
Enhancing Interpretability and Effectiveness in Recommendation
with Numerical Features via Learning to Contrast the

Counterfactual samples
Xiaoxiao Xu

Kuaishou Technology
Beijing, China

xuxiaoxiao05@kuaishou.com

Hao Wu
Kuaishou Technology

Beijing, China
wuhao10@kuaishou.com

Wenhui Yu
Kuaishou Technology

Beijing, China
yuwenhui07@kuaishou.com

Lantao Hu
Kuaishou Technology

Beijing, China
hulantao@kuaishou.com

Peng Jiang
Kuaishou Technology

Beijing, China
jiangpeng@kuaishou.com

Kun Gai
Unaffiliated

Beijing, China
gai.kun@qq.com

ABSTRACT
We propose a general model-agnostic Contrastive learning frame-
work with Counterfactual Samples Synthesizing (CCSS) for mod-
eling the monotonicity between the neural network output and
numerical features which is critical for interpretability and effec-
tiveness of recommender systems. CCSS models the monotonicity
via a two-stage process: synthesizing counterfactual samples and
contrasting the counterfactual samples. The two techniques are
naturally integrated into a model-agnostic framework, forming
an end-to-end training process. Abundant empirical tests are con-
ducted on a publicly available dataset and a real industrial dataset,
and the results well demonstrate the effectiveness of our proposed
CCSS. Besides, CCSS has been deployed in our real large-scale indus-
trial recommender, successfully serving over hundreds of millions
users.

CCS CONCEPTS
• Recommender systems;

KEYWORDS
Recommender system, Numerical features, Monotonicity, CTR pre-
diction

ACM Reference Format:
Xiaoxiao Xu, Hao Wu, Wenhui Yu, Lantao Hu, Peng Jiang, and Kun Gai.
2024. Enhancing Interpretability and Effectiveness in Recommendation with
Numerical Features via Learning to Contrast the Counterfactual samples.
In Companion Proceedings of the ACM Web Conference 2024 (WWW ’24
Companion), May 13–17, 2024, Singapore, Singapore. ACM, New York, NY,
USA, 8 pages. https://doi.org/10.1145/3589335.3648345

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
WWW ’24 Companion, May 13–17, 2024, Singapore, Singapore.
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0172-6/24/05. . . $15.00
https://doi.org/10.1145/3589335.3648345

Figure 1: An illustration of the numerical features usage in
recommender’s deep model: utilized both as dense values by
Non-discretization approach and as embedding by Discretiza-
tion approach.

1 INTRODUCTION
Recommender systems equippedwith deepmodels have beenwidely
deployed industrially to alleviate the problem of information over-
load. Deep models in industrial recommender systems, eg., CTR
prediction model and likes prediction model, adopt numerical fea-
tures as well as categorical features as inputs. Numerical features
learning has become an active research task in industrial recom-
mender systems [4, 8]. Illustrating the activity levels of users, items
and the interactions between specific users and items, numerical
features are crucial to the performance of deep models. In practice,
learning approach for numerical features can be categorized into
two groups: (1) Non-discretization: using the original values or its
transformations directly as dense inputs [2, 5, 12]; (2) Discretiza-
tion: transforming continuous numerical features into categorical
features through discretization strategy and assigning embedding
like categorization strategy [8]. In general, the above two learning
approaches for numerical features are both adopted in a single deep
neural network, as illustrated in Figure 1.

Most of the existing research for numerical features focuses
on discretization and representation techniques to retain continu-
ity for similar features [4, 8], but the prior semantic relation, i.e.,
monotonicity between the neural network output and the numeri-
cal inputs has been seldom addressed publicly. The monotonicity

First Author and Second Author contribute equally to this work.

453

https://doi.org/10.1145/3589335.3648345
https://doi.org/10.1145/3589335.3648345
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3589335.3648345&domain=pdf&date_stamp=2024-05-13

WWW ’24 Companion, May 13–17, 2024, Singapore, Singapore. Xiaoxiao Xu et al.

between the model output and numerical inputs is critical to the in-
terpretability of the neural network. In an industrial Recommender
system, with the same context, the higher the activity level of the
interaction between the user and the item, the higher predicted
score of the neural network. Especially in User-Generated Content
based platforms, such as Tiktok, Kuaishou, and etc., the consumer
expect to see UGC with high quality illustrated by numerical fea-
tures. Besides, in UGC-based platforms, contents with high quality
are rewarded by more chance to display, which is critical for moti-
vating the producer. Besides, the monotonicity between the neural
network outputs and numerical inputs is one kind of prior knowl-
edge of the Recommender system, it is helpful for improving the
accuracy of the model.

Traditional methods for modeling the monotonicity between
neural network output and the numerical inputs are of two types:
(1) only adopt numerical inputs as dense features and fuse them
with DNN output linearly [10]; (2) only adopt numerical inputs as
dense features with a delicately designed network to retain mono-
tonicity [16]. Above methods both require that numerical features
should only be utilized as dense values through Non-discretization
approach. In a real industrial Recommender system, besides adopted
as dense features by Non-discretization approach, numerical fea-
tures are also learned as embedding by Discretization approach, as
shown in figure 1, in which the traditional methods are no longer
applicable.

To explicitly model the monotonicity between the neural net-
work outputs and numerical inputs and make better use of this prior
knowledge, we propose an adoptable model-agnostic Contrastive
learning framework with Counterfactual Samples Synthesizing
(CCSS). CCSS consists one Counterfactual Samples Synthesizer and
one Contrastive Objective Function Module which can coopera-
tively serve as a plug-and-play component to any neural network.
The Counterfactual Synthesizer generates a counterfactual sample
and a factual sample by disturbing the value of numerical features
and keeping other features unchanged of the original sample. To
synthesize generated samples as realistic as possible, which can
take advantage of the contrastive loss to the greatest extent, we
disturb only one numerical feature for each original sample. More-
over, to generate samples as informative as possible, we introduce
feature importance as the specific metric to quantize the probability
to be disturbed for each numerical feature. The contrastive objec-
tive function learns to rank the model outputs of the generated
sample and the original sample, which enable the model to learn
the monotonicity between model outputs and numerical features
in an end-to-end manner. We summarize the main contributions as
follows:

• As far as we know, we are the first to clarify the importance to
neural network’s interpretability and effectiveness of the mono-
tonicity between the neural network output and the numerical
features.

• Wepropose a general model-agnostic Contrastive learning frame-
work with Counterfactual Samples Synthesizing(CCSS). The
counterfactual and factual samples are generated locally based
on the original samples, which enable CCSS to be adoptable in

online learning scheme. The contrastive loss among the counter-
factual sample, the factual sample and the original sample makes
it possible to model the monotonicity end-to-end.

• We verify the effectiveness and adaptability of our proposed
CCSS through extensive experiments conducted on a public
benchmark dataset and a large scale industrial dataset, and suc-
cessfully apply it in a real-world large scale recommender system
bringing a considerable performance improvement.

2 RELATEDWORK
In this section, we will introduce the related work from three as-
pects: Interpretability in Recommendation, Numerical Features
Modeling in Recommendation and Counterfactual Sample Syn-
thesizing.

2.1 Interpretability in Recommendation
Recommender systems play a crucial role in a wide range of web
applications and services, in terms of distributing online contents to
targeted users who are likely to be interested in them. The majority
of the efforts in recommender system have been put into develop-
ing more effective model structures to achieve better performance,
while the interpretability, i.e., explainability of recommender system
has been seldom addressed. The interpretability of recommender
system gives reasons to clarify why such results are derived [15],
which benefits recommender system in to ways: 1) interpretability
helps system maintainers to diagnose and refine the recommen-
dation pipeline. 2) interpretability promote persuasiveness and
customer satisfaction by increasing transparency [11]. Research on
interpretability in recommendation can be grouped into two direc-
tions [21]: giving recommendation reasons by post-hoc methods
[13] and building explainable models or add explainable compo-
nents to give reasonable recommendation [11]. Recently, the efforts
in recommender’s interpretability have been concentrated on in-
troducing more structural information as model inputs [17]. Our
work falls into the second direction. In this paper, we propose to
improve the interpretability of models in recommendation from
the perspective of building the monotonicity between the outputs
of the model and the numerical feature, in which the research is
limited.

2.2 Numerical Features Modeling in
Recommendation

In recommendation, e.g., CTR prediction model, learning of numer-
ical features is one of the hot research topics. Most of the work
is aimed to learning better embedding for numerical features in
Discretization approach by means of addressing SBD (Similar value
But Dis-similar embedding) and DBS (Dis-similar value But Same
embedding) problems [4, 8, 9]. In this paper, we propose to learn
the monotonicity between model outputs and numerical features,
which is another type of prior information of numerical features. It
is helpful for deriving more reasonable recommendation to model
the prior monotonicity between neural network outputs and numer-
ical features. To explain this, we take a frequently-used numerical
feature 𝑐𝑙𝑖𝑐𝑘_𝑙𝑖𝑘𝑒_𝑐𝑜𝑢𝑛𝑡 for instance. With other features being
the same, the video with higher 𝑐𝑙𝑖𝑐𝑘_𝑙𝑖𝑘𝑒_𝑐𝑜𝑢𝑛𝑡 should be ranked
higher than the other in the same context. Our work model the

454

O Original sample

F Factual sample

C Counterfactual sample

𝑬 embedding parameters

𝑥𝑐
𝑖

feature value of the i-th categorical feature field

𝑥𝑛
𝑗

feature value of the j-th numerical feature field

Table 1: Important notations.

monotonicity end-to-end with an model-agnostic method, which is
the first attempt in numerical feature learning research domain.

2.3 Counterfactual Sample Synthesizing
Counterfactual samples have been recently used for data augmen-
tation in Visual Question Answering (VQA) and Natural Language
Processing (NLP). In VQA, counterfactual samples are synthesized
by masking the critical objects in images or words in questions
[1], which is much adoptable than traditional adversary-based data
augmentation methods. In NLP, counterfactual samples are synthe-
sized by removing phrases, which alThe generated counterfactual
samples have also been used for explanations of deep learning, i.e.
interpretability [19]. In recommendation, we synthesize counterfac-
tual samples by directionally disturbing numerical feature values of
the original samples. For each sample, the numerical feature to be
disturbed is sampled with its feature importance as sampling prob-
ability. In addition, to model the monotonicity between the model
output and numerical features, we introduce auxiliary contrastive
objective ranking the model outputs of the counterfactual sample
and the factual sample.

3 PROPOSED METHOD
In Section 3.1, we firstly review the background of deep models
in industrial recommender systems, using CTR prediction as an
example for illustration. Then we describe how to synthesize coun-
terfactual samples in our proposed framework in Section 3.2. We
further dig into the details of the implementations during training
in Section 3.3. The notations are summarized in Table 1.

3.1 Preliminaries
Given an user, a candidate item and the contexts in an impression
scenario, CTR prediction, is to infer the probability of a click event.
The CTR prediction model is mostly formulated as a supervised
logistic regression task and trained with an i.i.d. datasetD collected
from historic impressions. Each instance 𝑶 = (𝒙, 𝑦) ∈ D contains
the features 𝒙 implying the information of {𝑢𝑠𝑒𝑟, 𝑖𝑡𝑒𝑚, 𝑐𝑜𝑛𝑡𝑒𝑥𝑡𝑠},
and the label 𝑦 ∈ {0, 1} observed from user implicit feedback. 𝑦 = 1
indicates an instance with positive label, and an instance with
negative label is indicated by𝑦 = 0. The instance feature 𝒙 is a multi-
field data record including M numerical fields and N categorical
fields:

𝒙 = 𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒 ([𝑥𝑐1, 𝑥
𝑐
2, ..., 𝑥

𝑐
𝑀], [𝑥𝑛1 , 𝑥

𝑛
2 , ..., 𝑥

𝑛
𝑁]) (1)

For the i-th categorical feature field, the feature embedding can
be obtained by embedding look-up operation:

𝒆𝑐𝑖 = 𝑬𝑐𝑖 · 𝑜𝑛𝑒ℎ𝑜𝑡 (𝑥𝑐𝑖) (2)

where 𝑬𝑐
𝑖

∈ R𝑣𝑖×𝑑 is the embedding matrix or i-th categorical
field, 𝑣𝑖 and 𝑑 is the vocabulary size and embedding size. Numeri-
cal features are used both as dense features by Non-discretization
approach and embedding by Discretization approach. For the j-th
numerical feature field, the feature embedding can be obtained by
a two-stage operation: discretization and embedding look-up.

𝒆𝑛𝑗 = 𝑬𝑛𝑗 · 𝑜𝑛𝑒ℎ𝑜𝑡 (𝑑 𝑗 (𝑥𝑛𝑖)) (3)

where 𝑬𝑛
𝑗
∈ R𝑤𝑖×𝑑 is the learnable embeddingmatrix or j-th numer-

ical field,𝑤𝑖 is the number of the buckets after discretization. Then
all the embedding of categorical features and numerical features,
as well as dense values of numerical features are concatenated to
form the input of MLP Module afterwards, i.e,

𝒛 = 𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒 ([𝒆𝑐1, 𝒆
𝑐
2, ..., 𝒆

𝑐
𝑀 ,

𝒆𝑛1 , 𝒆
𝑛
2 , ..., 𝒆

𝑛
𝑁 ,

[𝑥𝑛1 , 𝑥
𝑛
2 , ..., 𝑥

𝑛
𝑁]])

(4)

Subsequently, the estimated CTR𝑦 can be obtained by the following
discriminative model,

𝑦 = 𝜎 (𝑓𝜽 (𝒛)) (5)

where 𝑓𝜽 (·) refers to the function of the MLP Module which is
parameterized by 𝜽 , and 𝜎 (·) is the sigmoid activation function. The
model parameters 𝑬 and 𝜽 are learned by maximizing the objective
function L(𝑬 , 𝜽) with gradient-based optimization methods. In
the traditional point estimate CTR prediction model, the objective
function is equal to the negative log-likelihood 𝑙 (𝑬 , 𝜽):

L(𝑬 , 𝜽) = 𝑙 (𝑬 , 𝜽)
≡ −𝑦log𝑦 − (1 − 𝑦)log(1 − 𝑦) (6)

3.2 Counterfactual Sample Synthesizing
To take advantage of the contrastive loss to the greatest extent,
we synthesize generated samples as realistic as possible, i.e., the
difference between generated samples and the original samples
are as small as possible. Therefore, we disturb only one numerical
feature for each original sample. To generate samples as informative
as possible, we introduce feature importance as the specificmetric to
quantize the probability to be disturbed for each numerical feature.
In this chapter, we describe the implementation details to synthesize
realistic and informative generated samples and how to train with
them, which is illustrated in Figure 2.

3.2.1 Interpreting Feature Importance. In machine learning, feature
importance is a specificmetric tomeasure themarginal contribution
of each feature to model’s decisions. When the model’s decisions
are affected much stronger by a specific feature, the stronger inter-
pretability between our model’s outputs and this specific feature is
expected. To try to conform the expectation, we introduce feature
importance during synthesizing counterfactual samples. We inter-
pret feature importance of each numerical feature using Shapley
Value, which is one of the most widely adopted measures of feature
importance as it has a solid theoretical foundation [7, 18].

Enhancing Interpretability and Effectiveness in Recommendation
with Numerical Features via Learning to Contrast the Counterfactual samples WWW ’24 Companion, May 13–17, 2024, Singapore, Singapore

455

WWW ’24 Companion, May 13–17, 2024, Singapore, Singapore. Xiaoxiao Xu et al.

Figure 2: An illustration of our proposed CCSS: the left is the end-to-end learning framework with counterfactual sample
synthesizing, and the right is the detail illustration of the Counterfactual Sample Synthesizer.

3.2.2 Feature Value Disturbing. We synthesize one counterfactual
sample and one factual sample by disturbing one of the numerical
features of each original samples. The synthesizing process can be
divided into the following steps:

1) Obtain the feature importance 𝑞𝑖 for each numerical feature
where 𝑖 is the index of the numerical feature.

2) Calculate the probability 𝑝𝑖 =
𝑞𝑖∑𝑁
𝑗=1 𝑞 𝑗

to be disturbed for each

numerical feature, where 𝑖 is the index of the numerical feature.
3) Given a training sample, choose the index of the numerical fea-

ture to be disturbed by drawing floats from the uniform distribution
over [0, 1).

4) For an original training sample with positive label, we synthe-
size one counterfactual sample C by disturbing the feature value to
the center of the left neighbor bucket while keeping other features
unchanged, and the counterfactual sample has no known label. At
the same time, we synthesize one factual sample F by disturbing
the feature value to the center of the right neighbor bucket while
keeping other features unchanged, and the factual sample has posi-
tive label. On the contrary, for an original training sample O with
negative label, one counterfactual sample without known label is
synthesized by disturbing the feature value to the center of the right
neighbor bucket, and one factual sample with negative sample is
synthesized by disturbing the feature value to the center of the left
neighbor bucket. Here, we take the monotonic increasing relation-
ship between model output and numerical inputs as an illustration.
Table 2 demonstrates the monotonic decreasing scenario in detail.

Table 2: An detailed illustration of counterfactual samples
synthesizing.

Monotonicity Label Disturb Destination
Counterfactual Factual

Increasing Positive Right Left
Negative Left Right

Decreasing Positive Left Right
Negative Right Left

The Boundary Condition. For an original training sample with
positive label, when it’s feature value to be disturbed locates in the
far-right bucket, we only synthesize one counterfactual sample by
disturbing the feature value to the left neighbor bucket. Similarly,
for an original training sample with negative label, when it’s feature
value to be disturbed locates in the far-left bucket, we only synthe-
size one counterfactual sample by disturbing the feature value to
the right neighbor bucket.

3.3 Training with Counterfactual Samples
In this chapter, we describe the training implementation details
with the synthesized samples and the original samples, which is
illustrated in Figure 2.

3.3.1 Learning to Contrast. Here, we also take the monotonic in-
creasing relationship between model output and numerical inputs
as an illustration. For a training instance with positive label, the
monotonicity means that we expect that its synthesized factual

456

sample F is scored higher by the model than this original sample
O, and this original sample is scored higher than its synthesized
counterfactual sample C. To address the monotonicity expectation
in the CTR prediction model, we add pairwise losses to contrast
the (F ,O) pair and the (O, C) pair:

L(𝑬 , 𝜽) = 𝑙 (𝑬 , 𝜽)

+ 𝛼 (𝑙P (𝑬 , 𝜽 , F ,O)

+ 𝑙P (𝑬 , 𝜽 ,O, C))
(7)

where 𝑙P denotes the pairwise loss, and hinge loss is adopted in
this paper. we introduce a hyperparameter 𝛼 to control the trade-off
between pairwise loss and point-wise loss during training. Simi-
larly, for a training instance with negative label, we expect that
its synthesized counterfactual sample C is scored higher than this
original sample O, and this original sample O is scored higher than
its synthesized factual sample F . Therefore, loss function for a
training instance O with negative label is formulized as:

L(𝑬 , 𝜽) = 𝑙 (𝑬 , 𝜽)

+ 𝛼 (𝑙P (𝑬 , 𝜽 ,O, F)

+ 𝑙P (𝑬 , 𝜽 , C,O))
(8)

3.3.2 Data Augmentation with Factual Samples. According to the
priori monotonicity, the synthesized factual samples have known
labels. For example, with the priori increasing monotonicity, a
synthesized factual sample for a training instance with positive
label is known to be labeled positive, while to be labeled negative
for a training instance with negative label. In this paper, we exploit
these synthesized factual sample with known labels to augment
training data. Hence, our loss function can be rewritten as:

L(𝑬 , 𝜽) = 𝑙 (𝑬 , 𝜽 ,O)
+ 𝑙 (𝑬 , 𝜽 , F)

+ 𝛼 (𝑙P (𝑬 , 𝜽 ,O, F)

+ 𝑙P (𝑬 , 𝜽 , C,O))

(9)

4 EXPERIMENTS
In this section, we conduct experiments with the aim of answering
the following three research questions:
RQ1 How does CCSS preform for improving the interpretability

and effectiveness of deep models in recommender?
RQ2 How does CCSS performwhen plugged into various network

backbones?
RQ3 What are the effects of the random strategy for selecting

feature to be disturbed, constrastive loss, data augmentation
loss and hyper-parameter 𝛼 in CCSS?

4.1 Dataset
We evaluate the performance of our proposed approaches on a
public benchmark dataset and our real industrial dataset.

KuaiRand-Pure: This data set is collected from the recommen-
dation logs of the video-sharing mobile app, Kuaishou. It contains
numerous numerical features indicating the statistical information
of user behaviors and video behaviors. We adopt 𝑖𝑠_𝑐𝑙𝑖𝑐𝑘 as the

https://github.com/chongminggao/KuaiRand

binary label and adopt its full feature set for training and testing.
Samples before 05-01 are used for training, and samples during
05-01 and 05-08 are used for testing.

Real Industrial Dataset: This data set is sampled and collected
from the realtime data stream of our online video-sharing platform.
It consists of 1.29 billion video play records generated by 43.98
million users within 8 days. Features in this dataset contain user ID,
video ID and 14 dimensional numerical features which contain rich
user activity level, video popularity and user-item interaction activ-
ity level information. The feature description in our real industrial
dataset is shown in Table 3. Each instance in this dataset contains a
binary label 𝑖𝑠_𝑐𝑜𝑙𝑙𝑒𝑐𝑡 indicates whether the user collect this video
to her favorites list in this instance. Our experiments are conducted
on a binary classification model to predict 𝑖𝑠_𝑐𝑜𝑙𝑙𝑒𝑐𝑡 . Samples from
the beginning 7 days are used for training, and samples from the
following 8-th day are used for testing. The statistics of the real
industrial dataset can be found in Table 4.

For both KuaiRand and our real industrial dataset, there is a
strong semantic correlation between the input numerical features
and the estimated target, and we expect that "the larger the input
value, the larger the output result should be".

Table 3: Feature description for our industrial dataset.

Feature Types Descriptions

User ID the unique identification of the user.

Video ID the unique identification of the video.

video_ctr,
video_ltr,
video_wtr,
video_ftr,
video_vtr,
video_lvtr,
video_cmtr

global empirical click rate, like rate, fol-
low rate, forward rate, video viewing
duration, longview rate, comment rate
of this video during 30days.

user_ctr,
user_ltr,
user_wtr,
user_ftr,
user_vtr,
user_lvtr,
user_cmtr

global empirical click rate, like rate, fol-
low rate, forward rate, video viewing
duration, longview rate, comment rate
of this user on this video’s category dur-
ing 30days.

Table 4: Statistics of the training dataset.

#user 43.98 Mil.

#video 23.80 Mil.

#training sample 1.29 Bil.

#test sample 0.26 Bil.

Enhancing Interpretability and Effectiveness in Recommendation
with Numerical Features via Learning to Contrast the Counterfactual samples WWW ’24 Companion, May 13–17, 2024, Singapore, Singapore

457

https://github.com/chongminggao/KuaiRand

WWW ’24 Companion, May 13–17, 2024, Singapore, Singapore. Xiaoxiao Xu et al.

Table 5: Model comparison on KuaiRand and our industrial dataset.We record themean results over 5 runs. Std ≈ 0.1%, extremely
statistically significant under unpaired t-test. * indicates the improvement is statistically significant at the significance level
of 0.05 over the best baseline on AUC or GAUC. ‘Kth_fea’ is short for ‘Mono_rate of the numerical feature who has the Kth
highest feature importance score’.

O
ur

In
du

st
ria

lD
at
as
et

Models AUC RelaImpr GAUC RelaImpr 1st_fea 2nd_fea 3rd_fea 4th_fea 5th_fea 6th_fea 7th_fea

DNN 0.7200 - 0.6560 - 51.3% 59.8% 53.7% 53.9% 54.5% 55.0% 59.6%
DNN +CCSS 0.7860∗ +30.0% 0.7320∗ +48.7% 83.6% 91.7% 79.2% 65.7% 82.7% 83.9% 87.3%

Wide & Deep 0.7311 - 0.6672 - 54.5% 63.9% 55.8% 51.7% 50.1% 45.7% 41.0%
Wide & Deep +CCSS 0.7763∗ +19.6% 0.7110∗ +26.2% 87.5% 89.1% 82.0% 76.4% 74.9% 87.3% 78.9%

PNN 0.7253 - 0.6662 - 52.6% 54.1% 56.9% 58.1% 48.2% 52.9% 55.7%
PNN +CCSS 0.7663∗ +18.2% 0.6934∗ +16.4% 88.0% 83.9% 80.3% 78.9% 70.2% 74.7% 87.9%

DCN 0.7356 - 0.6702 - 53.7% 56.5% 50.4% 46.7% 47.8% 47.5% 49.5%
DCN +CCSS 0.7865∗ +21.6% 0.7242∗ +31.7% 87.9% 90.2% 88.9% 88.0% 78.2% 87.5% 85.0%

DeepFM 0.7168 - 0.6545 - 42.7% 45.6% 53.2% 53.6% 48.7% 53.8% 51.6%
DeepFM +CCSS 0.7298∗ +6.0% 0.6615∗ +4.5% 81.1% 83.2% 80.8% 73.5% 74.0% 87.9% 84.5%

Ku
ai
Ra

nd
-P
ur
e

Models AUC RelaImpr GAUC RelaImpr 1st_fea 2nd_fea 3rd_fea 4th_fea 5th_fea 6th_fea 7th_fea

DNN 0.6847 - 0.6419 - 60.3% 58.2% 49.7% 50.9% 54.5% 50.2% 40.5%
DNN +CCSS 0.7324∗ +25.8% 0.6768∗ +24.5% 66.5% 62.1% 65.1% 71.3% 80.5% 66.7% 75.8%

Wide & Deep 0.7113 - 0.6626 - 61.5% 59.7% 51.3% 51.5% 57.8% 51.1% 45.7%
Wide & Deep +CCSS 0.7527∗ +19.6% 0.6959∗ +20.5% 68.0% 65.4% 64.6% 72.7% 88.3% 68.8% 75.2%

PNN 0.7222 - 0.6702 - 63.6% 60.9% 52.2% 52.0% 55.5% 50.6% 46.4%
PNN +CCSS 0.7491∗ +12.1% 0.7039∗ +19.8% 68.6% 74.7% 63.3% 79.2% 87.3% 70.8% 77.5%

DCN 0.7086 - 0.6605 - 59.3% 59.2% 49.7% 55.9% 53.5% 52.2% 47.5%
DCN +CCSS 0.7737∗ +31.2% 0.6873∗ +16.7% 74.5% 75.8% 70.1% 78.0% 78.3% 73.2% 80.3%

DeepFM 0.6912 - 0.6476 - 60.8% 58.4% 51.5% 51.1% 52.3% 51.8% 46.9%
DeepFM +CCSS 0.7357∗ +23.3% 0.6846∗ +25.1% 65.8% 62.7% 67.2% 78.9% 78.7% 69.1% 78.6%

4.2 Baselines
In order to prove the plug-and-play nature of the method, we did
sufficient tests on different backbones:

(1) DNN is the lightest model structure which only contains a
MLP and some nonlinear activation functions.

(2) Wide & Deep [3] develop wide linear models and deep neural
networks together to enhance their respective abilities.

(3) DeepFM [9] is a deep recommendation method that learns
both low and high level interactions between fields.

(4) DCN [20] is based on DNN, explicitly applies feature crossing
at each layer, eliminating the need for human feature engineering.

(5) PNN [14] employs a feature extractor to investigate feature
interactions among inter-field categories.

4.3 Experimental Settings
In this chapter, we describe the implementation details and the
evaluation metrics in our experiments.

4.3.1 Implementation Details. We utilize the same model settings
for all approaches on each dataset to provide a fair comparison.
For all the three datasets, we fix embedding size as 32 and DNN
as 4 FC layers with [512, 255, 127, 127] hidden units. Furthermore,
for DCN, we set the number of cross layer to 3. We optimize all
approaches using mini-batch Adam, where the learning rate is 0.05

and decay_rate is 0.9. Furthermore, the batch size of all models is
set to 1024. We adopt hyper-parameter 𝛼 = 1.0 for all the offline
and online evaluations.

4.3.2 Evaluation Metrics. We adopt AUC and Mono_rate to eval-
uate the effectiveness and interpretability of our model.

AUC: [6] is a common metric for recommendation [20, 22]. It
measures the goodness of order by ranking all the items with pre-
diction. Thus we adopt AUC as the main metric.

GAUC: gauc is introduced in [22] which measures the goodness
of intra-user order by averaging AUC over users and is shown to be
more relevant to online performance in recommendation system.
We adapt this metric in our experiments, gauc is defined as:

𝐺𝐴𝑈𝐶 =

∑𝑛
𝑖=1#𝑖𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑖 ∗𝐴𝑈𝐶𝑖∑𝑛

𝑖=1#𝑖𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑖
(10)

where n is the number of users, #impressioni and AUCi are the
number of impressions and AUC corresponding to the i-th user.

In addition, we follow [20, 22] to introduce RelaImpr metric to
measure relative improvement over models. For a random guesser,
the value of AUC or GAUC is 0.5. Hence, RelaImpr is defined as:

𝑅𝑒𝑙𝑎𝐼𝑚𝑝𝑟 (𝐴𝑈𝐶) = (𝐴𝑈𝐶 (𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑚𝑜𝑑𝑒𝑙) − 0.5
𝐴𝑈𝐶 (𝑏𝑎𝑠𝑒 𝑚𝑜𝑑𝑒𝑙) − 0.5

− 1) × 100%

(11)

458

𝑅𝑒𝑙𝑎𝐼𝑚𝑝𝑟 (𝐺𝐴𝑈𝐶) = (𝐺𝐴𝑈𝐶 (𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑚𝑜𝑑𝑒𝑙) − 0.5
𝐺𝐴𝑈𝐶 (𝑏𝑎𝑠𝑒 𝑚𝑜𝑑𝑒𝑙) − 0.5

− 1) × 100%

(12)
Mono_rate: We define Mono_rate to evaluate the monotonicity

(i.e., interpretability) between model output and numerical features:

𝑀𝑜𝑛𝑜_𝑅𝑎𝑡𝑒 =
#𝑀𝑜𝑛𝑜𝑡𝑜𝑛𝑒_𝑝𝑎𝑖𝑟𝑠 (𝐷)
#𝐶𝑜𝑚𝑝𝑎𝑟𝑎𝑏𝑙𝑒_𝑝𝑎𝑖𝑟𝑠 (𝐷) (13)

where𝐶𝑜𝑚𝑝𝑎𝑟𝑎𝑏𝑙𝑒_𝑝𝑎𝑖𝑟𝑠 (𝐷) donates the entire set of the expected
monotonic pairs, including all the (F ,O) pairs and (C,O) pairs.
𝑀𝑜𝑛𝑜𝑡𝑜𝑛𝑒_𝑝𝑎𝑖𝑟𝑠 (𝐷) donates the set of valid predicted monotonic
pairs according to model outputs. For an original sample with posi-
tive label, the valid predicted monotonic pairs include (F ,O) pairs
whose 𝑦𝑓 > 𝑦 and (C,O) pairs whose 𝑦𝑐 𝑓 < 𝑦. Instead, for an orig-
inal sample with negative sample, the valid predicted monotonic
pairs include (F ,O) pairs whose 𝑦𝑓 < 𝑦 and (C,O) pairs whose
𝑦𝑐 𝑓 > 𝑦.

4.4 Comparison with Baselines (RQ1, RQ2)
4.4.1 Offline Evaluation. To demonstrate the effectiveness and
adaptability of the our proposed CCSS, we plug CCSS in many
representative networks in binary classification task, such as DNN,
Wide&Deep, DCN, DeepFM and PNN. According to Table 5, CCSS
could improve all of the baselines on two large scale dataset. CCSS
brings at least 6.0% AUC improvement and 4.5% GAUC improve-
ment. To evaluate the effectiveness of CCSS to improve the mono-
tonicity between model output and the numerical features during
infer, we calculate Mono_rates with testing dataset. For simplicity,
we calculate and compare the Mono_rates of the top 7 important nu-
merical features on KuaiRand and our industrial dataset. According
to Table 5, Mono_rate improvements are clearly remarkable, which
means the interpretability of the neural network can be enhanced
by our proposed CCSS.

4.4.2 Online Evaluation. To exam the effectiveness of CCSS in a
real industrial recommendation scenario, we conduct online A/B
testing based on a 𝑖𝑠_𝑐𝑜𝑙𝑙𝑒𝑐𝑡 predicting model. Table 6 shows the ex-
perimental results. CCSS contributes 3.93% 𝑐𝑜𝑙𝑙𝑒𝑐𝑡_𝑟𝑎𝑡𝑒 gain when
plugged into DCN which has already been highly optimized for our
online system with abundant of features.

Table 6: Online A/B Testing.

Online A/B Test collect_rate gain

DCN -

DCN + CCSS 3.93%

4.5 Ablation Study(RQ3)
In this section, we demonstrate the advantages of our proposed
random strategy for selecting feature to be disturbed, constrastive
loss, data augmentation loss in CCSS. We present an ablation study
on our real industrial dataset by evaluation several models based on
DNN which is the lightest structures: (1) CCSS(Only Data Augmen-
tation): only adopt the auxiliary point-wise loss of factual samples.

(a)

(b)

Figure 3: Effect of 𝛼 on (a) Mono_rate and (b) AUC. DNN is
used as the network.

(2) CCSS(Only Factual Contrastive Loss): only adopt the auxiliary
hinge loss of Factual-Original sample pairs. (3) CCSS(Only Coun-
terfactual Contrastive Loss): only adopt the auxiliary hinge loss of
Counterfactual-Original sample pairs. (3) CCSS(Equal Probability
Random Strategy): select the numerical feature to be disturbed with
equal probability. The mean AUC and GAUC results over 5 runs
are reported in Table 7, and the results confirm the advantages of
our proposed random strategy for selecting feature to be disturbed,
constrastive loss, data augmentation loss in CCSS.

Effect of HyperParameter 𝛼 . We evaluate the effect of hyper-
parameter 𝛼 which controls the trade-off between pairwise loss and
point-wise loss. According to Figure 3, contrastive losses aimed to
improve the interpretability of the model, can help to promote the
effectiveness of the model with an appropriate proportion.

Table 7: Ablation study. The averaged AUC and GAUC results
over 5 runs are reported.

Models AUC GAUC

DNN 0.786 0.732

DNN(Only Factual Pairwise loss) 0.772 0.715

DNN(Only Counterfactual Pairwise loss) 0.768 0.720

DNN(Equal Probability Random Disturb) 0.766 0.711

DNN(Only Factual Pointwise loss) 0.734 0.669

Enhancing Interpretability and Effectiveness in Recommendation
with Numerical Features via Learning to Contrast the Counterfactual samples WWW ’24 Companion, May 13–17, 2024, Singapore, Singapore

459

WWW ’24 Companion, May 13–17, 2024, Singapore, Singapore. Xiaoxiao Xu et al.

5 CONCLUSION
In this paper, we propose a general model-agnostic Contrastive
learning framework with Counterfactual Samples Synthesizing
(CCSS) for modeling the monotonicity between the neural network
output and numerical features. CCSS introduces and models the
monotonicity by synthesizing counterfactual sample and factual
samples and learning to contrast among the counterfactual sample,
factual samples and original samples. Besides, to generate samples
as informative as possible, we introduce feature importance as the
specific metric to quantize the probability to be disturbed for each
numerical feature. Our proposed CCSS can be adapted to various
representative networks without much effort and enjoys an end-
to-end learning manner. Abundant offline and online experiments
show that recommendation neural networks with CCSS can achieve
better interpretability and performances.

REFERENCES
[1] Long Chen, Xin Yan, Jun Xiao, Hanwang Zhang, Shiliang Pu, and Yueting Zhuang.

2020. Counterfactual Samples Synthesizing for Robust Visual Question Answer-
ing. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR).

[2] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra,
Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, et al.
2016. Wide & deep learning for recommender systems. In Proceedings of the 1st
workshop on deep learning for recommender systems. 7–10.

[3] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra,
Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, et al.
2016. Wide & deep learning for recommender systems. In Proceedings of the 1st
workshop on deep learning for recommender systems. 7–10.

[4] Yuan Cheng. 2022. Dynamic Explicit Embedding Representation for Numerical
Features in Deep CTR Prediction. In Proceedings of the 31st ACM International
Conference on Information Knowledge Management (Atlanta, GA, USA) (CIKM
’22). Association for Computing Machinery, New York, NY, USA, 3888–3892.
https://doi.org/10.1145/3511808.3557587

[5] Paul Covington, Jay Adams, and Emre Sargin. 2016. Deep neural networks
for youtube recommendations. In Proceedings of the 10th ACM conference on
recommender systems. 191–198.

[6] Tom Fawcett. 2006. An introduction to ROC analysis. Pattern recognition letters
27, 8 (2006), 861–874.

[7] Daniel Fryer, Inga Strümke, and Hien Nguyen. 2021. Shapley values for feature
selection: The good, the bad, and the axioms. Ieee Access 9 (2021), 144352–144360.

[8] Huifeng Guo, Bo Chen, Ruiming Tang, Weinan Zhang, Zhenguo Li, and Xiuqiang
He. 2021. An embedding learning framework for numerical features in ctr
prediction. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge

Discovery & Data Mining. 2910–2918.
[9] Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiuqiang He. 2017.

DeepFM: a factorization-machine based neural network for CTR prediction. arXiv
preprint arXiv:1703.04247 (2017).

[10] Malay Haldar, Prashant Ramanathan, Tyler Sax, Mustafa Abdool, Lanbo Zhang,
Aamir Mansawala, Shulin Yang, Bradley Turnbull, and Junshuo Liao. 2020. Im-
proving deep learning for airbnb search. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining. 2822–2830.

[11] Ninghao Liu, Yong Ge, Li Li, Xia Hu, Rui Chen, and Soo-Hyun Choi. 2020. Explain-
able recommender systems via resolving learning representations. In Proceedings
of the 29th ACM international conference on information & knowledge management.
895–904.

[12] Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael Shi, Jianyu Huang,
Narayanan Sundaraman, Jongsoo Park, Xiaodong Wang, Udit Gupta, Carole-
Jean Wu, Alisson G Azzolini, et al. 2019. Deep learning recommendation model
for personalization and recommendation systems. arXiv preprint arXiv:1906.00091
(2019).

[13] Georgina Peake and Jun Wang. 2018. Explanation Mining: Post Hoc Interpretabil-
ity of Latent Factor Models for Recommendation Systems. In Proceedings of the
24th ACM SIGKDD International Conference on Knowledge Discovery Data Mining
(London, United Kingdom) (KDD ’18). Association for Computing Machinery,
New York, NY, USA, 2060–2069. https://doi.org/10.1145/3219819.3220072

[14] Yanru Qu, Han Cai, Kan Ren, Weinan Zhang, Yong Yu, Ying Wen, and Jun Wang.
2016. Product-based neural networks for user response prediction. In 2016 IEEE
16th International Conference on Data Mining (ICDM). IEEE, 1149–1154.

[15] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. " Why should i
trust you?" Explaining the predictions of any classifier. In Proceedings of the 22nd
ACM SIGKDD international conference on knowledge discovery and data mining.
1135–1144.

[16] Davor Runje and Sharath M Shankaranarayana. 2023. Constrained monotonic
neural networks. In International Conference on Machine Learning. PMLR, 29338–
29353.

[17] Ryotaro Shimizu, Megumi Matsutani, and Masayuki Goto. 2022. An explainable
recommendation framework based on an improved knowledge graph attention
network with massive volumes of side information. Knowledge-Based Systems
239 (2022), 107970. https://doi.org/10.1016/j.knosys.2021.107970

[18] Eunhye Song, Barry L Nelson, and Jeremy Staum. 2016. Shapley effects for global
sensitivity analysis: Theory and computation. SIAM/ASA Journal on Uncertainty
Quantification 4, 1 (2016), 1060–1083.

[19] Sahil Verma, Varich Boonsanong, MinhHoang, Keegan EHines, John P Dickerson,
and Chirag Shah. 2020. Counterfactual explanations and algorithmic recourses
for machine learning: A review. arXiv preprint arXiv:2010.10596 (2020).

[20] Ruoxi Wang, Bin Fu, Gang Fu, and Mingliang Wang. 2017. Deep & cross network
for ad click predictions. In Proceedings of the ADKDD’17. 1–7.

[21] Yongfeng Zhang, Xu Chen, et al. 2020. Explainable recommendation: A survey
and new perspectives. Foundations and Trends® in Information Retrieval 14, 1
(2020), 1–101.

[22] Guorui Zhou, Xiaoqiang Zhu, Chenru Song, Ying Fan, Han Zhu, XiaoMa, Yanghui
Yan, Junqi Jin, Han Li, and Kun Gai. 2018. Deep interest network for click-through
rate prediction. In Proceedings of the 24th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining. 1059–1068.

460

https://doi.org/10.1145/3511808.3557587
https://doi.org/10.1145/3219819.3220072
https://doi.org/10.1016/j.knosys.2021.107970

	Abstract
	1 Introduction
	2 Related Work
	2.1 Interpretability in Recommendation
	2.2 Numerical Features Modeling in Recommendation
	2.3 Counterfactual Sample Synthesizing

	3 Proposed Method
	3.1 Preliminaries
	3.2 Counterfactual Sample Synthesizing
	3.3 Training with Counterfactual Samples

	4 Experiments
	4.1 Dataset
	4.2 Baselines
	4.3 Experimental Settings
	4.4 Comparison with Baselines (RQ1, RQ2)
	4.5 Ablation Study(RQ3)

	5 Conclusion
	References

