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ABSTRACT
Various cohesive models are widely employed for the analysis of

social networks to identify critical users or key relationships, with

the 𝑘-core being a particularly popular approach. Existing works,

such as the anchor 𝑘-core problem, aim to maximize 𝑘-core by

anchoring nodes (the degree of anchor nodes are set as infinity).

However, we find that node merging can also enlarge the 𝑘-core

size. Different from anchoring nodes, nodes merging can cause

both degree increase and decrease which brings more challenges.

In this paper, we study the core maximization by node merging

problem (CMNM) and prove its hardness. A greedy framework

is first presented due to its hardness. To scale for large networks,

we categorize potentially influential nodes and provide a detailed

analysis of all node merging pairs. Then, based on these analyses,

a fast and effective algorithm is developed. Finally, we conduct

comprehensive experiments on real-world networks to evaluate

the effectiveness and efficiency of the proposed method.
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1 INTRODUCTION
Graph analysis has received tremendous attention in recent years.

The cohesive subgraph is one of the most important tools in analyz-

ing graph data. Among all cohesive subgraph models, 𝑘-core [2] is

the most widely used and requires that the nodes in the subgraph

have degree at least 𝑘 . Recently, a lot of studies have tried to enlarge

𝑘-core by anchoring nodes [12] or adding edges [14], etc. However,
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Figure 1: Motivation example

merging nodes [7] as another perspective that can expand the 𝑘-

core is completely ignored by previous studies. When two nodes

are merged, the degree of the "new" node is larger than these two

nodes, and it will be possible to expand the 𝑘-core. Merging nodes

also has many real-world applications, such as merging logistics

entities [4] and team formation [3], etc. For example, in [4], they

focus on the case of merging several separate logistics entities, and

highlight its contribution to supply optimization.

To fill the gap, in this paper, we propose and investigate the core

maximization by node merging problem (CMNM). Specifically,

given a graph𝐺 , an integer 𝑘 and a budget 𝑏, we aim to find 𝑏 pairs

of nodes to merge to maximize the size of 𝑘-core. For example, in

Figure 1 with 9 nodes, the graph in dark grey is a 3-core. After

merging 𝑣7 and 𝑣9, 𝑣7 has a new neighbor 𝑣6 (indicated by a dashed

line). Then the whole graph in light grey becomes 3-core. To the

best of our knowledge, we are the first to investigate the CMNM

problem. The main challenges of the problem are two folds. Firstly,

we need to consider every pair of nodes in the graph and this search

space is huge. Secondly, we prove the problem is NP-hard. In this

paper, we first present a greedy search framework and then analyze

different types of merging cases to reduce the search space. Finally,

experiments on real datasets are conducted to demonstrate the

effectiveness and efficiency of the proposed method.

Related work. Many cohesive models are used to study critical

nodes or key relationships detection of the graph, such as 𝑘-core

[8, 14], 𝑘-truss [9] and clique [10]. Existing works often use adding

edges [14], anchoring nodes [12] to enlarge the corresponding 𝑘-

core or 𝑘-truss. [11, 14] study the 𝑘-core maximization problem by

adding edges. [12] studies 𝑘-core maximization problem by anchor-

ing nodes while [6] tries to consider the coreness improvement

globally rather than only enlarging 𝑘-core. In [1], Bu et al. study

𝑘-truss maximization by merging nodes. However, the techniques

in the above research cannot support the problem in this paper,

since they do not consider the node merging or only apply to truss.

2 PRELIMINARIES
we consider an undirected graph 𝐺 = (𝑉 , 𝐸) where 𝑉 (resp. 𝐸)

represents the node (resp. edge) set in 𝐺 . Given a subgraph 𝑆 =
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Figure 2: Construction example for NP-hard proof, 𝑘=3

(𝑉 (𝑆), 𝐸 (𝑆)) in𝐺 , we denote the neighbor set of𝑢 in 𝑆 by 𝑁 (𝑢, 𝑆) =
{𝑣 | (𝑢, 𝑣) ∈ 𝐸 (𝑆)}, and the degree of 𝑢 in 𝑆 by 𝑑 (𝑢, 𝑆) = |𝑁 (𝑢, 𝑆) |.

Definition 2.1 (𝑘-core). Given a graph𝐺 , a subgraph 𝑆 is a 𝑘-core

of 𝐺 , denoted by 𝐶𝑘 (𝐺), if (𝑖) 𝑆 satisfies degree constraint, i.e.,

𝑑 (𝑢, 𝑆) ≥ 𝑘 for every node 𝑢 ∈ 𝑉 (𝑆); and (𝑖𝑖) 𝑆 is maximal, i.e., any

supergraph of 𝑆 cannot be a 𝑘-core.

Definition 2.2 (coreness). Given a graph𝐺 , the coreness of a node

𝑢 ∈ 𝑉 , denoted by 𝑐 (𝑢,𝐺), is the largest 𝑘 such that𝐶𝑘 (𝐺) contains
𝑢, i.e., 𝑐 (𝑢,𝐺) = max{𝑘 |𝑢 ∈ 𝑉 (𝐶𝑘 (𝐺))}.

For any two nodes 𝑣1 and 𝑣2, the merger operation [7] for 𝑣1
and 𝑣2 is to "shift" the edges incident to 𝑣2 to 𝑣1 without adding

multiple edges or self-loops, and remove 𝑣2 from 𝐺 . Specifically,

after the merger between the node pair 𝑣1 and 𝑣2, we can obtain

a new graph 𝐺 ′ = (𝑉 ′, 𝐸′), where 𝑉 ′ = 𝑉 \{𝑣2} and 𝐸′ = 𝐸 ∪
{(𝑢, 𝑣1) |𝑢 ∈ 𝑁 (𝑣2,𝐺) ∧𝑢 ≠ 𝑣2}\{(𝑢, 𝑣2) | (𝑢, 𝑣2) ∈ 𝐸}. For simplicity

of description, we use𝐺𝑣1,𝑣2 to represent the graph after merging 𝑣1
and 𝑣2. After merging nodes in the graph 𝐺 , the graph’s structure

changes, consequently affecting the 𝐶𝑘 (𝐺). We call the nodes in

𝑉 (𝐶𝑘 (𝐺𝑣1,𝑣2 ))\𝑉 (𝐶𝑘 (𝐺)) are followers of merging 𝑣1 and 𝑣2. Hence,

we delineate the problem addressed in this paper as follows.

Problem statement. Given a graph 𝐺 , an integer 𝑘 and a budget

𝑏, the problem of core maximization by node merging (CMNM) is

to merge 𝑏 pairs of nodes to maximize the size of 𝑘-core.

Theorem 2.3. The CMNM problem is NP-hard for all 𝑘 ≥ 3.

Proof. We reduce the MC problem [5], which is proved as NP-

hard, to our CMNM problem. The MC problem aims to find some

sets that cover the largest number of elements with a given budget𝑏.

Consider an arbitrary instance 𝐻 of MC with 𝑐 sets {𝑇1,𝑇2, · · · ,𝑇𝑐 }
and 𝑑 elements {𝑒1, 𝑒2, · · · , 𝑒𝑑 } =

⋃
1≤𝑖≤𝑐 𝑇𝑖 . Then, We construct a

corresponding instance of CMNM problem.

The node set of constructed graph 𝐺 includes five parts: 𝑊 ,

𝑊 ′, 𝑉 , 𝑉 ′ and a 𝑘-core. 𝑊 (resp. 𝑉 ) and 𝑊 ′ (resp. 𝑉 ′) is sym-

metrical in graph 𝐺 . We therefore focus on 𝑊 and 𝑉 . 𝑊 con-

tains 𝑐 sub-parts {𝑊1,𝑊2, · · · ,𝑊𝑐 } which correspond to each set

𝑇𝑖 in MC instance 𝐻 . Each sub-part𝑊𝑖 contains 𝑑 + 1 node, i.e.,

𝑊𝑖 = {𝑤𝑖,1,𝑤𝑖,2, · · · ,𝑤𝑖,𝑑+1}. We first connect these nodes by a

circle. 𝑤𝑖, 𝑗 is corresponding to the element 𝑒 𝑗 in 𝑇𝑖 for 1 ≤ 𝑗 ≤ 𝑑 .

𝑉 contains 𝑑 nodes, i.e., 𝑉 = {𝑣1, 𝑣2, · · · , 𝑣𝑑 }, corresponding to

each element 𝑒 𝑗 . Then if 𝑇𝑖 contains the element 𝑒 𝑗 , we add an

edge (𝑤𝑖, 𝑗 , 𝑣 𝑗 ). After that, we need to make sure 𝑑 (𝑤𝑖, 𝑗 ,𝐺) = 𝑘 for

1 ≤ 𝑗 ≤ 𝑑 and 𝑑 (𝑤𝑖, 𝑗 ,𝐺) = 𝑘 − 1 for 𝑗 = 𝑑 + 1. If the degree is

not enough, we add edges between 𝑤𝑖, 𝑗 and 𝑘-core to satisfy the

restriction. For each node 𝑣 𝑗 , we add 𝑘 − 2 edges to nodes in 𝑘-core.
Then we do the same thing for the symmetrical𝑊 ′ and 𝑉 ′, and
add an edge between 𝑣 𝑗 and 𝑣

′
𝑗
. Consequently, the construction is

completed. Figure 2 shows an example for 𝑑 = 𝑘 = 𝑐 = 3.

Based on the above construction, we can have the following prop-

erties: (𝑖) 𝑤𝑖,𝑑+1 will be deleted during the 𝑘-core decomposition

in the first round, then all nodes will be deleted accordingly expect

𝑘-core. So the coreness of 𝑤𝑖, 𝑗 and 𝑣 𝑗 is 𝑘 − 1. (𝑖𝑖) The new node

after merging the symmetrical nodes𝑤𝑖,𝑑+1 and𝑤
′
𝑖,𝑑+1 will not be

deleted during the core decomposition. (𝑖𝑖𝑖) Among all node pairs

in 𝐺 , only choosing symmetrical nodes𝑤𝑖,𝑑+1 and𝑤
′
𝑖,𝑑+1 to merge

can make the most nodes stay in 𝑘-core. The optimal merging set

for CMNM problem corresponds to the optimal set collection 𝐶 for

MC problem. Hence, the CMNM problem is NP-hard for 𝑘 ≥ 3. □

3 ALGORITHMS
Due to the NP-hardness of the problem, in this paper, we tend

to greedy heuristic. A straightforward greedy strategy involves

iterating through 𝑏 rounds. In each round, we select a pair of

nodes (𝑣1, 𝑣2) from all possible pairs in 𝑉 that will yield the largest

|𝐶𝑘 (𝐺𝑣1,𝑣2 ) |. Note that, after each round,𝐺 will be𝐺𝑣1,𝑣2 . However,

this greedy method suffers from massive unnecessary node pair

searches and is inefficient in handling larger graphs. Therefore, in

this section, we analyze various node pair scenarios to identify the

node set with the greatest potential to maximize the 𝑘-core. We

then greedily select 𝑏 node pairs from this node set (which is much

smaller than 𝑉 ). Before presenting the details, we first introduce

an interesting conclusion in the following lemma.

Lemma 3.1. Given a graph𝐺 and any two nodes 𝑣1 and 𝑣2, after
merging these two nodes, the coreness of the other nodes will change
by at most 1, i.e., |𝑐 (𝑣,𝐺) − 𝑐 (𝑣,𝐺𝑣1,𝑣2 ) | ≤ 1 for each 𝑣 ∈ 𝑉 \{𝑣1, 𝑣2}.

Proof. Note that merging nodes can cause 𝑐 (𝑢,𝐺) increase or
decrease. In the decrease case, merging a pair of nodes can decrease

𝑑 (𝑢,𝐺) by most 1 for each common 𝑢. Therefore the current 𝑘-core

at least satisfying (𝑘−1)-core, the coreness decreases by most 1. For

the increase case, we consider the opposite operation (split node)

and show the decrease is limited. We split 𝑣1 in𝐺𝑣1,𝑣2 back to 𝑣1, 𝑣2
in 𝐺 . And regarding the coreness of each node, such an operation

is no worse than deleting a node. So the degree and coreness of a

node can only be reduced by 1. Hence, the lemma holds. □

Definition 3.2 (𝑘-shell). Given a graph 𝐺 and an integer 𝑘 , the

𝑘-shell of 𝐺 , denoted by 𝑆𝑘 (𝐺), is the set of nodes with coreness 𝑘 ,

i.e., 𝑆𝑘 (𝐺) = {𝑣 ∈ 𝑉 |𝑐 (𝑣,𝐺) = 𝑘}.

Based on Lemma 3.1 and Definition 3.2, only the nodes in (𝑘 −1)-
shell can be the followers of merging two nodes. Therefore, we

only need to focus on nodes that have neighbors in the (𝑘 − 1)-
shell. These nodes can be divided into three parts: the nodes in

𝑘-core (core-node), the nodes in (𝑘 − 1)-shell (shell-node), and the
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Figure 3: Merging example

remaining nodes (out-node). Based on the categorization of nodes,

we can obtain 6 types of merge pairs as shown in Figure 3.

out-out merge. As shown in Figure 3(a), 𝑣1 and 𝑣2 are out-nodes.

After merging 𝑣1 and 𝑣2, if 𝑣1 stay in the 𝑘-core of 𝐺𝑣1,𝑣2 , for each

node 𝑢 in {𝑢 ∈ 𝑆𝑘−1 (𝐺) |𝑢 ∈ 𝑁 (𝑣1,𝐺) ∨𝑢 ∈ 𝑁 (𝑣2,𝐺)}, 𝑢 has a new

neighbor 𝑣1 in 𝐶𝑘 (𝐺𝑣1,𝑣2 ), which may increase the coreness of 𝑢.

Thus, when merging the out-node, the more neighbors it has in the

(𝑘 − 1)-shell, the more potential followers it has.

out-shell merge. As shown in Figure 3(b), 𝑣1 and 𝑣2 are out-node

and shell-node, respectively. According to [13], when computing

𝑘-core by core decomposition, there is a removing order, denoted

as ⪯, for the nodes in (𝑘 − 1)-shell. 𝑢 ⪯ 𝑣 iff 𝑢 is removed before 𝑣

by core decomposition. After merging 𝑣1 and 𝑣2, if 𝑣1 stay in the

𝑘-core of𝐺𝑣1,𝑣2 , for each neighbor node 𝑢 in (𝑘 − 1)-shell of 𝑣2 with
𝑢 ⪯ 𝑣2, 𝑣2 will not contribute to 𝑢 joining 𝑘-core, as 𝑢 is removed

before 𝑣2 in ⪯. While, for the neighbor node 𝑢 in (𝑘 − 1)-shell of
𝑣2 with 𝑣2 ⪯ 𝑢, 𝑢 may increase its coreness, this is because 𝑣2 will

always be the neighbor of 𝑢 when core decomposition. Thus, when

merging the shell-node, the more neighbors with removing order

after shell-node, the more potential followers it has. The effect of

𝑣1 is the same as out-out merge.

out-core merge. As shown in Figure 3(c), 𝑣1 and 𝑣2 are out-node

and core-node, respectively. Since 𝑣2 is already in 𝑘-core, 𝑣2 will not

contribute to its neighbor joining 𝑘-core when merging 𝑣1 and 𝑣2.

After merging, 𝑣1 will become a 𝑘-core node, and 𝑣1’s (𝑘 − 1)-shell
neighbors have a new 𝑘-core neighbor, so the coreness of them can

increase. However, the effectiveness of this merger only relies on

𝑣1, i.e., out-node.

shell-shell merge. As shown in Figure 3(d), 𝑣1 and 𝑣2 are both

shell-nodes. Similar to out-shell merge, after merging 𝑣1 and 𝑣2, if

𝑣1 survive during core decomposition, for each neighbor node 𝑢

in (𝑘 − 1)-shell of 𝑣1 and 𝑣2 with 𝑣1 ⪯ 𝑢 or 𝑣2 ⪯ 𝑢, they do not be

deleted. Thus, the more neighbors with removing order after 𝑣1
and 𝑣2, the more potential followers they have.

shell-core merge. As shown in Figure 3(e), 𝑣1 and 𝑣2 are shell-

node and core-node, respectively. After merging, 𝑣1 becomes a

𝑘-core node, thus each 𝑣1’s shell neighbor has a new neighbor in

𝑘-core, which may lead to the coreness increase. However, before

and after merging, 𝑑 (𝑢,𝐶𝑘−1 (𝐺)) = 𝑑 (𝑢,𝐶𝑘−1 (𝐺𝑣1,𝑣2 )) for each 𝑢

in {𝑢 ∈ 𝑆𝑘−1 (𝐺) |𝑢 ∈ 𝑁 (𝑣1,𝐺) ∧ 𝑢 ⪯ 𝑣1}, thus the coreness of 𝑢
does not change. The more neighbors with removing order after

shell-node 𝑣1, the more potential followers it has.

Note that the above two situations in Figure 3(d) and (e) can also

lead to the coreness loss for the node in (𝑘 − 1)-shell if 𝑣1 and 𝑣2
have a common neighbor in (𝑘 − 1)-shell.

Algorithm 1: CMNM Algorithm

Input :𝐺 : a graph, 𝑘 : degree constraint, 𝑏: budget,

𝑥 : the number of out-node, 𝑦: the number of shell-node.

Output : 𝑃 : the pairs of nodes to be merged

while |𝑃 | < 𝑏 do1

𝑚𝑎𝑥 ← 0; 𝐵𝑃 ← ∅;2

compute (𝑘 − 1)-shell and the corresponding removing order ⪯;3

𝑋 ← 𝑥 out-nodes with most neighbors in (𝑘 − 1)-shell;4

𝑌 ← 𝑦 shell-nodes with most neighbors in ⪯ after it;5

for each node pair (𝑣1, 𝑣2 ) in 𝑋 ∪𝑌 do6

if |𝐶𝑘 (𝐺𝑣1,𝑣2 ) | + |𝑆𝑘−1 (𝐺𝑣1,𝑣2 ) | >𝑚𝑎𝑥 then7

𝑚𝑎𝑥 ← |𝐶𝑘 (𝐺𝑣1,𝑣2 ) ) | + |𝑆𝑘−1 (𝐺𝑣1,𝑣2 ) |;8

𝐵𝑃 ← (𝑣1, 𝑣2 ) ;9

𝑃 ← 𝑃 ∪ {𝐵𝑃 };𝐺 ← 𝐺𝐵𝑃 ;10

return 𝑃 ;11

core-core merge. As shown in Figure 3(f), both 𝑣1 and 𝑣2 are core-

nodes. Note that their neighbors in the (𝑘 − 1)-shell are deleted
before them during the core decomposition. Furthermore, the core-

core merge can lead to degree loss if 𝑣1 and 𝑣2 have some common

neighbors in 𝑘-core or (𝑘 − 1)-shell. This can lead to a decrease of

𝑘-core size or (𝑘 − 1)-shell size. Thus, we prune this situation.
Based on the above analysis, we introduce a new method to

select nodes to merge. Instead of selecting the node pair from the

whole node set𝑉 , we first extract a subset 𝑋 ⊆ 𝑉 which contains 𝑥

out-nodes that have the most neighbors in the (𝑘 − 1)-shell, and
a subset 𝑌 ⊆ 𝑉 which contains 𝑦 shell-nodes that have the most

neighbors in ⪯ after it. Then we only select the node pair from𝑋∪𝑌 .
𝑥 and 𝑦 are set by users to control computational cost. In addition,

according to Lemma 3.1, the upper bound for expanding 𝑘-core is

the size of (𝑘 − 1)-shell. The merger will enlarge or decrease the

size of (𝑘 − 1)-shell, so we need to consider them both to retain or

increase (𝑘 − 1)-shell nodes as more as possible. The pseudocode

of the algorithm is shown in Algorithm 1.

We find the best merge pairs until exhaust budget 𝑏 (lines 1-

10). In each round, we use𝑚𝑎𝑥 and 𝐵𝑃 to record the best effect to

enlarge 𝑘-core and best merge pair respectively (line 2). We first

apply core decomposition to compute the (𝑘 − 1)-shell and the

corresponding removing order ⪯ (line 3). After that, we collect 𝑥

out-nodes with most (𝑘 − 1)-shell neighbors and 𝑦 shell-nodes with

most neighbors in ⪯ after it (lines 4-5). Then, we extract the best

node pair 𝐵𝑃 from 𝑋 ∪ 𝑌 that can enlarge 𝑘-core and (𝑘 − 1)-shell
(lines 6-9). At the end of each round, we add 𝐵𝑃 into 𝑃 and update

the graph 𝐺 after merging 𝐵𝑃 (line 10).
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Figure 4: Effectiveness evaluation
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Figure 5: Efficiency evaluation

4 EXPERIMENTS
Algorithms. To the best of our knowledge, there is no existing

work for the problem of core maximization by node merging. Thus

we implement and evaluate the following algorithms.

• CMNM. Our proposed CMNM algorithm (i.e., Algorithm 1).

• RAND. In CMNM, we randomly extract 𝑥 out-nodes and 𝑦

shell-nodes nodes from 𝑉 in each iteration.

• MIN. In CMNM, we extract 𝑥 out-nodes and 𝑦 shell-nodes

with most neighbors in (𝑘 − 1)-core.
Datasets and workloads. We employ 3 real-world networks, i.e.,

Brightkite (58228 nodes and 214078 edges), Cithepph (36692 nodes

and 420877 edges) and Gowalla (196591 nodes and 950327 edges).

All datasets are publicly available on SNAP (http://snap.stanford.

edu). All the programs are implemented in C++. We vary 𝑘 in

{10, 15, 20, 25}, and vary 𝑏 in {5, 10, 15, 20}. The default values of 𝑘
and 𝑏 are 15 and 10, respectively. We choose 20 shell-nodes and 20

out-nodes in each round.

Effectiveness evaluation. To evaluate the effectiveness of our

method, in this experiment, we report the number of followers of

CMNM, RAND and MIN by varying 𝑘 and 𝑏. The results are shown

in Figure 4. Note that, in these experiments, we use the default

setting for another unchanged parameter. As we can see, CMNM

outperforms RAND and MIN on all settings, which demonstrates

the effectiveness of our proposed method.

Efficiency evaluation. In this experiment, we evaluate the effi-

ciency of our algorithm CMNM by varying 𝑘 and 𝑏. The results

are reported in Figure 5. As we can see, CMNM can finish within

a reasonable time on all settings. When 𝑘 increases, the algorithm
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Figure 6: Case study on Brightkite with 𝑘 = 20 and 𝑏 = 1

runs faster due to the smaller search space. With the increase of

𝑏, the response time increase, because we need to perform more

iterations to select merger pairs.

Case study. We also conduct a case study on Brightkite dataset

when 𝑘 = 20 and 𝑏 = 1. As shown in Figure 6, each number

represents the node id. And we chose node 989 and node 978 by

using our algorithm, which can bring 40 new nodes into 𝑘-core.

5 CONCLUSION
In this paper, we discuss the 𝑘-core maximization problem by node

merging. We prove the problem is NP-hard. To solve the prob-

lem, we develop a greedy algorithm and analyze different merging

scenarios that may enlarge 𝑘-core. Then, we propose the CMNM

algorithm which can precisely choose nodes to merge. Experiments

are conducted on real-world datasets to demonstrate the advantages

of the proposed method.
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