
MatchNAS: Optimizing Edge AI in Sparse-Label Data Contexts via
Automating Deep Neural Network Porting for Mobile

Deployment
Hongtao Huang

School of Computer Science and Engineering, University
of New South Wales

Kensington, NSW 2052, Australia
hongtao.huang@unsw.edu.au

Xiaojun Chang
Faculty of Engineering & Information Technology,

University of Technology Sydney
Ultimo, NSW 2007, Australia
XiaoJun.Chang@uts.edu.au

Wen Hu
School of Computer Science and Engineering, University

of New South Wales
Kensington, NSW 2052, Australia

wen.hu@unsw.edu.au

Lina Yao
CSIRO’s Data61 and University of New South Wales

Eveleigh, NSW 2015, Australia
lina.yao@data61.csiro.au

ABSTRACT
Recent years have seen the explosion of edge intelligence with
powerful Deep Neural Networks (DNNs). One popular scheme is
training DNNs on powerful cloud servers and subsequently port-
ing them to mobile devices after being lightweight. Conventional
approaches manually specialized DNNs for various edge platforms
and retrain them with real-world data. However, as the number of
platforms increases, these approaches become labour-intensive and
computationally prohibitive. Additionally, real-world data tends
to be sparse-label, further increasing the difficulty of lightweight
models. In this paper, we propose MatchNAS, a novel scheme for
porting DNNs to mobile devices. Specifically, we simultaneously
optimise a large network family using both labelled and unlabelled
data and then automatically search for tailored networks for differ-
ent hardware platforms. MatchNAS acts as an intermediary that
bridges the gap between cloud-based DNNs and edge-based DNNs.

CCS CONCEPTS
• Computer systems organization→ Neural networks.

KEYWORDS
AutoML, edge AI, mobile intelligence, network architecture search

1 INTRODUCTION
Recent years have seen the popularity of Artificial Intelligence (AI)
and Deep Learning (DL) not only in server-based platforms but also
in edge devices. AI and DL have been applied in a wide spectrum of
edge applications such as Internet-of-Things (IoT), Web-of-Things
(WoT) and mobile intelligence, powering edge devices to become
"smart", such as real-time image analytics [16], natural language
recognition [10], health monitoring [42], etc.

Current DL-based functionalities and applications can be attrib-
uted to the rapid development of Deep Neural Networks (DNNs).
DNNs are typically a data-hungry paradigm that necessitates large
quantities of labelled data for model training [27] to achieve better
performance. To digest and absorb the "knowledge" hidden in huge
volumes of data, DNNs have become "deeper" with more network

Cloud AI Edge AI

Large Standard DNN Supernet for Real-world Data Training-free Subnets

MatchNAS

...

...

Figure 1: MatchNAS bridges the Cloud AI and Edge AI.

parameters and computing complexity. However, edge intelligence
cannot benefit from large DNNs directly because they have limited
computing resources and low computational capability.

In this regard, cloud-edge DNN porting gained popularity [6, 8,
11, 13] for edge AI with the proliferation of 5G mobile networks [15,
24]. This porting scheme leverages powerful cloud-based servers
to train large DNNs with amounts of data and deploy them to edge
devices after architectural compressing and fine-tuning with real-
world data [39]. Although promising, this DNN porting scheme has
two major bottlenecks. Firstly, tailoring networks for varying edge
platforms is a labour-costing task requiring great human efforts
and computing resources as the number of platforms increases
[5, 34]. Secondly, real-world data tends to be label-scarce [4, 33]
since labelling data is labour-intensive and expertise-requiring.
Lightweight networks with fewer parameters struggle to handle
large quantities of unlabelled data, increasing network fine-tuning
difficulty. As mobile computing becomes increasingly important,
a large bunch of model light-weighting techniques and training
strategies have been proposed to support mobile intelligence.

© 2024 Copyright held by the owner/author(s). This is the author’s version of the work. It is posted here for personal use. Not for
redistribution. The definitive Version of Record was published in ACM, https://doi.org/10.1145/3589334.3645538.

ar
X

iv
:2

40
2.

13
52

5v
1

 [
cs

.L
G

]
 2

1
Fe

b
20

24

https://orcid.org/0009-0001-1239-1286

Cloud-based DNN

Resource Constraints

Zero-shot Search Zero-shot Search Zero-shot Search

1R
2R

...

Semi-supervised-NAS Training with Real-world Data

Network Porting

...

Transfer

Network Family

...

Automatic Network SamplingInputs

nR 1 2, , , nR R R

...

Supernet Fine-tuned Supernet

Figure 2: A workflow for MatchNAS. Given a pre-trained cloud-based DNN and a set of resource constraints, MatchNAS first
transforms the DNN to a supernet and inherits its network weights. Then, MatchNAS conducts a semi-supervised-NAS training,
which is a combination of semi-supervised learning and one-shot NAS, to transfer the supernet to a label-scarce dataset. After
training, MatchNAS leverages the zero-shot NAS techniques to efficiently sample high-quality subnets from the supernet
according to the resource constraints without further training and build a network family for efficient network mobile porting.

To address the first bottleneck, recent researchers have explored
Neural Architecture Search (NAS) to automate the process of mo-
bile porting. Zero-shot NAS [7, 22, 26] designs specific metrics
for network performance evaluation, which can effectively obtain
optimum network architectures for different platforms, avoiding
manual network designing. One-shot NAS [5, 14, 30, 34] trains a
large family of networks with similar architecture simultaneously,
thereby avoiding the need to train and fine-tune networks sepa-
rately for each platform. The neural architecture search technology
enables researchers to obtain a large number of trained DNN mod-
els for mobile porting in the short term with less human effort
and lower computing resource overhead. However, the training of
existing NAS methods is a strong supervised learning task, which
requires large amounts of labelled data, resulting in poor perfor-
mance in label-scarce contexts.

To tackle the second bottleneck, one effective approach would
be to introduce Semi-supervised Learning (SSL) [3, 4, 33, 35, 38].
This technique makes full use of not only labelled data but also un-
labelled data. For example, pseudo-labelling [21] produces artificial
labels based on the model’s prediction and trains the model to pre-
dict the artificial labels when feeding unlabelled data. Introducing
SSL technology can alleviate the lack of labelling real-world data
in mobile porting. Moreover, this technology can also benefit NAS
training, which typically requires large amounts of labelled data.
The performance of DNN models using SSL techniques is highly
correlated to the full utilization of unlabelled data, e.g., the quality
of produced labels in pseudo-labelling. However, constrained by
limited network parameters and computing resources, lightweight
models, which are widely used for mobile intelligence, may have dif-
ficulty learning underlying patterns of unlabelled data. In addition,
current mainstream research on SSL does not take into account
mobile porting and NAS technology.

In this work, we focus on addressing the aforementioned bot-
tlenecks in DNN porting for mobile deployment all at once. We

propose an automatic porting algorithm to bridge the cloud AI
and the edge AI, namely MatchNAS, by fully utilizing the tech-
niques in NAS and SSL. As shown in Figure 2, given a pre-trained
cloud-based network, we first transform it to a "supernet" (i.e., a
set of sub-networks with a similar architecture). Then, we train
this supernet with semi-supervised techniques to support label-
scarce datasets. Specifically, during supernet training, MatchNAS
leverages the largest subnet in the family to produce high-quality
artificial labels for other smaller candidates. Through this scheme,
the "knowledge" from the largest network can be distilled to lighter
networks for performance improvement. After training, we lever-
age the zero-shot NAS technique to obtain optimal sub-networks
for network porting directly without repeated training. To the best
of our knowledge, this paper is the first to accelerate and improve
mobile porting within label-limited contexts. Our main contribu-
tions are as follows:

(1) We propose MatchNAS, a semi-supervised-NAS algorithm
to optimize edge AI by automating mobile DNN porting.
Through MatchNAS, we greatly reduce the training cost and
improve network performance for mobile deployment.

(2) In this paper, we evaluate MatchNAS on four image classifi-
cation datasets with limited labelled data, including Cifar-
10 [20], Cifar-100 [20], Cub-200 [36] and Stanford-Car [19].
Compared to the state-of-the-art NAS [5, 14] and SSL [33]
methods, MatchNAS achieve a higher network performance,
for example, a maximum 20% Top-1 accuracy improvement
on Cifar100 (4000 labelled examples) with 15M Floating Point
Operations (FLOPs).

(3) We deploy MatchNAS’s networks to a couple of popular
smartphones, and MatchNAS show a better latency-accuracy
trade-off compared to the SOTA methods.

2 RELATEDWORK
Considering the resource constraints, many in-the-wild DL appli-
cations for edge AI are very lightweight [39]. There are two issues
for porting lightweight DNNs. Firstly, the human effort in manual
network compressing and training costs in network optimization
increases significantly as the number of target platforms and de-
ployment scenarios increase. Secondly, lightweight networks have
trouble encountering sparse-label data contexts of limited network
parameters. In this section, we will introduce neural architecture
search and semi-supervised learning for their advantages and dis-
advantages in mitigating these two issues.

2.1 Neural Architecture Search
Neural Architecture Search (NAS) [2, 43] has gained widespread
attention for automating network design with less manual inter-
vention. The general idea behind NAS is to explore network archi-
tecture from a space of different architectural choices, such as the
number of layers and operation types. This enables the creation of
resource-insensitive models for mobile deployment [5, 30, 34]. Early
NAS [29, 32, 43, 44] suffers from prohibitive resource consump-
tion of training and evaluating every candidate networks, while
recent one-shot NAS and zero-shot NAS alleviate this burden by
supernet training scheme and architectural scoring scheme, respec-
tively. Meanwhile, we would like to point out that NAS technology,
especially one-shot NAS and zero-shot NAS, can be regarded as
automatic strategies for efficient network pruning.

Let A be a search space containing a set of candidate networks
{𝛼𝑖 } with the same functionality but different architectural con-
figurations, such as the number of layers, the size of convolution
kernels, the number of channels, etc. Let 𝑁 be the total number
of candidate architecture in A. Let 𝐷trn = {(𝑥,𝑦)} be the labelled
training datasets where 𝑥 is a batch of training inputs and 𝑦 is
corresponding labels, and 𝐷val is the validation datasets. Let 𝐹 (·)
be the output of a network. Let L(·) be the loss function. Let 𝑅
represent the resource constraints (e.g., model size limitation or
latency requirements)

One-shot NAS. One-shot NAS techniques [5, 14, 30, 37, 40] pro-
posed to reduce NAS cost by using weight-sharing for all networks
in the search space A. One-shot NAS has two important concepts:
the "supernet" and the "subnet". The "supernet" refers to a dynamic
neural network with dynamic architecture. It encompasses all possi-
ble networks inA. The "subnet" refers to a specialized sub-network
from the supernet with inherited parameter weights. Each subnet
is a part of the supernet and shares network weights with other
subnets. Updating the parameters of one subnet affects all other
subnets synchronously. Let𝑊 and𝑊𝛼𝑖 be the network weights of
the supernet and its subnets, respectively. Updating𝑊𝛼𝑖 is equal to
updating part of𝑊 .

One-shot NAS has two optimisation stages: 1) the supernet train-
ing stage and 2) the subnet searching stage. The supernet training
stage aims to minimize the loss of every subnet via a one-time
training:

min
𝑊

𝑁∑︁
𝑖=0

L(𝐹 (𝑊𝛼𝑖 ;𝐷
𝑡𝑟𝑛)) (1)

where 𝐹 (𝑊𝛼𝑖 ;𝐷𝑡𝑟𝑛) is the output of the subnets 𝛼𝑖 . Equation (1)
can be regarded as a multi-model optimization process, and the
bigger the 𝑁 is, the harder 𝑊 is to optimize. Given a batch of
data, it is really difficult to calculate the losses of all 𝑁 candidates
simultaneously. Thus, SPOS [14] proposed a training strategy that
approximates Equation (1) by randomly optimizing 𝑛 (𝑛 ≪ 𝑁)
subnets for each mini-batch example (𝑥,𝑦) as Equation (2). As the
total number of training iterations spans thousands or evenmillions,
a large scale of subnets will be sampled, trained and aggregated
gradients for updating the supernet.

min
𝑊
E𝛼𝑖 ∈A

[
𝑛∑︁
𝑖=0

L(𝐹 (𝑊𝛼𝑖 ; (𝑥,𝑦)))
]

(2)

The second stage aims to extract the optimal candidate 𝛼∗ under
given constraints from the well-trained supernet. This process can
be formulated as below:

𝛼∗ = arg max
𝛼∈A

ACC(𝑊𝛼 , 𝑅;D𝑣𝑎𝑙) (3)

where ACC(·) refers to the validation accuracy on D𝑣𝑎𝑙 . To reduce
the evaluation cost, recent methods [5, 30, 37, 40] tend to train an
accuracy predictor by evaluating a small set of subnets.

One-shot NAS provides a low-cost scheme for training and
searching lightweight networks for mobile deployment. However,
compared to training a single DNN, jointly optimizing a family
of networks is a more data-hungry task, acquiring large amounts
of labelled data for supernet training. As for the subnet searching
stage, there is also a lack of labelled data for network evaluation or
predictor training in sparse-label data contexts.

Zero-shot NAS. Zero-shot NAS techniques [7, 22, 26] are an ex-
tension of the NAS paradigm that goes a step further by not requir-
ing any parameter training during the architecture search process.
These methods rank different networks by designing a specific met-
ric to evaluate or score network architectures. A typical Zero-shot
NAS process is as follows:

𝛼∗ = arg max
𝛼∈A

Score(𝛼, 𝑅) (4)

where Score(·) represents the scoring function. Different algorithms
have different scoring schemes. For example, Zen-NAS [22] scoring
network architecture by computing their Gaussian complexity.

Zero-shot NAS provides a non-training strategy for designing
a family of lightweight network architectures, which can benefit
multi-platform deployment in mobile intelligence. However, train-
ing all networks in the family separately before porting is still a
resource-expensive task. We note that replacing the data-driven
searching steps (i.e., Equation (3)) with zero-shot NAS (i.e., Equa-
tion (4)) is an alternative choice in mobile porting.

2.2 Semi-supervised Learning
Labelling data is a significant challenge in many real-world scenar-
ios, which often require lots of human labour and expertise knowl-
edge, leading to a situation where the amount of unlabelled exam-
ples far exceeds the number of labelled examples. Semi-supervised
learning (SSL) offers an effective approach to fully utilize both

labelled and unlabelled examples. FixMatch [33] is one of the high-
performing and cost-efficient SSL methods in classification tasks,
combining consistency regularization [1] and pseudo-labelling [25].

Let U = {𝑢} be the unlabelled training datasets where 𝑢 is a
batch of unlabelled training examples. The loss function of Fix-
Match consists of two cross-entropy loss terms: a supervised loss
L𝑙 (𝑥,𝑦) applied to labelled data and an unsupervised loss L𝑢 (𝑢)
for unlabelled data. The supervised loss L𝑙 (𝑥,𝑦) is a standard loss
of labelled examples with weak data augmentation 𝐺𝑤 (·):

L𝑙 (𝑥,𝑦) = L(𝐹 (𝐺𝑤 (𝑥)), 𝑦) (5)

As for the unsupervised loss L𝑢 (𝑢), FixMatch hypothesizes that
the output of weakly-augmented and strongly-augmented unla-
belled data should be close. Therefore, FixMatch first calculates
the network outputs of unlabelled data with weak augmention
𝐹 (𝐺𝑤 (𝑢))). Then, it converts those outputs to the probability of
predicted classes by the softmax function as pseudo-labels. The
L𝑢 (𝑢) are calculated by pseudo-labels and unlabelled data after
strong augmentation 𝐺𝑠 (·)). Meanwhile, Fixmatch restricts L𝑢 (𝑢)
by setting a minimal confidence threshold 𝜏 . The unsupervised loss
is valid only if the maximum class probability of a single output in
a batch is greater than 𝜏 . Therefore, the unsupervised loss L𝑢 (𝑢)
can be formulated as follows:

L𝑢 (𝑢) = I𝜏
[
L(𝐹 (𝐺𝑠 (𝑢)), 𝜌 (𝐹 (𝐺𝑤 (𝑢))))

]
(6)

where I𝜏 = I(max(𝑝 (𝐹 (𝐺𝑤 (𝑢))) ≥ 𝜏) is the indicator function. The
results of I𝜏 is one if the maximum probability of predicted classes
is greater than 𝜏 ; otherwise, it is zero. Note that this judgement acts
on each example in a batch of input 𝑢, and 𝜏 = {𝜏} |𝑢 | is the vector
of 𝜏 with the same size of 𝑢. 𝜌 (·) represents the pseudo-labelling.

Although SSL has promising results in label-scarce contexts, we
note that the bottleneck of applying SSL to lightweight models is
the quality of pseudo-label. The limited network parameters and
restricted computing capability make mobile-based lightweight
DNNs too small to produce high-quality pseudo-labelling for semi-
supervised training. Besides, there is also a lack of systematic study
for applying SSL to one-shot NAS training.

3 METHODOLOGY
3.1 Motivation
To jointly address the challenges associated with model fine-tuning
and label scarcity in cloud-edge mobile porting, one intuitive idea
is to combine NAS and SSL directly. Given a pre-trained network
weight𝑊 from a cloud server, we directly replace the loss function
in Equation (2) with Equations (5) and (6):

min
𝑊
E𝛼𝑖 ∈A

[
𝑛∑︁
𝑖=0

(L𝑙
𝛼𝑖

+ L𝑢
𝛼𝑖
)
]

(7)

where L𝑙
𝛼𝑖

and L𝑢
𝛼𝑖

is the labelled loss and unlabelled loss with
specific subnet weights𝑊𝛼𝑖 .

However, the majority of networks in mobile porting are light-
weight, with fewer layers and limited computational capability. A
lightweight network may suffer from low network performance by
self-producing low-quality pseudo-labels. Due to weight-sharing,
the network weights generated by those low-quality pseudo-labels

Labelled

Data

Unlabelled Data

with Strong

Augmentation

Largest Subnet

Pseudo-label

Label

Unlabelled Strong

Unlabelled Weak

Labelled

Unlabelled Data

with Weak

Augmentation

Unlabelled Loss

Labelled Loss

Threshold

Random Subnets

Unlabelled Weak

Labelled

Figure 3: The semi-supervised-NAS training in MatchNAS

have a negative impact on the optimization of all other subnets and
further adversely affect the optimization of the supernet𝑊 .

3.2 MatchNAS Training
To overcome the bottleneck of low-quality pseudo-labels, we pro-
pose our semi-supervised-NAS method, namely MatchNAS. Mo-
tivated by knowledge distillation strategy [17], which leverages a
large teacher network to "teach" small student networks, our core
idea is to select the largest subnet to produce better pseudo-labels
for other subnets in each training iteration. For simplification, we
also use the symbol 𝐴 to represent the largest subnet and𝑊𝐴 to
represent its network weights.

Figure 3 depicts the semi-supervised-NAS training in Match-
NAS. There are three types of training examples: labelled example
(𝑥,𝑦), unlabelled example 𝑢 with weak data augmentation 𝐺𝑤 (𝑢)
and with strong data augmentation 𝐺𝑆 (𝑢). Following Equation (2),
MatchNAS samples 𝑛 subnets for each mini-batch example, includ-
ing the largest subnet 𝐴 and 𝑛 − 1 random subnets {𝛼1, . . . , 𝛼𝑛−1}.

The largest subnet 𝐴 uses all three examples and obtains three
outputs. The output of𝐺𝑤 (𝑢) will be converted to a pseudo-label
𝜌𝐴 = 𝜌 (𝐹 (𝑊𝐴;𝐺𝑤 (𝑢))). Then, we compute the loss of the largest
subnet, including labelled loss L𝑙

𝐴
and the unlabelled loss L𝑢

𝐴
. This

process is similar to Equations (5) and (6):

L𝑙
𝐴 (𝑊𝐴; (𝑥,𝑦)) = L(𝐹 (𝑊𝐴; (𝐺𝑤 (𝑥)), 𝑦)) (8)

L𝑢
𝐴 (𝑊𝐴;𝑢) = I𝜏

[
L(𝐹 (𝑊𝐴;𝐺𝑠 (𝑢)), 𝜌𝐴)

]
(9)

As for other sampled subnets {𝛼𝑖 } = {𝛼1, . . . , 𝛼𝑛−1}, the labelled
loss L𝑙

𝛼𝑖
are similar to Equation (8) with specific weights𝑊𝛼𝑖 :

L𝑙
𝛼𝑖
(𝑊𝛼𝑖 ; (𝑥,𝑦)) = L(𝐹 (𝑊𝛼𝑖 ; (𝐺𝑤 (𝑥)), 𝑦)) (10)

The difference is that the unlabelled loss of a subnet is computed
based on 𝐺𝑤 (𝑢) and pseudo-labels 𝜌𝐴 from the largest subnet 𝐴
with the indicator function I𝜏 and the minimal confidence threshold

Algorithm 1: The training process in MatchNAS
Input: Supernet A; Pre-trained cloud-based weight𝑊 ;

Labelled data D = (𝑥,𝑦) and unlabelled data U = 𝑢;
Strong augmentation 𝐺𝑠 and weak augmentation
𝐺𝑤 ; Pseudo-labelling 𝜌 (·); The number 𝑛 of sampled
subnets in each data batch

Initialize A with𝑊
while not convergence do

Draw a mini-batch of labelled data (𝑥,𝑦) from D
Process weak augmentation 𝐺𝑤 (𝑥)
Draw a mini-batch of unlabelled data 𝑢 from U
Process weak and strong augmentation 𝐺𝑤 (𝑢), 𝐺𝑠 (𝑢)
Sample the largest subnet 𝐴
Calculate L𝑙

𝐴
with 𝐺𝑤 (𝑥) and 𝑦

Produce pseudo-label 𝜌 (𝐺𝑤 (𝑢))
Calculate L𝑢

𝐴
with 𝐺𝑠 (𝑢) and 𝜌 (𝐺𝑤 (𝑢))

for 𝑖 in 1, 2, ..., 𝑛 − 1 do
Randomly sample subnets 𝛼∗

𝑖
from A

Calculate L𝑙
𝛼∗
𝑖

with 𝐺𝑤 (𝑥) and 𝑦
Calculate L𝑢

𝛼∗
𝑖

with 𝐺𝑤 (𝑢) and 𝜌 (𝐺𝑤 (𝑢))
end
Aggregate gradients of 𝐴 and {𝛼∗1 , 𝛼

∗
2 , · · · , 𝛼

∗
𝑛−1}

Update𝑊 .
end

𝜏 . This computation is formulated as follows:

L𝑢
𝛼 (𝑊𝛼 ;𝑢) = I𝜏

[
L(𝐹 (𝑊𝛼 ;𝐺𝑤 (𝑢)), 𝜌𝐴)

]
(11)

We combine Equations (8) to (11) to rewrite the supernet opti-
mization Equation (7) into a new form as below:

min
𝑊
E𝛼𝑖 ∈𝐴

[
L𝑙
𝐴 + L𝑢

𝐴 +
𝑛−1∑︁
𝑖=0

(L𝑙
𝛼𝑖

+ L𝑢
𝛼𝑖
)
]

(12)

Algorithm 1 demonstrates the training process in MatchNAS.

3.3 MatchNAS Searching
After supernet training, we obtain a well-trained supernet con-
taining a huge network family. The next step is to search subnets
for porting under given resource constraints. In Section 2.1, we
mentioned that popular one-shot NAS methods evaluate a set of
subnets with labelled data and then train an 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟 for
network accuracy prediction as Equation (3).

We note that training a predictor is not suitable for subnet search
in mobile porting for two reasons. On the one hand, the training of
predictor is costly since it acquires evaluation of a set of subnets
(e.g., 1000 subnets in [37]) for a single task. The resource over-
head increases linearly as the number of tasks grows. On the other
hand, network specialization for mobile porting is a label-limited
case, while predictor training necessitates a bunch of labelled data.
The performance of the accuracy predictor will dramatically drop
without sufficient labelled examples for training.

To address these problems, we leverage techniques in zero-shot
NAS to search subnets for mobile porting. As mentioned in Sec-
tion 2.1, zero-shot NAS designs an architectural-based metric for

Algorithm 2: Zero-shot Search
Input: Search space A; Zero-shot NAS scorer S(·);

Maximum sampled size𝑀 ; scoring batch size𝑚;
Resource constraints 𝑅 = {𝑟1, . . . , 𝑟𝑀 }

Create an empty network collection 𝐶
for 𝑟𝑖 in 𝑅 = {𝑟1, . . . , 𝑟𝑀 } do

Random sample a set of networks {𝛼1, · · · , 𝛼𝑚}
Score sampled networks {S(𝛼1; 𝑟𝑖), · · · ,S(𝛼𝑚 ; 𝑟𝑖)}
Append the best network 𝛼∗ into 𝐶 .

end

network performance evaluation without any parameter training.
In this case, we use an architectural scorer S(·) to efficiently eval-
uate subnets and pick out the best one under given resource con-
straints. We name this search process "zero-shot search" and for-
mulate this process in Equation (13). Algorithm 2 provides a meta-
algorithm of the searching process.

{𝛼∗} =
{
𝛼∗

�� arg max
𝛼∈A

S(𝛼, 𝑅)
}

(13)

3.4 MatchNAS with a Narrower Search Space
Equation (1) indicates that supernet training is a multi-model op-
timization task, and a larger 𝑁 will directly increase its difficulty.
Recent work [30] noted that, compared to training a huge net-
work family, training a smaller network family can alleviate the
inference among different size subnets. We hypothesise that our
semi-supervised-supernet training will also benefit from a smaller
search space. We attempt to leverage the zero-shot NAS techniques
to automatically narrow A before supernet training.

Assuming that we obtain a set of resource constraints 𝑅 =

{𝑟1, . . . , 𝑟𝑀 } for𝑀 different platforms by accessing their hardware
information and𝑀 ≪ 𝑁 . We leverage the zero-shot scorerS(𝛼𝑖 ; 𝑟𝑖)
to estimate a set of network architectures and extract the one with
the highest score. By repeating this step, we obtain a set of high-
score networks from the family A before training. And then we
can rebuild a smaller family A∗:

A∗ =
{
(𝛼∗𝑖 , 𝑟𝑖)

�� arg max
𝛼∈A

S(𝛼𝑖 , 𝑟𝑖)
}
𝑀

(14)

Within such a smaller family A∗, the supernet training can be
formulated as a variant of Equation (12):

min
𝑊
E𝛼𝑖 ∈A∗

[
L𝑙
𝐴 + L𝑢

𝐴 +
𝑛−1∑︁
𝑖=0

(L𝑙
𝛼𝑖

+ L𝑢
𝛼𝑖
)
]

(15)

4 EXPERIMENTS
4.1 Settings
DatasetsWe evaluate the efficacy of MatchNAS on four image clas-
sification datasets with limited labelled examples, including Cifar-10
[20], Cifar-100 [20], Cub-200 [36] and Stanford-Car [19]. For more
details about these datasets, please refer to Appendix A and Table 4.
We also verified our method on a semantic segmentation dataset
Pascal VOC [12], and the results are shown in Appendix D.

Search Space Our search space closely follow the MobileNetV3-
Large search space [5, 18]. We provide dynamic choices for depth
𝐷 = {2, 3, 4}, width𝑊 = {0.5×, 1.0×}, width expand ratio 𝐸 =

{3, 4, 6} and kernel size 𝐾 = {3, 5, 7}. For more details, please refer
to Appendix C.1. Meanwhile, we also generalise MatchNAS to
another two challenging search spaces: MobileNetV3-Small [18] in
Appendix C.2 and ProxylessNet [6] in Appendix C.3.
Training Steps The training process of MatchNAS can be simpli-
fied as a transfer task, including three steps: 1) train a cloud-based
network; 2) semi-supervised-NAS training for label-scarce datasets;
3) search subnets under different resource constraints. For more
settings of hyperparameters, please refer to Appendix B.
Mobile Platforms For on-device evaluation, we prepare four high-
performing smartphones, including Samsung Galaxy S23, Galaxy
S22, Galaxy Note 20 and Galaxy A12, as shown in Table 1. Their
computing ability decreases in the order in which they are listed.
We measure the actual latency for each model with a batch size
of 1 using the Pytorch-mobile framework [28] on the Android 13
operating system. An example of the on-device evaluation is shown
in Appendix E, and the results are shown in Section 4.4.

Table 1: Hardware Platforms

Platforms SoC RAM Year

Samsung Galaxy S23 Snapdragon 8 Gen 2 8GB 2023
Samsung Galaxy S22 Exynos 2200 8GB 2022

Samsung Galaxy Note 20 Exynos 990 8GB 2020
Samsung Galaxy A12 Mediatek Helio P35 3GB 2020

4.2 Network Performance
In this section, we compare MatchNAS with art DNNs baselines on
four different datasets. We consider the following popular networks
or network combinations as baselines: (a) Cloud-trained one-shot
NAS method OFA [5], which firstly trains a supernet on ImageNet
and sample subnets for further fine-tuning with labelled data; (b)
Semi-supervised method FixMatch [33] using both labelled and un-
labelled data; (c) Transfer-trained one-shot NAS method SPOS [14]
train a supernet using labelled data; (d) SPOS+FixMatch a directed
combination of NAS and SSL as Equation (7) using both labelled and
unlabelled data. For a fair comparison, all methods inherit weights
from the same cloud-based network, and each method uses the
same MobileNetV3-Large search space as mentioned in Section 4.1.

We summarize experimental results in Table 2. "SSL" indicates
whether a method uses both labelled and unlabelled data or only
labelled data. "Supernet" indicates whether a method trains a su-
pernet or a single DNN. "Training Cost" represents the training
duration measured by an NVIDIA RTX 3090 GPU. "𝑁 " is the num-
ber of possible deployment platforms. Compared to other methods,
OFA first trains a supernet on ImageNet, resulting in an extra 500
GPU hours time cost. For non-supernet methods, the total train-
ing cost is calculated by the average cost of training a single DNN
times 𝑁 . "𝜇" represents the ratio of labelled data and unlabelled data
in one training iteration. We set different 𝜇 for different datasets
towards their different ratios of labelled data (see Table 4).

We observe the Top-1 accuracy for three different sizes of net-
works trained by different methods. The "largest" is the largest
subnet in the search space with architecture configuration {𝐷 =

4,𝑊 = 1.0×, 𝐸 = 6, 𝐾 = 7}, while the "smallest" is the smallest
subnet {𝐷 = 2,𝑊 = 0.5×, 𝐸 = 3, 𝐾 = 3}. The configurations of
the "medium" are {𝐷 = 4,𝑊 = 0.5×, 𝐸 = 6, 𝐾 = 5}. For methods
using supernet training, these networks inherited weights from the
supernet directly. For non-supernet methods, these networks will
be trained from scratch separately.

We can see that MatchNAS significantly outperforms all base-
lines in the smallest and medium subnet on all four datasets, with
about a minimum of 4% and a maximum of 20% accuracy improve-
ment. These experimental results prove the effectiveness of Match-
NAS in porting lightweight models with label-scarce datasets. As
for the largest network, MatchNAS reports a competitive network
performance compared to FixMatch.

As for the training cost, MatchNAS trains a supernet containing
4 × 1019 candidate subnets via a one-time training. As the number
𝑁 of possible deployment platforms increases, MatchNAS can save
significant time overhead compared to those non-supernet meth-
ods. Although SPOS, which only uses labelled data for training,
require less training time than MatchNAS, MatchNAS reports a
much higher Top-1 accuracy by utilizing unlabelled data.

In summary, MatchNAS provides a better trade-off between the
training cost and the network performance in sparse-label contexts.

4.3 Experiments with Varying Labelled Data
In this section, we perform experiments on Cifar10 with extremely
limited labelled data in the MobileNetV3-Large search space. Except
for 4000 labelled data in Table 2, we further consider 250 and 50
labelled data, i.e., 25 and 5 labelled data per class. Obviously, the less
labelled data the dataset contains, the more difficult the training is.

Table 3 reports the Top-1 accuracy results of networks trained
in five different methods. "smallest" and "largest" represent the
smallest subnet and the biggest subnet in the search space. Match-
NAS reports the highest accuracy 95.8%, 95.1%, 83.6% of the largest
subnet and 85.8%, 86.9%, 70.6% of the smallest subnet in three label-
scarce settings. These experimental results further justified the
effectiveness of MatchNAS.

4.4 On Device Performance
After supernet training, we carry out a zero-shot search to sample
high-performing subnets for mobile deployment as Algorithm 2.We
closely follow Zen-NAS [22] to compute the Gaussian complexity
for scoring subnets. For each resource constraint setting (e.g., FLOPs
limits), we randomly sample 20 subnets for evaluation and select
the best one with the highest Gaussian complexity score. The search
cost for each subnet is less than one GPU minute.

We compare MatchNAS’s subnets with other subnets using dif-
ferent training strategies, including FixMatch and SPOS+FixMatch.
Subnets from MatchNAS and SPOS+FixMatch are sampled from
their own supernet, and networks from FixMatch are trained sep-
arately. For a fair comparison, networks from different methods
have similar FLOPs constraints.

Table 2: Comparison of Network Performance in Four Label-limited Data Domains

Datasets Method SSL Supernet Training Cost
𝜇

Top-1 Accuracy (%)
(GPU Hours) Smallest Medium Largest

OFA % % 500+0.28×𝑁 - 74.8 84.1 92.1
FixMatch ! % 1.2×𝑁 10 74.1 85.7 95.7

Cifar-10 SPOS % ! 0.7 - 64.3 72.1 88.0
SPOS+FixMatch ! ! 3 10 78.9 86.8 90.4
MatchNAS ! ! 3 10 85.8 90.2 96.5

OFA % % 500+0.28×𝑁 - 36.4 50.2 69.6
FixMatch ! % 1.2×𝑁 10 32.5 60.3 74.5

Cifar-100 SPOS % ! 0.7 - 34.1 50.0 61.0
SPOS+FixMatch ! ! 3 10 46.6 62.1 64.9
MatchNAS ! ! 3 10 57.9 69.8 74.9

OFA % % 500+0.18×𝑁 - 36.7 55.2 66.7
FixMatch ! % 0.8×𝑁 2 39.9 48.9 71.2

Cub-200 SPOS % ! 0.5 - 34.2 47.8 58.6
SPOS+FixMatch ! ! 1.2 2 44 54.9 62.3
MatchNAS ! ! 1.2 2 51 61.3 70.2

OFA % % 500+0.18×𝑁 - 42.9 74.1 84.7
FixMatch ! % 0.9×𝑁 4 52.5 75.9 82.2

Stanford-Cars SPOS % ! 0.5 - 50.4 68.7 78.4
SPOS+FixMatch ! ! 1.4 4 53.6 71.1 77.9
MatchNAS ! ! 1.4 4 60.4 78.9 86.8

Table 3: Performance Comparison in Cifar10 with Different
Numbers of Labelled Examples

Model Smallest Top-1(%) Largest Top-1 (%)

4000 250 50 4000 250 50

OFA 74.8 44.4 11.0 92.1 76.7 50.8
FixMatch 74.1 60.0 31.9 95.7 95.1 81.7
SPOS 64.3 35.7 16.6 88.0 66.9 37.9

SPOS+FixMatch 78.9 72.7 44.1 90.4 90.3 65.1
MatchNAS 85.8 86.9 70.6 96.5 95.1 83.6

Figure 4 reports the performance of latency-accuracy trade-off
on four datasets and devices. MatchNAS consistently achieves com-
parable and higher network performance and produces a better
accuracy-latency trade-off by training a single supernet with lim-
ited labelled data. Compared to SPOS+FixMatch, which also trains
a supernet, MatchNAS reports a superior subnet performance. No-
tice that the network training cost of MatchNAS is much lower
than FixMatch as the number of platforms increases. Compared
to FixMatch, MatchNAS shows a better accuracy-latency trade-
off among low-latency networks while competitive performance
among high-latency networks.

4.5 Experiments with a Narrower Search Space
In Section 3.4, we propose a search space narrowing method as
Equation (15). The core idea is to select a set of high-quality subnets
as a narrower space before supernet training to reduce the difficulty
of optimization. In this section, we report a subnet performance
comparison between using a narrower search space and not.

3 5 7 9
Samsung Galaxy S23 Latency (ms)

75

80

85

90

95

C
ifa

r1
0

To
p-

1
A

cc
 (%

)

6 12 18 24
Samsung Galaxy S22 Latency (ms)

30

40

50

60

70

80

C
ifa

r1
00

 T
op

-1
 A

cc
 (%

)

15 40 65 90
Samsung Galaxy Note 20 Latency (ms)

30

40

50

60

70

80

C
ub

20
0

To
p-

1
A

cc
 (%

)

30 35 40 45
Samsung Galaxy A12 Latency (ms)

50

55

60

65

70

75

80

85

90

S
ta

nf
or

d
C

ar
s

To
p-

1
A

cc
(%

)

MatchNAS SPOS+FixMatch FixMatch

Figure 4: Latency-accuracy trade-off on four mobile devices.

In practice, we sample 200 lightweight subnets ranging from
50M to 90M FLOPs based on Gaussian complexity [22] and build a
narrower and smaller search space. Each selected subnet is selected
with the highest Gaussian complexity score from twenty random
subnets. Figure 5 (a) reports a performance comparison of those 200
subnets from three different supernets, and MatchNAS† represents

the supernet training within the narrower search space. Clearly,
MatchNAS† reports about 2% higher accuracy compared to Match-
NAS. These phenomena verify our hypothesis in Section 3.4 that a
narrower search space can be optimized more easily than a large
one while the number of available subnets decreases.

50 60 70 80 90
MFLOPs

56

58

60

62

64

66

68

70

72

C
ifa

r1
00

 T
op

-1
 A

cc
 (%

)

MatchNAS
MatchNAS
SPOP+FixMatch

(a)

Small Medium Large
Different Sub-networks

70

75

80

85

90

95

100

C
ifa

r1
0

To
p1

 A
cc

ur
ac

y

Pseudo2Weak
Pseudo2Strong

(b)

Figure 5: (a): Network performance of a set of subnets on
Cifar-100; (b): Comparison of different unlabelled loss types.

5 ABLATION STUDY
5.1 The Unlabelled Loss
In Section 3.2 and Figure 3, we mentioned that the unlabelled loss
of subnets is computed by the pseudo-label and unlabelled example
with weak augmentation as Equation (15). In this section, we re-
place the weak augmentation with the strong one and Figure 5 (b)
shows the results. We compare three subnets with different model
sizes from MatchNAS. "Pseudo2Weak" represents the supernet’s
unlabelled loss computed by the pseudo-label and unlabelled exam-
ple with weak augmentation, while "Pseudo2Strong" is with strong
augmentation. The "Pseudo2Weak" reports a higher subnet perfor-
mance, especially in small subnets. It also indicates that lightweight
networks have difficulty in handling complex inputs.

5.2 Confidence Threshold
The confidence threshold 𝜏 controls the trade-off between the qual-
ity and quantity of pseudo-label in the loss term Equations (9)
and (11). The output prediction can be converted to a pseudo-label
when the model assigns a probability to any class that is above the
threshold. The value of 𝜏 ranges from 0 to 1, where 𝜏 = 0 means all
predictions are pseudo-label, and a larger 𝜏 means predictions with
higher class confidence can be converted to pseudo-label.

Previouswork [21, 33] has proved that the quality of pseudo-label
contributes more to the network performance than the quantity.
We validate the effectiveness of the confidence threshold in our SSL-
based supernet training, and Figure 6 (a) show report a comparison
of subnet performance with different values of 𝜏 . 𝜏 = 0.95 report a
accuracy improvement of about 1.5% compared to 𝜏 = 0.0.

5.3 One-shot NAS Techniques
MatchNAS is a combination of SSL and one-shot NAS techniques.
In this section, we alternate SPOS with another supernet training

technique in BigNAS [41]. Given a minibatch of data, BigNAS opti-
mize both the largest and the smallest subnet in the search space
and 𝑛 − 2 random-sampled subnets. Figure 6 (b) depicts subnet
performance from three different methods. "MatchNAS-BigNAS"
is the combination of MatchNAS and BigNAS, which show higher
performance in lower FLOPs compared to the vanilla MatchNAS.
This phenomenon is mainly caused by the optimization strategy
in BigNAS. The experiment results indicate that MatchNAS can
alternatively combine with other NAS methods except methods
demanding lots of labelled data [5, 37].

0.0 0.2 0.4 0.6 0.8 1.0
71

72

73

74

75

76

Largest subnet

0.0 0.2 0.4 0.6 0.8 1.0
Confidence Threshold

55

56

57

58

59

60

Smallest subnet

C
ifa

r1
00

 T
op

-1
 A

cc
ur

ac
y

(%
)

(a)

15 50 100 180
MFLOPs

40

45

50

55

60

65

70

75

80

C
ifa

r1
00

 T
op

-1
 A

cc
ur

ac
y

(%
)

MatchNAS
MatchNAS-BigNAS
BigNAS+FixMatch

(b)

Figure 6: (a): Network performance comparisons of using
different thresholds; (b): Subnets performance comparisons
of three differentmethods under different FLOPs constraints.

6 LIMITATIONS AND FUTUREWORK
The primary limitation of our method originates from the pre-
defined network search space. Even though we have demonstrated
the effectiveness of MatchNAS on convolutional network struc-
tures, future research should explore extending MatchNAS to di-
verse tasks, such as transform-based networks and diffusion models.
Furthermore, while this paper concentrates onmobile AI, it is impor-
tant to note that there are numerous other lightweight AI platforms,
such as IoT AI and on-chip AI, which warrant further investigation.

7 CONCLUSIONS
In this paper, we propose MatchNAS to optimize edge AI by au-
tomating porting lightweight mobile networks with limited labelled
data. Our algorithm leverages NAS and SSL techniques to optimise
mobile porting in spare-label data contexts. We demonstrate the
effectiveness of MatchNAS for mobile deployment across various
image classification tasks, yielding promising experimental results.
We hope our work will inspire more researchers toward a deeper
understanding of DNNs deployment and porting for edge AI.

REFERENCES
[1] Philip Bachman, Ouais Alsharif, and Doina Precup. 2014.

Learning with Pseudo-Ensembles. In NIPS. https://api.
semanticscholar.org/CorpusID:8307266

[2] Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh Raskar.
2016. Designing neural network architectures using reinforce-
ment learning. arXiv preprint arXiv:1611.02167 (2016).

[3] David Berthelot, Nicholas Carlini, Ekin Dogus Cubuk,
Alexey Kurakin, Kihyuk Sohn, Han Zhang, and Colin Raffel.
2020. ReMixMatch: Semi-Supervised Learning with Distri-
bution Matching and Augmentation Anchoring. In Interna-
tional Conference on Learning Representations. https://api.
semanticscholar.org/CorpusID:213757781

[4] David Berthelot, Nicholas Carlini, Ian J. Goodfellow, Nico-
las Papernot, Avital Oliver, and Colin Raffel. 2019. Mix-
Match: A Holistic Approach to Semi-Supervised Learning.
ArXiv abs/1905.02249 (2019). https://api.semanticscholar.org/
CorpusID:146808485

[5] Han Cai, Chuang Gan, and Song Han. 2019. Once for All:
Train One Network and Specialize it for Efficient Deployment.
ArXiv abs/1908.09791 (2019). https://api.semanticscholar.org/
CorpusID:201666112

[6] Han Cai, Ligeng Zhu, and Song Han. 2018. ProxylessNAS: Di-
rect Neural Architecture Search on Target Task and Hardware.
ArXiv abs/1812.00332 (2018). https://api.semanticscholar.org/
CorpusID:54438210

[7] Wuyang Chen, Xinyu Gong, and ZhangyangWang. 2021. Neu-
ral Architecture Search on ImageNet in Four GPU Hours:
A Theoretically Inspired Perspective. ArXiv abs/2102.11535
(2021). https://api.semanticscholar.org/CorpusID:232013680

[8] Xiaoliang Dai, Peizhao Zhang, Bichen Wu, Hongxu Yin, Fei
Sun, Yanghan Wang, Marat Dukhan, Yunqing Hu, Yiming
Wu, Yangqing Jia, Péter Vajda, Matthew Uyttendaele, and Ni-
raj Kumar Jha. 2018. ChamNet: Towards Efficient Network
Design Through Platform-Aware Model Adaptation. 2019
IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion (CVPR) (2018), 11390–11399. https://api.semanticscholar.
org/CorpusID:56657862

[9] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, K. Li, and Li
Fei-Fei. 2009. ImageNet: A large-scale hierarchical image
database. 2009 IEEE Conference on Computer Vision and Pattern
Recognition (2009), 248–255. https://api.semanticscholar.org/
CorpusID:57246310

[10] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. 2019. BERT: Pre-training of Deep Bidirec-
tional Transformers for Language Understanding. ArXiv
abs/1810.04805 (2019). https://api.semanticscholar.org/
CorpusID:52967399

[11] Zeqian Dong, Qiang He, Feifei Chen, Hai Jin, Tao Gu, and Yun
Yang. 2023. EdgeMove: Pipelining Device-Edge Model Train-
ing for Mobile Intelligence. Proceedings of the ACM Web Con-
ference 2023 (2023). https://api.semanticscholar.org/CorpusID:
258333779

[12] M. Everingham, S. M. A. Eslami, L. Van Gool, C. K. I. Williams,
J. Winn, and A. Zisserman. 2015. The Pascal Visual Object
Classes Challenge: A Retrospective. International Journal of
Computer Vision 111, 1 (Jan. 2015), 98–136.

[13] A. Gordon, Elad Eban, Ofir Nachum, Bo Chen, Tien-Ju Yang,
and E. Choi. 2017. MorphNet: Fast & Simple Resource-
Constrained Structure Learning of Deep Networks. 2018
IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (2017), 1586–1595. https://api.semanticscholar.org/
CorpusID:206596875

[14] Zichao Guo, Xiangyu Zhang, HaoyuanMu,WenHeng, Zechun
Liu, YichenWei, and Jian Sun. 2019. Single Path One-Shot Neu-
ral Architecture Search with Uniform Sampling. In European
Conference on Computer Vision. https://api.semanticscholar.
org/CorpusID:90262841

[15] Samira Hayat, Roland Jung, Hermann Hellwagner, Christian
Bettstetter, Driton Emini, and Dominik Schnieders. 2021. Edge
Computing in 5G for Drone Navigation: What to Offload?
IEEE Robotics and Automation Letters 6, 2 (2021), 2571–2578.
https://doi.org/10.1109/LRA.2021.3062319

[16] Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun. 2015. Deep
Residual Learning for Image Recognition. 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR) (2015), 770–
778. https://api.semanticscholar.org/CorpusID:206594692

[17] Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean. 2015.
Distilling the Knowledge in a Neural Network. ArXiv
abs/1503.02531 (2015).

[18] Andrew G. Howard, Mark Sandler, Grace Chu, Liang-Chieh
Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu,
Ruoming Pang, Vijay Vasudevan, Quoc V. Le, and Hartwig
Adam. 2019. Searching for MobileNetV3. 2019 IEEE/CVF Inter-
national Conference on Computer Vision (ICCV) (2019), 1314–
1324. https://api.semanticscholar.org/CorpusID:146808333

[19] Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei.
2013. 3D Object Representations for Fine-Grained Categoriza-
tion. 2013 IEEE International Conference on Computer Vision
Workshops (2013), 554–561. https://api.semanticscholar.org/
CorpusID:14342571

[20] Alex Krizhevsky. 2009. Learning Multiple Layers of Features
from Tiny Images. https://api.semanticscholar.org/CorpusID:
18268744

[21] Dong-Hyun Lee. 2013. Pseudo-Label : The Simple and Efficient
Semi-Supervised Learning Method for Deep Neural Networks.
https://api.semanticscholar.org/CorpusID:18507866

[22] Ming Lin, Pichao Wang, Zhenhong Sun, Hesen Chen, Xiuyu
Sun, Qi Qian, Hao Li, and Rong Jin. 2021. Zen-NAS: A Zero-
Shot NAS for High-Performance Image Recognition. 2021
IEEE/CVF International Conference on Computer Vision (ICCV)
(2021), 337–346. https://api.semanticscholar.org/CorpusID:
245835451

[23] Ilya Loshchilov and Frank Hutter. 2017. Decoupled Weight
Decay Regularization. In International Conference on Learning
Representations. https://api.semanticscholar.org/CorpusID:
53592270

[24] Miranda. McClellan, Cristina Cervelló-Pastor, and Sebastià
Sallent. 2020. Deep Learning at the Mobile Edge: Oppor-
tunities for 5G Networks. Applied Sciences (2020). https:
//api.semanticscholar.org/CorpusID:225525817

[25] Geoffrey J. McLachlan. 1975. Iterative Reclassification Pro-
cedure for Constructing An Asymptotically Optimal Rule of

https://api.semanticscholar.org/CorpusID:8307266
https://api.semanticscholar.org/CorpusID:8307266
https://api.semanticscholar.org/CorpusID:213757781
https://api.semanticscholar.org/CorpusID:213757781
https://api.semanticscholar.org/CorpusID:146808485
https://api.semanticscholar.org/CorpusID:146808485
https://api.semanticscholar.org/CorpusID:201666112
https://api.semanticscholar.org/CorpusID:201666112
https://api.semanticscholar.org/CorpusID:54438210
https://api.semanticscholar.org/CorpusID:54438210
https://api.semanticscholar.org/CorpusID:232013680
https://api.semanticscholar.org/CorpusID:56657862
https://api.semanticscholar.org/CorpusID:56657862
https://api.semanticscholar.org/CorpusID:57246310
https://api.semanticscholar.org/CorpusID:57246310
https://api.semanticscholar.org/CorpusID:52967399
https://api.semanticscholar.org/CorpusID:52967399
https://api.semanticscholar.org/CorpusID:258333779
https://api.semanticscholar.org/CorpusID:258333779
https://api.semanticscholar.org/CorpusID:206596875
https://api.semanticscholar.org/CorpusID:206596875
https://api.semanticscholar.org/CorpusID:90262841
https://api.semanticscholar.org/CorpusID:90262841
https://doi.org/10.1109/LRA.2021.3062319
https://api.semanticscholar.org/CorpusID:206594692
https://api.semanticscholar.org/CorpusID:146808333
https://api.semanticscholar.org/CorpusID:14342571
https://api.semanticscholar.org/CorpusID:14342571
https://api.semanticscholar.org/CorpusID:18268744
https://api.semanticscholar.org/CorpusID:18268744
https://api.semanticscholar.org/CorpusID:18507866
https://api.semanticscholar.org/CorpusID:245835451
https://api.semanticscholar.org/CorpusID:245835451
https://api.semanticscholar.org/CorpusID:53592270
https://api.semanticscholar.org/CorpusID:53592270
https://api.semanticscholar.org/CorpusID:225525817
https://api.semanticscholar.org/CorpusID:225525817

Allocation in Discriminant-Analysis. J. Amer. Statist. Assoc.
70 (1975), 365–369. https://api.semanticscholar.org/CorpusID:
120764023

[26] Joseph Charles Mellor, Jack Turner, Amos J. Storkey, and
Elliot J. Crowley. 2020. Neural Architecture Search with-
out Training. ArXiv abs/2006.04647 (2020). https://api.
semanticscholar.org/CorpusID:219531078

[27] Maad M. Mijwil. 2022. Has the Future Started? The Current
Growth of Artificial Intelligence, Machine Learning, and Deep
Learning. Iraqi Journal for Computer Science and Mathematics
(2022). https://api.semanticscholar.org/CorpusID:249688145

[28] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan,
Edward Yang, Zachary DeVito, Zeming Lin, Alban Desmaison,
Luca Antiga, and Adam Lerer. 2017. Automatic differentiation
in PyTorch. (2017).

[29] Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena,
Yutaka Leon Suematsu, Jie Tan, Quoc V. Le, and Alexey Ku-
rakin. 2017. Large-Scale Evolution of Image Classifiers. ArXiv
abs/1703.01041 (2017).

[30] Manas Sahni, Shreya Varshini, Alind Khare, and Alexey Tu-
manov. 2021. CompOFA: Compound Once-For-All Networks
for Faster Multi-Platform Deployment. ArXiv abs/2104.12642
(2021). https://api.semanticscholar.org/CorpusID:232286427

[31] Samsung. [n. d.]. Samsung Remote Test Lab. https://developer.
samsung.com/remote-test-lab

[32] Christian Sciuto, Kaicheng Yu, Martin Jaggi, Claudiu Cristian
Musat, and Mathieu Salzmann. 2019. Evaluating the Search
Phase of Neural Architecture Search. ArXiv abs/1902.08142
(2019).

[33] Kihyuk Sohn, David Berthelot, Chun-Liang Li, Zizhao Zhang,
Nicholas Carlini, Ekin Dogus Cubuk, Alexey Kurakin, Han
Zhang, and Colin Raffel. 2020. FixMatch: Simplifying
Semi-Supervised Learning with Consistency and Confidence.
ArXiv abs/2001.07685 (2020). https://api.semanticscholar.org/
CorpusID:210839228

[34] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan,
and Quoc V. Le. 2018. MnasNet: Platform-Aware Neural Ar-
chitecture Search for Mobile. 2019 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR) (2018), 2815–
2823. https://api.semanticscholar.org/CorpusID:51891697

[35] Antti Tarvainen and Harri Valpola. 2017. Weight-averaged
consistency targets improve semi-supervised deep learning re-
sults. ArXiv abs/1703.01780 (2017). https://api.semanticscholar.
org/CorpusID:2759724

[36] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie.
2011. . Technical Report CNS-TR-2011-001. California Institute
of Technology.

[37] Dilin Wang, Meng Li, Chengyue Gong, and Vikas Chandra.
2021. AttentiveNAS: Improving Neural Architecture Search
via Attentive Sampling. 2021 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR) (2021), 6414–6423.

[38] Qizhe Xie, Zihang Dai, Eduard H. Hovy, Minh-Thang Luong,
and Quoc V. Le. 2019. Unsupervised Data Augmentation for
Consistency Training. arXiv: Learning (2019). https://api.
semanticscholar.org/CorpusID:195873898

[39] Mengwei Xu, Jiawei Liu, Yuanqiang Liu, Felix Xiaozhu Lin,
Yunxin Liu, and Xuanzhe Liu. 2018. A First Look at Deep Learn-
ing Apps on Smartphones. The World Wide Web Conference
(2018). https://api.semanticscholar.org/CorpusID:59158795

[40] Shan You, Tao Huang, Mingmin Yang, Fei Wang, Chen Qian,
and Changshui Zhang. 2020. GreedyNAS: Towards Fast One-
Shot NAS With Greedy Supernet. 2020 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR) (2020),
1996–2005.

[41] Jiahui Yu, Pengchong Jin, Hanxiao Liu, Gabriel Bender, Pieter-
Jan Kindermans,Mingxing Tan, ThomasHuang, Xiaodan Song,
and Quoc V. Le. 2020. BigNAS: Scaling Up Neural Architecture
Search with Big Single-Stage Models. In ECCV.

[42] Rui Zhao, Ruqiang Yan, Zhenghua Chen, Kezhi Mao, Peng
Wang, and Robert X. Gao. 2019. Deep learning and its appli-
cations to machine health monitoring. Mechanical Systems
and Signal Processing (2019). https://api.semanticscholar.org/
CorpusID:125608550

[43] Barret Zoph and Quoc V Le. 2016. Neural architecture search
with reinforcement learning. arXiv preprint arXiv:1611.01578
(2016).

[44] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V.
Le. 2018. Learning Transferable Architectures for Scalable
Image Recognition. 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (2018), 8697–8710.

https://api.semanticscholar.org/CorpusID:120764023
https://api.semanticscholar.org/CorpusID:120764023
https://api.semanticscholar.org/CorpusID:219531078
https://api.semanticscholar.org/CorpusID:219531078
https://api.semanticscholar.org/CorpusID:249688145
https://api.semanticscholar.org/CorpusID:232286427
https://developer.samsung.com/remote-test-lab
https://developer.samsung.com/remote-test-lab
https://api.semanticscholar.org/CorpusID:210839228
https://api.semanticscholar.org/CorpusID:210839228
https://api.semanticscholar.org/CorpusID:51891697
https://api.semanticscholar.org/CorpusID:2759724
https://api.semanticscholar.org/CorpusID:2759724
https://api.semanticscholar.org/CorpusID:195873898
https://api.semanticscholar.org/CorpusID:195873898
https://api.semanticscholar.org/CorpusID:59158795
https://api.semanticscholar.org/CorpusID:125608550
https://api.semanticscholar.org/CorpusID:125608550

A DATASETS
Our research focuses on neural network mobile porting within the
image classification field, utilizing four commonly popular image
datasets. We employ the Cifar10 and Cifar100 datasets with low
resolution (32x32) and limited labelled data to evaluate network per-
formance in label-scarce, low-quality data domains. Furthermore,
the Stanford-Cars and CUBS datasets are fine-grained datasets that
focus on specific subcategories within a larger category, posing
greater challenges than Cifar10 and Cifar100.

Table 4 reports details for datasets used for our experiment,
where "Train" indicates the number of training examples; "labelled"
indicates the number of labelled training examples; "Class" is the
number of classes; "Resolution" is the image resolution of training
examples. The cloud-based network is trained on ImageNet [9] with
all labelled data and then transferred to other datasets. We consider
400 labelled examples per class in Cifar-10 and Cifar-100, while 10
labelled examples per class in fine-grained dataset Cub-200 and
Stanford-Cars. Those labelled examples will be used to compute
labelled loss in Equations (8) and (10), and all training examples
will be used to compute unlabelled loss in Equations (9) and (11).

Table 4: Experimental Datasets

Dataset Train Labelled Class Resolution

ImageNet 1200000 1200000 1000 224

Cifar-10 50000 4000 10 32
Cifar-100 50000 4000 100 32
Cub-200 5994 2000 200 224

Stanford-Cars 8144 1960 196 224

B TRAINING DETAILS
The training of MatchNAS is following our semi-supervised-NAS
training scheme as Algorithm 1.

We first train a cloud-based network on ImageNet for 180 epochs
with a learning rate of 8e-2. This network is a full network in search
space with the maximum architecture {𝐷 = 4,𝑊 = 1.0×, 𝐸 = 6, 𝐾 =

7} in each stage. The training duration is about 150 GPU hours
measured on an NVIDIA RTX 3090. Then, we transform the cloud-
based model to a supernet with varying architectural configurations
as Table 5 and fine-tune this supernet to different datasets with
different data domains and limited data labels.

As for the semi-supervised-NAS training, we train a supernet
for 50 epochs, using Adam optimizer with weight decay 3 × 10−5.
The initial learning rate is 3 × 10−4 with a cosine schedule for
learning rate decay [23]. The training batch size is 16 + 16 × 𝜇,
where 16 is the batch size of labelled data and 𝜇 is the ratio of
labelled data and unlabelled data. For each iteration, the training
process is as Algorithm 1, and we set 𝑛 = 4. The pseudo-label’s
confidence threshold (𝜏) is 0.95, and we provide an ablation study of
this setting in Section 5.2. The weak and strong data augmentation
process follows the settings in FixMatch [33].

C SEARCH SPACE
C.1 The Vanilla Search Space
We closely follow the MobileNetV3-Large Search Space [5, 18]. Our
search space is shown in Table 5, and the total number of candidate

networks is 4× 1019. Except for the fixed architecture head and tail,
there are five repeated macro-structures with dynamic configura-
tions named DMBConv, which refer to the inverted dynamic resid-
ual block. Depth represents the number of dynamic convolution
blocks (or layers) in the dynamic stage.Width and Expand denote
the output channel width of each block and the width expanding
ratio. The maximum channel width is calculated by Width × Ex-
pand. Kernel is the kernel size of each block. To further reduce the
computation complexity to meet the demands of lightweight mobile
deployment, we further provide two sets of width choices, including
{12, 20, 40, 56, 80} (0.5×) and {24, 40, 80, 112, 160} (1.0×). The total
number of candidate subnets is ((3×3)2 + (3×3)3 + (3×3)4)5×2 ≈
4 × 1019. As different input resolutions, the computing complexity
of the largest and the smallest subnet in Cifar-10 and Cifar-100
(32 × 32) are about 180M FLOPs and 15M FLOPs, while in Cub-
200 and Stanford-Cars (224 × 224), they are 560M and 58M FLOPs.
Meanwhile,

Table 5: MobileNetV3-Large Search Space with dynamic net-
work configurations.

Stage Depth Width Expand Kernel

Conv 1 16 - 3
MBConv 1 16 1 3

DMBConv1 {2, 3, 4} {12, 24} {3, 4, 6} {3, 5, 7}
DMBConv2 {2, 3, 4} {20, 40} {3, 4, 6} {3, 5, 7}
DMBConv3 {2, 3, 4} {40, 80} {3, 4, 6} {3, 5, 7}
DMBConv4 {2, 3, 4} {56, 112} {3, 4, 6} {3, 5, 7}
DMBConv5 {2, 3, 4} {80, 160} {3, 4, 6} {3, 5, 7}

Conv 1 960 - 1
Conv 1 1280 - 1

C.2 Generalizing to MobileNetV3-Small
Except for the vanilla search space in Appendix C.1 ranging from
15M to 180M FLOPs, we further design a smaller search space
ranging from 4M to 75M FLOPs. As shown in Table 6, this search
space is based onMobileNetV3-Small, containing only four dynamic
stages with a narrower network width and more dynamic width
choices, including {12, 20, 40, 56, 80} (0.5×), {12, 20, 40, 56, 80} (1.0×)
and {36, 60, 72, 144} (1.5×).

We generalize MatchNAS to this more compact search space, and
other training settings are similar. Table 7 report a performance com-
parison in Cifar-10 with 4000 labelled example. The "largest" is the
largest subnet in the search space with architecture configuration
{𝐷 = 4,𝑊 = 1.5×, 𝐸 = 6, 𝐾 = 5}, while the "smallest" is the smallest
subnet {𝐷 = 2,𝑊 = 0.5×, 𝐸 = 3, 𝐾 = 3}. The configurations of
the medium one, "medium", are {𝐷 = 4,𝑊 = 1.0×, 𝐸 = 6, 𝐾 = 5}.
As a supernet, MatchNAS provides about 1 × 1013 different candi-
date subnets after one-time training and reports a competitive net-
work performance. In the most extremely lightweight case, Match-
NAS report a 8% higher accuracy compared to baseline supernet
SPOS+FixMatch and 10% higher accuracy compared to FixMatch.

Table 6: MobileNetV3-Small Search Space with dynamic net-
work configurations.

Stage Depth Width Expand Kernel

Conv 1 16 - 3
MBConv 1 16 1 3

DMBConv1 {2, 3, 4} {12, 24, 36} {3, 4, 6} {3, 5}
DMBConv2 {2, 3, 4} {20, 40, 60} {3, 4, 6} {3, 5}
DMBConv3 {2, 3, 4} {24, 48, 72} {3, 4, 6} {3, 5}
DMBConv4 {2, 3, 4} {48, 96, 144} {3, 4, 6} {3, 5}

Conv 1 576 - 1
Conv 1 1024 - 1

Table 7: Performance Comparison of Top-1 Accuracy in the
Search Space of MobileNetV3-Small

Model SSL Supernet Cifar-10 Top-1 Accuracy(%)

Smallest Medium Largest

FixMatch ! % 62.6 85.8 94.3
SPOS % ! 53.6 76.5 83.4

SPOS+FixMatch ! ! 66.2 82.9 86.3
MatchNAS ! ! 72.3 89.1 93.9

C.3 Generalizing to ProxylessNAS
Except for the two abovementioned MobileNetV3-based search
spaces, we also conducted additional experiments in another pop-
ular search space, ProxylessNAS [6], with 4000 labelled data on
the Cifar10 dataset. In this space, we set the dynamic choices for
depth 𝐷 = {2, 3, 4}, width expand ratio 𝐸 = {3, 4, 6} and kernel
size 𝐾 = {3, 5, 7} with fixed network width. The total number of
candidate networks is 2 × 1019.

The experiment results are shown in Table 8. MatchNAS demon-
strates comparable accuracy gains for lightweight subnets in this
space, as observed in the MobileNetV3-based search space. The
largest subnet in the search space with architecture configuration
{𝐷 = 4, 𝐸 = 6, 𝐾 = 7}, while the smallest subnet {𝐷 = 2, 𝐸 = 3, 𝐾 =

3} and the medium is {𝐷 = 4, 𝐸 = 6, 𝐾 = 5}.

Table 8: Performance Comparison of Top-1 Accuracy in the
Search Space of ProxylessNAS

Model SSL Supernet Cifar-10 Top-1 Accuracy(%)

Smallest Medium Largest

FixMatch ! % 82.4 89.8 95.7
SPOS % ! 71.7 80.7 88.9

SPOS+FixMatch ! ! 84.9 90.7 92.9
MatchNAS ! ! 86.6 92.1 95.7

D EXPERIMENTS ON PASCAL VOC DATASET
We conducted additional experiments on Pascal VOC [12], which
is a dataset for semantic segmentation tasks. It is important to note
that, being a semantic segmentation dataset, many images contain
more than one main object. For both training and evaluation, we
designate the class of each image based on the class to which the
largest object in the image belongs. Within Pascal VOC, there are
5717 training examples and 5823 testing examples across 20 classes.
As for training settings, we limit the number of labelled data to
1000. The hyperparameters for all methods are similar to those in
the manuscript. The results are shown in Table 9. Although multi-
object images make classification more difficult, MatchNAS still
reports a performance gain for lightweight models.

Table 9: Performance Comparison of Top-1 Accuracy in Pas-
cal VOC dataset

Model SSL Supernet Cifar-10 Top-1 Accuracy(%)

Smallest Medium Largest

FixMatch ! % 49.7 56.0 73.1
SPOS % ! 48.3 53.2 67.0

SPOS+FixMatch ! ! 50.8 56.5 67.1
MatchNAS ! ! 52.2 57.7 73.0

E EXAMPLE OF ON-DEVICE EVALUATION
Figure 7 shows an example evaluation on smartphones. All on-
device evaluations and tests are performed on the Samsung Remote
Test Lab [31].

Figure 7: Example evaluation on Samsung Galaxy Note 20.
This result is produced by Samsung Remote Test Lab [31].

	Abstract
	1 Introduction
	2 Related Work
	2.1 Neural Architecture Search
	2.2 Semi-supervised Learning

	3 Methodology
	3.1 Motivation
	3.2 MatchNAS Training
	3.3 MatchNAS Searching
	3.4 MatchNAS with a Narrower Search Space

	4 Experiments
	4.1 Settings
	4.2 Network Performance
	4.3 Experiments with Varying Labelled Data
	4.4 On Device Performance
	4.5 Experiments with a Narrower Search Space

	5 Ablation Study
	5.1 The Unlabelled Loss
	5.2 Confidence Threshold
	5.3 One-shot NAS Techniques

	6 Limitations and Future Work
	7 Conclusions
	References
	A Datasets
	B Training Details
	C Search Space
	C.1 The Vanilla Search Space
	C.2 Generalizing to MobileNetV3-Small
	C.3 Generalizing to ProxylessNAS

	D Experiments on Pascal VOC Dataset
	E Example of On-device Evaluation

