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ABSTRACT
Recently using machine learning (ML) based techniques to optimize

the performance of modern databasemanagement systems (DBMSs)

has attracted intensive interest from both industry and academia.

With an objective to tune a specific component of a DBMS (e.g.,

index selection, knobs tuning), the ML-based tuning agents have

shown to be able to find better configurations than experienced data-

base administrators (DBAs). However, one critical yet challenging

question remains unexplored – how to make those ML-based tun-

ing agents work collaboratively. Existing methods do not consider

the dependencies among the multiple agents, and the model used

by each agent only studies the effect of changing the configurations

in a single component. To tune different components for DBMS, a

coordinating mechanism is needed to make the multiple agents be

cognizant of each other. Also, we need to decide how to allocate the

limited tuning budget (e.g., time and resources) among the agents

to maximize the performance. Such a decision is difficult to make

since the distribution of the reward (i.e., performance improvement)

corresponding to each agent is unknown and non-stationary. In this

paper, we study the above question and present a unified coordinat-

ing framework to efficiently utilize existing ML-based agents. First,

we propose a message propagation protocol that specifies the col-

laboration behaviors for agents and encapsulates the global tuning

messages in each agent’s model. Second, we combine Thompson

Sampling, a well-studied reinforcement learning algorithm with a

memory buffer so that our framework can allocate the tuning bud-

get judiciously in a non-stationary environment. Our framework

defines the interfaces adapted to a broad class of ML-based tuning
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agents, yet simple enough for integration with existing implemen-

tations and future extensions. Based on extensive evaluations, we

show that this framework can effectively utilize different ML-based

agents and find better configurations with 1.4~14.1× speedups on

the workload execution time compared with baselines.

KEYWORDS
performance tuning, ML for data management

ACM Reference Format:
Xinyi Zhang, Zhuo Chang, Hong Wu, Yang Li, Jia Chen, Jian Tan, Feifei

Li, and Bin Cui. 2022. A Unified and Efficient Coordinating Framework

for Autonomous DBMS Tuning . In Proceedings of SIGMOD ’23: ACM SIG-
MOD/PODS Conference (SIGMOD ’23). ACM, New York, NY, USA, 15 pages.

https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Database management systems (DBMSs) are playing critical roles in

a broad spectrum of data-intensive applications. The performance

of a DBMS depends on multiple configurable components, e.g., con-

figuration knobs, index settings, and materialized views. Tuning the

DBMS is crucial to obtain high performance, but the process is not

trivial. As a common practice, database administrators (DBAs) put

considerable effort into finding appropriate settings for the DBMS.

However, since the NP-hard nature [41] of the tuning problem,

manual manipulation can not handle such complex tuning tasks

easily. Due to the shift to cloud environments, there are large-scale

instance deployments with increasingly diverse workloads in cloud

databases. The manual tuning fails to scale well.

Fortunately, machine learning (ML) techniques could help to

overcome this challenge since they can model complex functions

and automate the performance tuning process. Researchers have

been extensively working on approaches that use ML techniques

to optimize database systems (i.e., ML-based tuning agents). Figure

1a presents the number of published research focusing on the ML-

based tuning agents for DBMS in recent five years. These works

include index selection [15, 22, 23, 35, 38, 47, 52, 54–56, 63, 63, 64,

73], knobs tuning [6, 10, 11, 20, 24, 31–33, 42, 57, 68, 70, 71], view

generation [27, 46, 65, 67], query optimization [13, 28, 36, 36, 50, 60,

66, 72], and data partition [17–19, 26, 29, 74]. Given a workload, the

ML-based tuning agents aim to improve the database’s performance

based on certain objective functions (e.g., higher throughput and

lower latency). For example, to tune the configuration knobs in
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Figure 1: Motivating Examples. Figure 1a shows the number of published papers onML-based tuning agents from 2017 to 2022.
Figures 1b presents the query execution times under different configuration settings for knob and index components. Figure
1c presents the performance improvement of three tuning agents given different tuning budgets on TPC-H workload.

a DBMS, a knobs tuning agent utilizes a ML model to suggest a

promising configuration and applies it to the DBMS. Then the agent

updates its model based on the performance of the configuration to

learn the underlying objective function and to improve its tuning

policy.

Although the ML-based tuning agents have demonstrated supe-

rior performance and efficiency compared to manual tuning [30, 39],

they always focus on the tuning for a single configurable compo-

nent and neglect the dependencies between agents. However, the

performance of a DBMS is influenced by multiple components. Op-

timal configuration choices for one component would depend on

the configurations of the other [51]. For example, it is better to

set a larger query cache, smaller buffer size when no indexes are

built, and smaller query cache and larger buffer pool when suitable

indexes are built [51]. Thus, running a standalone agent is very

likely to recommend sub-optimal configurations. Figure 1b shows

a concrete example when running Q19 from TPC-H workload. We

observe that the optimal configuration is the combination of knob

configuration 1 and index configuration 3. However, when knob

configuration 2 or 3 is applied to DBMS, the index agent would sug-

gest sub-optimal configurations (i.e., index configuration 2). And

when running a tuning agent, the configurations in other compo-

nents usually are not the ideal ones (e.g., knob configuration 1 in

the example). Hence, tuning multiple components together would

own more advantages compared with the standalone tuning.

The multi-component tuning is essentially an optimization prob-

lem that navigates a joint configuration space composed of the

subspace for individual components. The composite configuration

space is huge and complex, which leads to scalability issues related

to the curse of dimensionality [45]. Besides, since the configuration

spaces for different components are distinct (e.g., binary for index

selection, continuous for knob tuning, and tree-structured for query

rewrite), it is impossible to jointly optimize them directly. Mean-

while, space decomposition has shown promising performance

when solving a high-dimensional optimization problem [43–45, 48].

Given the above facts, we decompose the joint space according to

the corresponding components and resort to the solvers of existing

tuning agents to tune the corresponding components. Consequently,

we can take full advantage of the latest research on ML-based tun-

ing agents customized for a specific component. To this end, we

seek to answer a question —“how to coordinate existing ML-based
tuning agents to configure multiple components in a DBMS?”

There are three main challenges behind this question. First, there

are emerging ML-based tuning agents with advanced features for

different DBMS components. From a system perspective, without

a high-level abstraction of the agents and a general solution, we

can not unitize them for multi-component tuning. Can we design
a unified solution to conveniently support existing ML-based tuning
agents and the integration with future extensions (C1)? Second, given
the dependencies among different components, the tuning agents

should be able to adjust their tuning policies according to others’

tuning decisions. However, existing studies tune the DBMS in a

standalone way – the ML models of tuning agents operate under

the assumption that the configurations of other components are

fixed. The agents could not make accurate predictions, if other

agents modify their controlled configurations [51], thus failing to

find global promising configurations. To leverage existing agents to
tune multiple components, we need a mechanism to make the agents
communicate and coordinate with each other (C2). Third, running
the ML-based agent is expensive, as it needs time and resources

to observe the effects of configurations. However, the distribution

of reward (i.e., performance improvement) corresponding to each

agent is unknown. And, under a given tuning budget (e.g., time),

the agents’ reward is unbalanced and non-stationary (decaying in

most cases, i.e., diminishing marginal utility), as shown in Figures

1c. Given these facts, we need to explore a judicious policy that can
efficiently allocate budget to the promising tuning agents (C3).

To address the above challenges, we propose a unified and effi-

cient coordinating framework, UniTune, for orchestrating the ML-

based tuning agents. We first analyze existing agents for DBMSs

and classify them into three categories: Bayesian Optimization (BO)

based, Reinforcement Learning (RL) based, and RL-estimator based

approaches. We abstract the logic of different tuning agents and

define interfaces to support a wide variety of existing agents and for

future extension (addressing C1). Second, to break the standalone

tuning limitation, we propose a message propagation protocol that

enables collaboration among agents. It specifies how one agent

broadcasts its tuning decision as a message and how other agents

receive and process the message. To update the tuning policy ac-

cording to the tuning messages, we encapsulate the messages in

each agent’s model in the form of context features (addressing C2).
Third, we formulate the budget allocation problem as a multi-arm

bandit problem with each agent referred to an arm and propose

a Thompson Sampling based strategy to select promising agents.

This strategy maximizes the tuning performance based on historic

observations by judiciously balancing the trade-off between ex-

ploitation and exploration. To avoid the selection misguided by the

changing reward in non-stationary environments, we propose a
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strategy that utilizes a memory buffer to discard the out-of-date

observations (addressing C3).
To the best of our knowledge, UniTune is the first unified frame-

work using ML techniques to tune multiple components in a DBMS.

In summary, we make the following contributions.

• To tune multiple components in a DBMS efficiently, we discuss

how to utilize the existing ML-based tuning agents and design a

unified coordinating framework with high-level abstraction and

flexible interfaces.

• To enable collaboration among agents, we propose a message

propagation protocol that specifies their message sharing behav-

iors and encapsulates tuning messages in agents’ models.

• To allocate the limited tuning budget among agents, we propose

a Thompson Sampling based strategy to select promising agents

based on historical observations. It tackles the non-stationary

nature of reward via a memory buffer design.

• We conduct extensive evaluations on synthetic and real work-

loads. The result shows that UniTune can support different ML-

based tuning agents and recommend better configurations with

1.4~14.1× speedups on the workload execution time compared

with baselines.

The remainder of the paper is organized as follows. We discuss re-

lated work in Section 2. We formulate the multi-component tuning

problem and review existing ML-based tuning agents in Section 3.

Then we provide a high-level abstraction for the ML-based tuning

agents and give an overview in Section 4. In Section 5, we intro-

duce a message propagation protocol to enable the collaboration of

tuning agents. In Section 6, we provide a policy to allocate the lim-

ited tuning budget among agents. Finally, we report the evaluation

results in Section 7 and end this paper with a conclusion.

2 RELATEDWORK
Recently, configuring DBMSs automatically has attracted intensive

interest in both industry and academia. They aim to automate the

database tuning tasks and search for better configurations in a

data-driven way [58]. They adopt Reinforcement Learning (RL)

and Bayesian Optimization (BO) algorithms to tune a DBMS in a

trial-and-error manner. Prior works typically focus on a specific

tuning task such as index selection, knobs tuning, query rewrite,

view generation, and data partition.

Index Selection. Indexes on appropriate columns are vital to speed

up query execution [49]. ML techniques are utilized to select proper

indexes from a large number of possible index combinations. For

example, SmartIX [47], MANTIS [56] and AutoIndex [73] adopt RL,

and DBA-bandits [52] adopts 𝐶2𝑈𝐶𝐵 algorithm in BO framework.

Knobs Tuning. A DBMS has hundreds of configurable knobs, af-

fecting its performance [69]. To replace the manual tuning that

depends on DBA’s experience, the DB community has developed

lots of ML-based methods to automate this process, such as BO-

based [6, 11, 16, 20, 33, 37, 70, 71] and RL-based [10, 42, 68] methods.

Query Rewrite aims to transform a query into an equivalent one

but with higher performance. It is an NP-hard problem [21] with

numerous rewrite orders (e.g., different operators and rules). Learne-

dRewrite [72] uses a regression model to estimate the benefit of a

rewrite node. And a light-weight RL-based agent, Monte Carlo Tree

Search (MCTS) is adopted to interact with the regression model,

searching for a better-rewritten query.

View Generation. Materialized views could save redundant com-

putations among queries that share equivalent sub-queries, based

on the space-for-time trade-off principle. Two approaches [27, 67]

use a regression model to estimate the benefit of the different view

candidates and queries and suggest view-query pairs for a given

workload via a RL-based agent with deep Q-learning algorithm.

Data Partition. Partitioning a database can greatly improve the

performance of analytical workloads since data-intensive queries

can be assigned to multiple machines. Many approaches [17–19, 29]

utilize RL agents to explore different partition keys. And Li et al. [29]

implements a regression model to estimate partition benefits.

We focus on designing a unified coordinating framework of the

ML-based tuning agents to tune multiple DBMS components. The

closest work to us is one recent research, UDO [59]. It proposes to

use RL agents to optimize more DBMS components. It separates

the configurations as heavy and light – heavy parameters have

high reconfiguration overheads (e.g., indexes) and light parameters

have negligible overheads (e.g., knobs). It uses a two-layer loop to

reduce reconfiguration overheads. In the outer layer, a RL agent

suggests and applies a heavy parameter. Then, in the inner layer,

another RL agent is initialized and iterates for a number of itera-

tions to find a suitable setting for the light parameters. However,

we should allocate the tuning budget according to the expected

utility of tuning agents, instead of the reconfiguration overheads.

The two-layer schedule causes a fixed budget allocation pattern:

less tuning budget spent on the outer agent. The fixed schedule

leads to a bad overall performance, as shown in our evaluation

in Section 7.2. Different from our general framework, UDO is not

designed to coordinate existing tuning agents. It focuses on cus-

tomized algorithms to tune the DBMSs. For example, it proposes

an MCTS variant, delayed-HOO to suggest heavy parameters, and

a planner to reduce re-configuration overheads by carefully arrang-

ing evaluation orders of index configurations. Those customized

algorithms are orthogonal to our work, and they can be considered

as another tuning agent and integrated into our framework.

3 PRELIMINARY
In this section, we formulate the problem and review the existing

ML-based tuning agents for DBMS.

3.1 Terminology and Problem Statement
We first introduce the associated terminology and then define the

multi-component tuning problem.

Tuning Agent. An agent is an external system focusing on tuning

a specific component of DBMS to improve pre-defined metrics.

Example 1. Modern DBMSs have several configurable compo-

nents that affect their runtime execution and performance, includ-

ing (1) physical design (e.g., index, view, and data partitioning),

(2) configuration knobs, (3) query design (e.g., rewriting a query

externally). An agent is usually responsible for configuring one of

these components. For example, to minimize the execution time of

a given workload, a knobs-tuning agent will search for the suitable
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Figure 2: Three Categories of ML-Based Tuning Agents.

knobs’ values and a view-generation agent will select proper mate-

rialized views for queries in the workload. We denote the agent for

component 𝑖 as 𝐴𝑖 .

Configuration Subspace. A configuration subspace Θ𝑖 is the set

of all possible configurations for a component 𝑖 . And we denote the

configuration value in Θ𝑖 as 𝜃𝑖 . And the domain of a configuration

subspace depends on the nature of the corresponding component

and the formulation made by the agent.

Example 2. For knob tuning, its domain could be a mix of con-

tinuous variables (e.g., innodb_buffer_pool_size), and categorical

variables (e.g., innodb_stats_method). For index selection, its domain

could be a set of binary values representing whether the indexes

are created or not. And the domain can even be a set of tuples. For

example, the query rewrite agent makes an atomic tuning decision

(𝑜, 𝑟 ), representing applying rewrite rule 𝑟 on operator 𝑜 .

Configuration Space. A configuration space Θ is a composition

of the configuration subspace of𝑚 configurable components, i.e.,

Θ = Θ1 × Θ2 × ... × Θ𝑚 .

Tuning Budget. The tuning budget is the total amount of cost that

is allowed to spend on tuning a DBMS. We can measure the cost

from different perspectives, such as time, resource, or money which

are positively correlated. For simplicity, we measure the cost in

terms of time in this paper. We use sub-budget as a hyper-parameter

to control the unit of budget spent for executing an agent.

Problem Statement. Considering𝑚 DBMS components, the goal

of multi-component tuning is to optimize a user predefined metric

by running ML-based tuning agents under a limited tuning budget:

argmax

𝜃1,...,𝜃𝑚

𝑓 (𝜃1, ..., 𝜃𝑚 ;𝑊 ),

where 𝜃1, ..., 𝜃𝑚 ∈ Θ1 × Θ2 × ... × Θ𝑚 is the configuration value

suggested by the corresponding agents.𝑊 corresponds to the given

workload. And 𝑓 is the database performance metrics, which can

be any pre-defined objective, e.g., throughput and 99%th percentile

latency. Note that the result of 𝑓 (·) can be observed after the evalu-

ations in the DBMS (e.g., stress testing).

3.2 Existing ML-based Agents
We categorize existing ML-based agents into three types: Bayesian

Optimization (BO) based, Reinforcement Learning (RL) based, and

RL-estimator based.

BO based agents formulate the tuning task as a black-box opti-

mization problem and update its tuning policy by interacting with

the database system, as shown in Figure 2a. To solve the black-box

function, the agent works iteratively: (1) suggest the next config-

uration to evaluate by computing an acquisition function value

that measures the utility of candidate points, (2) evaluating the

suggested configuration by interacting with the DBMS, and (3)

updating a probabilistic surrogate model that describes the relation-

ship between configurations and their performance.

RL based agents formulate the tuning task as a Markov Decision

Process (MDP) and update its tuning policy by interacting with

the database system, as shown in Figure 2b. An MDP models a

problem as a multi-step process. At each step, the agent observes

the current state 𝑠 and chooses an action 𝑎 ∈ 𝐴(𝑠) based on a policy.

The action results in a reward 𝑟 (𝑠, 𝑎) and a change of state to 𝑠 ′.
The RL based agents aim to find a decision-making policy that

maximizes cumulative observed reward.

RL-estimator based agents also formulate the tuning task as an

MDP, but the RL agents interact with a pre-trained estimator to

update its tuning policy. The estimator could estimate the utility

of a given action. Existing work adopts a two-step manner to train

estimators and RL agents, as shown in Figure 2c. In step 1, the

estimator is trained in an offline manner. And the training data

is obtained by randomly sampling configurations and observing

their performance by interacting with the DBMS. In step 2, the RL

agent updates the policy by interacting with the estimator instead

of evaluating in DBMS.

Scope Illustration.We focus on configuring multiple compo-

nents in a DBMS via a unified framework for different ML-based

tuning agents. To make our framework clear and general, we clarify

some necessary constraints. (1)We limit the scope of our framework

to the support of the external agents, which configure the database
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components exposed by DBMS’s APIs without having to modify

the DBMS’s internal implementation. The external approach is easy

to apply to existing DBMSs without software engineering effort to

retrofit their architecture. (2) At the algorithm level, we focus on

offline tuning. Online tuning can be implemented via a clone and

parallelization scheme to stress-test workloads on multiple cloned

instances and apply the safe one in the online database [10]. (3) Cur-

rently, we let users choose one algorithm for tuning one component

(we provide default options for each component). For future work,

we can support automatic algorithm selection for each component,

for instance, deciding which algorithm to use for the knobs com-

ponent from the candidates such as OtterTune [6], CDBTune [68]

and CGPTuner [11].

4 OVERVIEW
In this section, we highlight the core abstractions in UniTune and

discuss the user interface and workflow.

4.1 Core Abstractions
Our framework provides a high-level abstraction for the ML-based

tuning agents. The agents share an iterative workflow, following a

trial-and-error manner to tune the DBMS. They utilize a ML model

to predict a promising configuration (e.g., building an index), and

evaluate the performance of the suggested configuration. Based on

the evaluation result, they update the model to improve the efficacy

for future decision making. Following the above paradigm, our

framework defines an abstraction for the ML-based tuning agents.

Concretely, we categorize the tuning agent based on the adopted

algorithms and how they evaluate the suggested configuration,

as discussed in Section 3.2. And, to support existing ML-based

tuning agents, we define the following three base classes (BO, RL,
and RLEstimator), and provide the corresponding interfaces, as

shown in Table 1. We summarize the interfaces as follows.

• InitModel: initializes the model used by the tuning agent.

• Suggest: infers the defined model to predict a promising con-

figuration.

• UpdatePolicy: updates the defined model using the input aug-

mented observation.

• UpdateEstimator: updates the estimator using the input aug-

mented observation.

This abstraction offers flexible support for different tuning algo-

rithms, as it removes the heterogeneity issue in existing ML-based

tuning agents. For each main class, the tuning agents differ in

how to implement these interfaces of their logic (e.g., which kind

of neural networks to adopt in InitModel, and how to predict a

promising configuration based on their model in Suggest). Using
these interfaces, it is easy to integrate an agent with existing im-

plementation in UniTune for multi-component tuning. A user just

needs to inherit the corresponding base class and overrides its func-

tions. For example, to add a RL tuning agent – CDBTune [68], the

user defines an actor-critic network for the agent in InitModel,
and implement how to suggest configurations by inferring the actor

network in Suggest as well as how to update the model based on

the input observation in PolicyUpdate.

Table 1: Abstraction for ML-based tuning agents.

Type Algorithm Interfaces

BO
Bayesian

Optimization

Suggest, ModleInit,
UpdatePolicy

RL
Reinforcement

Learning

Suggest, ModleInit,
UpdatePolicy

RLEstimator
Reinforcement

Learning

Suggest, ModleInit,
UpdatePolicy,UpdateEstimator

[Tuning-Setting]

components = {'index': 'DBA-Bandit', 'knob':'OtterTune',

'query':'LearnedRewrite'}

tuning_budget = 108000

performance_metric = 'execution-time'

Figure 3: An Example of User Interface.

Given the user-implemented interfaces, our framework coordi-

nates the agents of different components automatically, hiding un-

derlying details for users. First, for one agent, our framework auto-

mates its pipelined execution using these functions. For BO and RL, it
evaluates the configuration output by Suggest by interacting with

the DBMS and inputs the resulting observation to PolicyUpdate.
For RLEstimator, it samples a configuration, evaluates it in the

DBMS, and inputs the resulting observation to UpdateEstimator.
Second, our framework schedules the agents to tune multiple com-

ponents in a DBMS wisely by maintaining the running records

of each agent. It decides how to allocate limited tuning budget

among agents automatically (discussed in Section 6) and manages

the agents following a message propagation protocol to enable

collaboration among agents (discussed in Section 5).

4.2 User Interface
To launch a multi-component tuning task, a user only needs to spec-

ify the database settings and the tuning setting. The database setting

refers to the connection information and the workload information.

The tuning setting describes the types of DBMS components to be

tuned, the corresponding agent, the performance metric, and the

overall tuning budget. For ease of usage, we adopt configuration

files to define a task. The following code in Figure 3 gives an ex-

ample and we omit the database setting for space constraints. It

defines a task that configures index, knobs, and query components

via the ML-based tuning agents – DBA Bandit [52], OtterTune [6]

and LearnedRewrite [72], respectively. The tuning budget is set to

30 hours, and the tuning objective is the execution time.

4.3 Workflow
Figure 4 presents the overview of UniTune. The critical components

are emphasized to illustrate its internal workflow. Given the tuning

agents and the task information defined by a user, the two modules

(budget allocation andmessage propagation) execute iteratively. First,
the budget allocation module selects a promising tuning agent and

the selected agent is passed to the message propagation module.

Then, the message propagation module arranges the input agent to
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Figure 4: Workflow of UniTune. UniTune has a “high-
level abstraction”which supports differentML-based tuning
agents, a “budget allocation” module which selects promis-
ing tuning agents, and a “message propagation” protocol
which enables the collaboration among agents to resolve
their dependency.

tune the DBMS while cooperating with the other agents, and finally,

the tuning reward obtained is returned to the budget allocation
module to update the resource allocation strategy. The workflow

ends once the tuning budget is spent out or a termination criterion

is met. We explain the two modules as follows.

Budget Allocation selects a promising agent for tuning the DBMS

at each step. The budget allocation problem can be formulated as a

multi-arm bandit problem with non-stationary reward (discussed

in Section 6.1). The goal is to maximize the cumulative expected

reward (i.e., the improvement of a performance metric) within the

given budget. The challenge is that the reward of an agent can

only be observed after evaluating its actions using a certain budget,

and the reward is non-stationary – it changes as the optimization

proceeds. To make good decisions, this module judiciously balances

exploration and exploitation via Thompson Sampling, a classic

algorithm for online decision problems (discussed in Section 6.2).

Concretely, it constructs the posterior distributions of reward for

each agent based on the reward observations (step 1) and selects

an agent based on the probabilities sampled from the posterior

distribution (step 2). To adapt to the non-stationary reward, we use

a memory buffer to constrain the number of considered reward

observations when constructing the posterior distributions.

Message Propagation enables collaboration across tuning agents.

The selected agent executes the procedure following a message

propagation protocol, which specifies how it should process the

Algorithm 1 Top-level Design.

Parameter: Agents {𝐴𝑖 }𝑚𝑖=1, tuning budget 𝐾 , sub-budget 𝑘 .
Output: A suggested configuration for best performance.

1: function Framework({𝐴𝑖 }𝑚𝑖=1, 𝐾 )
2: // Initialize global performance as the default one

3: 𝑝𝑒𝑟 𝑓𝑔𝑙𝑜𝑐𝑎𝑙 ← init().

4: while tuning budget is available do
5: 𝐴 𝑗 ← SelectAgent({𝐴𝑖 }𝑚𝑖=1) .
6: 𝑐𝑜𝑛𝑡𝑒𝑥𝑡 ← GetMessage(𝐴 𝑗 ).

7: // Run the selected agent using a sub-budget

8: 𝑐𝑜𝑛𝑓 𝑖𝑔𝑖𝑛𝑐 , 𝑓𝑖𝑛𝑐 ← 𝐴 𝑗 .𝑅𝑢𝑛(𝑐𝑜𝑛𝑡𝑒𝑥𝑡, 𝑘).
9: // Save the performance improvement

10: 𝐴 𝑗 .ℎ𝑖𝑠𝑡𝑜𝑟𝑦.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑚𝑎𝑥 (0, 𝑓𝑖𝑛𝑐 − 𝑓𝑔𝑙𝑜𝑏𝑎𝑙 )).
11: if 𝑓𝑖𝑛𝑐 ≤ fglobal then
12: 𝑓𝑔𝑙𝑜𝑏𝑎𝑙 ← 𝑓𝑖𝑛𝑐 .

13: 𝐴 𝑗 .𝑎𝑝𝑝𝑙𝑦 (𝑐𝑜𝑛𝑓 𝑖𝑔𝑖𝑛𝑐 ).
14: // Update messages to other agents

15: UpdateMessage({𝐴𝑖 }𝑚𝑖=1 −𝐴 𝑗 ).

16: end if
17: end while
18: end function

received message and broadcast its tuning messages to other agents

(discussed in Section 5). The agent first obtains its message which

contains the tuning decisions made by other agents (step 3). Then,

the agent encapsulates the message in its model (discussed in Sec-

tion 5.2.2) and tunes its responsible component using a sub-budget

(step 4). If it finds a better configuration, it applies the configuration

to the DBMS and expresses its tuning decisions in the form of a

context feature (discussed in Section 5.2.1), which is propagated to

other agents (step 5). In the end, we append the observed reward

to the corresponding record for later budget allocation (step 6).

Algorithm 1 gives the pseudo-code showing the main optimiza-

tion loop of our framework. The sub-budget is a hyper-parameter

that controls the amount of budget for running one agent. It should

be larger than the maximal time for the evaluation in DBMS (e.g.,

stress testing) but as small enough to enable fine-grained budget

allocation. In our implementations, we set it twice the timeout of

stress testing time. UniTune first initializes the current best perfor-

mance as the default performance (Line 3). Then it selects an agent

(Line 5). The selected agent receives the message (i.e., a context

feature) sent by other agents (Line 6), configures the DBMS using a

sub-budget and returns the best configuration found during tuning

and its performance (Line 8). UniTune saves the reward (i.e., perfor-

mance improvement) (Line 10). If the selected agent finds a better

configuration, it applies the configuration and update the message

to other agents (Line 11-16).

5 MESSAGE PROPAGATION PROTOCOL
To enable collaboration across tuning agents, we propose a message

propagation protocol to specify their behaviors. Within this pro-

tocol, the tuning agents execute alternatingly and broadcast their

tuning decisions (i.e., messages) to other agents. In the following,

we discuss our design options in Section 5.1 and introduce how

to represent messages and how to make the agents learn from the
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messages in Section 5.1. To support RL-estimator based agents with

the protocol, we provide a new training paradigm in Section 5.3.

5.1 Design Options
The ML-based tuning agents use the evaluation in DBMS to obtain

the performance of a configuration, as we analyzed. Therefore, to

ensure the validation of the observation, the change of configura-

tions (including the configurations of other components) can not

occur during the evaluation so that we can not run two agents

simultaneously. To this end, there are two options for tuning mul-

tiple components in a database system. (1) joint optimization that

joins the subspaces of DBMS components and runs a single agent

to optimize over the joint space, and (2) alternating optimization
that runs multiple tuning agents alternatingly to optimize over the

corresponding subspaces.

Our protocol adopts alternating optimization. The joint optimiza-

tion has severe scalability issues and it relies on a single tuning

agent which is hard to adapt to different DBMS components. First,

the number of evaluations needed to reach the global optimum

increases exponentially as the dimension of the search space grows.

The presence of some regions with large posterior uncertainties can

result in over-exploration and failure to exploit promising areas.

Standard Bayesian optimization may perform worse than random

search in some high-dimensional spaces [61]. And reinforcement

learning suffers from sparse rewards, and may not learn a successful

policy [62]. Second, the underlying objective function is complex,

and thus fitting one global model over a huge space is difficult. For

example, SmartI [47], a RL based agent for index selection, adopts

Deep Q-Learning for discrete subspace, and CDBTune [68], a RL

based agent for knob tuning, adopts DDPG for continuous subspace.

It is non-trivial to jointly optimize in two subspaces by a single

agent. In contrast, alternating optimization solves the optimization

problem efficiently by decomposing the full space to subspaces,

which is to only configure the selected components through the

corresponding tuning agents. Thus, it can take full advantage of

the emerging techniques for tuning a specific component. For ex-

ample, we could run two agents alternatingly. First, we can apply,

e.g., SmartI, by consuming a fraction of the budget, and fix the

best indexes found so far to the DBMS. Second, we switch to, e.g.,

CDBTune, and use another fraction of the budget to figure out a

best knob that the new agent could find out. In UniTune, the budget

allocation module decides which agent to execute step by step, as

discussed in Section 6. In each step, the alternating optimization

essentially fixes some dimensions of the joint space and optimizes

over a subspace, which is much smaller than the full space and can

be optimized effectively. The process searches for the optimum by

exploring different subspaces alternatingly.

5.2 Message Broadcast via Context
Existing tuning agents work under the assumption that the configu-

rations of other components are fixed. In UniTune, if an agent finds

a better configuration, it applies the configuration to its controlled

component and fix the configuration when other agents tune the

DBMS. However, if one agent modifies its component, the mod-

eling of the other agent will be inaccurate due to environmental

changes. Therefore, we need to broadcast its tuning decisions to

other agents, and thus the other agents can be aware of the envi-

ronmental changes in time. Then, the next question is how to make

the affected agents respond to the environmental changes properly.

One possible response is to initialize their ML models and search

from scratch in the new environment. However, the previous tuning

history will be forgotten, and building a new model from scratch

needs a large number of observations. Thus, we turn to another

direction – we make the agents adapt to the environmental changes.

Intuitively, the tuning policies in different environments share cer-

tain common knowledge. We refer to the environmental feature as

context. There exists a mapping from context and configuration

to the performance metric [71]. We expect the same configuration

across correlated contexts to have similar performance metrics. Uti-

lizing the correlations between contexts can significantly speed up

the tuning process. To this end, we decide to express the messages

broadcast among agents in the form of context features and explore

two sub-questions: (1) how to characterize the context, and (2) how

to make the agents learn across contexts.

5.2.1 Context Characterization. The most direct way is to con-

catenate all the configurations of other components as a context

feature since it indicates the environment changes directly due to

other agents’ tuning behaviors. However, the configurations might

be unstructured. For example, the agent for query rewrite applies

several (operator, rule) transmissions to a query in the workload.

The number of transmissions is mutative. Extra feature engineering

effort is needed to support the extension of different agents. In-

spired by OtterTune [6], we resort to the DBMS’s internal runtime

metrics to characterize the effect of configurations. All modern

DBMSs expose a large amount of information about the system,

such as statistics on the number of pages read/written, query cache

utilization, and locking overhead. And they are affected by the con-

figuration settings. To observe a context for an agent, we fix the

best-ever configurations of other components, keep the configura-

tion of its responsible components as default, conduct stress tests

on the DBMS to collect the internal metric statistics.

5.2.2 Context Encapsulation. To utilize the tuning messages, we

need to encapsulate the context feature in the models of tuning

agents. For a BO based agent, we augment the context feature to

the input of the surrogate. Then the surrogate models the mapping

from context and configuration to the performance. For a RL based

agent, we concatenate the context feature to the observed state.

Then the tuning policies, a mapping from state to action, learned by

the neural network will be similar among correlated contexts. For a

RL-estimator based agent, we add the context feature to the input of

the estimator. Then the estimator can estimate the utility of given

actions in different contexts. In a summary, the format of the train-

ing data for RL agents is ⟨state, configuration, next state, reward⟩,
where both “state” and “next state” here contain the concatenated

context features. And the format for BO and RL-estimator agents is

⟨context feature, configuration, performance⟩.

5.3 Uncertainty-aware Training for
RL-estimator Based Agents

In alternating optimization, if one tuning agent finds a better config-

uration, we apply it to the DBMS and broadcast its tuning decisions
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to other agents. Then, other agents could update their suggestions

based on the received message, moving towards a better configura-

tion composition. It is straightforward for BO based and RL-based

agents since they allocate sub-budget to update tuning policies and

broadcast the tuning messages when they are invoked. However,

for RL-estimator based agents, in the existing two-step manner, as

shown in Figure 2c, they first use the allocated sub-budget to train

an estimator by the expensive evaluation in DBMS (step 1). After

the estimator is trained, the RL agent updates its tuning policy and

only recommends a final configuration (step 2). Therefore, during

step 1 (most of the time), the other agents lose the opportunity to

refine their suggestions according to the tuning decisions of the RL-

estimator agent. In addition, the distribution of randomly sampled

configurations in step 1 may not coincide with the configurations

inferred by the RL agent in step 2, leading to inaccurate estimation.

To address these issues, we design an uncertainty-aware training

schema for RL-estimator based agents. We train the RL agent and

estimator in one step, enabling the RL agent to suggest promis-

ing configurations every time the agent is invoked. Specifically,

we adopt an uncertainty-aware surrogate to estimate the uncer-

tainty of the configurations, such as the Gaussian citation. When a

RL-estimator based agent is invoked, we first train the RL agent,

inferring the estimator. And we put the inferred configuration in a

priority queue with estimated uncertainty as the priority. After the

RL agent converges, we evaluate its recommended configuration

by interacting with the DBMS. If a better configuration is found,

we apply it and broadcast it to other agents, facilitating coopera-

tion among agents. Then we use the left sub-budget to evaluate

the performance of the configurations in the priority queue and

update the estimator based on the augmented observations. The

uncertainty-aware schema guides the sampling of configurations

in a demand-oriented way and leads to more accurate prediction

from the estimator.

6 BUDGET ALLOCATION
Various policies can be employed to allocate a tuning budget among

agents. One simple strategy is a round-robin that equally allocates

the tuning budget in turns. However, the reward of different agents

often varies dramatically. For example, some workloads are very

sensitive to the index configuration while query rewrite would offer

little or even no improvement. Therefore, we should spend more

budget on learning good indexes instead of rewriting the queries.

The round-robin would waste the budget on the agents which turn

out to have little reward. To wisely allocate the budget, we find

that agent selection can be defined as a multi-armed bandit (MAB)

problem [9] from statistical machine learning, where different arms

refer to the tuning agents. In the following, we discuss the formu-

lation of this problem and present a Thompson Sampling based

strategy with a memory buffer to solve the MAB.

6.1 A MAB View for Agent Selection
The MAB problem has been a subject of intense studies in statis-

tics for decades. The name comes from imagining a gambler at a

slot machine with multiple arms, who has to decide which arm to

pull [9]. Each time an arm is pulled, the gambler receives a payout.

Because the distribution of payouts corresponding to each arm is

not listed, the gambler can learn it only by experimenting. Agent

selection problem shares a similar essence with MAB since they

both sequentially make online decisions to maximize a total payoff

from unknown distributions.

MAB forAgent Selection.We formally define the stochasticMAB

problem in the agent selection case. We are given a set of tuning

agents A = {𝐴𝑖 }𝑚𝑖=1 and each agent is an “arm”. Let T = {1, 2, ...,𝑇 }
denotes a sequence of decision epochs (𝑇 can be derived from the

setting of tuning budget and sub-budget). At each decision epoch,

we must select an agent to execute. After selecting an agent𝐴 𝑗 ∈ A
at epoch 𝑡 ∈ T, a real-valued reward 𝑋

𝑗
𝑡 ∈ R is observed, where 𝑋

𝑗
𝑡

is a random variable with expectation 𝜇
𝑗
𝑡 = E[𝑋 𝑗

𝑡 ]. The goal is to
maximize the expected cumulative reward in epochs T:

argmax

𝑗 (1), 𝑗 (2),..., 𝑗 (𝑇 )
E

[
𝑇∑︁
𝑡=1

𝜇
𝑗 (𝑡 )
𝑡

]
,

where 𝑗 (𝑡) is the arm selected in step 𝑡 .

Reward Function. Since we aim to find a configuration composi-

tion that optimizes the given performance metric, the semantics of

the reward has to be consistent with the tuning goal. Therefore, we

define the reward as the improvement of the performance metric

when running the agent. Specifically, the reward is

𝑋
𝑗
𝑡 =𝑚𝑎𝑥

(
0, 𝑓

𝑗
𝑡,𝑖𝑛𝑐
− 𝑓𝑡,𝑔𝑙𝑜𝑏𝑎𝑙

)
,

where 𝑓
𝑗
𝑡,𝑖𝑛𝑐

denotes the best performance achieved by agent 𝐴 𝑗 at

epoch 𝑡 , and 𝑓𝑡,𝑔𝑙𝑜𝑏𝑎𝑙 denotes the best performance achieved before

𝑡 , assuming that we want to maximize the performance metric 𝑓 .

Technical Challenges: To maximize the cumulative reward,

we face two challenges. The first is the common dilemma in the

MAB problem – the trade-off between exploitation and exploration:

• Exploitation: one may want to allocate budget to the agents that

already yielded high reward in the past.

• Exploration: one may also want to allocate budget to the agents

that might earn higher reward in the future.

The second is a trade-off between “remembering’ and “forgetting”

caused by the non-stationary reward in the agent selection case.

In the conventional MABs, the reward distributions do not change

over time. However, as we analyzed, the reward distribution of an

agent is not stationary – it changes as the optimization proceeds.

In general, the reward of an agent decays since the performance

improvement achieved by the agent tends to be saturated as the bud-

get is consumed (i.e., the decreasing marginal returns). Therefore,

the old experience might be no longer applicable to estimating fu-

ture reward. Then, to select a promising agent, we should carefully

balance the trade-off between remembering and forgetting:

• Remembering: one may want to keep track of more observations

to decrease the variance of reward estimates.

• Forgetting: one may also want to dismiss “old” information which

is less relevant due to possible changes in the underlying reward.

6.2 Thompson Sampling with Memory Buffer
To solve the above challenges, we propose a Thompson Sampling

based strategy with a memory buffer. Thompson Sampling [53] is a

classic reinforcement learning algorithm for the MAB problem. At

a high level, it chooses an arm to play according to its probability
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Figure 5: Posterior Distribution in Different Epochs. We present probability density functions over mean reward.

Algorithm 2 Agent Selection.

Parameter: Agents {𝐴𝑖 }𝑚𝑖=1, buffer size 𝑠 , a scale factor 𝑟 𝑓 𝑎𝑐𝑡𝑜𝑟 .
Output: A selected agent.

1: function AgentSelection({𝐴𝑖 }𝑚𝑖=1)
2: for 𝑖 ← 1, 2, · · · ,𝑚 do
3: 𝑆 ← 0, 𝐹 ← 0

4: for 𝑟𝑒𝑤𝑎𝑟𝑑 ∈ 𝐴𝑖 .ℎ𝑖𝑠𝑡𝑜𝑟𝑦 [−𝑠 :] do
5: if 𝑟𝑒𝑤𝑎𝑟𝑑 > 0 then
6: 𝑆 ← 𝑆 + 𝑟𝑜𝑢𝑛𝑑

(
𝑟𝑒𝑤𝑎𝑟𝑑
𝑟 𝑓 𝑎𝑐𝑡𝑜𝑟

)
.

7: else
8: 𝐹 ← 𝐹 + 1.
9: end if
10: end for
11: Sample𝑤𝑖 from the 𝐵𝑒𝑡𝑎(𝑆 + 1, 𝐹 + 1) distribution.
12: end for
13: return argmax

𝑚
𝑖=1

𝑤𝑖 .

14: end function

of being the best arm. It builds up experience (i.e., the observation

of selected agents and their reward) to construct a posterior dis-

tribution of reward. And, at each epoch, the algorithm selects an

arm according to its sampled probability of being the arm with the

highest reward.

Exploitation & Exploration. Thompson Sampling addresses the

first challenge by sampling the arm from the posterior distribution

instead of greedily selecting the arm with the highest expected

reward. Consider the example of running two agents – index agent

and knob agent. Figure 5 presents their changing posterior distribu-

tions across epochs. These distributions represent the beliefs of the

arms given the observed history. At epoch 0 (Figure 5a), we do not

have any observation for the reward. Therefore, these two agents

will be selected with the same probability. At epoch 4 (Figure 5b),

the index agent has gained more reward. And a greedy policy will

select the index agent since it has a larger expected reward. But in

Thompson sampling, the knob agent can still be selected, since the

selected arm is sampled from the posterior distribution. At epoch

10 (Figure 5c), the index agent is more likely to be selected, since

the posterior is more differentiated with smaller uncertainty (but

the knob agent still has the possibility to be selected by Thompson

sampling). Intuitively, if we want to maximize exploration, one

would choose the agent entirely at random. If we want to maxi-

mize exploitation, one would greedily choose the agent with the

highest expected reward. Sampling from the posterior distributions

achieves a balance between the two goals.

Remembering & Forgetting.However, recalling the second chal-
lenge that the reward distribution is non-stationary in our case, the

conventional Thompson Sampling would be less effective. Contin-

uing with the example in Figure 5, we assume that the reward of

the index agent is saturated after epoch 10 (i.e., the index agent

will consecutively fail to find better configurations). But given the

large reward of the index agent in the first 10 epochs, its expected

reward at epoch 30 (Figure 5d) is still larger than that of the knob

agent with relatively small uncertainty. Therefore, the index agent

is more likely to be selected although it offers no future reward.

To address the second challenge, we adopt a simple yet effective

strategy – we use a memory buffer to control the number of con-

sidered observations for constructing the posterior distribution.

Given the observed reward {𝑋 𝑗
𝑡 }

𝑇𝑗

𝑡=0
for agent 𝐴 𝑗 , we only utilize

{𝑋 𝑗
𝑡 }

𝑇𝑗

𝑡=𝑇𝑗−𝑠+1 (i.e., the previous 𝑠 observations) to construct its pos-

terior distribution, where 𝑠 is a memory buffer size. The buffer size

represents the number of considered observations. With a smaller

buffer size, the algorithm will have a lower risk of being biased

by past observations and can better adapt to the changes in future

reward. But, at the same time, it may forget useful knowledge, miss-

ing the opportunity for exploitation. The buffer size controls the

trade-off between forgetting and remembering. And it has been

theoretically proved that sub-linear regret is achievable in non-

stationary environments with an appropriate trade-off between

forgetting and remembering [25]. Figure 5e presents the posterior

distribution with a buffer size of seven. The expected reward of the

knob agent is higher than that of the index agent and will be more

likely to be selected since it gains more reward in the considered

previous seven epochs.

As we discussed, there are dependencies among different tun-

ing agents. The allocation strategy explores different dependency

directions through different tuning orders of components. It de-

cides the tuning orders step by step intrinsically by selecting a

promising agent at each iteration. For example, UniTune might

start by evaluating one tuning order, if the improvement is small,

it explores other directions. Thus, different tuning orders are ex-

plored adaptively based on historic feedback. Algorithm 2 presents

a formal description of the budget allocation strategy in UniTune.

We adopt the beta distribution to describe the posterior distribution

of reward, which is widely used in Thompson Sampling [5]. Beta

distribution has two parameters, 𝑆 and 𝐹 to control the estimation

of the expected reward. As shown in Figure 5, after pulling an arm,

the posterior distribution of the expected reward can be constructed

by simply adjusting the two parameters. And higher the 𝑆 and 𝐹
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are, the tighter the concentration of 𝐵𝑒𝑡𝑎(𝑆, 𝐹 ) is around the mean.

To trade off between remembering and forgetting, we utilize the

observed reward in a memory buffer with size 𝑠 to update the two

parameters (Line 2-8). Then, we sample from the posterior distribu-

tions (Line 11) and select an agent according to the probability of its

mean being the largest (Line 13). The conventional Thompson Sam-

pling observes binary reward and hence is not directly applicable

to our case of continuous reward. “Probabilistic reward” [5] is used

to adapt Thompson Sampling to the continuous reward scenario –

it scales the continuous reward to a domain of [0, 1] and samples a

binary reward from a Bernoulli distribution with the scaled reward

as its success probability. However, the “probabilistic reward” cause

the agent with a positive observed reward possibly to have zero

sampled reward. The information loss compromises the already

sparse reward in our case. Based on our empirical experience, we

scale the observed reward by a constant factor and use the rounded

value to update 𝑆 (Line 6).

7 EXPERIMENTAL EVALUATION
We conduct experiments to evaluate UniTune. We describe experi-

mental setup in Section 7.1, conduct end-to-end comparisons with

baselines in Section 6, analyze UniTune in Section 7.3, and present

case studies in Section 7.4.

7.1 Experimental Setup
Agents. In most of our experiments, we tune three components in

DBMSs – index, knobs, and SQL query. Unless stated otherwise, we

adopt a BO based agent, OtterTune [6] for knobs tuning, a BO based

agent, DBA-Bandit [52] for index selection, and a RL-estimator

based agent, LearnedRewrite [72] for query rewrite. To showcase

UniTune’s extendability, we replace OtterTune with other knobs

tuning agents: CDBTune [68] and MysqlTuner [4]. We also add a

RL-estimator based agent, AutoView [27] to tune view component.

Workloads. We consider three analytic benchmarks: JOB [40],

TPC-H [1] with a scale factor 10 and TPC-DS [2] with a scale factor

50 since they are widely used in the evaluations for the tuning

agents [27, 34, 42, 52, 71]. Andmost agents for query rewrite or view

generation target at the OLAP scenarios. The JOB dataset represents

a typical real database with unbalanced data distributions. We use

its provided 113 queries in the workload. TPC-H and TPC-DS are

both decision support benchmarks that model a real-world data

warehousing environment. For TPC-H, some queries have costs

orders of magnitude higher than the average value. Adding them in

the workload makes the index selection problem much simpler [34]

because an index that decreases the cost of at least one of these

queries would always outperform indexes for other queries by

orders of magnitude. Therefore, we adopt 12 TPC-H queries, which

include a mix of common execution patterns (i.e., pipelines, jobs

with multiple joins and filters, and groupby aggregations). We also

add three badly-written queries from the synthetic query set used

in LearnedRewrite [72] to TPC-H workload. For TPC-DS, we use

its provided 99 queries as the workload.

Performancemetric and configuration space. We optimize the

total query execution time of a given workload. For each workload,

we generate an index candidate set as the set of all potentially

useful indexes (e.g., columns appearing in the predicates)[12] and

it serves as a starting point for index selection tool which picks a

subset of these indexes. We only consider single-column indexes

and generate 59 index candidates for JOB, 54 index candidates for

TPC-H, and 237 index candidates for TPC-DS. We set a 1500 MB

storage budget on built indexes for JOB and TPCH and set a 20000

MB budget for TPC-DS since it has a larger dataset and much more

complex schema. For the three workloads, we tune 50 knobs. We

utilize the query rewrite rules in Calcite [8], as LearnedRewrite[72]

stated. As for view generation, we consider 29 view candidates for

JOB, following the view generation module in Autoview [27].

Baselines. The baselines used in the end-to-end evaluation are

listed as follows:

• Standalone Tuning tunes a single component with a single

agent, as previous studies did. We compare three standalone base-

lines: DBA-Bandit [52], LearnedRewrite [72] and OtterTune [6].

• Sequential Tuning is a native way to tune multiple components

in a DBMS. Given a tuning budget, a DBA could allocate it equally

to the tuning agents and run them in turn. We compare all the

permutations for the execution order: i-q-k, i-k-q, q-i-k, q-k-i,

k-i-q, and k-q-i. (i-k-q denotes index-knob-query, and so forth.)

• UDO [59] adopte a two-layer schema, separating tuning for the

heavy and light parameters. In the outer layer, an agent for heavy

parameters suggests and applies a heavy configuration. Then,

in the inner layer, agents for light parameters iterate for a fixed

number of inner iterations – searching suitable light configura-

tions under the applied heavy configuration and evaluating them.

The best-evaluated performance achieved in the inner loop is

considered the performance of the heavy configuration and is

used to update the outer agent. We adopt the implementation re-

leased by the authors [3]. For the fairness of comparison, we add

LearnedRewrite as the agent for query rewrite, which is not cur-

rently supported by UDO. Following the paper [59], we consider

the query agent as the inner agent, since it does not configure the

physical structure of a DBMS. The query agent rewrites queries

to reduce their execution time before tuning knobs. And we set

the number for its inner iterations to three based on experiments.

Therefore, the numbers of inner iterations are three for the query

agent and five (the same as the released implementation [3]) for

the knob agent on each index configuration.

Setting. We optimize a MySQL database deployed on a cloud ECS

instance with 16 vCPU and 32GB RAM. We use the official MySQL

default configuration as the initial configuration with no indexes

and views built. We set the tuning budget to 30 hours and set a 10-

minute timeout for running one query. For UniTune, we set the sub-

budget to 20 minutes and use a memory buffer with size seven by

default. We also vary the setting of buffer size, to test its robustness.

When allocating the first nine sub-budgets (i.e., initialized phase),

UniTune runs the agents in a round-robin manner to bootstrap the

Thompson Sampling. To set 𝑟 𝑓 𝑎𝑐𝑡𝑜𝑟 for Algorithm 2, we observe

the maximal reward of executing an agent (i.e., 𝑟𝑚𝑎𝑥 ) for a sub-

budget in the initialized phase and set the 𝑟 𝑓 𝑎𝑐𝑡𝑜𝑟 as
𝑟𝑚𝑎𝑥

20
, resulting

in scaled reward approximately ranging from 0 to 20.

7.2 End-to-end Evaluation
We compare UniTune with the baselines. Figure 6 presents the

best performances they achieved over time. And Figure 7 breaks
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Figure 6: The best performance achieved over time by different baselines (bottom left is better).
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Figure 7: Performance breakdown in terms of tuning agents.

down the performance improvement of the three agents for mul-

tiple component tuning. We observe that UniTune finds the best

configurations on both workloads, achieving 1.4×~14.1× speedups

on the execution time of the best configurations compared with

baselines. And no matter how much the tuning budget (x-axis)

is, UniTune outperforms the baseline approaches. The standalone

tuning performs worse than the multiple components tuning in

general, since they could only find sub-optimal configurations in

a subspace. The six sequential approaches using different tuning

orders converge differently. As shown in Figure 7, different orders

lead to distinct improvements achieved by the three agents, indicat-

ing their dependencies. And considering the three workloads, there

is no clear winner among the orders. But tuning indexes before

knobs generally leads to better performance.

To deep dive, we analyze the baselines tuning multiple compo-

nents, as shown in Figure 8. We observe that UniTune learns a

proper allocation strategy by exploiting the historical observations

while exploring the less-run agents. It allocates more budget on

index and knob instead of query since tuning indexes and knobs

offers more improvement compared with rewriting the queries for

the benchmark workload. And the number of configurations ex-

plored by UniTune on index, query, knob is approximately 4:2:3. In

the first half period of tuning, UniTune learns to optimize more on

the promising components (i.e., index), since it offers more tuning

benefit, as shown in Figure 7. Then, it explores other agents in

the second half period as the performance improvement of tuning

indexes tends to become saturated. UDO outperforms sequential

approaches in most cases, especially when the data size is larger (i.e.,

on TPC-H and TPC-DS). The index agent in UDO reorders the index

configurations and largely reduces the reconfiguration overheads.

However, UDO performs worse than UniTune. Its two-layer schema

can not flexibly invest the tuning budget on promising agents and

causes insufficient budget allocated on the outer agent (i.e., index

agent), as shown in Figure 8(b). UDO applies one index configura-

tion in the outer layer and executes the query agent for three inner

iterations and the knob agent for five inner iterations. The ratio of

configurations explored by UDO on index, query, knob is fixed to

1:3:5 during tuning, mismatching the situation that spending more

budget on tuning indexes is beneficial.

7.3 Analysis of UniTune
We carefully design UniTune with message propagation protocol

and a budget allocation strategy. In this section, we analyze Uni-

Tune’s execution time, evaluate the corresponding designs via abla-

tion study and variants comparison and then validate the robustness

of UniTune on the setting of memory buffer size.

7.3.1 Execution Time Breakdown. The total execution time of Uni-

Tune contains the time for agent selection and the time for agent

execution. The latter is controlled by the sub-budget during which

the selected agent tunes the DBMS and updates its tuning policy.

The former is negligible since it follows closed-form equations in

Algorithm 2 without training ML models. It takes always less than

2 milliseconds in our experiments.

7.3.2 Ablation Study of Context Features. We encapsulate context

features in the agents’ models to learn the tuning policy. To validate

the function of context features, we compare other solutions with-

out context features, including (1) UniTune-w/o-C(reinit), which

reinitializes an agent’s model when its background environment

changes (i.e., the other agents change the configuration of their

components), as discussed in Section 5.2. (2) UniTune-w/o-C, which
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Figure 9: Ablation study of context features.

ignores the environmental changes. As shown in Figure 9, UniTune

outperforms the solutions without context features. UniTune-w/o-

C(reinit) performs the worst since its relearning method loses pre-

vious knowledge. Compared with UniTune-w/o-C, UniTune offers

more advantages, indicating the relationship between configura-

tions and performance has variations in different environments.

7.3.3 Comparison of Different Budget Allocation Strategies. We pro-

pose a Thompson Sampling based strategy with a memory buffer

to allocate the tuning budgets among agents. We compare four

allocation strategies: (1) TS-buffer, the Thompson Sampling based

strategy with memory buffer (the one adopted in UniTune), (2) TS,

which is the conventional Thompson Sampling, (3) Round-robin,

which allocates the budget equally in an order of index-query-knob,

as discussed in Section 6, (4) UCB, which adopts the contextual

UCB algorithm [14]. It learns a mapping from context to the reward

of an agent and selects the agents with the reward whose upper

confidence bound is maximal. Figure 10 presents the comparison

result and Figure 11 shows their budget allocation patterns. TS-

buffer outperforms the other strategies, indicating it could allocate

the tuning budget properly. It allocates more budget to the index

agent in the first half period of tuning since configuring indexes

gains more performance improvement, especially in the bootstrap

phase. And the budget allocated to the index agent decreases in

the second half period as the performance improvement of tuning

indexes tends to become saturated. TS does not dismiss any out-

dated information and it allocates too much budget to the index

agents in the second half period. Round-robin allocates the budget

equally, wasting the budget on less promising agents (i.e., query
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Figure 10: Comparison of different budget allocation strate-
gies. TS-buffer is the strategy adopted in UniTune.
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Figure 12: Impact of memory buffer size. We report the best
performance (i.e. minimal execution time) and the search
time to reach the best performance.

agent). UCB models the reward of selecting an agent in a given

context. Compared with TS-buffer which directly selects the agent

according to the observed rewards in a time window, learning the

model requires more observations. Given the very limited observa-

tions (our case), UCB tends to explore the agents since the input

contexts are unlikely to be covered by the previous observations.

7.3.4 Impact of Memory Buffer Size. UniTune restricts the number

of considered observations for the reward of selecting an agent.

While a smaller buffer size leads to a more timely response to re-

ward changes, it may cause a loss of useful information.We evaluate

UniTune with different memory buffer sizes and present their per-

formance in Figure 12. The size of one causes inferior performance

since lacking the exploitation of historical observations. In general,

using buffer sizes from four to ten leads to good performance (seven

is the default setting in our experiments).

7.4 Case Study
We use case studies to showcase the advantage of UniTune.
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Table 2: Best performances achieved by different methods and their corresponding search time.

Default Grid search UniTune TS Round-robin UDO i-q-k

Search Time (H) / 934.4 2.6 3.2 3.8 3.1 4.6

Execution Time (Sec) 581.41 27.11 27.32 27.32 27.32 29.87 29.76

7.4.1 Comparison with Grid Search. To construct a ground-truth

baseline, we define a small configuration space that can be enumer-

ated by grid search. We optimize one query in TPC-H, Q19. It has

10 index candidates and 81 feasible index configurations under the

1500 MB storage budget. We tune three important knobs
1
selected

based on the Gini score and we stipulate that each knob can only

have three values, resulting in 63 feasible knob configurations
2
. And

there are four rewrite ways for Q19, not considering loop rewriting.

To this end, we have 20412 (81 × 63 × 4) possible configurations in
the configuration space, and we can evaluate their performances by

a grid search to obtain the optimal configuration. Table 2 presents

the performance of different baselines, where we only show the

best sequential tuning method due to space constraints. Grid search

finds the optimal configuration at the cost of an extremely long

search time. UniTune finds the close-to-optimal configuration with

the shortest search time. TS and round-robin can find the same

configuration but with a longer search time.

7.4.2 Comparison Between Joint Optimization and Alternating Op-
timization. UniTune executes the agent alternatingly. To tune mul-

tiple components in a DBMS, another solution is to adopt a central

agent over the joint configuration space, as discussed in Section

5.1. The joint optimization has a scalability issue, due to the expo-

nential growth of configuration space when joining the subspaces.

We validate the analysis empirically. We adopt the two approaches

to tune the knob and index components on JOB. For alternating

optimization, we adopt two BO based agents. For joint optimization,

we adopt one BO based agent optimizing over the joint configura-

tion space. As shown in Figure 13, the alternating approach finds

better configurations than the joint approach. Consider the knob

agent tuning 50 knobs and index agent with 59 index candidates.

For ease of analysis, we assume each knob has 10 possible values.

Then the joint approach optimizes over a configuration space with

a size of 10
50 × 259, 1017 times larger than the summation of the

two original subspaces. The alternating optimization addresses this

scalability issue by decomposing the configuration space as the

original agents assume and has a faster convergence speed.

7.4.3 Extendability. We integrate different tuning agents in Uni-

Tune to showcase its extendability.

Adopting Different Knob Agents.We still tune the three compo-

nents: index, knob, and query in TPC-H. But, we adopt different

knobs tuning agents respectively, OtterTune [6], CDBTune [68],

and MySQLTuner [4] in UniTune. MySQLTuner is a rule-based

tuning agent. It examines the DBMS metrics and uses heuristic

rules to suggest knob configurations. Figure 14 presents the result.

UniTune converges to similar performances when adopting the two

1
They are innodb_buffer_pool_size, innodb_log_file_size, innodb_thread_concurrency,

and table_definition_cache, respectively.

2
The left 18 infeasible configurations violate the rule that the combined size of

ib_logfiles should be larger than 200 kB × innodb_thread_concurrency, causing the

MySQL database to be shutdown.
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Figure 14: Extendability of UniTune. In Figure 14a, we adopt
three knob agents respectively. In Figure 14b, we add an
agent for view generation and compare the uncertainty
aware sampling and random sampling discussed in Section
5.3.

ML-based tuners. But the convergence when adopting CDBTune

is slower since its RL agent requires more tuning budget to learn

a great number of neural network parameters, which is consis-

tent with the existing studies [7, 69]. When adopting MysqlTuner,

the performance is inferior, since its limited heuristics fail to find

good knob configuration. But this adoption reveals that UniTune

could be extended to non-ML based agents, such as rule-based and

cost-based agents. When a non-ML based agent is coordinated by

UniTune, the budget allocation module treats it like the ML-based

agents – the agent executes once UniTune allocates tuning budget

on it. The main difference is that the non-ML based agents do not

need the context feature to suggest configurations since they sug-

gest configurations based on fixed rules or the cost estimation from

database optimizer, which do not involve training the models.

Adding View Agent. We add an RL-estimator based agent Au-

toview [27] for view generation and tune four components in JOB

and set the storage budget for materialized view to 500 MB.We com-

pare the two strategies when training the estimator, as discussed in

Section 5.3. As shown in Figure 14b, tuning the four components

archives better performance compared to tuning the three compo-

nents (i.e., No View), since the materialized views save redundant

computations among queries. And the uncertainty-aware sampling

achieves better performance.
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7.4.4 Varying Storage Budgets. At the start of a tuning session,

the storage budget is decided by users based on their affordable

resource. In this experiment, we vary the storage budgets for in-

dex and view on JOB workload and present the best performance

tuned by UniTune in Figure 15. We observe that the tuning per-

formance gradually increases with the given storage budget and

then saturates. For the view component, its tuning benefit satu-

rates after being given 500MB storage budget, which is consistent

with AutoView’s report [27]. For the index component, its tuning

benefit increases significantly from zero storage budget to 1500

MB and then the increase becomes gentle. In our experiments, we

use 1500MB for index storage budget and 500MB for view storage

budget on the JOB workload.

8 CONCLUSION
In this paper, we reviewed the emerging studies on ML-based tun-

ing agents in the database community and raised a question – “how

to make them work together to configure multiple components in

a DBMS?” To answer this, we proposed a unified and efficient coor-

dinating framework UniTune for the ML-based tuning agents. We

design a coordination protocol to enable collaboration among tun-

ing agents and a strategy to allocate the tuning budget among the

agents. We also define the interfaces adapted to a broad class of ML-

based tuning agents, which are simple for integration with existing

implementation and for future extension. We demonstrated that

UniTune could support different ML-based agents and significantly

outperforms the baselines.
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