
Malicious Package Detection using Metadata Information
Sajal Halder

Data61, CSIRO, VIC, Australia

Charles Sturt University, Australia

sajal.halder@data61.csiro.au

Michael Bewong

Charles Sturt University,

NSW, Australia

(mbewong)@csu.edu.au

Arash Mahboubi, Yinhao Jiang

Charles Sturt University,

NSW, Australia

(amahboubi,yjiang)@csu.edu.au

Md Rafiqul Islam

Charles Sturt University,

NSW, Australia

mislam@csu.edu.au

Md Zahid Islam

Charles Sturt University,

NSW, Australia

zislam@csu.edu.au

Ryan HL Ip

Charles Sturt University,

NSW, Australia

hoip@csu.edu.au

Muhammad Ejaz Ahmed

Data61, CSIRO, NSW, Australia

ejaz.ahmed@data61.csiro.au

Gowri Sankar Ramachandran

QUT, QLD, Australia

g.ramachandran@qut.edu.au

Muhammad Ali Babar

University of Adelaide, SA, Australia

Ali.babar@adelaide.edu.au

ABSTRACT
Protecting software supply chains from malicious packages is para-

mount in the evolving landscape of software development. Attacks

on the software supply chain involve attackers injecting harmful

software into commonly used packages or libraries in a software

repository. For instance, JavaScript uses Node Package Manager

(NPM), and Python uses Python Package Index (PyPi) as their re-

spective package repositories. In the past, NPM has had vulnerabil-

ities such as the event-stream incident, where a malicious package

was introduced into a popular NPM package, potentially impacting

a wide range of projects. As the integration of third-party packages

becomes increasingly ubiquitous in modern software development,

accelerating the creation and deployment of applications, the need

for a robust detection mechanism has become critical. On the other

hand, due to the sheer volume of new packages being released

daily, the task of identifying malicious packages presents a signifi-

cant challenge. To address this issue, in this paper, we introduce a

metadata-based malicious package detection model, MeMPtec. This
model extracts a set of features from package metadata information.

These extracted features are classified as either easy-to-manipulate

(ETM) or difficult-to-manipulate (DTM) features based on mono-

tonicity and restricted control properties. By utilising these meta-

data features, not only do we improve the effectiveness of detecting

malicious packages, but also we demonstrate its resistance to ad-

versarial attacks in comparison with existing state-of-the-art. Our

experiments indicate a significant reduction in both false positives

(up to 97.56%) and false negatives (up to 91.86%).

CCS CONCEPTS
• Security and privacy→ Software security engineering; Mal-

ware and its mitigation.

WWW ’24, May 13–17, 2024, Singapore, Singapore.
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

This is the author’s version of the work. It is posted here for your personal use. Not

for redistribution. The definitive Version of Record was published in Proceedings of
the ACM Web Conference 2024 (WWW ’24), May 13–17, 2024, Singapore, Singapore,
https://doi.org/10.1145/3589334.3645543.

KEYWORDS
NPM Metadata, Malicious Detection, Feature Extractions, Adver-

sarial Attacks, Software Supply Chain

ACM Reference Format:
Sajal Halder, Michael Bewong, Arash Mahboubi, Yinhao Jiang, Md Rafiqul

Islam, Md Zahid Islam, Ryan HL Ip, Muhammad Ejaz Ahmed, Gowri Sankar

Ramachandran, and Muhammad Ali Babar. 2024. Malicious Package Detec-

tion using Metadata Information. In Proceedings of the ACMWeb Conference
2024 (WWW ’24), May 13–17, 2024, Singapore, Singapore. ACM, New York,

NY, USA, 11 pages. https://doi.org/10.1145/3589334.3645543

1 INTRODUCTION
Nowadays, Free and Open-Source Software (FOSS) has become part

and parcel of the software supply chain. For example, the Open

Source Security and Risk Analysis (OSSRA) report in 2020 shows

that as much as 97% of codebases contain open-source code [23]

and the proportion of enterprise codebases that are open-source

increased from 85% [21] to 97% [25]. Thus, modern software develop-

ers thrive through the opportunistic reuse of software components

that save enormous amounts of time and money. The node package

manager (NPM) offers a vast collection of free and reusable code

packages to support JavaScript developers. Since its inception in

2010, NPM has grown steadily and offers over 3.3 million packages

as of September 2023 [14]. The extensive library of packages pro-

vided by NPM is a valuable resource for developers worldwide and

is expected to continue growing. Different from JavaScript, Python

uses Python Package Index (PyPi) as their package repositories.

Both NPM and PyPi have faced security vulnerabilities in the past,

such as the event-stream incident, where a malicious package was

introduced into a popular NPM package, potentially impacting a

wide range of projects. Similarly, PyPi has experienced concerns

with typo-squatted packages that appear similar to common li-

braries but contain malicious code, posing a risk of inadvertent

installation by developers. Therefore, detecting malicious packages

is essential to protect software supply chains.

Metadata associated with package repositories plays a crucial

role in the software development lifecycle. Such metadata includes

information about the creator, update history, frequency of updates,

and authorship, among others. This information can be indicative

ar
X

iv
:2

40
2.

07
44

4v
1

 [
cs

.C
R

]
 1

2
Fe

b
20

24

https://doi.org/10.1145/3589334.3645543
https://doi.org/10.1145/3589334.3645543

WWW ’24, May 13–17, 2024, Singapore, Singapore. S. Halder, M. Bewong, A. Mahboubi, Y. Jiang, R. Islam, Z. Islam, R. Ip, E. Ahmed, G. Ramachandran & A. Babar

of maliciousness within packages, for example, a package that has

unknown authors is likely to bemalicious [9]. However, such heuris-

tics are not sufficient as attackers can intentionally compromise

metadata information to bypass detection models. Thus, extracting

a set of features that are both predictive yet resistant to adversaries

seeking to game the model is critical. There are several advantages

of using metadata feature selection to detect malicious packages.

First, it can help identify malicious packages quickly without re-

quiring extensive manual review, making it more efficient than

full code analysis. Second, metadata analysis can be used to gain

insights into behavioural patterns of malicious packages in large

datasets. Lastly, the incorporation of metadata features increases

model resilience against adversarial attacks, offering a more robust

defense mechanism compared to existing state-of-the-art methods.

There are some existing research works that utilise metadata

information. For example, by using metadata information, Zahan

et al. [31] introduced a model for measuring NPM supply chain

weak link signals to prevent future supply chain attacks. However,

they do not consider the challenge of adversarial attacks. The main

motivation of this research is to propose a model to detect malicious

packages in the NPM repository to protect software developers,

organizations, and end-users from security breaches that can result

from downloading and using packages containing malicious code.

As the NPM repository is widely used to store and distribute open-

source packages, it is an attractive target for attackers looking to

compromise the security of a large number of systems. By detecting

malicious packages in the repository, organizations can ensure

that their software development processes are not disrupted and

that security threats do not compromise their systems. Detecting

malicious packages also helps maintain the trust and integrity of

open-source package repositories, which are essential for the long-

term success and growth of the software development community.

In this paper, we address the following research questions.

• RQ1:How canmetadata information be effectively leveraged

to accurately identify malicious packages in repositories?

• RQ2: How can the robustness of metadata-based detection

models be enhanced against adversarial attacks?

To address these research questions, a metadata based malicious

package detection model is developed. The main contributions of

our research work are as follows:

• We propose an advanced metadata based malicious pack-

age detection (MeMPtec) model leveraging new metadata

features and machine learning algorithm.

• We introduce a new metadata feature extraction technique

which partitions features into easy-to-manipulate and difficult-

to-manipulate.

• We investigate stakeholder based adversarial attacks and

propose adversarial attack resistant features based on mono-

tonicity and restricted control properties.

• We conduct extensive experiments that show our proposed

MeMPtec outperforms the existing feature selection strate-

gies from the state-of-the-art in terms of precision, recall,

F1-score, accuracy and RMSE
1
. It reduces false positives

on average by 93.44% and 97.5% in balanced data and im-

balanced data, respectively, and reduces false negatives on

1
Non-proprietary resources available at https://github.com/mbewong/MeMPtec-Demo

average by 91.86% and 80.42% in balanced and imbalanced

data, respectively.

2 EXISTINGWORKS
In this research work, we have focused on attack detection utilis-

ing metadata in NPM ecosystems. Works on attack detection and

remediation include the followings. Liu et al. [10] introduced a

knowledge graph-driven approach for dependency resolution that

constructs a comprehensive dependency-vulnerability knowledge

graph and improved vulnerability remediation method for NPM

packages. Zhou et al. [34] enriched the representation of Syslog

by incorporating contextual information from log events and their

associated metadata to detect anomalies behaviour in log files. Zac-

carelli et al. [29] employed machine learning techniques to identify

amplitude anomalies within any seismic waveform segment meta-

data, whereas the segment’s content (such as distinguishing be-

tween earthquakes and noise) was not considered. Anomaly detec-

tion on signal detection metadata by utilising long and short-term

memory recurrent neural networks in the generative adversarial

network has been introduced in [3]. Mutmbak et al. [12] developed

a heterogeneous traffic classifier to classify anomalies and normal

behaviour in network metadata. Pfretzschner et al. [17] introduced

a heuristic-based and static analysis to detect whether a Node.js is

malicious or not. Garrett et al. [5] proposed an anomaly detection

model to identify suspicious updates based on security-relevant

features in the context of Node.js/NPM ecosystem. Taylor et al. [24]

developed a tool named TypoGard that identifies and reports poten-

tial typosquatting packages based on lexical similarities between

names and their popularities.

Some efforts have been devoted in the literature to detect mali-

cious attacks using metadata features. For example, Abdellatif et al.

[1] utilised metadata information for the packages’ rank calculation

simplification. Zimmermann et al. [36] have demonstrated a connec-

tion between the number of package maintainers and the potential

for introducing malicious code. Scalco et al. [19] conducted a study

to assess the effectiveness and efficiency of identifying injected

code within malicious NPM artifacts. Sejfia et al. [20] presented au-

tomated malicious package finder for detecting malicious packages

on NPM repository by leveraging package reproducibility checks

from the source. Vu et al. [26] applied metadata to identify packages’

reliability and actual sources. Ohm et al. [15] investigated limited

metadata information (e.g., package information, dependencies and

scripts) to detect malicious software packages using supervised

machine learning classifiers. However, these approaches do not

address the issue of adversarial attacks, and as demonstrated by our

experiments (c.f. Section 6.3), the features proposed in the literature

are prone to adversarial manipulation.

Other works related to software security, but not metadata based

include [22, 28, 30, 32, 35]. Zahon et al. [30] compared the security

practices of NPM and PyPI ecosystems on GitHub using Scorecard

tools that identifies 13 compatible security metrics and 9 metrics

for package security. Sun et al. [22] introduced CoProtector, a tool
designed to safeguard open-source GitHub repositories from unau-

thorized use during training. Wi et al. [28] proposed a scalable

system that detects web vulnerabilities, such as bugs resulting from

improper sanitization, by employing optimization techniques to

https://github.com/mbewong/MeMPtec-Demo

Malicious Package Detection using Metadata Information WWW ’24, May 13–17, 2024, Singapore, Singapore.

tackle the subgraph isomorphism problem. Zhang et al. [32] devel-

oped GERAI, which uses a differential private graph convolutional

network to protect users’ sensitive data from attribute inference

attacks. Zhu et al. [35] built a system that uses various information

types to detect spam reviews.

2.1 Differences with Previous Works
Our proposed malicious detection based on metadata information

differs from state-of-the-art malicious detection techniques in var-

ious aspects. Firstly, we categorise the different sets of features

that can be derived from metadata information, whereas existing

methods considering metadata information do not make a distinc-

tion between the types of metadata features that can be extracted.

Secondly, we consider the problem of adversarial attacks and in-

troduce the concept of difficult-to-manipulate (DTM) features that

reduce the risk of adversarial attacks. Table 1 highlights some key

differences between features derived from our approach versus

those proposed in the literature. In the foregoing, we use the term

Existing_tec wrt metadata features to refer collectively to the sets of

features proposed in the literature for malicious package detection.

Table 1: Comparison between the types of metadata features
considered: literature vs. our approach.

Research Work D
e
s
c
r
i
p
t
i
v
e

S
t
a
k
e
h
o
l
d
e
r
s

D
e
p
e
n
d
e
n
c
i
e
s

R
e
p
o
s
i
t
o
r
y

T
e
m
p
o
r
a
l

P
a
c
k
a
g
e

I
n
t
e
r
a
c
t
i
o
n

Zimmermann et al. [36] ✓

Abdellatif et al. [1] ✓ ✓ ✓

Zahan et al. [31] ✓ ✓ ✓

Ohm et al. [15] ✓ ✓

Vu et al. [26] ✓

Existing_tec [1, 15, 26, 31, 36] ✓ ✓ ✓ ✓

MeMPtec_E ✓ ✓ ✓ ✓

MeMPtec_D ✓ ✓

MeMPtec (Proposed) ✓ ✓ ✓ ✓ ✓ ✓

3 PRELIMINARIES & PROBLEM STATEMENT
Let 𝑃 = {𝑝1, · · · , 𝑝𝑛} be set of packages. A package often involves

several participants, namely author, maintainer, contributor, pub-
lisher. We refer to these collectively as stakeholders denoted by

𝑆𝑖 = {𝑠 𝑗 }𝑖 such that 𝑠 𝑗𝑖 is a stakeholder of type 𝑗 involved in pack-

age 𝑝𝑖 .

Definition 1 (Package Metadata Information (PMI)). Given
a package 𝑝𝑖 ∈ 𝑃 , the package metadata information denoted I𝑖 =
{⟨𝑘, 𝑣⟩} is the set of key-value pairs of all metadata information
associated with 𝑝𝑖 .

In this work, without loss of generality, we adopt the NPM pack-

age repository as an exemplar due to its popularity in web appli-

cations and various cross platforms [20]. Table 2 shows the NPM

package metadata information considered in this work. The inter-

ested reader is referred to Appendix A.1 for further details.

Table 2: Package Metadata Information.

package_name, version, description, readme, scripts, distri-

bution_tag, authors, contributors, maintainers, publishers, li-

censes, dependencies, development_dependencies, created_-

time, modified_time, published_time, NPM_link, homepage_-

link, GitHub_link, bugs_link, issues_link, keywords, tags,

fork_number, star and subscriber_count.

Definition 2 (Problem Definition). Given a package 𝑝𝑖 ∈ 𝑃
and its package metadata information I𝑖 = {⟨𝑘, 𝑣⟩}, the goal is to
develop a malicious package detectorM as follows:

M(𝑝𝑖 ,I𝑖) =
{

1, if 𝑝𝑖 is malicious,
0, otherwise

There are three key challenges to address in the problem defini-

tion above. Firstly, the PMI of each package may contain several

pieces of information, some of which may be irrelevant to the detec-

tion task, and it may also have inconsistent representation across

different packages (Challenge 1). For example, packages may con-

tain copyright and browser dependencies that are often not relevant

for detecting malicious packages. Secondly, metadata information

may be prone to manipulation by an adversary who wishes to evade

detection by a detection modelM (Challenge 2). Thirdly, for any
detection modelM to be practical, it needs to achieve high true

positive rates with low false positive rates (Challenge 3).
To address the above challenges, we propose a novel solution

calledMetadata basedMalicious Package Detection (MeMPtec).MeMPtec
relies on a feature engineering approach to address the aforemen-

tioned challenges. This is detailed in the following sections.

4 CATEGORISATION OF PACKAGE
METADATA INFORMATION

Each piece of information contained in PMI represents a different

type of information. In this section, we categorise each PMI in order

to understand its relevance for malicious package detection. This

is important because not all information in metadata packages is

crucial for malicious package detection (Challenge 1). We consider

the following categories.

• Descriptive Information: This includes information that

describes the resource, such as package title, versions, de-

scription, readme, and scripts.

• Stakeholder Information: It provides information about

the individuals or organizations involved in developing,main-

taining and distributing a package. Some stakeholder infor-

mation includes authors, contributors, maintainers, collabo-

rators, publishers and licenses.

• Dependency Information: Dependency information pro-

vides details about the external packages or modules that a

particular package depends on. These include dependencies

and development dependencies.

• Provenance Information: It provides information about

when various events related to the package occurred. This

information can be useful for tracking the package’s history

WWW ’24, May 13–17, 2024, Singapore, Singapore. S. Halder, M. Bewong, A. Mahboubi, Y. Jiang, R. Islam, Z. Islam, R. Ip, E. Ahmed, G. Ramachandran & A. Babar

and understanding how it has evolved over time. For example,

package created, modified and published time information.

• Repository Information: It provides information about

the location of the source code repository for a package, such

as the NPM link, homepage link, GitHub link, bugs link and

issues link.

• Context Information: Context information provides addi-

tional information based on their functionality and purpose.

For example, keywords, tags and topics.

5 FEATURE EXTRACTION AND SELECTION
It is necessary to extract features from the PMI for each package to

generate a consistent set of features for all packages. For example,

let ⟨𝑝𝑎𝑐𝑘𝑎𝑔𝑒_𝑛𝑎𝑚𝑒,𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟@1⟩ ∈ I be a toy example of a key-

value pair in the PMI I. The package name is generator@1, but
we can derive features from this package name, such as whether

or not it contains a special character or the length of the package

name. These features are of particular relevance in the context of

detecting malicious packages since package names play a crucial

role in identifying combosquatting and typosquatting [27]. Thus,

feature extraction in our context is a one-to-manymapping between

PMI and a set of features that is formally defined as follows:

Definition 3 (Feature Extractor F). Given a package 𝑝𝑖 and
its associated PMI containing ℓ key-value pairs,I𝑖 = {⟨𝑘, 𝑣⟩1 · · · ⟨𝑘, 𝑣⟩ℓ },
a feature extractor denoted F is a multivalued function which maps
each PMI ⟨𝑘, 𝑣⟩𝑗 unto one or more features in the set 𝑋 :

F : I𝑖 ↦→ 𝑋 .

As noted earlier, one of the challenges to be addressed while

developing malicious package detectorM is its ability to resist ad-

versarial attacks (Challenge 2). We define an adversary as follows:

Definition 4 (Adversary). An adversary A is any stakeholder
in 𝑆𝑖 of package 𝑝𝑖 who has the authority to modify the metadata
information I𝑖 of package 𝑝𝑖 , and attempt to do so to evade detection
by a model.

The definition above represents the scenario where a stakeholder

of a malicious package may alter the metadata information to evade

detection by a model. We make the following assumption and then

present two important properties relevant to the feature 𝑥 ∈ 𝑋 .

Assumption 1. Given a repository environment such as the NPM
package repository, we assume that all security protocols are intact,
and users follow the protocols to engage with the repository environ-
ment i.e. there is no subversion of the system by an adversary.

This assumption is pivotal to our approach and indeed to any

metadata-based malicious package detection technique, including

[5, 6, 9]. If this assumption does not hold, then it renders metadata

information useless for any purpose. At the same time, it is a rea-

sonable assumption because, although possible, the subversion of

a repository has not been observed as the preferred approach for

propagating malicious packages.

We now define the monotonicity and restricted control properties.

Property 1 (Monotonicity). A feature 𝑥 ∈ 𝑋 is said to be
monotonic if and only if 𝑥 is a numerical feature, and any update on
its value, 𝑥 .𝑣𝑎𝑙𝑢𝑒 , can only occur in one direction.

For example, if package_age is a feature (measured in years) and

this value can only be increased, we say that package_age possesses
monotonicity property. On the other hand, package description_-
length as a feature can be increased or decreased by the author of

the package and is thus non-monotonic. The monotonicity property

is hereinafter referred to as Property 1.

Property 2 (Restricted Control). A feature 𝑥 ∈ 𝑋 is said to
possess the property of restricted control if and only if a stakeholder
in 𝑆𝑖 associated with package 𝑝𝑖 cannot change its value, 𝑥 .𝑣𝑎𝑙𝑢𝑒 .

For example, consider number_of_stars as a feature (measured

in count), which is calculated based on the interactions that other

developers and code users have with a given package. As such num-
ber_of_stars cannot directly be modified by a package author. Thus,

we say that number_of_stars possesses the property of restricted

control. A counter-example is number_of_versions, which a package
author can directly influence by generating several versions. In this

case, we say that number_of_versions possesses the monotonicity

property but lacks the property of restricted control. The restricted

control property is hereinafter referred to as Property 2.
We define a feature 𝑥 ∈ 𝑋 , specially denoted by 𝑥 , as a difficult-

to-manipulate (DTM) feature if any one of the following cases

holds:

(1) If 𝑥 satisfies the monotonicity property i.e. 𝑥 ≍ (𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦 1),
then 𝑥 B 𝑥 ;

(2) If𝑥 satisfies the restricted control property i.e.𝑥 ≍ (𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦 2),
then 𝑥 B 𝑥 ;

Otherwise, 𝑥 is considered an easy-to-manipulate (ETM) fea-

ture. It is important to note that𝑋 comprises both easy-to-manipulate

(ETM) and difficult-to-manipulate (DTM) features denoted by 𝑥 and

𝑥 respectively i.e. 𝑋 ∋ 𝑥, 𝑥 .

5.1 Easy-to-Manipulate Features
As noted earlier, an easy-to-manipulate feature denoted by 𝑥 is a

feature that does not possess either Property 1 or Property 2 and

thus can easily be changed by the author of a package. Although

ETM features are inherently good at helping to predict malicious

packages (c.f. Section 6.2), by being able to manipulate these fea-

tures, an adversary can trick detection models to classify malicious

packages as benign. In our metadata feature extraction F , we iden-
tify the following types of features as not satisfying either Property

1 or Property 2 and thus considered as ETM.

• Exist: This type of feature refers to whether or not certain

Information is present in package metadata. This takes on a

binary indicator whose value is TRUE or FALSE depending

on whether or not the specified Information is present.

• Special Character: A special character is any character

that is not a letter, digit, or whitespace. The use of special

characters in package names is known to be indicative of

typo-squatting [24, 27].

• Length: The length of an item is the number of characters

it contains, can serve as a useful indicator of malicious pack-

ages, especially when they lack detailed descriptions.

Our experiments show that, although these types of features are

simple and easy-to-manipulate by the adversary, they are often

useful predictors of maliciousness. For example, if the metadata

Malicious Package Detection using Metadata Information WWW ’24, May 13–17, 2024, Singapore, Singapore.

Table 3: List of easy-to-manipulate (ETM) and difficult-to-manipulate (DTM) Features

ETM Features DTM Features

name_exist, name_length, dist-tags_exist, dist-tags_length, versions_exist, versions_length,

versions_num_count, maintainers_exist, description_exist, description_length, readme_exist,

readme_length, scripts_exist, scripts_length, author_exist, author_name, author_email, Li-

cense_exist, License_length, directories_exist, directories_length, keywords_exist, keywords_-

length, keywords_num_count, homepage_exist, homepage_length, github_exist, github_-

length, bugslink_exist, bugslink_length, issueslink_exist, issueslink_length. dependencies_ex-

ist, dependencies_length, devDependencies_exist, devDependencies_length

package_age, package_modified_duration, package_pub-

lished_duration, author_CPN, author_service_time, au-

thor_CCS, maintainer_CPN, maintainer_service_time,

maintainer_CCS, contributor_CPN, contributor_service_-

time, contributor_CCS, publisher_CPN, publisher_ser-

vice_time, publisher_CCS, pull_request, issues, fork_num-

ber, star, subscriber_count

*
CCS means community contribution score and CPN means contribute package number.

of a package does not contain author information or source code

address, that package is likely to be malicious. However, models

built solely on these features are vulnerable to adversarial attacks.

Incorporating DTM features can mitigate the risk.

5.2 Difficult-to-Manipulate Features
These are features which satisfy Property 1 or 2. They often depend

on time or package interaction, which are difficult to manipulate.

The types of features in this category are as follows:

• Temporal: Features that involve temporal information of-

ten satisfy Property 1 and as such are DTM. In this work,

our feature extractor F generates package_age, package_-
modified_duration and package_published_duration which

represent the age of the package, the time interval between

package creation and last modification date, and the time

interval between when the package was created and when

it was published respectively. Other features include stake-

holder 𝑠 𝑗𝑖 service time (𝑠 𝑗𝑖 _𝑠𝑒𝑟𝑣𝑖𝑐𝑒_𝑡𝑖𝑚𝑒) which reflects the

number of days which a stakeholder has been associated

with the package 𝑝𝑖 .

• Package Interaction: This relates to the number of in-

teractions that a package 𝑝𝑖 or its stakeholder 𝑠 𝑗𝑖 has. It

includes (1) number of other packages which 𝑠 𝑗𝑖 has con-

tributed to denoted 𝑠 𝑗𝑖 _𝐶𝑃𝑁 ; (2) number of package pull

requests 𝑝𝑢𝑙𝑙_𝑟𝑒𝑞𝑢𝑒𝑠𝑡 ; (3) number of reported package is-

sues; (4) number of times package is forked; and (5) number

of stars a package has received. (1) satisfies Property 1 while

(2), (3), (4) and (5) satisfy Property 2.

Table 3 provides the list of the ETM and DTM features used in

this work. It is worth noting that the DTM features in the table

also include a combination of base DTM features e.g. stakehold-
ers’ community contribution score (𝑠 𝑗𝑖 _𝐶𝐶𝑆) is a combination of

stakeholder contribute package number 𝑠 𝑗𝑖 _𝐶𝑃𝑁 and stakeholder

service time 𝑠 𝑗𝑖 _𝑠𝑒𝑟𝑣𝑖𝑐𝑒_𝑡𝑖𝑚𝑒 . Appendix A.2 provides details for

𝑠 𝑗𝑖 _𝐶𝐶𝑆 DTM features derived from base DTM features.

5.3 ProposedMeMPtec Model
Figure 1 shows the pipeline for our proposedMetadata basedMalicious

Package Detection (MeMPtec) model. The figure shows the phases

of model building i.e. training phase and prediction phase. In the

training phase, PMI is fed into the feature extraction stage and

assigned a label as either benign or malicious. The metadata is ex-

tracted using our feature extractor F into both easy-to-manipulate

(ETM) (c.f. Section 5.1) and difficult-to-manipulate (DTM) (c.f. Sec-
tion 5.2) features. We then adopt existing machine and deep learning

models to train a model. In the prediction phase, we follow a similar

process of feature extraction, feeding these extracted features into

the built model to make predictions regarding the maliciousness of

packages.

Algorithm 1 gives the details of the steps inMeMPtec. It takes PMI

{I1, · · · ,I𝑛}, ML_Algo, {I𝑛𝑒𝑤} as input and provides malicious

package detectorM as output. The algorithm has two parts: Model

Algorithm 1:MeMPtec({I1, · · · ,I𝑛},ML_A↕}≀, {I𝑛𝑒𝑤})
Data: {I1, · · · , I𝑛 } : Label packages metadata information

1 ;𝑀𝐿_𝐴𝑙𝑔𝑜 : ML / DL algorithm; {I𝑛𝑒𝑤 } : New package;

Result:Malicious Package DetectorM
2 Function Model_Training_Phase({I1, · · · , I𝑛 }, ML_Algo):
3 Y← Extract label (Malicious or Benign) from {I1, · · · , I𝑛 }.
4 ETM_Features ({𝑥1 · · · , 𝑥𝑛 })← Extract easy to manipulate features

(c.f. Section 5.1) from {I1, · · · , I𝑛 }.
5 DTM_Features ({𝑥1 · · · 𝑥𝑚 })← Extract difficult to manipulate features

(c.f. Section 5.2) from {I1, · · · , I𝑛 }.
6 X← ETM_Features ⊕ DTM_Features

7 𝑋𝑡𝑟𝑎𝑖𝑛 , 𝑋𝑣𝑎𝑙𝑖𝑑 , 𝑋𝑡𝑒𝑠𝑡 , 𝑌𝑡𝑟𝑎𝑖𝑛 , 𝑌𝑣𝑎𝑙𝑖𝑑 , 𝑌𝑡𝑒𝑠𝑡 ← split(X,Y, 0.7, 0.1, 0.2)

8 M← Build_Model(ML_Algo, 𝑋𝑡𝑟𝑎𝑖𝑛 , 𝑋𝑣𝑎𝑙𝑖𝑑 , 𝑌𝑡𝑟𝑎𝑖𝑛 , 𝑌𝑣𝑎𝑙𝑖𝑑)

9 Predict_Test_Result←M.predict(𝑋𝑡𝑒𝑠𝑡)

10 Performance← Performance_Measurement(Predict_Test_Result, 𝑌𝑡𝑒𝑠𝑡)

11 Return:M, Performance

12 Function Prediction_Phase({M, {I𝑛𝑒𝑤 }):
13 𝐸𝑇𝑀_𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠𝑛𝑒𝑤 ({𝑥1 · · · , 𝑥𝑛 })← Extract easy to manipulate

features (c.f. Section 5.1) from {I𝑛𝑒𝑤 }.
14 𝐷𝑇𝑀_𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠𝑛𝑒𝑤 ({𝑥1 · · · 𝑥𝑚 })← Extract difficult to manipulate

features (c.f. Section 5.2) from {I𝑛𝑒𝑤 }.
15 𝑋𝑛𝑒𝑤 ← 𝐸𝑇𝑀_𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠𝑛𝑒𝑤 ⊕ 𝐷𝑇𝑀_𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠𝑛𝑒𝑤
16 Predict_label←M.predict(𝑋𝑛𝑒𝑤)

17 Return: Predict_label

18 M, Performance← Model_Training_Phase({I1, · · · , I𝑛 }, ML_Algo)
19 Predict_label← Prediction_Phase(M, {I𝑛𝑒𝑤 })

Training Phase and Prediction Phase. In the Training Phase, we

extract labels Y, ETM and DTM features (c.f. Section 5.1 and 5.2)

in lines 3-5, respectively. Then, we combine two sets of features

and create X in line 6. The X and Y are partitioned into train data

(70%), validation data (10%) and test data (20%) in line 7. After

that, the model is built based on the existing machine learning

algorithm and train and validation data in line 8. The build-in

modelM performance has been measured using test data in lines

9-10. Therefore, the model training phase returns malicious package

detector modelM and performance in line 11.

WWW ’24, May 13–17, 2024, Singapore, Singapore. S. Halder, M. Bewong, A. Mahboubi, Y. Jiang, R. Islam, Z. Islam, R. Ip, E. Ahmed, G. Ramachandran & A. Babar

Figure 1: Proposed Metadata-based Malicious Package Detection (MeMPtec) model architecture.

In the prediction phase, we similarly extract the relevant features

and apply the built modelM to each set of features𝑋𝑛𝑒𝑤 associated

with a package’s PMI I𝑛𝑒𝑤 (lines 13–16). The function returns

predicted label in line 17. Finally, in lines 18 and 19, these two

phases are called to as model training and prediction.

6 EXPERIMENTS
6.1 Experimental Setup
It is worth recalling that the crux of this work is in its feature

engineering approach, thus we compare our approach with existing

features proposed by closely related work such as [1, 15, 26, 31, 36].

All experiments were implemented in Python and conducted in

Windows 10 environment, on an Intel Core i7 processor (1.70 GHz,

16GB RAM).

6.1.1 Datasets and Baseline Methods. In this work, we use NPM

repository
2
as an exemplar to generate package metadata informa-

tion. We make the assumption that packages that are currently not

flagged as malicious in NPM repository are considered benign. In

NPM repository, packages flagged as malicious are often removed.

Thus, we use publicly available datasets containing malicious NPM

packages stored on GitHub
3
[16]. We then generate (1) balanced

dataset with 1 : 1 proportion of malicious and benign packages;

and (2) an imbalanced dataset with 1 : 10 proportion of malicious

and benign packages respectively. Variants of these datasets are

further generated for experimental purposes (c.f. Table 4). In the

Table 4: Description of datasets parameters.

Feature

Features

Balance Data Imbalance Data

Model # Malicious # Benign # Malicious # Benign

𝐸𝑥𝑖𝑠𝑡𝑖𝑛𝑔_𝑡𝑒𝑐 11 3232 3232 3232 32320

𝑀𝑒𝑀𝑃𝑡𝑒𝑐_𝐸 36 3232 3232 3232 32320

𝑀𝑒𝑀𝑃𝑡𝑒𝑐_𝐷 21 3232 3232 3232 32320

𝑀𝑒𝑀𝑃𝑡𝑒𝑐 57 3232 3232 3232 32320

2
https://registry.npmjs.org/

3
https://dasfreak.github.io/Backstabbers-Knife-Collection

table, 𝐸𝑥𝑖𝑠𝑡𝑖𝑛𝑔_𝑡𝑒𝑐 refers to feature model generated using fea-

tures proposed in the literature [1, 15, 26, 31, 36]; MeMPtec_E and

MeMPtec_D refer to feature model with ETM and DTM features

respectively; while MeMPtec refers to the combination of ETM and

DTM features based feature model.

6.1.2 Machine Learning/Deep Learning Techniques. In building the

detection models, we adopted five different but commonly used

model building techniques namely, Support Vector Machine [18];
Gradient Boosting Machine (GBM) [4]; Generalized Linear Model
(GLM) [11]; Distributed Random Forest (DRF) [7]; and Deep Learning
- ANN (DL) [2, 33]. In all experiments, we adopt a 70:10:20 split for

training, validation and testing, respectively, and conduct five-fold

cross-validation.

6.1.3 Evaluation Metrics. In this work, we adopt the well-known

metrics of precision, recall, F1-score, accuracy and root mean squared
error (RMSE) also used in [8, 15]. We also evaluate model per-

formances based on the number of false positives (FP) and false
negatives (FN) like in [19, 20].

6.2 Performance Evaluation ofMeMPtec (RQ1)
Table 5 shows the performance analysis of our proposed approach.

From the table, we notice thatMeMPtec (resp. balance and imbalance

data) consistently achieves the best results across all metrics and

ML/DL algorithms. It is important to note that RMSE indicates the

confidence of a model in its prediction as it measures the error

between the probability of the prediction and the true label. Notice

that MeMPtec (resp. for both data) consistently has significantly

lower errors, indicating that combining ETM and DTM leads to

more robust model.

Although one may question the significance of the improvement,

it is important to note that in the domain of software security, mar-

ginal improvements are desirable since even 1 missed malicious

package (false negative) can have catastrophic consequences. For

this reason, we further analyse the false positives (FP) and false nega-

tives (FN). In a balanced dataset,MeMPtec significantly outperforms

https://registry.npmjs.org/

Malicious Package Detection using Metadata Information WWW ’24, May 13–17, 2024, Singapore, Singapore.

Table 5: Performance evaluation results in terms of the mean and standard errors: ↑ (resp. ↓) indicate higher (resp. lower) results
are better; bold values represent the best result and underlined values represent the second best result.

ML/DL Feature Model Precision ↑ Recall ↑ F1-score ↑ Accuracy ↑ RMSE ↓

B
a
l
a
n
c
e
D
a
t
a

SVM

𝐸𝑥𝑖𝑠𝑡𝑖𝑛𝑔_𝑡𝑒𝑐 0.9651 ± 0.003 0.9817 ± 0.002 0.9733 ± 0.001 0.9731 ± 0.001 0.1640 ± 0.002

𝑀𝑒𝑀𝑃𝑡𝑒𝑐_𝐸 0.9994 ± 0.000 0.9725 ± 0.003 0.9857 ± 0.002 0.9859 ± 0.002 0.1175 ± 0.008

𝑀𝑒𝑀𝑃𝑡𝑒𝑐_𝐷 0.9856 ± 0.002 0.9972 ± 0.001 0.9914 ± 0.001 0.9913 ± 0.001 0.0927 ± 0.004

𝑀𝑒𝑀𝑃𝑡𝑒𝑐 0.9960 ± 0.002 0.9963 ± 0.001 0.9962 ± 0.002 0.9961 ± 0.002 0.0576 ± 0.012

GLM

𝐸𝑥𝑖𝑠𝑡𝑖𝑛𝑔_𝑡𝑒𝑐 0.9798 ± 0.001 0.9734 ± 0.002 0.9766 ± 0.001 0.9766 ± 0.001 0.1595 ± 0.002

𝑀𝑒𝑀𝑃𝑡𝑒𝑐_𝐸 0.9875 ± 0.003 0.9817 ± 0.003 0.9846 ± 0.002 0.9847 ± 0.002 0.1032 ± 0.006

𝑀𝑒𝑀𝑃𝑡𝑒𝑐_𝐷 0.9951 ± 0.001 0.9963 ± 0.001 0.9957 ± 0.000 0.9957 ± 0.000 0.0689 ± 0.002

𝑀𝑒𝑀𝑃𝑡𝑒𝑐 0.9997 ± 0.000 0.9969 ± 0.000 0.9983 ± 0.000 0.9983 ± 0.000 0.0395 ± 0.005

GBM

𝐸𝑥𝑖𝑠𝑡𝑖𝑛𝑔_𝑡𝑒𝑐 0.9813 ± 0.001 0.9753 ± 0.002 0.9783 ± 0.001 0.9783 ± 0.001 0.1407 ± 0.003

𝑀𝑒𝑀𝑃𝑡𝑒𝑐_𝐸 0.9966 ± 0.001 0.9947 ± 0.001 0.9956 ± 0.001 0.9957 ± 0.001 0.0581 ± 0.006

𝑀𝑒𝑀𝑃𝑡𝑒𝑐_𝐷 0.9963 ± 0.002 0.9976 ± 0.001 0.9969 ± 0.001 0.9969 ± 0.001 0.0512 ± 0.004

𝑀𝑒𝑀𝑃𝑡𝑒𝑐 0.9997 ± 0.000 0.9988 ± 0.001 0.9992 ± 0.000 0.9992 ± 0.000 0.0321 ± 0.004

DRF

𝐸𝑥𝑖𝑠𝑡𝑖𝑛𝑔_𝑡𝑒𝑐 0.9798 ± 0.001 0.9762 ± 0.003 0.9780 ± 0.001 0.9780 ± 0.001 0.1416 ± 0.003

𝑀𝑒𝑀𝑃𝑡𝑒𝑐_𝐸 0.9982 ± 0.001 0.9941 ± 0.002 0.9961 ± 0.001 0.9961 ± 0.001 0.0548 ± 0.006

𝑀𝑒𝑀𝑃𝑡𝑒𝑐_𝐷 0.9963 ± 0.002 0.9972 ± 0.001 0.9968 ± 0.000 0.9968 ± 0.000 0.0471 ± 0.002

𝑀𝑒𝑀𝑃𝑡𝑒𝑐 0.9991 ± 0.001 0.9997 ± 0.000 0.9994 ± 0.000 0.9994 ± 0.000 0.0225 ± 0.002

DL

𝐸𝑥𝑖𝑠𝑡𝑖𝑛𝑔_𝑡𝑒𝑐 0.9810 ± 0.001 0.9756 ± 0.002 0.9783 ± 0.001 0.9783 ± 0.001 0.1447 ± 0.003

𝑀𝑒𝑀𝑃𝑡𝑒𝑐_𝐸 0.9891 ± 0.003 0.9922 ± 0.002 0.9907 ± 0.002 0.9907 ± 0.002 0.0874 ± 0.011

𝑀𝑒𝑀𝑃𝑡𝑒𝑐_𝐷 0.9954 ± 0.002 0.9969 ± 0.000 0.9961 ± 0.001 0.9961 ± 0.001 0.0597 ± 0.007

𝑀𝑒𝑀𝑃𝑡𝑒𝑐 0.9981 ± 0.001 0.9988 ± 0.001 0.9984 ± 0.001 0.9985 ± 0.001 0.0288 ± 0.009

I
m
b
a
l
a
n
c
e
D
a
t
a

SVM

𝐸𝑥𝑖𝑠𝑡𝑖𝑛𝑔_𝑡𝑒𝑐 0.9127 ± 0.004 0.9511 ± 0.006 0.9314 ± 0.004 0.9873± 0.001 0.1126 ± 0.003

𝑀𝑒𝑀𝑃𝑡𝑒𝑐_𝐸 0.9940 ± 0.001 0.9688 ± 0.003 0.9812 ± 0.001 0.9966 ± 0.000 0.0579 ± 0.002

𝑀𝑒𝑀𝑃𝑡𝑒𝑐_𝐷 0.9799 ± 0.004 0.9417 ± 0.014 0.9601 ± 0.006 0.9929 ± 0.001 0.0833 ± 0.006

𝑀𝑒𝑀𝑃𝑡𝑒𝑐 0.9981 ± 0.001 0.9765 ± 0.003 0.9872 ± 0.001 0.9977 ± 0.000 0.0477 ± 0.003

GLM

𝐸𝑥𝑖𝑠𝑡𝑖𝑛𝑔_𝑡𝑒𝑐 0.9134 ± 0.010 0.9508 ± 0.014 0.9317 ± 0.008 0.9873 ± 0.001 0.1094 ± 0.005

𝑀𝑒𝑀𝑃𝑡𝑒𝑐_𝐸 0.9981 ± 0.002 0.9688 ± 0.007 0.9832 ± 0.003 0.9970 ± 0.001 0.0559 ± 0.005

𝑀𝑒𝑀𝑃𝑡𝑒𝑐_𝐷 0.9776 ± 0.004 0.9663 ± 0.006 0.9718 ± 0.004 0.9949 ± 0.001 0.0712 ± 0.003

𝑀𝑒𝑀𝑃𝑡𝑒𝑐 0.9970 ± 0.001 0.9848 ± 0.002 0.9909 ± 0.001 0.9983 ± 0.000 0.0361 ± 0.001

GBM

𝐸𝑥𝑖𝑠𝑡𝑖𝑛𝑔_𝑡𝑒𝑐 0.9208 ± 0.003 0.9502 ± 0.007 0.9352 ± 0.003 0.988 ± 0.001 0.1000 ± 0.002

𝑀𝑒𝑀𝑃𝑡𝑒𝑐_𝐸 0.9927 ± 0.002 0.9870 ± 0.003 0.9898 ± 0.002 0.9982 ± 0.000 0.0392 ± 0.004

𝑀𝑒𝑀𝑃𝑡𝑒𝑐_𝐷 0.9905 ± 0.002 0.9947 ± 0.001 0.9926 ± 0.001 0.9986 ± 0.000 0.0320 ± 0.003

𝑀𝑒𝑀𝑃𝑡𝑒𝑐 0.9984 ± 0.001 0.9954 ± 0.001 0.9969 ± 0.001 0.9994 ± 0.000 0.0189 ± 0.001

DRF

𝐸𝑥𝑖𝑠𝑡𝑖𝑛𝑔_𝑡𝑒𝑐 0.9228 ± 0.004 0.9511 ± 0.007 0.9367 ± 0.003 0.9883 ± 0.001 0.0991 ± 0.003

𝑀𝑒𝑀𝑃𝑡𝑒𝑐_𝐸 0.9978 ± 0.001 0.9880 ± 0.002 0.9929 ± 0.001 0.9987 ± 0.000 0.0321 ± 0.003

𝑀𝑒𝑀𝑃𝑡𝑒𝑐_𝐷 0.9932 ± 0.001 0.9931 ± 0.003 0.9931 ± 0.002 0.9988 ± 0.000 0.0322 ± 0.003

𝑀𝑒𝑀𝑃𝑡𝑒𝑐 0.9979 ± 0.001 0.9984 ± 0.001 0.9981 ± 0.000 0.9997 ± 0.000 0.0185 ± 0.001

DL

𝐸𝑥𝑖𝑠𝑡𝑖𝑛𝑔_𝑡𝑒𝑐 0.9221 ± 0.004 0.9502 ± 0.007 0.9359 ± 0.003 0.9882 ± 0.001 0.1005 ± 0.002

𝑀𝑒𝑀𝑃𝑡𝑒𝑐_𝐸 0.9907 ± 0.003 0.9793 ± 0.004 0.9849 ± 0.002 0.9973 ± 0.000 0.0471 ± 0.004

𝑀𝑒𝑀𝑃𝑡𝑒𝑐_𝐷 0.9877 ± 0.004 0.9907 ± 0.003 0.9891 ± 0.002 0.9980 ± 0.000 0.0429 ± 0.005

𝑀𝑒𝑀𝑃𝑡𝑒𝑐 0.9982 ± 0.001 0.9966 ± 0.001 0.9974 ± 0.001 0.9995 ± 0.000 0.0209 ± 0.003

Existing_tec in reducing FP in Figure 2 (a). On the GLM algorithm,

MeMPtec achieves a 98.33% reduction (12.0 → 0.2), and on the

SVM algorithm, it achieves an 88.69% reduction (23.0→ 2.6). On
average, MeMPtec reduces FPs by 93.44% (14.64→ 0.96). MeMPtec
also performs well in reducing FN in Figure 2 (b). It reduces the max-

imum number of FNs by 98.70% on the DRF algorithm (15.4→ 0.2)
and achieves a minimum reduction of 79.66% (11.8 → 2.4) on
the SVM algorithm. On average, MeMPtec reduces FNs by 91.86%

(15.24→ 1.24). The results in Figure 2 (c) exhibit consistent trends

in the imbalanced dataset. MeMPtec reduces FP maximum 97.96%

(58.8 to 1.2) on SVM, minimum 97.29% (51.4 → 1.4) on DRF al-

gorithm. It reduces FP on average 97.5% (54.6 → 1.36) than the

Existing_tec. It also reduces, on average, 80.42 % of the FN numbers

from 31.88→ 6.24 in Figure 2 (d). In all Figures 2, we observe that

by usingMeMPtec_E andMeMPtec_D, the FP and FN can be reduced

by an order of magnitude than the Existing_tec. These experiments

illustrate the efficacy of MeMPtec in addressing Challenges 1 & 3.

6.3 Robustness ofMeMPtec (RQ2)
In this section, we evaluate the robustness of MeMPtec against ad-
versarial attack. We assess the impact of data manipulation on the

performance of the models by (1) ranking the features for each

dataset according to their importance for each model; and (2) re-

placing the true values of the features in the malicious dataset with

WWW ’24, May 13–17, 2024, Singapore, Singapore. S. Halder, M. Bewong, A. Mahboubi, Y. Jiang, R. Islam, Z. Islam, R. Ip, E. Ahmed, G. Ramachandran & A. Babar

(a) FP on balance data (b) FN on balance data.

(c) FP on imbalance data (d) FN on imbalance data

Figure 2: False Positive and False Negative numbers compar-
ison on balanced and imbalanced datasets.

random values selected from a distribution of values for the same

feature in the benign dataset iteratively beginning from the most

important feature (Appendix A.3 has the details of the algorithm).

By doing this, we are simulating various degrees of the worst-case

scenario adversarial attack where an adversary deliberately tries to

game the model.

Figure 3 is the result of this experiment. In this experiment,

in decreasing order of importance, the values of features for the

malicious dataset are replaced. The figure shows the decline in

(a) DL (b) DRF (c) GLM

(d) GBM (e) SVM

Figure 3: Performance analyses of variousmodels wrt feature
manipulation.

accuracy performance for the balanced dataset across the models.

We note that in all the models, as the percentage of features is

manipulated, the model performance decreases drastically for the

Existing_tec and MeMPtec_E approaches. However, this is less so

for MeMPtec . In fact, even after manipulating 100% of the features

MeMPtec based approach performs significantly better (e.g. GLM
model: 99.87% → 92.73%). We conduct further extensive experi-

ments, achieving similar results, by considering only the top ten

features (Appendix A.4) as well as indirect manipulation of the

features via the package metadata information (Appendix A.5)– not

included due to space constraints. We remark that this experiment

seeks to show that based on the user’s assumptions about the envi-

ronment, i.e. in an adversarial environment where features can be

manipulated, by leveraging DTM features, MeMPtec can still yield

good results in comparison with existing approaches. On the other

hand, in a non-adversarial environment, the user can leverage both

ETM and DTM features to achieve the full potential of MeMPtec.
In Figure 4, we also investigate the impact of the monotonicity

property on the ability of an adversary to manipulate the DTM

features. Figure 4 (a) shows the modification of all temporal DTM

(a) Temporal Information (b) Package Interaction

Figure 4: Performance analyses ofMeMPtec wrt monotonic
property (temporal information and package interaction).

features by increasing their time-based values iteratively (in num-

ber of days). The aim of the experiment is to show the robust-

ness of MeMPtec even when the adversary attempts to game the

model via DTM features. We note that for DL, even after 360

days, MeMPtec features only decline marginally in performance

(0.9998→ 0.9928). Similarly, Figure 4 (b) shows the modification

of all package interaction-based DTM features. In this experiment,

the count of each figure increased iteratively. Similarly, we notice

that for DL, MeMPtec features only decline marginally in perfor-

mance after 50 count updates (0.9998→ 0.9989). As can be seen,

the behaviour is consistent across all the different models.

These experiments validate the MeMPtec’s ability to mitigate

against adversarial attacks (Challenge 2).

7 CONCLUSION
In this paper, we proposed metadata based malicious detection algo-

rithm named MeMPtec, which relies on a novel feature engineering

strategy resulting in easy-to-manipulate (ETM) and difficult-to-

manipulate (DTM) features from metadata. We conduct extensive

experiments to demonstrate MeMPtec’s efficacy for detecting mali-

cious packages in comparison with existing approaches proposed

in the state-of-the-art. In particular,MeMPtec leads to an average re-

duction of false positives by an impressive 93.44% and 97.5% across

two experimental datasets, respectively. Additionally, false nega-

tive numbers decrease on average 91.86% and 80.42% across the

same datasets, respectively. Furthermore, we analyse MeMPtec’s
resistance against adversarial attacks and show that, even under

worst-case scenarios, our approach is still highly resistant.

ACKNOWLEDGEMENT
The work has been supported by the Cyber Security Research Cen-

tre Limited whose activities are partially funded by the Australian

Government’s Cooperative Research Centres Programme.

Malicious Package Detection using Metadata Information WWW ’24, May 13–17, 2024, Singapore, Singapore.

REFERENCES
[1] Ahmad Abdellatif, Yi Zeng, Mohamed Elshafei, Emad Shihab, and Weiyi Shang.

2020. Simplifying the search of npm packages. Information and Software Technol-
ogy 126 (2020), 106365.

[2] Malek Al-Zewairi, Sufyan Almajali, and Arafat Awajan. 2017. Experimental

evaluation of a multi-layer feed-forward artificial neural network classifier for

network intrusion detection system. In 2017 International Conference on New
Trends in Computing Sciences (ICTCS). IEEE, 167–172.

[3] Blake Barnes-Cook and Timothy O’Shea. 2022. Scalable Wireless Anomaly

Detection with Generative-LSTMs on RF Post-Detection Metadata. In 2022 IEEE
Wireless Communications and Networking Conference (WCNC). IEEE, 483–488.

[4] Jerome H Friedman. 2001. Greedy function approximation: a gradient boosting

machine. Annals of statistics (2001), 1189–1232.
[5] Kalil Garrett, Gabriel Ferreira, Limin Jia, Joshua Sunshine, and Christian Kästner.

2019. Detecting suspicious package updates. In 2019 IEEE/ACM 41st International
Conference on Software Engineering: New Ideas and Emerging Results (ICSE-NIER).
IEEE, 13–16.

[6] Danielle Gonzalez, Thomas Zimmermann, Patrice Godefroid, and Max Schäfer.

2021. Anomalicious: Automated detection of anomalous and potentially malicious

commits on github. In 2021 IEEE/ACM 43rd International Conference on Software
Engineering: Software Engineering in Practice (ICSE-SEIP). IEEE, 258–267.

[7] Samiul Islam and Saman Hassanzadeh Amin. 2020. Prediction of probable backo-

rder scenarios in the supply chain using Distributed Random Forest and Gradient

Boosting Machine learning techniques. Journal of Big Data 7, 1 (2020), 1–22.
[8] Yesi Novaria Kunang, Siti Nurmaini, Deris Stiawan, and Bhakti Yudho Suprapto.

2021. Attack classification of an intrusion detection system using deep learning

and hyperparameter optimization. Journal of Information Security and Applica-
tions 58 (2021), 102804.

[9] Tysen Leckie and Alec Yasinsac. 2004. Metadata for anomaly-based security

protocol attack deduction. IEEE Transactions on Knowledge and Data Engineering
16, 9 (2004), 1157–1168.

[10] Chengwei Liu, Sen Chen, Lingling Fan, Bihuan Chen, Yang Liu, and Xin Peng.

2022. Demystifying the vulnerability propagation and its evolution via depen-

dency trees in the npm ecosystem. In Proceedings of the 44th International Con-
ference on Software Engineering. 672–684.

[11] Marlene Müller. 2012. Generalized linear models. Handbook of Computational
Statistics: Concepts and Methods (2012), 681–709.

[12] Khaled Mutmbak, Sultan Alotaibi, Khalid Alharbi, Umar Albalawi, and Osama

Younes. 2022. Anomaly Detection using Network Metadata. International Journal
of Advanced Computer Science and Applications 13, 5 (2022).

[13] Yasunobu Nohara, Koutarou Matsumoto, Hidehisa Soejima, and Naoki

Nakashima. 2019. Explanation of machine learning models using improved

shapley additive explanation. In Proceedings of the 10th ACM International Confer-
ence on Bioinformatics, Computational Biology and Health Informatics. 546–546.

[14] Npm, Inc. 2023. State Of Npm 2023: The Overview. Online. https://

blog.sandworm.dev/series/state-of-npm-2023 Accessed on 2023-9-12.

[15] Marc Ohm, Felix Boes, Christian Bungartz, and Michael Meier. 2022. On the

feasibility of supervised machine learning for the detection of malicious soft-

ware packages. In Proceedings of the 17th International Conference on Availability,
Reliability and Security. 1–10.

[16] Marc Ohm, Henrik Plate, Arnold Sykosch, andMichael Meier. 2020. Backstabber’s

Knife Collection: A Review of Open Source Software Supply Chain Attacks. In

International Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment. Springer.

[17] Brian Pfretzschner and Lotfi ben Othmane. 2017. Identification of dependency-

based attacks on node. js. In Proceedings of the 12th International Conference on
Availability, Reliability and Security. 1–6.

[18] Derek A Pisner and David M Schnyer. 2020. Support vector machine. In Machine
learning. Elsevier, 101–121.

[19] Simone Scalco, Ranindya Paramitha, Duc-Ly Vu, and Fabio Massacci. 2022. On

the feasibility of detecting injections in malicious npm packages. In Proceedings
of the 17th International Conference on Availability, Reliability and Security. 1–8.

[20] Adriana Sejfia and Max Schäfer. 2022. Practical automated detection of malicious

npm packages. In Proceedings of the 44th International Conference on Software
Engineering. 1681–1692.

[21] Sonatype. 2019. 2019 State of the Software Supply Chain Report Reveals
Best Practices From 36,000 Open Source Software Development Teams.
https://www.sonatype.com/press-release-blog/2019-state-of-thesoftware-

supply-chain-report-reveals-best-practices-from-36000-opensource-software-

development-teams

[22] Zhensu Sun, Xiaoning Du, Fu Song, Mingze Ni, and Li Li. 2022. Coprotector: Pro-

tect open-source code against unauthorized training usage with data poisoning.

In Proceedings of the ACM Web Conference 2022. 652–660.
[23] Synopsys. 2020. Synopsys 2020 Open Source Security and Risk Analysis Re-

port. https://www.synopsys.com/content/dam/synopsys/sig-assets/reports/

2020-ossra-report.pdf

[24] Matthew Taylor, Ruturaj Vaidya, Drew Davidson, Lorenzo De Carli, and Vaibhav

Rastogi. 2020. Defending against package typosquatting. In Network and Sys-
tem Security: 14th International Conference, NSS 2020, Melbourne, VIC, Australia,
November 25–27, 2020, Proceedings 14. Springer, 112–131.

[25] Laurie Voss. 2018. npm and the future of JavaScript. https://slides.com/seldo/

npmfuture-of-javascript.

[26] Duc-Ly Vu. 2021. PY2SRC: Towards the Automatic (and Reliable) Identification

of Sources for PyPI Package. In 2021 36th IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE, 1394–1396.

[27] Duc-Ly Vu, Ivan Pashchenko, FabioMassacci, Henrik Plate, and Antonino Sabetta.

2020. Typosquatting and combosquatting attacks on the python ecosystem. In

2020 ieee european symposium on security and privacy workshops (euros&pw).
IEEE, 509–514.

[28] Seongil Wi, Sijae Woo, Joyce Jiyoung Whang, and Sooel Son. 2022. HiddenCPG:

large-scale vulnerable clone detection using subgraph isomorphism of code

property graphs. In Proceedings of the ACM Web Conference 2022. 755–766.
[29] Riccardo Zaccarelli, Dino Bindi, and Angelo Strollo. 2021. Anomaly detection

in seismic data–metadata using simple machine-learning models. Seismological
Society of America 92, 4 (2021), 2627–2639.

[30] Nusrat Zahan, Parth Kanakiya, Brian Hambleton, Shohanuzzaman Shohan, and

Laurie Williams. 2023. OpenSSF Scorecard: On the Path Toward Ecosystem-Wide

Automated Security Metrics. IEEE Security & Privacy (2023).

[31] Nusrat Zahan, Thomas Zimmermann, Patrice Godefroid, Brendan Murphy, Chan-

dra Maddila, and Laurie Williams. 2022. What are weak links in the npm supply

chain?. In Proceedings of the 44th International Conference on Software Engineering:
Software Engineering in Practice. 331–340.

[32] Shijie Zhang, Hongzhi Yin, Tong Chen, Zi Huang, Lizhen Cui, and Xiangliang

Zhang. 2021. Graph embedding for recommendation against attribute inference

attacks. In Proceedings of the Web Conference 2021. 3002–3014.
[33] LM Zhao, HY Hu, DHWei, and SQWang. 1999. Multilayer Feedforward Artificial

Neural Network. YellowRiver Water Conservancy Press: Zhengzhou, China (1999).
[34] Junwei Zhou, Yijia Qian, Qingtian Zou, Peng Liu, and Jianwen Xiang. 2022.

DeepSyslog: Deep Anomaly Detection on Syslog Using Sentence Embedding

and Metadata. IEEE Transactions on Information Forensics and Security 17 (2022),

3051–3061.

[35] Yao Zhu, Hongzhi Liu, Yingpeng Du, and Zhonghai Wu. 2021. IFSpard: An

information fusion-based framework for spam review detection. In Proceedings
of the Web Conference 2021. 507–517.

[36] Markus Zimmermann, Cristian-Alexandru Staicu, CamTenny, andMichael Pradel.

2019. Small World with High Risks: A Study of Security Threats in the npm

Ecosystem.. In USENIX security symposium, Vol. 17.

A APPENDIX
A.1 Metadata Information Description
Table 6 is an example of metadata information and its description

based the popular NPM package axios.

A.2 Stakeholders Community Contribution
Score

Stakeholders play a significant role in ensuring malicious package

detection. It has been seen that popular or well-known stakeholders

are not involved as intruders. Thus, using the following equation,

we can define the stakeholders’ community contribution score

(𝑠 𝑗𝑖 _𝐶𝐶𝑆) using the stakeholder contribute package number and

service time for each package 𝑝𝑖 .

𝑠 𝑗𝑖 _𝐶𝐶𝑆 = 𝐿𝑜𝑔𝑥 (𝑠 𝑗𝑖 _𝑠𝑒𝑟𝑣𝑖𝑐𝑒_𝑡𝑖𝑚𝑒) ∗ 𝐿𝑜𝑔𝑥 (𝑠 𝑗𝑖 _𝐶𝑃𝑁) (1)

We define the stakeholder’s community contribution score based on

logarithm base x (x= 2 default). The main reason for this logarithm

base score is that we want to avoid a certain label of manipulation.

Although it is difficult to manipulate author contributions, it might

be possible that attackers can uploadmultiple packages and increase

their stakeholder contribution package number. Thus, we defined

the 𝑠 𝑗𝑖 that stakeholders can not change easily without considering

temporal and package interaction properties.

https://blog.sandworm.dev/series/state-of-npm-2023
https://blog.sandworm.dev/series/state-of-npm-2023
https://www.sonatype.com/press-release-blog/2019-state-of-thesoftware- supply-chain-report-reveals-best-practices-from-36000-opensource-software-development-teams
https://www.sonatype.com/press-release-blog/2019-state-of-thesoftware- supply-chain-report-reveals-best-practices-from-36000-opensource-software-development-teams
https://www.sonatype.com/press-release-blog/2019-state-of-thesoftware- supply-chain-report-reveals-best-practices-from-36000-opensource-software-development-teams
https://www.synopsys.com/content/dam/synopsys/sig-assets/reports/ 2020-ossra-report.pdf
https://www.synopsys.com/content/dam/synopsys/sig-assets/reports/ 2020-ossra-report.pdf
https://slides.com/seldo/npmfuture- of-javascript.
https://slides.com/seldo/npmfuture- of-javascript.

WWW ’24, May 13–17, 2024, Singapore, Singapore. S. Halder, M. Bewong, A. Mahboubi, Y. Jiang, R. Islam, Z. Islam, R. Ip, E. Ahmed, G. Ramachandran & A. Babar

Table 6: Detailed description of package metadata information with an example.

Name Description Example
package_name Package Name axios

version Package Version 1.3.2

description Package Brief Description Promise based HTTP client for the browser and node.js

readme Package Readme File Readme Detail Information

scripts Description of Scripts {test:npm run test:eslint && npm run test:mocha && npm run test:karma

&& npm run test:dtslint && · · · }
distribution_tag Distribution Tag latest: 1.3.2

authors List of Authors/Organisation {name:Matt Zabriskie}

contributors List of Contributors [{name:Matt Zabriskie, {name:Nick Uraltsev}, {name:Jay]

maintainers List of Maintainers [{name: mzabriskie, email: mzabriskie@gmail.com}, {name: nickuraltsev,

email: nick.uraltsev@gmail.com}, {name: emilyemorehouse, email: emilye-

morehouse@gmail.com}]

publishers Name of Publishers MIT

dependencies List of Depended Package {follow-redirects: 1̂.15.0, form-data: 4̂.0.0, proxy-from-env: 1̂.1.0}

development_depen-

dencies

List of Development Dependen-

cies

{@babel/core: 7̂.18.2, @babel/preset-env: 7̂.18.2, @commitlint/cli: 1̂7.3.0,

@commitlint/config-conventional: 1̂7.3.0, · · · }
created_time Package Created Time {created: 2014-08-29T23:08:36.810Z}

modified_time Package Modified Time {modified: 2023-05-20T13:42:00.650Z}

published_time Version Published Time {1.3.2: 2023-02-03T18:10:48.275Z}

NPM_link Link of NPM repository https://npmjs.com/package/axios

homepage_link Homepage Link https://axios-http.com

GitHub_link Package GitHub Link https://github.com/axios/axios.git

bugs_link Bugs Link https://github.com/axios/axios/bugs

issues_link Issues Link https://github.com/axios/axios/issues

keywords Keywords of the Package [xhr, http, ajax, promise, node]

tags Tags of the Package 92

issues Number of Issues 488

fork_number Number of Fork 10900

star Number of Star of the Package 10300

subscriber_count Count of Package Subscriber 1200

A.3 MeMPtec Adversarial Manipulation
Algorithm

To prevent adversaries, we analysed data manipulation-based per-

formance analysis in the algorithm 2. The algorithm takes build

model M (from algorithm 1) and adversaries data as input and

returns adversaries-based results. Initially, we set a data frame that

is empty. Then, we calculate features significant for each model

and find the significant feature ranked based on Shapley additive

explanation (SHAP) [13] values (decreasing order) in line 2.

Manipulate data has been initialised by our machine transferable

data in line 3. Then, we extract the original label that should be

used to check our predicted results accuracy measurement in line

4 and find the without manipulated data-based results in line 5.

We measure the results and save them in the data frame in lines 6

and 7, respectively. This model is applicable for TOP-N feature ma-

nipulation analysis as well as percentage of features manipulation

analysis. Thus, we select the number of manipulated features in line

8, where TOP-N selects only TOP-N features and the percentage

option selects all feature numbers. In the feature item, we only

manipulate corresponding malicious package feature values based

on benign value distributions in lines 10-11. After that, predict the

Algorithm 2:MeMPtec Adversaries (M, Data)

Data: M: Build MeMPtec Model; 𝐷𝑎𝑡𝑎 : Machine transferable data;

Result: DataFrame: Models performance based on data manipulation;

1 DataFrame← ∅
2 Significant_Feature← Rank_Features(M, SHAP)

3 manipulate_data← Data.copy()

4 Original_Label← Extract label from manipulate_data

5 Predict_Result←M.predict(manipulate_data)

6 Performance← Performance_Measurement(Predict_Result, label_Test)

7 DataFrame← DataFrame ∪ [M.name, "ALL’, Performance]

8 Number_of_MF = [TOP-N | len(Significant_Feature) if option = TOP-N |

Percentage]

9 for i ∈ range(Number_of_MF) do
10 feature = Significant_Feature[i]

11 manipulate_data = Manipulate_Data(manipulate_data, feature)

12 Predict_label←M.predict(manipulate_data)

13 Performance← Performance_Measurement(Predict_label,

Original_label)

14 DataFrame← DataFrame ∪ [M.name, feature, Performance]

15 Return: DataFrame /* Return manipulated feature based results. */

target variable using manipulated data and the selected model in

line 12. Furthermore, various evaluation metric values have been

calculated using prediction and original output and saved to the

Malicious Package Detection using Metadata Information WWW ’24, May 13–17, 2024, Singapore, Singapore.

data frame in lines 13 and 14, respectively. This process continues

for each feature in the model and each model in our considered five

ML/DL methods. Finally, the algorithm returns the manipulated

results for TOP-N or Percentage in line 15.

A.4 TOP-N Features Manipulation Analysis
Generally, the attacker’s motive is to manipulate less number of

features that have a significant influence on the model performance

degradation. To consider this intention, we analysis the perfor-

mance of our features-based algorithm considering TOP-N signif-

icant information and features. To detect the significant features,

we used SHAP [13] values ranking algorithms. Figure 5 shows the

(a) DL (b) DRF (c) GLM

(d) GBM (e) SVM

Figure 5: Performance analyses of various models wrt TOP-N
significant feature manipulation.

TOP-10 features manipulation result performance. It is clear that

ourMeMPtec based results are more robust than theMeMPtec_E and

Existing_tec for all algorithms. The main reason is the significant

features that each algorithm selects based on its dataset. In our

proposed feature selection method MeMPtec, top notable features

are difficult to manipulate that attackers can not change easily. As a

result, the model performance reduces a little bit. For example, after

10 features manipulation, MeMPtec performance reduces 99.94%→
89.55% in DL, 99.98%→ 99.98% in DRF 98.87%→ 95.25% in GLM,

99.95%→ 58.16% in GBM and 99.59%→ 99.13 in SVM model. In

contrast, Existing_tec based features performance reduced rapidly

and reached around 50.0% for all ML/DL methods.

A.5 Information Manipulation Analysis
In this research work, we have utilised information and feature.

Thus, we can easily modify algorithm 2 for information manipu-

lation. To make the algorithm for information manipulatable, we

make information ranked based on their features SHAP values.

After that, we change that information one by one by changing

their corresponding features manipulation and find the results.

We observe similar results patterns in figure 3 for the percentage

of information manipulation in Figure 6. In the GLM algorithm,

MeMPtec information reduces model performances by 7.19% (99.87%

→ 92.68%) after 100% manipulation, while Existing_tec information

reduces model performances by around 46.70% (97.64%→ 50.94%)

after only 30% information manipulation. In the DL algorithm,

MeMPtec based performance reduces 17.32% (99.98% → 82.66%),

(a) DL (b) DRF (c) GLM

(d) GBM (e) SVM

Figure 6: Performance analyses of various models wrt infor-
mation manipulation.

(a) DL (b) DRF (c) GLM

(d) GBM (e) SVM

Figure 7: Performance analyses of various models wrt TOP-N
significant information manipulation.

whereas Existing_tec-based performance reduces 47.82% (97.94%→
50.12%).

Figure 7 shows the TOP-N (1-10) significant information changed

based on results. This result is slightly different from the TOP-N fea-

tures results because, in this case, we added corresponding features

SHAP values to indicate information SHAP values. That means

the selected information set differs from the chosen TOP-N fea-

tures set. Our MeMPtec based results outperform the MeMPtec_E
and Existing_tec for all algorithms regarding model robustness. For

example, after 10 information manipulation MeMPtec method per-

formances reduced 99.94%→ 81.03% in DL, 99.98%→ 99.98% in

DRF and 98.87% → 93.25% in GLM, whereas Existing_tec based
features performances reduced rapidly and reached around 50.0%

for all algorithms. It shows that MeMPtec performances reduce

significantly on the GBM algorithm and it is still better than the

Existing_tec model. Finally, we can say our MeMPtec feature selec-
tion model outperforms existing works for well known machine

learning algorithms.

	Abstract
	1 Introduction
	2 Existing Works
	2.1 Differences with Previous Works

	3 Preliminaries & Problem Statement
	4 Categorisation of Package Metadata Information
	5 Feature Extraction and Selection
	5.1 Easy-to-Manipulate Features
	5.2 Difficult-to-Manipulate Features
	5.3 Proposed MeMPtec Model

	6 Experiments
	6.1 Experimental Setup
	6.2 Performance Evaluation of MeMPtec (RQ1)
	6.3 Robustness of MeMPtec (RQ2)

	7 Conclusion
	References
	A Appendix
	A.1 Metadata Information Description
	A.2 Stakeholders Community Contribution Score
	A.3 MeMPtec Adversarial Manipulation Algorithm
	A.4 TOP-N Features Manipulation Analysis
	A.5 Information Manipulation Analysis

