. This
is a nogood because of the violation of the injectivity constraint.

Regarding the reservation-guard conflict, suppose that there
exists full embedding 𝑀̂ such that (𝑀 ⊕ 𝑣) [𝐾] ⊆ 𝑀̂ . We have

Im(𝑀̂ [:𝑘]) ⊇ Im(𝑀̂ [𝐾]) = Im(𝑀 [𝐾]) ⊇ 𝑅(𝑢𝑘 , 𝑣). In addition,

(𝑢𝑘 , 𝑣) ∈ 𝑀̂ because 𝑢𝑘 ∈ 𝐾 . From Lemma 3.6, 𝑀̂ [:𝑘] ∪ {(𝑢𝑘 , 𝑣)}
is a nogood. Thus, 𝑀̂ includes a nogood, which is a contradiction.

Therefore, (𝑀 ⊕ 𝑣) [𝐾] is a nogood. Regarding the nogood-guard
conflict, we have (𝑀 ⊕ 𝑣) [𝐾] = NV (𝑢𝑘 , 𝑣) ∪ {(𝑢𝑘 , 𝑣)}, which is a

nogood by Definition 3.15. Regarding the no-candidate conflict,
suppose that there exists full embedding 𝑀̂ such that (𝑀 ⊕ 𝑣) [𝐾] ⊆
𝑀̂ . From 𝐵(𝑢𝑖 ;𝑀 ⊕ 𝑣) ⊆ 𝐾 , we have (𝑀 ⊕ 𝑣) [𝐵(𝑢𝑖 ;𝑀 ⊕ 𝑣)] ⊆ 𝑀̂ .

Here Lemma 3.21 gives 𝐶 (𝑢𝑖 ; 𝑀̂) ⊆ 𝐶 (𝑢𝑖 ;𝑀 ⊕ 𝑣) = ∅, which is

contradiction. Hence, (𝑀 ⊕ 𝑣) [𝐾] is a nogood. We have shown that

(𝑀 ⊕ 𝑣) [𝐾] is a nogood for all the cases. □

The conflict mask defines a nogood discovered from extensions

with conflicts. However, even if an extension is free from a conflict,

it can be found to be a deadend if it fails to yield a full embedding

in subsequent recursions. Hence, we generalize the definition to

extensions with and without conflicts.

Definition 3.26 (Deadend mask). Let 𝑀 be an extension and 𝑘

be the length of𝑀 . In addition, for any 𝑣 ′, suppose that 𝐾𝑣′ is the
deadend mask of 𝑀 ⊕ 𝑣 ′. The deadend mask of 𝑀 is given by 𝐾

defined as follows. The cases are listed in order of priority.

(1) If𝑀 is not a deadend, 𝐾 = ∅.
(2) If𝑀 has a conflict, 𝐾 is the conflict mask of𝑀 .

(3) If some 𝑣 ′ ∈ 𝐶 (𝑢𝑘 ;𝑀) holds 𝑢𝑘 ∉ 𝐾𝑣′ , 𝐾 = 𝐾𝑣′ .

(4) Otherwise, 𝐾 =
⋃
𝑣′∈𝐶 (𝑢𝑘 ;𝑀 ) 𝐾𝑣′ ∪ 𝐵(𝑢𝑘 ;𝑀) \ {𝑢𝑘 }.

Example 3.27. Let 𝑀 = {(𝑢0, 𝑣0), (𝑢1, 𝑣2), (𝑢2, 𝑣6)}. 𝑀 does not

have a conflict but is a deadend because 𝐶 (𝑢3;𝑀) = {𝑣11} and
𝑀 ⊕ 𝑣11 has the no-candidate conflict. Let 𝐾𝑣11

be the deadend

mask of 𝑀 ⊕ 𝑣11. 𝐾𝑣11
is given by the conflict mask of 𝑀 ⊕ 𝑣11,

which is {𝑢2, 𝑢3} (Example 3.24). Hence, the deadend mask of𝑀 is

𝐾𝑣11
∪ 𝐵(𝑢3;𝑀) \ {𝑢3} = {𝑢2, 𝑢3} ∪ {𝑢2, 𝑢3} \ {𝑢3} = {𝑢2}.

Lemma 3.28. Let𝑀 be an extension and 𝐾 be the deadend mask
of𝑀 . If𝑀 is a deadend,𝑀 [𝐾] is a nogood.

Proof. We make a proof by cases for each of cases (1)–(4) in

Definition 3.26. Regarding case (1), we ignore this case because𝑀 is

a deadend by hypothesis. Regarding case (2), by Lemma 3.25,𝑀 [𝐾]
is a nogood. Regarding case (3), we prove this case by induction. The
base case is case (2). Suppose that 𝑣 ′ ∈ 𝐶 (𝑢𝑘 ;𝑀) gives 𝐾𝑣′ such that

𝑢𝑘 ∉ 𝐾𝑣′ , and (𝑀⊕𝑣 ′) [𝐾𝑣′ ] is a nogood. From𝐾 = 𝐾𝑣′ and𝑢𝑘 ∉ 𝐾𝑣′ ,

we have (𝑀⊕𝑣 ′) [𝐾𝑣′ ] = 𝑀 [𝐾]. Thus,𝑀 [𝐾] is a nogood. Regarding
case (4), similar to case (3), we use induction using case (2) as the

base case; suppose that, for all 𝑣 ′ ∈ 𝐶 (𝑢𝑘 ;𝑀), (𝑀 ⊕ 𝑣 ′) [𝐾𝑣′ ] is
a nogood. Moreover, we use a proof by contradiction; suppose
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that there exists full embedding 𝑀̂ such that 𝑀 [𝐾] ⊆ 𝑀̂ . Then,

we have 𝑀̂ (𝑢𝑘 ) ∈ 𝐶 (𝑢𝑘 ; 𝑀̂) ⊆ 𝐶 (𝑢𝑘 ;𝑀) because 𝐵(𝑢𝑘 ;𝑀) ⊆ 𝐾

and Lemma 3.21. Since 𝐾 ∪ {𝑢𝑘 } includes the deadend mask of

𝑀 ⊕ 𝑣 ′ for all 𝑣 ′ ∈ 𝐶 (𝑢𝑘 ;𝑀), it also includes the deadend mask

of 𝑀 ⊕ 𝑀̂ (𝑢𝑘 ). Thus, (𝑀 ⊕ 𝑀̂ (𝑢𝑘 )) [𝐾 ∪ {𝑢𝑘 }] is a nogood. Since
(𝑀 ⊕ 𝑀̂ (𝑢𝑘 )) [𝐾 ∪ {𝑢𝑘 }] = 𝑀̂ [𝐾 ∪ {𝑢𝑘 }], 𝑀̂ includes a nogood,

which is contradiction. Therefore, 𝑀 [𝐾] is a nogood. We have

proved that𝑀 [𝐾] is a nogood for all the cases. □

GuP discovers a nogood from deadends by using the deadend

mask. Specifically, when extension𝑀 has a conflict or is determined

to be a deadend after the exploration, GuP obtains nogood𝑀 [𝐾]
where 𝐾 is the deadend mask of𝑀 . Then, letting (𝑢𝑖 , 𝑣) be the last
assignment in 𝑀 [𝐾], GuP records 𝑀 [𝐾] \ {(𝑢𝑖 , 𝑣)} in NV (𝑢𝑖 , 𝑣).
Such NV (𝑢𝑖 , 𝑣) holds Definition 3.15. Note that NV (𝑢𝑖 , 𝑣) is over-
written if it has an old value. In this way, GuP generates nogood

guards on vertices during the backtracking.

Example 3.29. Let 𝑀 = {(𝑢0, 𝑣0), (𝑢1, 𝑣2), (𝑢2, 𝑣6)}. Since dead-
end mask 𝐾 of 𝑀 is {𝑢2} (Example 3.27), GuP records 𝑀 [{𝑢2}] \
{(𝑢2, 𝑣6)} = ∅ in NV (𝑢2, 𝑣6). Note that ∅ is a subset of an arbitrary

set, and hence (𝑢2, 𝑣6) is never used in the subsequent search.

As shown in Example 3.29, GuP can filter out unnecessary can-

didate vertices for all partial embeddings, besides adaptive filtering

depending on a partial embedding. This is because GuP can capture

a lack of cycles during backtracking. To the best of our knowledge,

the existing candidate filtering methods cannot capture cycles.

3.3.3 Nogood Guards on Edges. Nogood guards on edges are used

for filtering out candidate edges and reduces the number of local

candidate vertices as shown in Definition 3.18. This is beneficial

because we can detect the no-candidate conflict in earlier backtrack-

ing steps if all the local candidates are filtered out. In particular,

as mentioned in Section 1, the cycles in a query graph must be

mapped to cycles in a data graph to satisfy the adjacency constraint,

although cycles are difficult to find because of the sparseness of

graphs. Such a search tends to involve many no-candidate con-

flicts, and thus by detecting them earlier we can improve the search

performance.

As defined in Definition 3.16, NE((𝑢𝑖 , 𝑣), (𝑢 𝑗 , 𝑣 ′)) is a set of as-
signments such that NE((𝑢𝑖 , 𝑣), (𝑢 𝑗 , 𝑣 ′)) ⊆ 𝑉𝑄 [: 𝑖] ×𝑉𝐺 holds and

𝐷 is a nogood, where 𝐷 = NE((𝑢𝑖 , 𝑣), (𝑢 𝑗 , 𝑣 ′)) ∪ {(𝑢𝑖 , 𝑣), (𝑢 𝑗 , 𝑣 ′)}.
This definition prohibits that 𝐷 contains an assignment of any 𝑢𝑘
such that 𝑖 < 𝑘 < 𝑗 . A nogood discovered with a deadend mask may

violate it, and hence we need another rule to discover a nogood for

a nogood guard on edges.

For conciseness of the discussion, we relax the format of the

nogood as follows. Assume that 𝑀 is a partial embedding whose

length is 𝑖 + 1 (i.e.,𝑀 includes an assignment of 𝑢𝑖 ). Then, our goal

is to find mask 𝐾 ⊆ 𝑉𝑄 such that 𝑀 [𝐾] ∪ {(𝑢 𝑗 , 𝑣 ′)} is a nogood.
It allows us to discuss this problem for an arbitrary combination

of partial embedding𝑀 and candidate vertex (𝑢 𝑗 , 𝑣 ′) regardless of
the existence of candidate edge ((𝑢𝑖 , 𝑀 (𝑢𝑖 )), (𝑢 𝑗 , 𝑣 ′)). We formally

define such mask 𝐾 .

Definition 3.30 (Fixed deadend mask). Let𝑀 be an extension, 𝑘

be the length of 𝑀 , and (𝑢𝑖 , 𝑣) be a candidate vertex. In addition,

for any 𝑣 ′, suppose that 𝐾𝑣′ is the (𝑢𝑖 , 𝑣)-fixed deadend mask of

𝑀 ⊕ 𝑣 ′. The (𝑢𝑖 , 𝑣)-fixed deadend mask of𝑀 is given by 𝐾 defined

as follows. The cases are listed in order of priority.

(1) If 𝑖 < 𝑘 holds, 𝐾 = 𝐾 ′ \ {𝑢𝑖 } where 𝐾 ′ is the deadend mask

of𝑀 [: 𝑖] ⊕ 𝑣 .
(2) If some full embedding includes𝑀 ∪ {(𝑢𝑖 , 𝑣)}, 𝐾 = ∅.
(3) If𝑀 has a conflict, 𝐾 is the conflict mask of𝑀 .

(4) If𝑀 holds 𝑣 ∉ 𝑁 (𝑀 (𝑢 𝑗 )) for some 𝑢 𝑗 ∈ 𝑁 (𝑢𝑖 ), 𝐾 = {𝑢 𝑗 }1.
(5) If𝑀 matches NE((𝑢 𝑗 , 𝑣 ′), (𝑢𝑖 , 𝑣)) for some (𝑢 𝑗 , 𝑣 ′) ∈ 𝑀 , 𝐾 =

dom(NE((𝑢 𝑗 , 𝑣 ′), (𝑢𝑖 , 𝑣))) ∪ {𝑢 𝑗 }.1
(6) If some 𝑣 ′ ∈ 𝐶 (𝑢𝑘 ;𝑀) holds 𝑢𝑘 ∉ 𝐾𝑣′ , 𝐾 = 𝐾𝑣′ .

(7) Otherwise, 𝐾 =
⋃
𝑣′∈𝐶 (𝑢𝑘 ;𝑀 ) 𝐾𝑣′ ∪ 𝐵(𝑢𝑘 ;𝑀) \ {𝑢𝑘 }.

The definition of the (𝑢𝑖 , 𝑣)-fixed deadendmask resembles that of

the deadendmask. Themain differences are that (i)𝐾𝑣′ is recursively

given by (𝑢𝑖 , 𝑣)-fixed deadend mask, and (ii) it has conditions on 𝑢𝑖
and 𝑣 (cases (1), (4), and (5)). Case (1) is the base case defined using

the deadend mask. Case (4) and (5) handle the case that 𝑣 is not a

local candidate vertex of 𝑢𝑖 .

Example 3.31. Let𝑀 = {(𝑢0, 𝑣0), (𝑢1, 𝑣2), (𝑢2, 𝑣7)} and consider

the (𝑢4, 𝑣0)- and (𝑢4, 𝑣1)-fixed deadend masks of𝑀 . Since𝑀 ⊕𝑣10⊕
𝑣0 has the injectivity conflict, its (𝑢4, 𝑣0)-fixed deadend mask is

{𝑢0, 𝑢4} by case (3) of Definition 3.30. Then, (𝑢4, 𝑣0)-fixed deadend

mask of 𝑀 ⊕ 𝑣10 is {𝑢0, 𝑢4} ∪ 𝐵(𝑢4;𝑀 ⊕ 𝑣10) \ {𝑢4} = {𝑢0, 𝑢2, 𝑢3}
by case (7). It follows that (𝑢4, 𝑣0)-fixed deadend mask of 𝑀 is

{𝑢0, 𝑢2, 𝑢3} ∪ 𝐵(𝑢3;𝑀) \ {𝑢3} = {𝑢0, 𝑢2}. On the other hand, the

(𝑢4, 𝑣1)-fixed deadend mask of𝑀 ⊕ 𝑣10 is {𝑢3} by case (4) because

𝑣10 ∉ 𝑣10. Hence, by case (7), (𝑢4, 𝑣1)-fixed deadend mask of 𝑀 is

{𝑢3} ∪ 𝐵(𝑢3;𝑀) \ {𝑢3} = {𝑢2}.

Lemma 3.32. Let𝑀 be an extension, (𝑢𝑖 , 𝑣) be a candidate vertex,
and 𝐾 be the (𝑢𝑖 , 𝑣)-fixed deadend mask of𝑀 . Suppose that |𝑀 | ≤ 𝑖
and𝑀 ∪ {(𝑢𝑖 , 𝑣)} is a nogood. Then,𝑀 [𝐾] ∪ {(𝑢𝑖 , 𝑣)} is a nogood.

Proof. We make a proof by cases for cases (1), (4), and (5) in

Definition 3.30 and omit the others because they can be proved sim-

ilarly to the proof of Lemma 3.28. Regarding case (1), let 𝐾 ′ be the
deadend mask of𝑀 [: 𝑖] ⊕ 𝑣 . We have (𝑀 [: 𝑖] ⊕ 𝑣) [𝐾 ′] = 𝑀 [: 𝑖] [𝐾 ′ \
{𝑢𝑖 }] ∪ {(𝑢𝑖 , 𝑣)} = 𝑀 [𝐾] ∪ {(𝑢𝑖 , 𝑣)} because 𝑀 [: 𝑖] = 𝑀 holds by

hypothesis |𝑀 | ≤ 𝑖 . Hence,𝑀 [𝐾] ∪{(𝑢𝑖 , 𝑣)} is a nogood. Regarding
case (4), we have 𝑀 [𝐾] ∪ {(𝑢𝑖 , 𝑣)} = {(𝑢 𝑗 , 𝑀 (𝑢 𝑗 ), (𝑢𝑖 , 𝑣)}. By hy-

pothesis, (𝑢 𝑗 , 𝑢𝑖 ) ∈ 𝐸𝑄 and (𝑀 (𝑢 𝑗 ), 𝑣) ∉ 𝐸𝐺 hold, and thus𝑀 [𝐾] ∪
{(𝑢𝑖 , 𝑣)} is a nogood because of the violation of the adjacency con-

straint. Regarding case (5), Let𝑀′ be an arbitrary partial embed-

ding such that𝑀 [𝐾] ∪ {(𝑢𝑖 , 𝑣)} ⊆ 𝑀′. Since dom(NE((𝑢 𝑗 , 𝑀 (𝑢 𝑗 )),
(𝑢𝑖 , 𝑣))) ⊆ 𝐾 holds, we have NE((𝑢 𝑗 , 𝑀 (𝑢 𝑗 )), (𝑢𝑖 , 𝑣)) ⊆ 𝑀′, and
thus𝑀′ [: 𝑗] ∪ {(𝑢 𝑗 , 𝑀 (𝑢 𝑗 )), (𝑢𝑖 , 𝑣)} is a nogood by Definition 3.16

From𝑢 𝑗 ∈ 𝐾 , we have𝑀′ (𝑢 𝑗 ) = 𝑀 (𝑢 𝑗 ). Hence,𝑀′ [: 𝑗]∪{(𝑢 𝑗 , 𝑀 (𝑢 𝑗 )),
(𝑢𝑖 , 𝑣)} ⊆ 𝑀′ holds, which means𝑀′ is a deadend. It follows that
𝑀 [𝐾] ∪ {(𝑢𝑖 , 𝑣)} is a nogood. We have proved the statement. □

During backtracking, GuP updates a nogood guard on edges as

follows. Suppose that𝑀 is a partial embedding of length 𝑖 ,𝐶 (𝑢𝑖 ;𝑀)
contains 𝑣 , and there exists candidate edge ((𝑢𝑖 , 𝑣), (𝑢 𝑗 , 𝑣 ′)). If ex-
tension𝑀 ⊕ 𝑣 did not yield a full embedding containing (𝑢 𝑗 , 𝑣 ′) in
the subsequent recursions, GuP computes the (𝑢 𝑗 , 𝑣 ′)-fixed deadend
mask 𝐾 of𝑀 ⊕ 𝑣 . Then, GuP records𝑀 [𝐾] in NE((𝑢𝑖 , 𝑣), (𝑢 𝑗 , 𝑣 ′)).

1
If multiple 𝑢 𝑗 holds the condition, 𝑢 𝑗 of the smallest 𝑗 is chosen.
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Algorithm 2 Backtrack function of GuP

Input: Partial embedding𝑀 and sets of local candidate vertices𝐶𝑀 .

Output: All the embeddings of𝑄 in𝐺

1: if |𝑀 | = |𝑉𝑄 | then output𝑀

2: 𝑘 ← |𝑀 |
3: for 𝑣 ∈ 𝐶𝑀 (𝑢𝑘 ) do
4: if 𝑀 (𝑢𝑖 ) = 𝑣 for some 𝑢𝑖 then continue
5: if 𝑀 matches 𝑅 (𝑢𝑘 , 𝑣) or NV (𝑢𝑘 , 𝑣) then continue
6: Copy𝐶𝑀 to𝐶′

𝑀

7: for 𝑢𝑖 ∈ 𝑁+ (𝑢𝑘 ) do
8: 𝐶′

𝑀
(𝑢𝑖 ) ← {𝑣′ ∈ 𝐶𝑀 (𝑢𝑖 ) ∩ 𝑁 (𝑣)

| 𝑀 does not match NE ( (𝑢𝑘 , 𝑣), (𝑢𝑖 , 𝑣′ ) ) }
9: if 𝐶′

𝑀
(𝑢𝑖 ) ≠ ∅ for all 𝑢𝑖 then

10: Backtrack(𝑀 ⊕ 𝑣,𝐶′
𝑀
)

11: Update NE for each candidate edge incident to (𝑢𝑘 , 𝑣)
12: if 𝑀 ⊕ 𝑣 is found to be a deadend then
13: Discover a nogood in𝑀 ⊕ 𝑣 as 𝐷 and update NV
14: if 𝐷 ⊆ 𝑀 then return ⊲ Backjumping

This holds Definition 3.16 because 𝑀 [𝐾] ∪ {(𝑢𝑖 , 𝑣), (𝑢 𝑗 , 𝑣 ′)} =

(𝑀 ⊕ 𝑣) [𝐾] ∪ {(𝑢 𝑗 , 𝑣 ′)}, which is a nogood by Lemma 3.32.

Example 3.33. Let 𝑀 = {(𝑢0, 𝑣0), (𝑢1, 𝑣2)}. Since (𝑢4, 𝑣0)-fixed
deadend mask of 𝑀 ⊕ 𝑣7 is {𝑢0, 𝑢2} (Example 3.31), GuP records

𝑀 [{𝑢0, 𝑢2}] (= {(𝑢0, 𝑣0)}) inNE((𝑢2, 𝑣7), (𝑢4, 𝑣0)). In addition, since
(𝑢4, 𝑣1)-fixed deadend mask of𝑀 ⊕𝑣7 is {𝑢2}, GuP records𝑀 [{𝑢2}]
(= ∅) inNE((𝑢2, 𝑣7), (𝑢4, 𝑣1)), which filters out ((𝑢2, 𝑣7), (𝑢4, 𝑣1)) for
all partial embeddings.

Since the generation of a nogood guard incurs slight overheads,

we optimized our implementation by utilizing nogood guards on

edges only in the 2-core of a query graph. As mentioned above, a

nogood guard on edges is effective for pruning in the search of cyclic

structures. The subgraph outside of the 2-core consists of trees, and

thus we did not generate the nogood guards on candidate edges that

correspond to query edges outside of the 2-core. This optimization

allows GuP to profit from pruning opportunities offered by nogood

guards on edges without sacrificing the efficiency.

3.4 Backtracking with Guards
By utilizing a reservation guard and a nogood guard, GuP efficiently

performs backtracking. Algorithm 2 shows the backtracking algo-

rithm of GuP. Calling Backtrack(∅,𝐶) starts the search, where
𝐶 is sets of the candidate vertices. Function Backtrack(𝑀,𝐶𝑀 )
recursively extends partial embedding 𝑀 until it obtains a full

embedding. 𝐶𝑀 is sets of local candidate vertices under 𝑀 (i.e.,

𝐶𝑀 (𝑢𝑖 ) = 𝐶 (𝑢𝑖 ;𝑀)). If𝑀 is not a full embedding, Backtrack tries

extending𝑀 with 𝑣 ∈ 𝐶𝑀 (𝑢𝑘 ). It first checks if 𝑣 is already assigned
in 𝑀 , or 𝑀 matches 𝑅(𝑢𝑘 , 𝑣) or NV (𝑢𝑘 , 𝑣). If so, 𝑣 is filtered out.

Next,𝐶𝑀 is refined to𝐶′
𝑀
, the sets of local candidate vertices under

𝑀⊕𝑣 , by following Definition 3.18. The bounding sets of each query
vertex are also incrementally computed similar to 𝐶𝑀 , while it is

not shown in the pseudocode. If every query vertex retains at least

one local candidate vertex after the refinement, Backtrack is re-

cursively called. After the recursion, nogood guards are updated. In

addition, discovered nogood𝐷 is used for backjumping; specifically,

𝑀 ⊕ 𝑣 for any 𝑣 becomes a deadend if 𝑀 includes nogood 𝐷 , and

hence the iteration over 𝑣 ∈ 𝐶𝑀 (𝑢𝑘 ) is terminated. Guards improve

the search efficiency by filtering out unnecessary candidate vertices

in 𝐶𝑀 (𝑢𝑘 ) at line 5 and in 𝐶′
𝑀
(𝑢𝑖 ) for 𝑢𝑖 ∈ 𝑁+ (𝑢𝑘 ) at line 8.

Example 3.34. The process of the backtracking can be considered

as a depth-first search on a search tree whose node corresponds to
a recursive call with an extension. Fig. 3 shows the search tree of

conventional backtracking. X-marks indicates a conflicting assign-

ment. Fig. 2 shows all the reservation guards and the nogood guards

on vertices when the backtracking search reaches search node𝑚6,

which corresponds to 𝑀6 = {(𝑢0, 𝑣0), (𝑢1, 𝑣3)}. Our backtracking
algorithm now tries extending 𝑀6 with each 𝑣 ∈ 𝐶 (𝑢2;𝑀6) (=
{𝑣5, 𝑣6, 𝑣7}), but all of them are filtered out by 𝑅(𝑢2, 𝑣5), NV (𝑢2, 𝑣6),
and NV (𝑢2, 𝑣7), respectively. Hence, the function returns to node

𝑚1, which corresponds to𝑀1 = {(𝑢0, 𝑣0)}. Since𝑀1⊕𝑣3 (= 𝑀6) was

found to be a deadend, GuP computes deadend mask 𝐾 of𝑀6. From

𝐾𝑣5
∪ 𝐾𝑣6

∪ 𝐾𝑣7
= {𝑢0, 𝑢2} and 𝐵(𝑢2;𝑀6) = {𝑢0} (Example 3.20),

𝐾 = {𝑢0, 𝑢2} ∪ {𝑢0} \ {𝑢2} = {𝑢0} by case (4) of Definition 3.26.

Thus, GuP discover nogood 𝐷 = 𝑀6 [𝐾] = {(𝑢0, 𝑣0)}. Since 𝐷 ⊆ 𝑀1

holds, the function performs backjumping to the caller (line 14).

This prunes search node𝑚12. As a whole, our approach prunes the

shadowed nodes in Fig. 3.

Comparison with Failing Set-based Pruning. Failing set-based

pruning proposed in DAF [14] is one of the backjumping [32] meth-

ods and is popular in the database community [20, 35, 37]. Although

both DAF and GuP exploit nogoods for pruning, GuP is more ef-

fective for two reasons. First, GuP reuses a discovered nogood for

pruning multiple times, whereas DAF discards a nogood after using

it for backjumping. Note that GuP also performs backjumping (line

14 in Algorithm 2). Second, GuP discovers smaller nogoods, which

offer higher pruning power. Like a deadend mask, DAF discovers a

nogood using a failing set, which is defined as a set of query vertices

and all their ancestors in terms of the matching order. Owing to

the ancestors, a failing set tends to be large and so offers a large

nogood. For example, a failing set of 𝑀6 = {(𝑢0, 𝑣0), (𝑢1, 𝑣3)} is
{𝑢0, 𝑢1}, and this fails to trigger a backjumping at search node𝑚1.

On the other hand, GuP produces small deadend mask {𝑢0} and can
prune search node𝑚12 by the backjumping (Example 3.34). Thus,

our nogood discovery rule enables more effective pruning.

3.5 Optimizations
In this section, we present additional techniques for improving the

performance of subgraph matching.

3.5.1 Search-node Encoding. The matching test of nogood guards

takes nonnegligible computational costs. Consider thematching test

between partial embedding𝑀 andNV (𝑢𝑖 , 𝑣). It takes𝑂 ( |NV (𝑢𝑖 , 𝑣) |)
time to check𝑀 (𝑢 𝑗 ) = 𝑣 ′ for each (𝑢 𝑗 , 𝑣 ′) ∈ NV (𝑢𝑖 , 𝑣). This is the
same for a nogood guard on edges. The size of a nogood guard can

be up to |𝑉𝑄 | − 1, and GuP performs the matching test many times

for filtering out candidate vertices and edges. Thus, this overhead

may spoil the performance benefit resulting from pruning.

To mitigate the overhead, we introduce a search-node encoding,

which represent a nogood with a node in the search tree. We assume

that every node in the search tree has a unique ID number. The

search tree has a one-to-one correspondence between the nodes

and the partial embeddings. We refer to the node corresponding to

partial embedding𝑀 by the search node of𝑀 . Suppose that𝑚𝑖 and
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𝑚 𝑗 are the search node of partial embeddings𝑀 and𝑀′. Then, if
𝑀′ is an extension of𝑀 (i.e.,𝑀 ⊆ 𝑀′),𝑚 𝑗 is a descendant of𝑚𝑖 in

the search tree. It can be checked in 𝑂 (1) time by maintaining the

ancestor array of𝑚 𝑗 , denoted by anc. Assuming that there exists an

imaginary root node𝑚0, which corresponds to the empty partial

embedding, anc contains𝑚0 at anc(0), a length-1 partial embedding

at anc(1), its child at anc(2), and so on. anc( |𝑀′ |) is set to𝑚 𝑗 . Here,

if anc( |𝑀 |) =𝑚𝑖 holds,𝑚 𝑗 is a descendant of𝑚𝑖 . This also means

we can check if𝑀 is a subset of𝑀′ in 𝑂 (1) time.

Example 3.35. On the search tree shown in Fig. 3, let us check

if𝑀3 is a subset of𝑀5 where𝑀3 = {(𝑢0, 𝑣0), (𝑢1, 𝑣2), (𝑢2, 𝑣6)} and
𝑀5 = {(𝑢0, 𝑣0), (𝑢1, 𝑣2), (𝑢2, 𝑣7), (𝑢3, 𝑣10)}. In the search tree, node

𝑚3 and𝑚5 correspond to𝑀3 and𝑀5, respectively. Ancestor array

anc of𝑚5 contains the IDs of𝑚0 (imaginary root node),𝑚1,𝑚2,

𝑚4, 𝑚5 in anc(0) to anc(4). Since anc( |𝑀3 |) = anc(3) = 𝑚4 and

thus anc( |𝑀3 |) ≠𝑚3, we can find that𝑀3 is not a subset of𝑀5.

For applying this idea to matching tests with nogood guards,

GuP encodes nogood guards into the ID of a search node. Since a

nogood guard is a subset of a partial embedding, it may not have a

corresponding search node. Thus, GuP “rounds up” a nogood guard

to the minimum partial embedding including it.

Definition 3.36 (Minimum superset embedding). Let𝑀 be a partial

embedding and 𝐷 be a subset of𝑀 . The minimum superset embed-
ding of 𝐷 in 𝑀 is 𝑀 [: 𝑖 + 1] where 𝑖 is the query-vertex ID of the

last assignment in 𝐷 (i.e., 𝐷 = {. . . , (𝑢𝑖 , 𝑣)}).

In the definition above, letting anc be the ancestor array of𝑀 , we

can obtain the search node of minimum superset embedding𝑀 [: 𝑖 +
1] as anc(𝑖). With rounding up to minimum superset embeddings,

nogood guards can be encoded to the ID of the search node.

In summary, GuP stores nogood guards in a GCS as follows.

Suppose that nogood guard 𝐷 is extracted from partial embedding

𝑀 , 𝐿 is the minimum superset embedding of 𝐷 in𝑀 , and anc is the
ancestor array of𝑀 . Let id be anc( |𝐿 |), len be |𝐿 |, and𝐾 be dom(𝐷).
Then, each nogood guard (both on vertices and edges) is stored as a

triplet (id, len, 𝐾). Matching with partial embedding𝑀′ is checked
by anc′ (len) = id where anc′ is the ancestor array of𝑀′. 𝐾 is used

to obtain dom(𝐷) in the computation of bounding sets and the

nogood discovery for the nogood-guard conflict case. Thanks to

the lightweight matching test with search-node encoding, GuP can

efficiently filter out candidate vertices and edges.

3.5.2 Parallelization. Modern computers have multiple CPU cores

and require parallel processing to utilize them. We can easily par-

allelize backtracking of GuP, which tends to dominate query pro-

cessing time, by searching different subtrees of the search tree in

different threads. Since the size of the search space is unknown

in advance and usually very skewed, it is necessary to employ a

work-stealing approach that dynamically splits the search tree and

assigns it to an idle thread for load balancing. Threads share the

candidate vertices and edges and the reservation guards in a GCS

but maintain thread-local nogood guards because those are modi-

fied during parallel backtracking. Since the pruning efficiency may

degrade because of not sharing information of nogoods between

threads, we empirically evaluate it in Section 4.3.4.

3.6 Complexity Analysis
We first analyze the time complexity of each of three steps listed in

Section 3.1. , and then discuss the space complexity of the whole of

GuP. The following analyses assume that a bit vector of length |𝑉𝑄 |
takes 𝑂 (1) space and 𝑂 (1) time for set operations, such as union

and intersection, since a query graph is supposed to be small.

Time complexity of the GCS construction. GuP employs extended

DAG-graph DP, which provides a candidate space through can-

didate filtering in 𝑂 ( |𝐸𝑄 | |𝐸𝐺 |) time [20]. Candidate filtering and

GCS construction of GuP have the same complexity, 𝑂 ( |𝐸𝑄 | |𝐸𝐺 |),
because we can obtain a GCS by attaching a null-valued guard

to each candidate vertex and edge during extended DAG-graph

DP. GuP also adopts VC for optimizing the matching order, whose

complexity is 𝑂 ( |𝐸𝑄 | |𝐸𝐺 |) [36]. Therefore, the complexity of this

step is 𝑂 ( |𝐸𝑄 | |𝐸𝐺 |).
Time complexity of the reservation guard generation. In the fol-

lowing, we show that Algorithm 1 takes 𝑂 ( |𝐸𝑄 | |𝐸𝐺 |) time. Let
¯𝑑𝑄

and
¯𝑑𝐺 be the average degrees of 𝑄 and 𝐺 , respectively. The loop

over the candidate vertices (line 1) iterates up to |𝑉𝑄 | |𝑉𝐺 | times,

and the loop over forward neighbors of a query vertex (line 3) iter-

ates
¯𝑑𝑄 times. The complexity for computing 𝐸𝑅 by Eq. (1) (line 4) is

bounded by the size of𝐸𝑅 , which is𝑂 (
∑
𝑣′∈𝑁 (𝑣)∩𝐶 (𝑢 𝑗 ) |𝑅(𝑢 𝑗 , 𝑣

′) |) =
𝑂 ( |𝑁 (𝑣) | ×𝑟 ) = 𝑂 ( ¯𝑑𝐺 ) since 𝑟 is a constant. After that, Algorithm 1

solves the vertex-cover problem for graph𝐺𝑅 = (𝑉𝑅, 𝐸𝑅). 𝑉𝑅 con-

sists of both endpoints of the edges, and thus |𝑉𝑅 | ≤ 2|𝐸𝑅 | holds.
We employ the 2-approximation algorithm [9], whose complex-

ity is 𝑂 ( |𝑉𝑅 | + |𝐸𝑅 |) = 𝑂 ( |𝐸𝑅 |) = 𝑂 ( | ¯𝑑𝐺 |). Therefore, the whole
complexity of Algorithm 1 is 𝑂 ( |𝑉𝑄 | |𝑉𝐺 | ¯𝑑𝑄 ¯𝑑𝐺 ) = 𝑂 ( |𝐸𝑄 | |𝐸𝐺 |).

Time complexity of the backtracking search. Matching with a

reservation guard takes 𝑂 (1) time because its size is bounded by 𝑟 .

It also takes𝑂 (1) time to perform matching with and generation of

a nogood guard in search-node encoding as shown in Section 3.5.1.

Hence, the complexity of backtracking is determined by the num-

ber of recursions. While it is 𝑂 (∏𝑢𝑖 |𝐶 (𝑢𝑖 ) |) = 𝑂 ( |𝑉𝐺 | |𝑉𝑄 | ) in
the worst case [40], the number significantly decreases in practice

thanks to candidate filtering and guards. However, theoretically

analyzing their contribution is difficult because of their sensitivity

to input graphs. Thus, following previous studies [14, 20, 35, 37],

we experimentally evaluate it in Section 4.

Space complexity. Since every part of GuP focuses only on can-

didate vertices and edges, a GCS dominates the space complexity

of GuP. A reservation guard consists of up to 𝑟 data vertices, and

hence its size is regarded to be𝑂 (1). A nogood guard in search-node

encoding also takes 𝑂 (1) space because it is a triplet of integers
and a bit vector of query vertices, whose size is 𝑂 (1). Therefore,
the space complexity of a GCS is the same as a candidate space,

which is 𝑂 ( |𝐸𝑄 | |𝐸𝐺 |) [14, 35].
Comparison with existing methods. If we leave out the exponen-

tial time complexity of backtracking, 𝑂 ( |𝐸𝑄 | |𝐸𝐺 |) is a common

time and space complexity among recent methods [2, 14, 20, 37].

GQL [16] has an even higher time complexity due to semi-perfect

matching [35]. However, the practical performance of subgraph

matching largely depends on that of backtracking, and hence we

experimentally show it in Section 4.
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4 EVALUATION
In this section, we compare the performance of GuP with existing

methods and analyze GuP from various aspects.

4.1 Experimental Setup
Methods. We compared the performance of GuP with the following

methods
2
: DAF [14], GQL-G [35], GQL-R [35], and RapidMatch

(RM) [37]. All of them have been proposed in the last several years

and employ failing set-based pruning. GQL-G and GQL-R are com-

binations of candidate filtering of GraphQL [16] and the matching

orders of GraphQL and RI [5], respectively. They performed the

best in the evaluation by Sun et al. [35]. Every implementation was

obtained from the authors’ GitHub repository
3
. Our implementa-

tion of GuP
4
employs candidate filtering with extended DAG-graph

DP [20] and the matching order produced by VC [36]. We set 𝑟 , the

size limit of reservation guard, to 3 unless otherwise specified.

Graphs. We used the following four data graphs: Yeast (3,112

vertices, 12,519 edges, 71 labels), Human (4,674 vertices, 86,282

edges, 44 labels), WordNet (76,853 vertices, 120,399 edges, 5 labels),

and Patents (3,774,768 vertices, 16,518,947 edges, 20 labels). The

first three graphs are labeled real-world graphs and popular among

studies of subgraph matching [14, 20, 35–37]. The last one, Patents,

is the largest graph used in the recent studies [35, 36]. This is an

unlabeled graph, and thus we gave the randomly-assigned labels

used in the evaluation by Sun et al. [35], which is publicly available
5
.

We generated query graphs also in the same manner as Sun et al.;

specifically, we performed a random walk on a data graph and

extracted a subgraph induced by the visited vertices as a query

graph. A query graph is classified as a sparse query graph if its

average degree is less than three; otherwise, it is classified as a

dense query graph. We generated query sets of sparse and dense

query graphs by changing the number of vertices. Query sets of

sparse query graphs are 8S, 16S, 24S, and 32S, and those of dense

query graphs are 8D, 16D, 24D, and 32D. Thus, there are 32 query

sets in total for four data graphs, four sizes, and two densities. Each

query set contains 50,000 query graphs. While it is popular to make

a query set of 100 or 200 query graphs [3, 14, 20, 35–37], it is too

few considering that an 𝑛-vertex query graph has (𝑛 − 1)! possible
topologies and |Σ|𝑛 possible label assignments. Although certain

applications such as crime detection [29, 31] focus on subgraphs

that rarely occur in a data graph, they tend not to be extracted as a

query graph. Thus, large query sets are necessary to extensively

evaluate the efficiency of each method.

Machine and terminate conditions.We conducted the experiments

on a machine with four Intel Xeon E7-8890 v3 processors (18 cores

per socket, and thus 72 cores in total) and 2 TB of memory. Except

for the evaluation of parallelism (Section 4.3.4), all the methods

were executed in a single thread using one physical core exclusively.

To reduce the experimental time, we used up to 70 cores to run

2
We also tried to measure the performance of VEQ [20], but the binary obtained from

https://github.com/SNUCSE-CTA/VEQ crashes during the process of over thousands of

query graphs used in our experiment. Thus, we omitted its results for a fair comparison.

3
DAF: https://github.com/SNUCSE-CTA/DAF

GQL-G and GQL-R: https://github.com/RapidsAtHKUST/SubgraphMatching

RapidMatch: https://github.com/RapidsAtHKUST/RapidMatch

4
https://github.com/araij/gup/

5
https://github.com/RapidsAtHKUST/SubgraphMatching#experiment-datasets

Table 2: Finished (i.e., non-DNF) query sets
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GuP ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 20

DAF ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 8

GQL-G ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 17

GQL-R ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 16

RM ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 14
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Figure 4: Total number of query graphs in each processing
time range.

70 experiments simultaneously. Similarly to the existing studies

[3, 14, 20, 35, 36], we terminated the search for a query graph when

10
5
embeddings were discovered. We set a time limit for a query

graph and a query set, respectively. A search for a single query

graph was terminated after one hour. On the other hand, the query

set was divided into subgroups of 100 query graphs, and when the

total processing time of any subgroup exceeded three hours, the

whole query set was judged as a “did not finish” (DNF).

4.2 Comparison with Existing Methods
We first focus on the distribution of the processing time of each

query and then show the average time. We consider the distribution

more informative because the average is largely affected by the

setting of the time limit; specifically, a short time limit hides the

impact of expensive query graphs, and in contrast, a long time limit

lets expensive query graphs dominate the result.

4.2.1 Distribution of Processing Time. Table 2 shows query sets

that each method finished, namely, processed all the query graphs

avoiding a DNF. GuP finished the most query sets. In addition, GuP

is the only method that could finish 24S of Human and 32D of

Patents. Fig. 4 shows the processing time distribution of query

graphs. To equalize the number of query graphs for all the methods,

we focused on 16 query sets for which no method yielded a DNF.

The “All” bar indicates 800,000 (50, 000 × 16) query graphs in those

query sets. We counted the number of query graphs that took a

processing time more than the following thresholds: one second

(> 1 sec.), one minute (> 1 min.), and one hour (> 1 hr.). Note that,

since the time limit per query graph is set to one hour, all the

query graphs that took more than an hour were terminated before

their completion. As shown in the figure, GuP yielded the fewest

query graphs for all the thresholds. Most notably, GuP has no query

graphs that took more than an hour. The overall results in Table 2

and Fig. 4 confirm the high robustness of GuP, which enables GuP

to process query graphs in a practical time that the state-of-the-art

methods cannot.

11
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Figure 5: Breakdown of the number of query graphs.
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Figure 6: Average processing time for each query set of Yeast.

Next, we present the processing time distribution for query sets

16S, 32S, 16D, and 24D of each data graph. Like Fig. 4, Fig. 5 shows

bars of the number of query graphs that took more than a second,

a minute, and an hour. Instead of the “All” bars, the top of the Y

axis is set to 50,000, the number of query graphs in each query

set. GQL-G and GQL-R are shown as “G.-G” and “G.-R” because of

space limitation. GuP showed shorter query processing time than

the existing methods as a whole, and we can confirm the stable

performance of GuP for various query graphs and data graphs. In

addition, GuP always yielded the fewest query graphs that took

more than an hour, except for 16D of WordNet. This proves that

GuP can effectively reduce the search space of difficult queries.

Fig. 5 shows that in many cases the number of query graphs that

took over an hour was less than 100, which is 0.2% of 50,000 query

graphs in each query set. They would have not been found if each

query set had consisted of 100 or 200 query graphs.

4.2.2 Average Processing Time. Fig. 6 presents the average pro-

cessing time of each query graph in the query sets of Yeast. The

results for the other data graphs are omitted because of a lack of

8S 16S 24S 32S 8D 16D 24D 32D

108

1010

#r
ec
ur
sio

ns GuP
GQL-G
GQL-R

Figure 7: Comparison of the
number of recursions.
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Figure 8: Parameter search
for reservation size 𝑟 .

comparability caused by DNF query sets. Timed-out query graphs

are counted as if they were completed in one hour, which is the

time limit per query graph. This figure reveals another aspect

of the performance because Figs. 4 and 5 classify query graphs

into the ranges of the processing time and do not care an actual

value of the processing time in each range. Since the generation of

and the matching with guards involve additional overheads, GuP

yielded only moderate performance for 8- and 16-vertex query

graphs. However, GuP became one of the best methods for 24- and

32-vertex query graphs because larger query graphs have larger

search space, where the performance gain offered by guards more

easily surpasses the overheads. As we can confirm from the pro-

cessing time distribution and the number of DNFs depicted in Fig. 5,

the query graphs of the other data graphs are even more difficult

to solve, and hence GuP tends to perform better than the other

methods.

4.2.3 Number of Recursions. To evaluate the size of the search

space, we compared the number of recursive calls of the backtrack-

ing function. Fig. 7 shows the total number of recursions needed to

process each query set of Yeast. We omitted DAF and RM because

they do not count the recursions; DAF employs leaf decomposition

[3] besides backtracking, and RM is a join-based method. As shown

in the figure, GuP produced the fewest number of recursions for

most of the query sets. This result shows that the high performance

of GuP is derived from the reduction of the search space. Note that,

due to overheads related to guards, GuP showed longer average

processing time in Fig. 6 contrary to fewer recursions.

We also counted the number of local candidate vertices adap-

tively pruned by guards during backtracking. While we omit the

detailed results, 11.5% of local candidate vertices were pruned on

average. This may seem a slight reduction but greatly impacts the

number of recursions because it is determined by the multiplication

of the number of local candidate vertices. For example, if we have

a 32-vertex query graph, and 11.5% of local candidate vertices are

pruned for every query vertex, the number of recursions decreases

to 2% ((1 − 0.115)32 = 0.02).

4.3 Detailed Analysis of GuP
Next, we show the results of the experiments to understand the

characteristics of GuP.

4.3.1 Reservation Size. GuP requires parameter 𝑟 , which specifies

the maximum size of reservation guards. Fig. 8 shows the total

number of recursions needed to solve 1,000 queries in each query

set of Yeast. Each bar corresponds to a different value of 𝑟 . “r =∞”
has no limitation on the size. We disabled the pruning techniques

except for reservation guards. The results show that the pruning
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Figure 9: The number of futile recursions on Yeast.

Table 3: Peak memory consumption
Guard

Graph Query Whole Reservation N. vertices N. edges Guard/Whole

Yeast

8S 2.91 MB 0.07 MB 0.09 MB 0.61 MB 26.49%

32S 4.21 MB 0.11 MB 0.13 MB 0.83 MB 25.36%

8D 3.37 MB 0.04 MB 0.05 MB 0.81 MB 26.59%

32D 4.27 MB 0.07 MB 0.08 MB 1.00 MB 26.93%

Patents

8S 1.51 GB 1.43 MB 1.86 MB 2.14 MB 0.36%

32S 1.51 GB 2.53 MB 3.09 MB 4.31 MB 0.66%

8D 1.51 GB 0.50 MB 0.67 MB 0.68 MB 0.12%

32D 1.51 GB 1.39 MB 1.66 MB 3.04 MB 0.40%

power of reservation guards increases as 𝑟 increases, but it almost

saturates at 𝑟 = 3. We also confirmed almost the same trends with

the other data graphs. From this result, we recommend 𝑟 = 3 as

the default setting because 𝑟 is preferred to be small to reduce

the computational costs of the reservation guard generation and

a matching test with reservation guards. Remind that we always

used 𝑟 = 3 except for this experiment.

4.3.2 Effectiveness of Each Guard. Next, we investigated the effec-

tiveness of each guard. To better understand the contribution of

guards, here we focused on the number of futile recursions that is
a recursive call leading to a deadend. Fig. 9 shows the number of

futile recursions offered by the different combinations of techniques

in GuP. “Baseline” means a conventional backtracking search, “R”,

“NV”, and “NE” mean the use of reservation guards, nogood guards

on vertices, and nogood guards on edges, respectively. Finally, “All”

means complete GuP, equivalent to “R+NV+NE” with backjumping.

We can see the overall trend that nogood guards on vertices (“NV”)

contributed the most to the reduction of futile recursions. The con-

tribution of nogood guards on edges (“NE”) is the second largest,

and backjumping (“All”) offers a little bit more improvement. Al-

though the contribution of reservation guards (“R”) varied among

the query sets, they substantially decreased the number of futile

recursions for 16S, 24S, and 24D by 77%, 60%, and 53%, respectively.

Thus, all the techniques in GuP contribute to achieving efficient

backtracking, leading to the high robustness of GuP.

4.3.3 Memory Consumption. Since GuP needs additional mem-

ory space for guards, we evaluated its memory consumption using

Yeast and Patents, the largest data graph in our experiment. Table 3

shows the result. The “Whole” column shows the peak heap mem-

ory consumption
6
, the columns under “Guard” shows the maximum

memory consumption of each guard, and “Guard/Whole” shows

the percentage of the total memory consumption of guards in the

whole memory consumption. While guards occupied about one

fourth of the whole memory consumption for Yeast, the percentage

decreased to under 1% for Patents. This is because the memory con-

sumption for Patents is dominated by the data graph. The program

6
We used heaptrack to obtain these values: https://github.com/KDE/heaptrack.
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Figure 10: Performance in parallel executions.

needs much temporary memory for buffering data read from files

and constructing a data structure of the data graph. In contrast,

guards consume little memory because they are attached to candi-

date vertices and edges, which are much fewer than the vertices

and edges of the data graph. Guards are generated after releasing

memory for the temporary data, and hence the peak memory con-

sumption for Patents was 1.51 GB regardless of the size of query

graphs. Note that this seems a reasonable memory consumption be-

cause we observed that GQL-G and GQL-R also allocated about 1.5

GB of memory for Patents. As shown by these results, guard-based

pruning is applicable to large-scale graphs.

4.3.4 Parallelization. We compared the performance of GuP and

DAF in parallel execution because DAF is the only parallelized

method among the methods used in the experiment. Parallel search

often offers superlinear speedups [14] when a thread encounters

a search space where it can easily find embeddings more than the

limit, which is 10
5
in our experiment. This is beneficial in practice

but becomes noise in a study of parallel scalability. To mitigate this

effect, we increased the limit to 10
8
in this experiment. Section 4.3.4

shows average processing time and speedup for 1,000 query graphs

in 32D of Yeast with different numbers of threads. The 1-thread

performance differs from Fig. 6 because of the different limit on

the number of embeddings. For 1- and 2-thread execution, GuP

performed worse than DAF due to guard overheads and superlinear

speedup of DAF. However, the performance of DAF does not scale to

more than two threads. This is because DAF parallelizes the search

only at the candidate vertices of 𝑢0 [14] and thus failed in load

balancing. In contrast, thanks to work stealing, GuP offered speedup

almost in proportion to the number of threads and outperformed

DAF with threads more than two. Since our machine consists of

four NUMA nodes each of which has 18 cores, communication costs

degraded the 36- and 72-thread performances. NUMA optimizations

will improve the performance, but it is not a focus of this paper.

In the parallel execution, each thread of GuP individually main-

tains nogood guards and does not share themwith the other threads.

Since this may affect the performance, we counted the total number

of recursions in parallel execution. Perhaps counterintuitively, the

parallel execution decreased the number of recursions; the 1- and

72-thread executions produced 38.6 billion and 38.5 billion recur-

sions, respectively. As mentioned above, a parallel search can find

search space that is easy to find many embeddings, which leads to

fewer recursions. Compared to this phenomenon, the thread-local

maintenance of nogood guards has only an unobservable impact,

and so pruning with guards can be applicable to parallel search.
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5 CONCLUSION
We proposed GuP, an efficient algorithm for subgraph matching.

GuP utilizes guards on candidate vertices and candidate edges to

filter out them adaptively to partial embeddings. Our contributions

are (i) a pruning approach based on guards, (ii) the propagation of

the injectivity constraint by a reservation, (iii) the nogood discovery

rules for effective pruning, and (iv) search-node encoding of a

nogood guard. The experimental results showed that GuP can solve

many queries that the state-of-the-art methods could not solve

within a time limit and also can solve other queries in comparable

processing time.
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