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ABSTRACT
Graph neural networks (GNNs) have emerged as a powerful model
to capture critical graph patterns. Instead of treating them as black
boxes in an end-to-end fashion, attempts are arising to explain the
model behavior. Existing works mainly focus on local interpretation
to reveal the discriminative pattern for each individual instance,
which however cannot directly reflect the high-level model behav-
ior across instances. To gain global insights, we aim to answer an
important question that is not yet well studied: how to provide a
global interpretation for the graph learning procedure? We formulate
this problem as globally interpretable graph learning, which targets
on distilling high-level and human-intelligible patterns that domi-
nate the learning procedure, such that training on this pattern can
recover a similar model. As a start, we propose a novelmodel fidelity
metric, tailored for evaluating the fidelity of the resulting model
trained on interpretations. Our preliminary analysis shows that
interpretative patterns generated by existing global methods fail to
recover the model training procedure. Thus, we further propose our
solution, Graph Distribution Matching (GDM), which synthesizes
interpretive graphs by matching the distribution of the original
and interpretive graphs in the GNN’s feature space as its training
proceeds, thus capturing the most informative patterns the model
learns during training. Extensive experiments on graph classifi-
cation datasets demonstrate multiple advantages of the proposed
method, including high model fidelity, predictive accuracy and time
efficiency, as well as the ability to reveal class-relevant structure.
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1 INTRODUCTION
Graph neural networks (GNNs)[13, 14, 16, 17, 31] have prominently
advanced the state of the art on graph learning tasks. Despite their
great success, GNNs are usually treated as black boxes in an end-to-
end fashion of training and deployment, which may raise trustwor-
thiness concerns in decision making [15, 28, 37], if humans cannot
understand the pattern captured by the model during its learning
procedure. Lack of such understanding could be particularly risky
when using a GNNmodel for high-stakes domains, e.g., finance [33]
and medicine [18]. For instance, in the context of predicting the
effect of medicines, if a GNNmodel mistakenly learns false patterns
that violate chemical principles, it may provide incorrect assess-
ments. This highlights the importance of ensuring a comprehensive
interpretation of the working mechanism for graph learning.

To improve transparency of GNNs, a large body of existing inter-
pretation techniques focuses on providing instance-level local inter-
pretation, which explains specific predictions a GNN model makes
on each individual graph instance [1, 3, 8, 19, 22, 23, 25, 27, 32, 36].
Despite different strategies adopted in these works, in general, local
interpretation aims to identify critical substructure for a particular
graph instance, which would require manual inspections on many
local interpretations to mitigate the variance across instances and
conclude a high-level pattern of the model behavior. As a sharp
comparison to such instance-specific interpretations, relatively few
recent works study model-level global interpretations [2, 29, 34] to
understand the general behavior of the model with respect to a
certain class instead of any particular instance.

The goal of global interpretation is to generate a few compact
interpretive graphs, which summarize class discriminative patterns
the GNN model learns for decision making. Existing works gen-
erate such interpretive graphs via different strategies, including
reinforcement learning [34], concept combination [2] and prob-
abilistic generation [29]. These solutions can extract meaningful
interpretive graphs with a high predictive accuracy, evaluated from
the perspective ofmodel consumers: given a pre-trained GNNmodel,
the end user can use these interpretation methods to understand
what patterns this model is leveraging for inference.
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Figure 1: Model Fidelity (i.e., cosine similarity between the
predictive logits of original model and that of surrogate
model) and Predictive Accuracy (i.e., the original model’s
accuracy on interpretive graphs) as model training proceeds.

In this paper, we aim to interpret at the side of model develop-
ers/providers, who usually care about what patterns really dominate
the model training, which could help improve training transparency.
This demands specialized evaluation, which are long ignored: if
the interpretation indeed contains essential patterns the model cap-
tures during training, then when we use these interpretive graphs
to train a model from scratch, this surrogate model should present
similar behavior as the original model. We are the first to realize
this principle and define a new metric, model fidelity, which evalu-
ates the predictive similarity between the surrogate model (trained
via interpretative graphs) and the original model (normally trained
via the training set). We evaluate model fidelity of existing global
interpretation method, XGNN [34] and GNNInterpreter [29], by
comparing the surrogate model and the original model for each
training iteration on MUTAG data. An ideal interpretation should
keep model fidelity to be one as training proceeds, indicating the
surrogate model always makes exactly the same prediction as the
target model. As shown in Figure 1, the model fidelity starts from
one, as both models use the same initialization. As the training
progresses, since the surrogate model is trained on interpretation
graphs instead of the original training data, these two models begin
to diverge. Our interpertation can successfully maintain a high
model fidelity (closing to one), indicating our captured patterns can
indeed train a surrogate model similar to the target model.

To this end, we attempt to provide a novel globally interpretable
graph learning framework, which is designed for the model devel-
opers to distill high-level and human-intelligible patterns the model
learns in its training procedure. To be more specific, we propose
Graph Distribution Matching (GDM) to synthesize a few compact
interpretive graphs for each class following the distribution match-
ing principle: as the model training progresses, the interpretive
graphs can be perceived by the model to follow a similar distri-
bution as the original graphs. This is realized by minimizing the
distance between the interpretive and original data distributions,
measured as the maximum mean discrepancy (MMD) [6] in a fam-
ily of embedding spaces obtained by a series of model snapshots.
Presumably, GDM simulates the model training trajectory, thus the
generated interpretation can provide a general understanding of
what patterns dominate and result in the model training behavior.

Note that as model developer, we can access the model training
trajectory, and our proposed framework is an efficient plug-and-
play interpretation tool that can be easily integrated to usual model
development pipeline, without interfering the normal training pro-
cedure. The success of our framework enables the model develops

to provide an interpretation byproduct when publishing their mod-
els, which can benefits multiple parties: for the developers, models
are published with better transparency without leaking training
data; for the consumers, the interpretation can help screen whether
the models’ discriminative patterns fit their needs.

Extensive quantitative evaluations on three synthetic and three
real-world datasets for graph classification task verify the effective-
ness of GDM: it can simultaneously achieve high model fidelity
and predictive accuracy. Our ablation study also shows the ad-
vantage of generating interpretation guided by the model training
trajectory. Qualitative study further intuitively demonstrates the
human-intelligible patterns captured by GDM.

2 RELATEDWORK
Extensive efforts have been conducted to improve GNN trans-
parency and interpretability. Existing techniques can be catego-
rized as local instance-level interpretation and global model-level
interpretation depending on the interpretation form.
2.1 Local Instance-Level Interpretation
Instance-level methods provide input-dependent explanations for
each individual graph [1, 36]. Given an input graph, these methods
explain GNNs by extracting a small interpretive subgraph. Existing
solutions can be categorized as gradient-based [3, 23], attention-
based [22], perturbation-based [20, 32], decomposition-based [8],
and surrogate-based methods [27]. Gradient-based method directly
uses the gradients as the approximations of feature importance.
Attention-based methods use the attention mechanism to identify
important subgraph as interpretation. Perturbation-based methods
optimize a subgraph mask to captures the important nodes and
edges. Surrogate-based explanation methods use data sampling to
filter out unimportant features and an explainable small model —
such as a probabilistic graphical model — is fitted on the filtered
data as a topological explanation. Decomposition-based methods
decompose predictive scores to represent how importance the input
contributes to the predicted results. Again, instance-level methods
are based on each input instance. Although they are helpful for
getting an explanation for every single graph, they can hardly
capture the commonly important features that are shared by graph
instances for each class. Therefore, it is necessary to have both
instance-level and model-level interpretations for GNNs.
2.2 Global Model-Level Interpretations
Model-level interpretation aims at capturing the global behaviour
of the model as a whole, such that a robust overview of the model
can be summarized from individual noisy local explanations. This
type of interpretation on graph learning is less studied. XGNN [34]
leverages a reinforcement learning technique to sequentially gener-
ate edges based on the prediction reward. However, this approach
requires domain expert knowledge to design valid reward function
for different inputs, which is not always available. GNNInterpreter
[29] learns a probabilistic generative graph distribution and iden-
tifies the key graph pattern when GNN tries to make a certain
prediction. GLGExplainer [2] generates explanations as Boolean
combinations of learned graphical concepts, represented as clusters
of local explanations. While these methods identify intuitive class-
related patterns that can be recognized by the model (with high
predictive accuracy), they usually ignores the training utility of
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these explanations. Ideally, high-quality interpretations capturing
class discriminative patterns from the training data should be able
to train a similar model. From this perspective, in this work, we
define model fidelity as a new metric, and propose a novel globally
interpretable graph learning framework that explains by matching
the distribution along the model training trajectory.

2.3 Data Condensation
Dataset condensation aims to synthesizing a compact training
dataset to distill massive training data. Multiple techniques are
proposed to maintain the utility of dataset for model training, in-
cluding gradient matching [39] with data regularity [11], trajectory
matching [4], and distribution matching [38]. While majority of
study focuses on i.i.d. data (image), recently these techniques are
adapted to condense large graphs into small and highly-informative
graphs [7, 9, 10, 30, 40]. While data condensation and global inter-
pretation could share similar techniques, they have very different
goals: data condensation aims to boost model performance using
as small data as possible, while global interpretation is to faithfully
identify the key patterns dominating the target model’s behavior.

3 METHODS
We first discuss existing global training methods and provide a
general form of the targeted problem. To improve the utility of
class discriminative explanations in training a similar model, we
propose a novel globally interpretable graph learning framework.
This framework aims to align the model’s behavior on original
training data and synthesized interpretive data along the model
training trajectory. We realize this goal via the distribution match-
ing principle, which can be formulated as an optimization problem.
We further discuss several practical constraints for optimizing in-
terpretive graphs. Finally, we provide the designed algorithm for
the proposed interpretation method.

3.1 Graph Learning Background
We focus on explaining GNNs’ global behavior for the graph classi-
fication task. A graph classification dataset with𝑁 graphs can be de-
noted as G = {𝐺 (1) ,𝐺 (2) , . . . ,𝐺 (𝑁 ) } with a corresponding ground-
truth label set Y = {𝑦 (1) , 𝑦 (2) , . . . , 𝑦 (𝑁 ) }. Each graph consists of
two components, 𝐺 (𝑖 ) = (A(𝑖 ) ,X(𝑖 ) ), where A(𝑖 ) ∈ {0, 1}𝑛×𝑛 de-
notes the adjacency matrix and X(𝑖 ) ∈ R𝑛×𝑑 is the node feature
matrix. The label for each graph is chosen from a set of 𝐶 classes
𝑦 (𝑖 ) ∈ {1, . . . ,𝐶}, and 𝑦 (𝑖 )𝑐 denotes that the label of graph 𝐺𝑖 is
𝑐 , that is 𝑦 (𝑖 ) = 𝑐 . A set of graphs that belong to class 𝑐 could be
further represented as G𝑐 = {𝐺 (𝑖 ) |𝑦 (𝑖 ) = 𝑐}.

A GNN model Φ(·) is a concatenation of a feature extractor
𝑓𝜽 (·) parameterized by 𝜽 and a classifier ℎ𝝍 (·) parameterized by 𝝍,
where Φ(·) = ℎ𝝍 (𝑓𝜽 (·)). The feature extractor 𝑓𝜽 : G → R𝑑 ′ takes
in a graph and embeds it to a low-dimentional space with 𝑑′ ≪ 𝑑 .
The classifier ℎ𝝍 : R𝑑

′ → {1, . . . ,𝐶} further outputs the predicted
class given the graph embedding.

3.2 Revisit Global Interpretation Problem
We now provide a general form for the global interpretation prob-
lem. The idea is to generate a small set of compact graphs that can

explain the high-level behavior of the GNN model, e.g., what pat-
terns lead the model to discriminate different classes. Specifically,
given a GNN model Φ∗, exsiting global interpretation method aims
to generate interpretive graphs that have the maximal predicted
probability for a certain class 𝑦𝑐 . Formally, this problem can be
defined as:

min
S
L(Φ∗ (S), 𝑦𝑐 ), (1)

where S is one or multiple compact interpretive graphs capturing
key graph structures and node characteristics for interpretation,
and L(·, ·) is the loss (e.g., cross-entropy loss) of predicting S as
label 𝑦𝑐 . Existing global interpretation techniques can fit in this
form but differ in the generation procedure of S. For instance, in
XGNN [34], S is defined as a set of completely synthesized graphs
with each edge generated by a reinforcement learning strategy.
The goal of the reward function is to maximize the probability
of predicting S as a certain class 𝑦𝑐 . In GNNInterpreter [29], S
is generated by sampling from an estimated graph distribution.
In GLGExplainer [2], S is generated by a Boolean logic function.
Despite their difference in generation techniques, they stand on a
common ground as a model consumer: they can only access and
inspect the final pre-trained model Φ∗ to explain its behavior.

If standing from the perspective of model provider, such a prob-
lem formulation may not fully leverage all accessible information,
such as the the whole training trajectory, leading to limited inter-
pretation capability. Specifically, we consider interpretation quality
from the following two aspects:

• Predictive Accuracy reflects whether the extracted interpretative
patterns are really class-relevant. It is calculated as the model
accuracy on generated interpretive graphs. Existingworksmainly
focus on this aspect [2, 29, 34].
• Model Fidelity measures whether the interpretive graphs are class
discriminative enough to train a similar model. It is calculated
as the cosine similarity between the predictive probabilities of
the target model and that of the surrogate model (trained by
interpretative graphs) on a same set of instances. This aspect
however has never been inspected in prior studies.

As shown in Figure 1, existing works following this formulation
provide a limited model fidelity. This observation motivates us to
rethink the global interpretation problem from the model provider’s
perspective and design a globally interpretable learning framework.

3.3 Globally Interpretable Graph Learning
Our goal is to generate global explanations that can not only be
accurately predicted as the corresponding class, but also lead to a
high-fidelity model. In order to achieve this goal, we propose to op-
timize the explanations in the model developing stage, such that the
training trajectory information can be leveraged. We thus propose
a novel research problem: how to provide global interpretation for a
model training procedure, such that training on such interpretation
can recover a similar model? We frame this problem as globally
interpretable graph learning, which can be defined as follows:

min
S
E

𝑡∼T
[L(Φ𝑡 (S), 𝑦𝑐 )],

s.t. Φ𝑡 = opt − algΦ (LCE (Φ𝑡−1), 𝜍), (2)



WWW ’24, May 13–17, 2024, Singapore, Singapore Yi Nian, Yurui Chang, Wei Jin, and Lu Lin

Distribution 
Matching

Interpretive GraphTraining  Graph

…… ……

House 
Pattern

Non-House 
Pattern

House 
Class

Non-House 
Class

Figure 2: Overview of the proposed globally interpretable learning framework via graph distribution matching GDM.

where T = [0, . . . ,𝑇 − 1] is the normal training iterations for
the target GNN model, and opt − alg is a specific model update
algorithm (e.g., gradient descent) with a fixed number of steps 𝜍 .
LCE (Φ) = E𝐺,𝑦∼G,Y [(Φ(𝐺), 𝑦)] is the cross-entropy loss used for
normal GNN model training.

This formulation of globally interpretable graph learning states
that the interpretable patterns S should be optimized based on the
whole training trajectory Φ0 → Φ1 → · · · → Φ𝑇−1 of the model.
This stands in sharp contrast to other global interpretation where
only the final model Φ∗ = Φ𝑇−1 is considered. The training trajec-
tory reveals more information about model’s training behavior to
form a constrained model space, such as essential graph patterns
that dominate the training of this model.

3.4 Interpretation via Distribution Matching
To realize globalinterpretation as demonstrated in Eq. (2), we now
introduce the exact form of the objective function for optimizing
interpretive graphs that encapsulate the model’s learning behav-
ior from the data. Recall that a GNN model is a combination of
feature extractor and a classifier. The feature extractor 𝑓𝜽 usually
carries the most essential information about the model, while the
classifier is a rather simple multi-perceptron layer. Since the fea-
ture extractor plays the majority role, a natural idea for generating
interpretation is to match its distribution with training graphs in
the model’s feature space. We name this interpertation principle as
Graph Distribution Matching (GDM).
Graph Distribution Matching (GDM) To realize this principle,
we first measure the distance between two graph distributions via
their maximum mean discrepancy (MMD), which is the difference
between means of distributions in a Hilbert kernel spaceH [6]:

sup
∥ 𝑓𝜽 ∥H≤1

(
E

𝐺∼G𝑐
[𝑓𝜽 (𝐺)] − E

𝑆∼S𝑐
[𝑓𝜽 (𝑆)]

)
. (3)

MMD aims to measure the supreme distance between two graph dis-
tributions by finding an optimal 𝑓𝜃 ∗ in the spaceH , which however
is nontrivial. We thus empirically estimate MMD using the function
𝑓𝜃𝑡 at current model training step [38]. Intuitively, it captures the
difference between the encoded training graphs and interpretive
graphs in the embedding space. Based on this idea, we instantiate
the outer objective in Eq. (2) as a distribution matching lossLDM (·):
L(Φ𝑡 (S), 𝑦𝑐 ) B LDM (𝑓𝜽𝑡 (S𝑐 ))

= ∥ 1
|G𝑐 |

∑︁
𝐺∈G𝑐

𝑓𝜽𝑡 (𝐺) −
1
|S𝑐 |

∑︁
𝑆∈S𝑐

𝑓𝜽𝑡 (𝑆)∥
2, (4)

where S𝑐 is the interpretive graph(s) for explaining class 𝑐 , and G𝑐
is the training graphs belonging to class 𝑐 . By optimizing Eq. (4),
we can obtain interpretive graphs that produce similar embeddings
to training graphs for the current GNN feature extractor 𝜽𝑡 in the
training trajectory. Thus, the interpretive graphs provide a plausible
explanation for the model learning process. Note that there can
be multiple interpretive graphs for each class, i.e., |S𝑐 | ≥ 1. With
this approach, we are able to generate an arbitrary number of
interpretive graphs that capture different patterns.
Globally Interpretable Learning via Distribution Matching
By plugging the distribution matching objective Eq. (4) into Eq. (2),
and simultaneously optimizing interpretive graphs for multiple
classes S = {S𝑐 }𝐶𝑐=1, we can rewrite our learning goal as follows:

min
S
E

𝑡∼T

[ 𝐶∑︁
𝑐=1
LDM (𝑓𝜽𝑡 (S𝑐 ))

]
s.t. 𝜽𝑡 , 𝝍𝑡 = opt − alg𝜽 ,𝝍 (LCE (ℎ𝝍𝑡−1 , 𝑓𝜽𝑡−1 ), 𝜍), (5)

where the cross entropy loss is w.r.t. the feature extractor and predic-
tive head, LCE (Φ) = LCE (ℎ𝝍 , 𝑓𝜽 ) = E𝐺,𝑦∼G,Y [(ℎ𝝍 (𝑓𝜽 (𝐺)), 𝑦)],
and for each class 𝑐 , we optimize its corresponding interpretive
graph(s) S𝑐 . The interpretation procedure is based on the model
training trajectory, while the model is normally trained on the orig-
inal classification task. Thus this interpretation method can serve
as a plug-and-play tool without interfering normal model training.

The proposed framework is illustrated in Figure 2, for each train-
ing step 𝑡 , we update interpretive graphs by aligning with the
training graphs in the GNN model’s feature space via distribution
matching. Along the whole training trajectory, we keep updating
interpretive graphs in a curriculum learning manner to capture the
model’s training behavior. It is worth noting that such a distribution
matching scheme has shown success in distilling rich knowledge
from training data to synthetic data [38], which preserve sufficient
discriminative information for training the underlying model. This
justifies our design of distribution matching for interpretation.

3.5 Practical Constraints in Graph Optimization
Optimizing each interpretive graph is essentially optimizing its
adjacency matrix and node feature. Denote a interpretive graph as
𝑆 = (A𝑠 ,X𝑠 ), with A𝑠 ∈ {0, 1}𝑚×𝑚 and X𝑠 ∈ R𝑚×𝑑 . To generate
solid graph explanations using Eq. (5), we introduce several practical
constraints on A𝑠 and X𝑠 . The constraints are applied on each
interpretive graph, concerning discrete graph structure, matching
edge sparsity, and feature distribution with the training data.
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DiscreteGraph StructureOptimizing the adjacencymatrix is chal-
lenging as it has discrete values. To address this issue, we assume
that each entry in matrixA𝑠 follows a Bernoulli distribution B(Ω) :
𝑝 (A𝑠 ) = A𝑠 ⊙𝜎 (Ω) + (1−A𝑠 ) ⊙𝜎 (−Ω), where Ω ∈ [0, 1]𝑚×𝑚 is the
Bernoulli parameters, 𝜎 (·) is element-wise sigmoid function and ⊙
is the element-wise product, following [9, 15, 16]. Therefore, the
optimization on A𝑠 involves optimizing Ω and then sampling from
the Bernoulli distribution. However, the sampling operation is non-
differentiable, thus we employ the reparameterization method [21]
to refactor the discrete random variable into a function of a new
variable 𝜀 ∼ Uniform(0, 1). The adjacency matrix can then be de-
fined as a function of Bernoulli parameters as follows, which is
differentiable w.r.t. Ω:

A𝑠 (Ω) = 𝜎 ((log 𝜀 − log(1 − 𝜀) + Ω)/𝜏), (6)

where 𝜏 ∈ (0,∞) is the temperature parameter that controls the
strength of continuous relaxation: as 𝜏 → 0, the variable A𝑠 ap-
proaches the Bernoulli distribution. Now Eq. (6) turns the problem
of optimizing the discrete adjacency matrix A𝑠 into optimizing the
Bernoulli parameter matrix Ω.
Matching Edge Sparsity Our interpretive graphs are initialized
by randomly sampling subgraphs from training graphs, and their
adjacency matrices will be freely optimized, which might result
in too sparse or too dense graphs. To prevent such scenarios, we
exert a sparsity matching loss by penalizing the distance of sparsity
between the interpretive and the training graphs, following [9]:

Lsparsity (S) =
∑︁

(A𝑠 (Ω),X𝑠 )∼S
max(Ω̄ − 𝜖, 0), (7)

where Ω̄ =
∑
𝑖 𝑗 𝜎 (Ω𝑖 𝑗 )/|Ω | calculates the expected sparsity of a

interpretive graph, and 𝜖 is the average sparsity of initialized 𝜎 (Ω)
for all interpretive graphs, which are sampled from original training
graphs thus resembles the sparsity of training dataset.
Matching Feature Distribution Real graphs in practice may have
skewed feature distribution; without constraining the feature distri-
bution on interpretive graphs, rare features might be overshadowed
by the dominating ones. For example, in the molecule dataset MU-
TAG, node feature is the atom type, and certain node types such as
Carbons dominate the whole graphs. Therefore, when optimizing
the feature matrix of interpretive graphs for such unbalanced data,
it is possible that only dominating node types are maintained. To
alleviate this issue, we propose to match the feature distribution
between the training graphs and the interpretive ones.

Specifically, for each graph𝐺 = (A, X) with𝑛 nodes, we estimate
the graph-level feature distribution as x̄ =

∑𝑛
𝑖=1 X𝑖/𝑛 ∈ R𝑑 , which

is essentially a mean pool of the node features. For each class 𝑐 , we
then define the following feature matching loss:

Lfeat (S𝑐 ) = ∥
1
|G𝑐 |

∑︁
(A, X) ∈G𝑐

x̄ − 1
|S𝑐 |

∑︁
(A𝑠 ,X𝑠 ) ∈S𝑐

x̄𝑠 ∥2, (8)

where we empirically measure the class-level feature distribution
by calculating the average of graph-level features. By minimizing
the feature distribution distance in Eq. (8), even rare features can
have a chance to be distilled in the interpretive graphs.

Algorithm 1 Graph Distribution Matching (GDM)

1: Input: Training data G = {G𝑐 }𝐶𝑐=1
2: Initialize explanation graphs S = {S𝑐 }𝐶𝑐=1 for each class 𝑐
3: for 𝑡 = 0, . . . ,𝑇 − 1 do
4: Samplemini-batch interpretive graphs 𝐵S = {𝐵S𝑐 ∼ S𝑐 }𝐶𝑐=1
5: Sample mini-batch training graphs 𝐵G = {𝐵G𝑐 ∼ G𝑐 }𝐶𝑐=1
6: # Optimize global interpretive graphs
7: for class 𝑐 = 1, . . . ,𝐶 do
8: Compute the interpretation loss following Eq. (9): L𝑐 =

LDM (𝑓𝜽𝑡 (𝐵S𝑐 )) + 𝛼 · Lfeat (𝐵S𝑐 ) + 𝛽 · Lsparsity (𝐵S𝑐 )
9: end for
10: Update explanation graphs S ← S − 𝜂∇S

∑𝐶
𝑐=1 L𝑐

11: # Optimize GNN model as normal
12: Compute normal training loss for graph classification task
LCE (ℎ𝝍𝑡−1 , 𝑓𝜽𝑡−1 ) =

∑
𝐺∼𝐵G (ℎ𝝍𝑡−1 (𝑓𝜽𝑡−1 (𝐺)), 𝑦)

13: Update feature extractor 𝜽𝑡+1 = 𝜽𝑡−𝜂1∇𝜽LCE (ℎ𝝍𝑡−1 , 𝑓𝜽𝑡−1 )
14: Update predictive head 𝝍𝑡+1 = 𝝍𝑡−𝜂2∇𝝍LCE (ℎ𝝍𝑡−1 , 𝑓𝝍𝑡−1 )
15: end for
16: Output: Explanation graphs S∗ = {S∗𝑐 }𝐶𝑐=1 for each class 𝑐

3.6 Final Objective and Algorithm
Integrating the practical constraints discussed in Section 3.5 with
the distribution matching based interpretation framework in Eq. (5),
we now obtain the final objective for interpretation optimization,
which essentially is determined by the Bernoulli parameters for
sampling discrete adjacency matrices and the node feature matrices.
Formally, we aims to solve the following optimization problem:

min
S
E

𝑡∼T

[ 𝐶∑︁
𝑐=1
LDM (𝑓𝜽𝑡 (S𝑐 )) + 𝛼 · Lfeat (S𝑐 ) + 𝛽 · Lsparsity (S)

]
s.t. 𝜽𝑡 , 𝝍𝑡 = opt − alg𝜽 ,𝝍 (LCE (ℎ𝝍𝑡−1 , 𝑓𝜽𝑡−1 ), 𝜍) (9)

where we use 𝛼 and 𝛽 to control the strength of regularizations
on feature distribution matching and edge sparsity respectively.
Algorithm 1 details the steps for solving this optimization problem.
Complexity Analysis Suppose for each iteration, we sample 𝐵1
interpretive graphs and 𝐵2 training graphs. Denote their average
edge number as𝑚. The inner loop for interpretive graph update
takes𝑚(𝐵1 + 𝐵2) computations on node, while the update of GNN
model uses 𝑚𝐵2 computations. Therefore the overall time com-
plexity is O(𝑚𝑇 (𝐵1 + 2𝐵2)), which is of the same magnitude of
complexity for normal GNN training. Consider 𝐶 classes and each
interpretation graph has 𝑁 node with feature𝐾 , the total parameter
complexity is 𝑂 (𝐶𝐵1𝑁 2 +𝐶𝐵1𝑁𝐾). Empirical time and space cost
can be found in Appendix A.7. This demonstrates the efficiency of
our interpretation method: it can simultaneously generate interpre-
tations as the training of GNNmodel proceeds, without introducing
extra complexity.

4 EXPERIMENTAL STUDIES
This section aims to verify the necessity of our proposed method
for globally interpretable graph learning. Specifically, we conduct
extensive experiments to answer the following questions:
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• Q1: Does the proposed global interpretation result in similar
GNN models as trained in original data (i.e., with high fidelity)?
• Q2: Is the training trajectory necessary for accurate global inter-
pretation (compared with ensemble model snapshots)?
• Q3: Are the generated interpretations human-intelligible?
We provide both quantitative and qualitative study to evaluate the
global interpretations generated by GDM, comparing with existing
global interpretation baselines and ablation variants.

4.1 Experimental Setup
Dataset The interpretation performance is evaluated on the fol-
lowing synthetic and real-world datasets for graph classification,
whose statistics can be found in Appendix A.2.
• Real-world data includes: MUTAG [5] consists of chemical com-
pounds with atoms as nodes and chemical bonds as edges, labeled
by whether it has a mutagenic effect on a bacterium. Graph-
Twitter [26] includes Twitter comments for sentiment classifica-
tion with three classes. Each comment sequence is presented as a
graph, with word embedding as node feature. Graph-SST5 [35]
is a similar dataset with reviews, where each review is converted
to a graph labeled by one of five rating classes.
• Synthetic data includes: Shape contains four classes, i.e., Lollipop,
Wheel, Grid, and Star. Each class has the same number of syn-
thesized graphs with a random number of nodes. BA-Motif [20]
uses Barabasi-Albert (BA) graph as base graphs, among which
half graphs are attached with a “house” motif and the rest with
“non-house” motifs. BA-LRP [24] based on Barabasi-Albert (BA)
graph includes one class being node-degree concentrated graphs,
and the other degree-evenly graphs. These datasets do not have
node features, thus we use node index as the surrogate feature.

Baseline We mainly compare GDM with global interpretation
baselines, and ablative variants of our method.
• Global interpretation baselines: XGNN [34] generate global inter-
pretation via reinforcement learning. Since it heavily relies on
domain knowledge (e.g. chemical rules) in the reward function,
thus we only evaluate it on MUTAG. GNNInterpreter [29] gen-
erates interpretations based on label and embedding similarity
but it is only based on a pre-trained GNN model1. We also in-
clude a simple Random strategy as a reference, which randomly
selects graphs from the training set as interpretations.
• Ablation variants of GDM: We also consider the variants of GDM
which generate interpretation based on selective model snap-
shots. GDM-First and GDM-Last uses only the first or the last
model snapshot respectively for the outer optimization in Eq.
(5). GDM-Ensemble uses the same set of model snapshots as
in GDM for conducting the outer optimization of Eq. (5), but
ignores the sequence of model trajectory (i.e., disabling the inner
optimization).

Meanwhile, a comparison of GDM with several local interpreta-
tion methods (which extract interpretive graphs for each training
instance) can be found in Appendix A.3. A simple inherently global-
interpretable method is also compared in Appendix A.4.

1Since the official codebase was not available as of our paper submission, its evaluation
is based on our implementation following the paper.

Evaluation Protocol We comprehend global interpretability from
two perspectives, i.e., the interpretation should lead to high-fidelity
model that is similar to the original target model (i.e., the model
to be explained), and should have high chance to be predicted as
the right classes. Based on this intuition, we establish the following
evaluation protocols and the mathematically definitions could be
found in Appendix A.1:
• Model Fidelity aims to verifywhether the generated interpretation
indeed captures essential class-discriminative patterns, such that
the interpretation can be utilized to train a similar model as if it is
trained on the original training set. Desired interpretation should
capture patterns that dominate the model training procedure.
To calculate this metric, we first use the generated interpretive
graphs to train a surrogate model (with the same architecture
as the original model) from scratch. Then we calculate model
fidelity as the ratio of cases when the surrogate model makes the
same decision as the orginal model on test data.
• Model Utility is to investigate whether the interpretation can lead
to a high-utility model. Similarly, we train a surrogate model on
the interpretation graphs. Then model utility is calculated as the
surrogate model’s predictive accuracy on test data.
• Predictive Accuracy is to validate whether the interpretation can
be correctly perceived by the target model as its corresponding
class. Ideal interpretive graphs should be correctly classified to
their classes by the target model being explained. We report the
target model’s predictive accuracy on the interpretive graphs as
predictive Accuracy.

ConfigurationsWe choose the widely used graph convolution net-
work (GCN) as the target GNNmodel for interpretation. It contain 3
layers with 256 hidden dimension, concatenated by a mean pooling
layer and a dense layers in the end. Adam optimizer [12] is adopted
for model training. In both evaluation protocols, we split the dataset
as 85% training and 15% test data, and only use the training set to
generate interpretative graphs. To learn interpretive graphs that
generalize to a distribution of model initializations, we empirically
adopt regular model restarts to sample multiple trajectories. Given
the interpretative graphs, each evaluation experiments are run 5
times, with the mean and variance reported.

4.2 Quantitative Results
This evaluation aims to answer the first question Q1. Meanwhile,
we also report the commonly adopted predictive accuracy.
Model Fidelity and Model Utility Performance In Table 1, we
compare GDM with baselines in terms of model fidelity and util-
ity. XGNN performed on MUTAG achieves 89.47 fidelity and 68.40
utility with 10 graphs per class. We observe that GDM achieves
remarkably better performance almost on all datasets, which indi-
cates that GDM indeed captures discriminative patterns the model
learns during training, such that our generated interpretation can
also train a similarly useful model (with high model fidelity and
utility). Meanwhile, different from XGNN, we do not include any
dataset specific rules, thus is a more general interpretation solution.
Predictive Accuracy In Table 2, we compare the predictive accu-
racy of GDM, XGNN and GNNInterpreter respectively. Note that
the predictive accuracy for GDM on all datasets except MUTAG is
largen than 90%, implying that the generated graphs could preserve
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Table 1:Model Fidelity andModel Utility on a varying number of interpretive graphs generated per class.

Dataset Graphs/Cls Model Fidelity Model Utility GCN Accuracy
GDM GNNInterpreter Random GDM GNNInterpreter Random

MUTAG
1 81.05 ± 9.76 79.53 ± 2.58 49.47 ± 10.84 71.92 ± 2.48 70.17 ± 2.48 50.87± 15.0

88.635 92.63 ± 2.58 84.21 ± 0.00 65.26 ± 6.31 77.19 ± 4.96 57.89 ± 4.29 80.70 ± 2.40
10 94.73 ± 0.00 85.26 ± 6.14 66.31±5.37 82.45 ± 2.48 59.65 ± 8.94 75.43 ± 6.56

Shape
1 32.00 ± 4.00 20.00 ± 0.00 26.00 ± 12.00 93.33 ± 4.71 60.00 ± 7.49 33.20 ± 4.71

100.005 88.00 ± 9.80 60.00 ± 0.00 48.00 ± 7.50 96.66 ± 4.71 85.67 ± 2.45 85.39 ± 12.47
10 84.00 ± 8.00 62.00 ± 7.48 48.00 ± 4.00 100.00 ± 0.00 88.67 ± 4.61 87.36 ± 4.71

BA-Motif
1 73.00 ± 7.38 61.2 ± 8.08 67.60 ± 4.52 71.66 ± 2.49 50.63 ± 0.42 67.60 ± 4.52

100.005 89.00 ± 1.67 83.4 ±10.67 49.60 ± 1.96 96.00 ± 1.63 82.54 ± 0.87 77.60 ± 2.21
10 91.60 ± 3.72 79.01 ± 1.34 50.60 ± 1.56 98.00 ± 0.00 90.89 ± 0.22 84.33 ± 2.49

BA-LRP
1 64.72 ± 4.44 49.52 ± 0.43 51.12 ± 2.50 71.56 ± 3.62 54.11 ± 5.33 77.48 ± 1.21

97.955 85.50 ± 2.05 79.01 ± 1.35 49.87 ± 1.28 91.60 ± 1.57 59.21 ± 0.99 77.76 ± 0.52
10 95.50 ± 0.50 56.97 ± 1.10 52.38 ± 1.79 94.90 ± 1.09 66.40 ± 1.47 88.38 ± 1.40

Graph-Twitter
10 58.13 ± 2.74 49.47 ± 0.96 46.59 ± 5.85 56.43 ± 1.39 40.00 ± 3.98 52.40 ± 0.29

61.4050 59.73 ± 1.11 55.67 ± 1.04 50.20 ± 5.71 58.93 ± 1.29 55.62 ± 1.12 52.92 ± 0.27
100 53.25 ±1.30 59.76 ± 1.00 56.65 ± 2.78 59.51 ± 0.31 53.37 ± 0.55 55.47 ± 0.51

Graph-SST5
10 36.62 ± 0.76 28.06 ± 0.33 29.33 ± 3.25 35.72 ± 0.65 25.49 ± 0.39 24.90 ± 0.60

44.3950 37.64 ± 0.83 35.96 ± 1.04 37.83 ± 3.62 43.81 ± 0.86 31.47 ± 2.58 23.15 ± 0.35
100 42.05 ± 1.35 41.04 ± 0.79 41.87 ± 1.80 44.43 ± 0.45 32.01 ± 1.90 25.26 ± 0.75

Table 2: Predictive Accuracy when generating 10 interpretive graphs per class.

Dataset Graph-Twitter Graph-SST5 BA-Motif BA-LRP Shape MUTAG XGNN on MUTAG

GNNInterpreter 74.40 ± 0.06 88.60 ± 0.09 100.00 ± 0.00 85.00 ± 0.00 100.00 ± 0.00 70.00 ± 0.00 71.00± 16.91GDM 91.11 ± 0.02 91.33 ± 0.00 100.00 ± 0.00 95.50 ± 0.00 100.00 ± 0.00 82.67 ± 0.047

those essential information of the data, which plays a crucial role
in guiding the desicion-making. Comparatively, GNNInterpreter
has worse performance on most datasets, including Graph-Twitter,
Graph-SST5, BA-LRP, and MUTAG, which indicates that several sig-
nificant patterns of the data during training trajectory are lost and
GNNInterpreter could not recover those undisclosed information
along the training trajectory.
Efficiency Another advantage of GDM is that it generates interpre-
tations in an efficient manner. As shown in Appendix A.7, GDM is
almost 4 times faster than the global interpretation method XGNN.
Our methods takes almost no extra cost to generate multiple in-
terpretative graphs, as there are only few interpretive graphs com-
pared with the training dataset. XGNN, however, select each edge
in each graph by a reinforcement learning policy which makes the
interpretation process rather expensive.

4.3 Model Analysis
Ablation Study In Table 3, we generate 10 interpretive graphs per
class based on model snapshots. Intuitively, only using the first
model snapshot would capture less feature and structure informa-
tion, thus the model fidelity score would be smaller than GDM as
shown in Table 3. In the ablation study, there are also notable dis-
crepancies between the GDM-Ensemble fidelity and GDM fidelity
on a few datasets, including Graph-Twitter, BA-Motif, and BA-LRP.
Those ensemble snapshots would possibly preserve misleading pat-
terns which could be filtered out during model training but been

Table 3: Ablation study showingModel Fidelity when gener-
ating 10 interpretive graphs per class.

Dataset Graph-Twitter Graph-SST5 BA-Motif

GDM-First 25.84±4.06 21.28±0.21 51.20±2.23
GDM-Last 28.61±3.41 27.19±0.27 46.40±2.53
GDM-Ensemble 30.68±6.00 25.70±0.25 51.40±5.56
GDM 58.13±2.74 36.62 ±0.76 91.60±3.72
Dataset BA-LRP Shape MUTAG
GDM-First 51.03±0.75 60.00±0.00 73.68±2.19
GDM-Last 49.95±0.28 60.00±1.00 56.84±5.78
GDM-Ensemble 56.39±0.54 58.00±0.00 87.37±0.73
GDM 95.50±0.50 64.00 ±8.00 94.73±0.00

captured while distribution matching, leading to the large devi-
ates of the fidelity score for the GDM-Ensemble model. Generally,
we can observe that the distribution matching design is effective:
disabling this design will greatly deteriorate the performance.
Parameter 𝛽 Sensitivity In our final objective Eq. (9), we defined
𝛽 to control the strength for sparsity matching regularization, and
now we explore its sensitivity. Since MUTAG is the only dataset
that contains node features, we only apply the feature matching
regularization on this dataset. we vary the sparsity coefficient 𝛽 , and
report the utility and predictive accuracy for all of our datasets in
Figure 3. For most datasets excluding Shape, the utility performance
start to degrade when the 𝛽 becomes larger than 0.5. This means
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Table 4: Sensitivity analysis of hyper-parameter 𝛼 .

𝛼 0 0.005 0.01 0.05 0.5 1.0

Model Utility 81.17 82.45 82.45 82.45 82.45 80.70
Model Fidelity 77.89 78.94 78.95 65.31 63.16 68.42

Figure 3: Sensitivity analysis of hyper-parameter 𝛽 .

that when the interpretive graph becomes more sparse, it will lose
some information during training time. Given the small values of 𝛽 ,
the graphs are relatively dense and the model predictive accuracy
for all datasets except Graph-SST5 and Graph-Twitter converges to
be stationary, denoting that the sparsity of those graphs would not
heavily influence generating interpretations.
Sensitivity of Parameter 𝛼 We defined 𝛼 to control the strength
for feature matching in Eq. (9), and now we report the model utility
and model fidelity with different feature-matching coefficients 𝛼
in Table 4. From the table, we observe that the model performance
when 𝛼 = 0 is worse than the performance with 𝛼 = 0.01. Therefore,
keeping this regularizations would be beneficial and necessary in
our model. A larger 𝛼 means we have a stronger restriction on
the node feature distribution. We found that when we have more
strict restrictions, the utility increases slightly. This is an expected
behavior since the node features from the original MUTAG graphs
contain rich information for classifications, and matching the fea-
ture distribution enables the interpretation to capture rare node
types. By having such restrictions, we successfully keep the impor-
tant feature information in our interpretive graphs. However, as the
coefficient 𝛼 increase, the model fidelity would slightly decrease,
which means the restrictions about feature distribution would im-
pact the model embeddings and sparsity and the ideal interpretive
graphs are generated by balancing these restrictions.

4.4 Qualitative Analysis
We qualitatively visualize the global interpretations provided by
GDM to verify that GDM can capture human-intelligible patterns,
which indeed correspond to the ground-truth rules for discriminat-
ing classes. Table 5 shows examples in BA-Motif, MUTAG, BA-LRP
and Shape datasets, and more results and analyses on other datasets
can be found in Appendix A.6. The qualitative results show that the
global explanations successfully identify the discriminative patterns
for each class. If we look at BA-Motif dataset, for the house-shape
class, the interpretation has captured such a pattern of house struc-
ture, regardless of the complicated base BA graph in the other part
of graphs; while in the non-house class with five-node cycle, the
interpretation also successfully grasped it from the whole BA-Motif
graph. Regarding the Shape dataset, the global interpretations for
all the classes are almost consistent with the ground-truth graph

Real Graph Interpretation Real Graph Interpretation

BA-Motif
House Class Non-House Class

MUTAG
Mutag Class Non-Mutag Class

BA-LRP
Low-Degree Class High-Degree Class

Shape
Wheel Class Lollipop Class

Grid Class Star Class

Table 5: Visualization of real graphs and their interpretations.

patterns, i.e., Wheel, Lollipop, Grid and Star shapes are also re-
flected in the interpretation graphs. Note that the difference for
interpretative graphs of Star and Wheel are small, which provides
a potential explanation for our fidelity results in Table 2, where
pre-trained GNN models cannot always distinguish interpretative
graphs of Wheel shape with interpretative graphs of Star shape.

5 CONCLUSIONS
We studied a new problem to enhance interpretability for graph
learning: how to interpret the model training procedure, such that
training on such interpretations can recover a similar model? We
proposed a novel framework, where interpretations are optimized
based on the whole training trajectory via distribution matching.
Our framework can generate an arbitrary number of interpretable
and effective interpretive graphs, and could be easily integrated in
the model training pipline. We evaluated our method both quanti-
tatively and qualitatively on real-world and interpretive datasets.
Besides existing metrics, we proposed new metric model fidelity to
evaluate the fidelity of the model trained on interpretive graphs.
The results indicate that our method can achieve promising in-
terpretation performance by probing the training trajectory. One
possible limitation of our work is that the interpretations are a
general summarizing of the whole training procedure, thus cannot
reflect the dynamic change of patterns captured by the model to
help detect anomalous behavior, which we believe is an important
and challenging open problem. In the future work, we aim to extend
the proposed framework to study model training dynamics.
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A APPENDIX
A.1 Formal Definition of the Metrics
Model Fidelity aims to verify if the interpretive graphs can train
a model with good fidelity (i.e., similar to the original model). For-
mally, it can be defined as:

Model Fidelity =
1
𝑁

𝑁∑︁
𝑖=1

1(Φ𝑠 (𝐺𝑖 ) = Φ(𝐺𝑖 )),

where we denote Φ𝑠 as the surrogate model trained on generated
interpretive graphs, Φ as the target model to be explained, and
G = {𝐺𝑖 }𝑁𝑖=1 as the test data. Here 1(·) is an indicator function, and
it equals to 1 when the condition Φ𝑠 (𝐺𝑖 ) = Φ(𝐺𝑖 ) (i.e., two models
predicting 𝐺𝑖 to the same class) is met otherwise 0.
Model Utility is to investigate whether the interpretation can lead
to a high-utility model.

Model Utility =
1
𝑁

𝑁∑︁
𝑖=1

1(Φ𝑠 (𝐺𝑖 ) = 𝑦𝑖 ),

where {𝑦𝑖 }𝑁𝑖=1 are the ground truth labels of corresponding test
graph in G. The indicator function equals to 1 when the surrogate
model Φ𝑠 makes correct prediction.
Predictive Accuracy is to validate whether the interpretation
captures discriminative patterns perceived by the target model.

Predictive Accuracy =
1
𝐶

𝐶∑︁
𝑐=1

1(Φ(𝑆𝑐 ) = 𝑐).

with 𝑆𝑐 as interpretive graphs of class 𝑐 , and𝐶 as number of classes.

A.2 Dataset Statistics
The data statistics on both synthetic and real-world datasets for
graph classification are provided in Table 6

Table 6: Basic Graph Statistics

Dataset #Graph #Node #Edge #Class GCN Accuracy

BA-Motif 1000 25 50.93 2 100.00
BA-LRP 20000 20 42.04 2 97.95
Shape 100 53.39 813.93 4 100.00
MUTAG 188 17.93 19.79 2 88.63
Graph-Twitter 4998 21.10 40.28 3 61.40
Graph-SST5 8544 19.85 37.78 5 44.39

A.3 GDM versus Inherently Interpretable Model
We compare the performance of GDM with a simple yet inherently
global-interpretable method, logistic regression with hand-crafted
graph-based features. We leverage the Laplacian matrix as graph
features: we first sort row/column of adjacency matrix by nodes’
degree to align the feature dimensions across different graphs; we
then flatten the reordered laplacian matrix as input for LR model.
When generating interpretations, we first train a LR on training
graphs and obtain interpretations as the top most important edges
based on regression weights. We report the model utility of LR
interpretations table 7. LR shows good interpretation utility on
simple datasets like BA-Motif, but much worse performance on
sophisticated datasets compared with GDM.

Table 7: Model Utility of Logistic Regression

Dataset MUTAG BA-Motif BA-LRP Shape Graph-Twitter Graph-SST5

LR Interpretation 93.33% 100% 100% 100% 42.10% 22.68%
Original LR 96.66% 100% 100% 100% 52.06% 27.45%

A.4 GDM versus Local Interpretation
Though our global interpretation is not directly comparable with
existing local interpretation, we still compare their model utility
to demonstrate the efficacy of our GDM when we only generate
a few interpretive graphs. For Graph-SST5 and Graph-Twitter, we
generate 100 graphs for each class and 10 graphs for other datasets.
The results can be found in Table 8. We can observe that the GDM
obtains higher utility compared to different GNN explainationmeth-
ods, with relatively small variance.

Table 8: Model Utility Compared with Local Interpretation

Datasets Graph-SST5 Graph-Twitter MUTAG BA-Motif Shape BA-LRP
GNNExplainer 43.00±0.07 58.12±1.48 73.68±5.31 93.2±0.89 89.00±4.89 58.65±4.78
PGExplainer 28.41 ± 0.00 55.46 ± 0.03 75.62±4.68 62.58±0.66 71.75±1.85 50.25±0.15
Captum 28.83±0.05 55.76±0.42 89.20±0.01 52.00±0.60 80.00±0.01 49.25±0.01

A.5 GDM versus GLGExplainer
To evaluate GLGExplainer with our proposed metric, since the out-
puts from GDM and GLGExplainer are different (i.e., concepts and
logic formula), we made some adjustments to form correspond-
ing graph output in order to compare its performance. For each
concept, we utilize the local explanations that exhibit the highest
probability as the basis for concept representations. We generate 2
graphs for each concept and have 1, 5 and 10 concepts in total from
the GLGExplainer. Tabel 9 shows that GLGExplainer presents some
promising results, especially when only generating a single graph
with concepts. We believe it is an interesting future work to com-
bine GLGExplainer with our framework for even more powerful
globally interpretable model training.

Table 9:Model Fidelity andModel Utility for GLGExplainer

Dataset Graphs/Cls Model Fidelity Model Utility

GDM GLGExplainer GDM GLGExplainer

Shape
1 32.00 ± 4.00 64.88 ± 7.00 93.33 ± 4.71 93.33 ± 4.71
5 88.00 ± 9.80 74.46 ± 5.12 96.66 ± 4.71 71.12 ± 3.95
10 84.00 ± 8.00 81.06 ± 2.77 100.00 ± 0.00 73.54 ± 2.26

MUTAG
1 81.05 ± 9.76 72.16 ± 1.13 71.92 ± 2.48 92.54 ± 0.05
5 92.63 ± 2.58 74.78 ± 0.00 77.19 ± 4.96 100.00 ± 0.00
10 94.73 ± 0.00 74.78 ± 0.00 82.45 ± 2.48 100.00 ± 0.00

A.6 More Evaluation of Interpretation Quality
We also report sparsity of interpretative graph, and a more sparse
graph is preferred for easy human understanding. Table 11 shows
the average sparsity of the 10 synthesized graphs per class. Except
Shape, the average sparsity of synthesized graphs has a sparsity
larger than 0.7, which indicates that our generated graphs only
contain essential edges for better human-intelligible interpretation.

Table 10 showsmore qualitative results.MUTAG has two classes:
“non-mutagenic” and “mutagenic”. As discussed in previous works
[5, 32], Carbon rings along with 𝑁𝑂2 chemical groups are known to
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Dataset Class Training Graph Example Synthesized Interpretation Graph

BA-Motif

House

Non-House

BA-LRP

Low Degree

High Degree

MUTAG

Mutagenicity

Non-Mutagenicity

Shape

Wheel

Lollipop

Grid

Star

Table 10: Visualization of example training graphs and the generated explanation. Different colors denote different node types.

Table 11: Sparsity of Interpretative Graph

Dataset MUTAG Shape BA-Motif Graph-Twitter Graph-SST5 BA-LRP

Sparsity 0.70 0.59 0.90 0.95 0.94 0.90

Table 12: Efficiency of generating 10 graphs per class.

Dataset Graph-Twitter Graph-SST5 BA-Motif BA-LRP
Time (s) 169.29 291.36 184.89 155.41

Dataset Shape MUTAG XGNN on MUTAG
Time (s) 176.01 218.45 838.20

Table 13: CUDA Memory Usage

Dataset MUTAG BA-Motif BA-LRP Shape Graph-Twitter Graph-SST5

Graphs/Cls 10 10 10 10 100 100
Graph Memory(KB) 1.09 1.09 1.09 2.19 16.41 27.34
Training Memory(MB) 178.06 253.25 287.62 235.51 718.44 891.35

be mutagenic. And [20] observe that Carbon rings exist in both mu-
tagen and non-mutagenic graphs, thus are not really discriminative.
Our synthesized interpretive graphs are also consistent with these
“ground-truth” chemical rules. For ‘mutagenic” class, we observe
two 𝑁𝑂2 chemical groups within one interpretative graph, and
one 𝑁𝑂2 chemical group and one carbon ring, or multiple carbon
rings from a interpretative graph. For the class of “non-mutagenic”,
we observe that 𝑁𝑂2 groups exist much less frequently but other
atoms, such as Chlorine, Bromine, and Fluorine, appear more fre-
quently. On BA-Motif and BA-LRP and Shape, we show that the
explanations successfully identify the discriminative features.

A.7 Time and Space Cost Analysis
Time Cost for generating 10 interpretive graphs per class is shown
in Table 12. Meanwhile, Table 13 shows the CUDA memory us-
age for hosting interpretation graphs and model training when
generating either 10 or 100 synthetic graphs for different datasets.
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