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ABSTRACT
In modern NLP applications, word embeddings are a crucial back-
bone that can be readily shared across a number of tasks. However,
as the text distributions change and word semantics evolve over
time, the downstream applications using the embeddings can suffer
if the word representations do not conform to the data drift. Thus,
maintaining word embeddings to be consistent with the underlying
data distribution is a key problem. In this work, we tackle this prob-
lem and propose TransDrift1, a transformer-based prediction model
for word embeddings. Leveraging the flexibility of transformer, our
model accurately learns the dynamics of the embedding drift and
predicts the future embedding. In experiments, we compare with ex-
isting methods and show that our model makes significantly more
accurate predictions of the word embedding than the baselines.
Crucially, by applying the predicted embeddings as a backbone for
downstream classification tasks, we show that our embeddings lead
to superior performance compared to the previous methods.
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1 INTRODUCTION
Word embeddings are pivotal in modern NLP tasks, serving as
a reusable feature store widely adopted across various industry
1Codebase: https://github.com/data-iitd/transdrift
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applications [10, 13, 15, 32, 33]. However, the dynamic nature of data
distributions over time poses a challenge.Words evolve in semantics
and usage over time. For example, vacation may connote beach-
related activities in summer and skiing in winter. This variability
poses challenges; for instance, a customer preference model relying
on embedding similaritymay falter if vacation is closer to beach than
skiing in winter. Thus, robust embeddings must align with evolving
data distributions to enhance downstream NLP applications.

Temporal drift presents a significant concern, often resulting in
inadequate data from the new distribution. For example, transition-
ing from summer to winter may yield scant winter data for model
training. A simple solution of retraining embeddings with new win-
ter data may not be feasible due to data scarcity. Nevertheless, the
quest remains for updated embeddings aligned with evolving data
distributions.

Prior studies have explored historical data to identify temporal
drifts in word embeddings [11, 14, 16, 17, 22, 25], revealing their
detrimental impact on downstream tasks. Furthermore, instability
in embeddings due to minor data shifts has been underscored [2,
8, 19, 27]. However, these methods lack a consistent approach to
update embeddings in response to drift dynamics.

We propose TransDrift, a novel model based on transformer ar-
chitecture that predicts future embeddings alignedwith data drift by
integrating past embeddings with drift dynamics. Our experiments
validate the utility of predicted embeddings for downstream NLP
tasks. The model’s simplicity and versatility make it compatible
with any word embedding algorithm.

Our main contributions can be summarized as: 1) We propose a
novel model, TransDrift, that leverages transformer to predict the
future embeddings. 2) Our model can predict future embeddings
by leveraging some amount of future data, if available. 3) Our
results show that our model is effective in modeling the drift in the
embeddings. 4) Lastly, we also show improvement in the accuracy
on downstream NLP tasks when using our predicted embeddings.

2 BACKGROUND
2.1 Word Embeddings
Methods like word2vec commonly generate application-agnostic
word embeddings [4, 29, 30]. These methods take a text corpus
D and generate embeddings E = {e1, . . . , e𝑁 } for 𝑁 words, where
each e𝑛 is a 𝑑-dimensional vector representing the 𝑛-th word. The
aim is to embed words in a feature space while capturing their
semantic structure, clustering similar words like apple and orange
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Figure 1: Overview of TransDrift model. We show an illustra-
tion of product review data showing that the data generating
process undergoes drift betweenwinter and summer. In these
reviews, winters are characterized by the mentions of cold
weather while summers are characterized bymentions of hot
weather. Our model takes the past word embeddings as input
to predict the embeddings for the drifted data distribution.

Figure 2: TransDrift model. Our model takes the word em-
bedding of previous time-step as input optionally along with
a few word embeddings of the current time-step trained with
a small dataset.
together. This is achieved by predicting neighboring words for
each word in the corpus D. Backpropagating gradients from this
prediction objective to the input word’s embedding enables the
learning of word embeddings. Consequently, these embeddings
encode information about the common usage context of the word.

2.2 Transformer Architectures
The Transformer architecture processes a set of vectors, allow-
ing each vector to interact flexibly with all others [26, 35]. In this
model, a transformer layer takes 𝑁 input vectors and maps them
to 𝑁 output vectors, facilitating interaction through self-attention
mechanisms [35]. Following self-attention, each vector undergoes
transformation via a MLP, enhancing the model’s expressiveness.
Residual connections are incorporated into both self-attention and
MLP steps to improve gradient flow. To boost modeling capacity,
multiple transformer blocks are stacked. Given their effectiveness
in capturing complex interactions, we aim to leverage the Trans-
former architecture to monitor drift in word embeddings over time
in this study.

3 METHOD
In this section, we propose a method to model the drift in word
embeddings over time. We begin with the text distribution at each
time-step P𝑡 , which provides us with a data sample D𝑡 ∼ P𝑡 .
Crucially, this distribution evolves over time: P𝑡 → P𝑡+1 as shown
in Figure 1. As a result, the semantics and usage of words in the
sampled datasets,D𝑡 andD𝑡+1, change over time. We aim for these
evolving semantics to be reflected in word embeddings E𝑡 at each
time-step 𝑡 , making them useful for downstream tasks.

While data at time 𝑡 is extensive,D𝑡+1 at time 𝑡 +1 is often much
smaller and may even be empty. Thus, while word embedding E𝑡
can be accurately learned from D𝑡 using standard methods like
word2vec, however, directly learning E𝑡+1 from D𝑡+1 is usually in-
effective or impossible if D𝑡+1 is empty. Therefore, during training,
we aim to learn drift dynamics that can be used at test time to
predict E𝑡+1 directly from E𝑡 , even when D𝑡+1 is small or empty.

For this, we first train the embedding at time 𝑡 using the large
data set at time 𝑡 and then use a Transformer to map the word
embeddings at time-step 𝑡 to the embeddings of the next time-step
𝑡 + 1. Formally,

E𝑡 = TrainWordEmbeddings(D𝑡 ),
E𝑡+1 = Transformer𝜙 (E𝑡 ) .

Using a Transformer model enables each word embedding predic-
tion to consider the embeddings of all other words through attention
mechanisms. This capability allows our model to learn complex
embedding drift dynamics, enhancing prediction accuracy.

During inference, if a small datasetDsmall
𝑡+1 is available at timestep

𝑡 + 1, we can use it to train embeddings for a subset of words. These
resulting embeddings, Esmall

𝑡+1 , can serve as additional context for our
model during prediction. Alongside embeddings from the previous
timestep, our model predicts all embeddings for timestep 𝑡 + 1 as
shown in Figure 2. This can be summarized as follows:

Esmall
𝑡+1 = TrainWordEmbeddings(Dsmall

𝑡+1 ),

E𝑡+1 = Transformer𝜙 (E𝑡 , Esmall
𝑡+1 ) .

In our experiments, we shall show that providing such additional
context can lead to moderate improvements in the prediction ac-
curacy. For downstream applications, providing such additional
embeddings can therefore be beneficial.

Training. For training, we assume that our historical data pro-
vides large datasets for both time-steps 𝑡 and 𝑡 + 1 which we denote
as D𝑡 and D𝑡+1. Taking these two datasets, we train the word
embeddings as follows:

E𝑡 = TrainWordEmbeddings(D𝑡 ),
E𝑡+1 = TrainWordEmbeddings(D𝑡+1) .

To train the Transformer, we minimize the following cosine embed-
ding loss Lpredict (𝜙) for predicting the embedding at time 𝑡 + 1:

1−cos(E𝑡+1,Transformer𝜙 (E𝑡 , Esmall
𝑡+1 )),

where cos(·, ·) denotes cosine similarity.
Downstream Task. As our end goal of modeling the embed-

ding drift is to help downstream task, we now describe how we
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utilize our predicted word embedding to achieve this. For our pur-
pose, we perform classification tasks for input review text (x) and
ground truth (y). We train a downstream task neural network on
the predicted word embeddings as follows:

𝑓𝜃 (x;E𝑡+1) .
Given embedding E𝑡+1, input x and target label y, we learn the
task-specific neural network at time-step 𝑡 + 1 as:

Ltask (𝜃 ) = CrossEntropy(y, 𝑓𝜃 (x;E𝑡+1)) .

4 IMPLEMENTATION DETAILS
Before training word vectors, datasets undergo preprocessing: all
corpus sentences are converted to lowercase, non-alphabetic char-
acters are removed using a regular expression. NLTK’s sentence
and word tokenizer generate tokens from the processed data. Sub-
sequently, stop-words are removed from the tokens. Finally, the
tokenized data is employed to train a word2vec language model,
resulting in 50-dimensional word embeddings.

We utilized the Word2Vec language model to train embeddings
E𝑡 , E𝑡+1, and Esmall

𝑡+1 for datasets D𝑡 , D𝑡+1, and Dsmall
𝑡+1 , respectively,

following incremental word embedding training as proposed by
Kim et al. [24]. This method initializes word embeddings Esmall

𝑡+1 and
E𝑡+1 for the drifted timestamps with E𝑡 from the preceding times-
tamp. The Word2Vec model was initialized using E𝑡 embeddings
and subsequently retrained on D𝑡+1, following the same prepro-
cessing steps, to generate E𝑡+1. A similar approach is used for Esmall

𝑡+1 .
This guarantees that the embeddings are aligned.
We prepared 1,000 sets of E𝑡 , E𝑡+1, and Esmall

𝑡+1 from each dataset
(Amazon, Yelp, and Synthetic). Each set served as a training example
for the transformer, with input(X) consisting of word embedding
vectors from E𝑡 and Esmall

𝑡+1 , and target(Y) containing vectors from
E𝑡+1. Only common words across all 1,000 instances of E𝑡 and E𝑡+1
were selected to maintain coherence between training samples.
Words common across the 1,000 instances of Esmall

𝑡+1 were also in-
cluded with the E𝑡 embedding to provide context for predicting
E𝑡+1. This comprehensive approach ensures proper training of our
transformer-based model.
The TransDrift model utilizes the transformer architecture, featur-
ing an encoder and decoder, each consisting of 4 layers. Within each
layer, there are 2 sub-layers: the first is a multi-headed attention
layer, and the second includes a RELU layer sandwiched between
2 linear layers. Each sub-layer is followed by layernorm, which
normalises the sum of the input and output and passes it to the
next layer.
We historically possess datasets D𝑡 and D𝑡+1 for specific times-
tamps, corresponding to E𝑡 and E𝑡+1 embeddings. These datasets
train our model, allowing it to capture drift patterns. In future times-
tamps where D𝑡+1 is limited or absent, our model predicts E𝑡+1
embeddings using learned drift patterns and available context from
limited amount of D𝑡+1(Dsmall

𝑡+1 ). As the model undergoes periodic
training, the captured drift pattern evolves.
Downstream task is performed on reviews taken from both times-
tamps to check the robustness of our predicted embeddings.
5 EXPERIMENTS
The goal of our experiments is to show how well our model can
accurately predict the drifted word embeddings relying on little

Table 1: Comparison of word embedding prediction between
our model and the baselines. We report the cosine similarity
of the predicted embeddingwith the ground truth embedding
trained using large amount of data from the drifted distri-
bution. The predicted embeddings do not use any data from
the drifted distribution. We note that our model, TransDrift,
is significantly more accurate with respect to the baseline
models.

Drift Model

Dataset No-Drift Additive TransDrift

Synthetic 0.3200 0.3300 0.7724
Yelp 0.1900 0.7956 0.8910
Amazon -0.0040 -0.0002 0.8170

or no data from the drifted text distribution. Furthermore, we also
show the benefits of our predicted word embedding in improving
the performance of downstream classification tasks. As an instance
to test our idea, we intentionally choose simplest and widely used
embedding method word2vec so that our results can be interpreted
more generally.

5.1 Experiment Setup
5.1.1 Datasets. We evaluate our models on a synthetic dataset,
Yelp Academic dataset [9] and Amazon Customer Review dataset
[28]. For each dataset, we consider drift instances with each in-
stance consisting of D1, D2, and Dsmall

2 during training. Here, the
subscript 1 denotes the source time-step 𝑡 = 1 and subscript 2 de-
notes the next time-step (i.e. 𝑡 = 2) in which the underlying text
distribution has undergone a shift.

Synthetic Dataset. The dataset comprises multiple instances,
each featuring a randomly generated sparse graph where nodes
represent tokens from the vocabulary. Edge weights in the graph
signify token co-occurrence patterns, and a random walk from a
random node yields encountered tokens as text. Transition probabil-
ities during the walk depend on edge weights, resulting in dataset
D1. Edge weights are randomly modified to create a drifted data
process. From this drifted graph, we perform another random walk
to sample both a small dataset Dsmall

2 and a large dataset D2.
Yelp Academic Dataset. For Yelp Academic Dataset, we use the

businesses, reviews, and user data. For this, we divide the dataset
into two parts by timestamp – reviews before the year 2016 and
reviews after the year 2016. We denote these two parts as: D1 and
D2. We take smaller subsets of D2 to obtain Dsmall

2 .
Amazon Customer Review Dataset. For Amazon Customer

Review dataset, we separately consider the categories: Books, Elec-
tronics, DVD, and Kitchen. For this, we divide the dataset into two
parts by timestamp – summer reviews and winter reviews. We call
these two parts as: D1 and D2. We take smaller subsets of D2 to
be Dsmall

2 .

5.1.2 Metrics. We evaluate prediction accuracy by computing co-
sine similarity between E2 learned from the full dataset D2 and
our predicted embeddings, derived from previous embeddings E1
and Esmall

2 . Additionally, downstream model accuracy reflects the
benefits of our predicted embeddings on task performance.
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Table 2: Comparison of the word embedding prediction per-
formance under varying percentages of 𝐷small

2 data used. We
report the average cosine similarity.

Size of Dsmall
2 as % of D2

Dataset 30% 20% 0%

Synthetic 0.8067 0.7913 0.7724
Yelp 0.9119 0.9075 0.8910
Amazon 0.8829 0.8076 0.8170

Table 3: Qualitative analysis of nearest neighbors of the pre-
dicted word embeddings on Yelp dataset. For each prediction
model, we find 30 nearest neighbors for each word shown in
the first column. We then count the number of these near-
est neighbors that are also the nearest neighbor in the tar-
get word embeddings. Thus, the higher number of nearest
neighbors of our model TransDrift shows that our predicted
embeddings agree significantly more with the target embed-
dings.

# Common Neighbors

Word No-Drift Additive TransDrift

well 7 4 7
place 8 8 15
great 10 11 13
time 7 7 12
nice 11 9 15
customer 8 9 10
happy 3 1 7
people 9 8 12

Table 4: Downstream Prediction Results on Amazon Review
(AR) and Yelp Datasets. Using embeddings from the evalu-
ated methods, we train a downstream sentiment classifier
and report its test accuracy. We note that the No-Drift model
which re-uses the outdated embedding from the previous
time-step suffers compared to TransDrift. TransDrift is sig-
nificantly more accurate than the baseline models.

Accuracy (in %)

Dataset No-Drift Additive TransDrift

AR-Electro 60.50% 60.56% 69.60%
AR-Kitchen 63.60% 63.52% 75.70%
AR-DVD 59.00% 59.03% 63.50%
Yelp 58.00% 60.00% 65.00%

5.1.3 Baselines. As no previous work directly tackles our problem
setting, we develop the following baselines to show the efficacy of
our model.

No-Drift Model. In this baseline for predicting the future em-
beddings, the modeling assumption is that the word embeddings do
not undergo drift. That is, the model assumes that the embeddings
learned at time-step 1 using D1 can be naively re-used at time-step

2 even though the underlying data distribution has drifted between
timesteps 1 and 2. The goal of this comparison is to justify the need
for predicting the word embedding instead of simply re-using the
previous outdated embeddings.

Additive-Drift Model. In this baseline for modeling the em-
bedding drift, we assume that the drift can be modeled by adding a
constant embedding vector to all the words in vocabulary as pro-
posed by [34]. That is, this model learns a vector Δ such that the
embedding at time-step 2 can be predicted as E2 = E1 +Δ. The goal
of this comparison is to show that it is not enough to simply model
the drift as a constant additive vector and it is required to model
complex interaction and non-linear drift dynamics to predict the
future embedding accurately.

5.2 Word-Embedding Prediction
We now evaluate the performance of word embedding prediction
by the models.

5.2.1 Quantitative Evaluation. We perform a quantitative evalua-
tion by reporting the average cosine similarity under two prediction
regimes: with and without the available data from the drifted dis-
tribution.

Prediction with No Data. In Table 1, we present the average
cosine similarity between the predicted word embeddings and the
target embeddings. The target embeddings, denoted as E2, are ob-
tained by applying word2vec to a large dataset collected from the
drifted distribution. Notably, we generate embedding predictions
without using any data from the drifted distribution. Our Trans-
Drift model consistently outperforms all baselines across various
datasets. Particularly, the No-Drift baseline performs poorly, indi-
cating that relying on outdated embeddings is insufficient. Even
when assuming drift as a constant vector added to all words (i.e.,
the Additive-Drift model), performance is better than the No-Drift
model but significantly inferior to our model. This underscores
the importance of capturing complex interactions and non-linear
drift behavior, which our transformer-based predictor accomplishes
effectively.

Prediction with Available Drifted Data. In Table 2, we show
the effect of using increasingly larger amount of data Dsmall

2 from
time-step 2 to inform the word embedding prediction in our model.
We note that with increasing the size of this data, we see an increase
in prediction accuracy across all datasets. In deployment settings,
this property may be useful to continually improve the embeddings
as increasingly more data is gradually collected. Interestingly, we
note that even with no data from the time-step 2, our prediction
accuracy already surpasses all our baselines reported in Table 1
across all datasets.

5.2.2 Qualitative Evaluation. To analyze prediction results quali-
tatively, we select eight words from Yelp dataset: well, place, great,
time, nice, customer, happy and people, computing their nearest
neighbors using predicted embeddings from all models. The target
embeddings are based on word embeddings trained using a large
amount of data from time-step 2. A higher number of common near-
est neighbors between predicted and target embeddings indicates
model effectiveness. We report the number of common nearest
neighbors for each word in Table 3. Notably, assuming No-Drift
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Table 5: Text samples from AR dataset that were misclassified when using No-Drift model compared to our TransDrift model.

Review Text Ground Truth TransDrift

First off, the ipod jiggles no matter what you do, secondly, it doesn’t stay straight
on the power plug, it constantly tilts(the whole thing)...not worth $10 Negative Negative

I bought this amazing product and now it is easy to have high quality music.
Just plug the iPod to your music equipment and you are done. Positive Positive

I love these dishes! The proportions, color vibrance, surface wearability and chip-resistance
can’t be beat for the price! I suggest buying a few colors to mix and match, these dishes
come in so many great colors! If you’re considering a lesser-priced set (I was), spend a little
bit more, the extra quality and classic style are definitely worth it

Positive Positive

results in fewer nearest neighbors, indicating changing word usage
over time due to underlying data drift. However, using TransDrift
for embedding prediction yields the highest number of nearest
neighbors compared to No-Drift and Additive Drift baselines.

5.3 Downstream Tasks
We assess how effectively our predicted embeddings enhance down-
stream task performance, especially under data drift conditions at
time-step 2. If so then which prediction approach should be pre-
ferred. We compare different approaches for obtaining word embed-
dings under drift: i) No-Drift, ii) Additive-Drift and iii) TransDrift.

We train a downstream classification model using embeddings
from each method and report test accuracy in Table 4. We train a
binary classifier for Amazon Review dataset and multi-label clas-
sifier with 5 labels for the Yelp dataset. Results show that the No-
Drift model, which re-uses outdated embeddings, and Additive-Drift
model lag behind our TransDrift model, indicating the usefulness of
embedding prediction by our approach. We further analyze down-
stream performance by presenting qualitative examples of text
inputs from the drifted distribution misclassified by the No-Drift
model but correctly classified by TransDrift, as shown in Table 5.

5.4 Ablation Study
To better justify our choice of architecture for TransDrift, we per-
form additional experiments that we describe here. In terms of
architectural components, our model can be seen as Self-Attention
+ Feed Forward Network, while our baseline MLP can be seen as
Feed Forward Network. We analyze the effect of this choice in our
experiments. We compute the cosine similarity of the predicted
embedding with the ground truth embedding trained using large
amount of data from the drifted distribution. Our model, Trans-
drift, achieves 6.2% higher similarity than the MLP model. Using
embeddings from the evaluated methods, we train a downstream
sentiment classifier and observe that TransDrift is 10.8% more accu-
rate than the MLP model. Details of the ablation study are available
in [1].

6 RELATEDWORK
Word Vectors. In the past decade, there has been significant inter-
est in learning word representations [3–7, 12, 21, 29]. Mikolov et al.
[29] propose CBOW and skip-gram architectures as the most com-
mon approach for learning high-quality word vectors from large
text datasets. CBOW predicts the current word based on context

words, while skip-gram predicts nearby context words. Bojanowski
et al. [4] introduce a novel method by incorporating character n-
grams to the skip-gram model, considering sub-word information
to enhance embedding quality and predict embeddings for unseen
words.
Data Drift in Text. Recent years have witnessed significant inter-
est in analyzing text drift, yet efforts to model it are still in their
infancy. Researchs such as [22], [23] and [38] highlight the adverse
effects of drift on downstream performance when training and
test sets diverge due to drift. [8, 27] define task instability with re-
spect to word embeddings, identifying trade-offs between stability,
precision, and model dimension. Instability in word neighbors, as
observed in word2vec and fasttext embeddings, is discussed in [19]
and [2]. [31, 36] define stability as percent overlap among neighbors,
crucially serving as a task independent definition. Various factors
affecting word stability and their impacts on downstream tasks are
analyzed. Approaches like down-sampling by [20], drift reversal
by [34], and evolutionary approach by [18] aim to stabilize word
embeddings, yet they assume downstream tasks remain unaffected
by data drift. In contrast, our work integrates drift and changing
word semantics to enhance embedding and task performance. Xu
et al. [37] propose a meta-learning approach for adapting word
embeddings from source to target domains. However, unlike our
method, it requires direct access to all previously seen corpora,
making it unsuitable for domains lacking target data.
Contextual Embeddings. Contextual embeddings have also seen
a rise alongside word2vec. However, word2vec is widely used in
a lot of industrial applications [10, 13, 15, 32, 33], the scope of our
work is to deal with drift in regular word2vec embeddings.

7 CONCLUSION
In this paper, we proposed TransDrift, a framework to track embed-
dings under data drift. We showed that using a transformer model
perform this task effectively with no data. Optionally, our model
can also leverage small amount of data from drifted distribution to
further improve its prediction. Finally, by performing downstream
tasks using the predicted embeddings, we show a significant perfor-
mance improvement compared to other options. One of the future
work can be to study multi-step word embedding prediction.
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