Check for
Updates

TransDrift: Modeling Word-Embedding Drift using Transformer

Nishtha Madaan Prateek Chaudhury
Indian Institute of Technology Delhi Indian Institute of Technology Delhi
New Delhi, India New Delhi, India
nishthaa.madaan@gmail.com prateekchaudhury@gmail.com
Nishant Kumar Srikanta Bedathur
Indian Institute of Technology Delhi Indian Institute of Technology Delhi
New Delhi, India New Delhi, India
¢s5190586@iitd.ac.in srikanta@cse.iitd.ac.in

ABSTRACT applications [10, 13, 15, 32, 33]. However, the dynamic nature of data

In modern NLP applications, word embeddings are a crucial back- distributions over time poses a challenge. Words evolve in semantics

bone that can be readily shared across a number of tasks. However, and usage over time. For example, vacation may connote beach-

as the text distributions change and word semantics evolve over related activities in summer and skiing in winter. This variability

time, the downstream applications using the embeddings can suffer poses challenges; for instance, a customer preference model relying

if the word representations do not conform to the data drift. Thus, on embedding similarity may falter if vacation is closer to beach than

maintaining word embeddings to be consistent with the underlying skiing in winter. Thus, robust embeddings must align with evolving

data distribution is a key problem. In this work, we tackle this prob- data distributions to enhance downstream NLP applications.

lem and propose TransDrift!, a transformer-based prediction model Temporal drift presents a significant concern, often resulting in

for word embeddings. Leveraging the flexibility of transformer, our inadequate data from the new distribution. For example, transition-

model accurately learns the dynamics of the embedding drift and ing from summer to winter may yield scant winter data for model

predicts the future embedding. In experiments, we compare with ex- training. A simple solution of retraining embeddings with new win-

isting methods and show that our model makes significantly more ter data may not be feasible due to data scarcity. Nevertheless, the

accurate predictions of the word embedding than the baselines. quest remains for updated embeddings aligned with evolving data

Crucially, by applying the predicted embeddings as a backbone for distributions.

downstream classification tasks, we show that our embeddings lead Prior studies have explored historical data to identify temporal

to superior performance compared to the previous methods. drifts in word embeddings [11, 14, 16, 17, 22, 25], revealing their
detrimental impact on downstream tasks. Furthermore, instability

CCS CONCEPTS in embeddings due to minor data shifts has been underscored [2,

8, 19, 27]. However, these methods lack a consistent approach to
update embeddings in response to drift dynamics.

KEYWORDS We propose TransDrift, a novel model based on transformer ar-
chitecture that predicts future embeddings aligned with data drift by
integrating past embeddings with drift dynamics. Our experiments
ACM Reference Format: validate the utility of predicted embeddings for downstream NLP

Nishtha Madaan, Prateek Chaudhury, Nishant Kumar, and Srikanta Be- tasks. The model’s simplicity and Versatﬂity make it compatible
dathur. 2024. TransDrift: Modeling Word-Embedding Drift using Trans- with any word embedding algorithm.

former. In Companion Proceedings of the ACM Web Conference 2024 (WWW . . .
24 C ion), May 13-17, 2024, Si S ACM. New York NY Our main contributions can be summarized as: 1) We propose a
ompanion), ay ’ > Simgapore, Singapore. o vew York, N novel model, TransDrift, that leverages transformer to predict the

USA, 6 pages. hitps://doi.org/10.1145/3589335.3651894 future embeddings. 2) Our model can predict future embeddings
1 INTRODUCTION by leveraging some amount of future data, if available. 3) Our
results show that our model is effective in modeling the drift in the
embeddings. 4) Lastly, we also show improvement in the accuracy
on downstream NLP tasks when using our predicted embeddings.

» Computing methodologies — Natural language processing.

transformers, word2vec, drift

Word embeddings are pivotal in modern NLP tasks, serving as
a reusable feature store widely adopted across various industry

Codebase: https://github.com/data-iitd/transdrift

2 BACKGROUND

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granFed without fee provided Fhat copiesA are npt made or distrlibuFed 2.1 Word Embeddlngs

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the Methods like word2vec commonly generate application-agnostic
authorﬂs) must be honored. Abstractmg Wlth cred'lt is permltted4.To copy otherW{set or word embeddings [4, 29, 30] These methods take a text corpus
republish, to post on servers or to redistribute to lists, requires prior specific permission ;

and/or a fee. Request permissions from permissions@acm.org. D and generate embeddlngs E= {(:‘1, cees CN} for N words, where
WWW 24 Companion, May 1317, 2024, Singapore, Singapore each ey is a d-dimensional vector representing the n-th word. The
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM. sy ; B ; :
ACM ISBN 9798 4007-0172.6/24/05. . $15.00 aim is ’Fo embed words ina fes.itu're space \N"hlle capturing their
https://doi.org/10.1145/3589335.3651894 semantic structure, clustering similar words like apple and orange

1388

https://doi.org/10.1145/3589335.3651894
https://github.com/data-iitd/transdrift
https://doi.org/10.1145/3589335.3651894
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3589335.3651894&domain=pdf&date_stamp=2024-05-13

WWW 24 Companion, May 13-17, 2024, Singapore, Singapore

Py

§

Actually | really can't stand winter
and | absolutely hate cold weather.
So you're probably wondering why
| am doing a review on this particular
coat?

|

hot?

Pret

Process Drift

Turns out we moved during the worst
hot summer weather known to man.
Delivery came through in a day or
two with this little ditty of an
affordable frosty dream maker!

summer R hot
[[] winter [
weather [}
—_
predict @ weather

summer

winter

Previous Word Embedding Predicted Word Embedding
Figure 1: Overview of TransDrift model. We show an illustra-
tion of product review data showing that the data generating
process undergoes drift between winter and summer. In these
reviews, winters are characterized by the mentions of cold
weather while summers are characterized by mentions of hot
weather. Our model takes the past word embeddings as input
to predict the embeddings for the drifted data distribution.

E£+1

Transformer

small
EH—l
Word2Vec
small
Dt+l

E,
Word2Vec
Dy

Figure 2: TransDrift model. Our model takes the word em-
bedding of previous time-step as input optionally along with
a few word embeddings of the current time-step trained with
a small dataset.

together. This is achieved by predicting neighboring words for
each word in the corpus D. Backpropagating gradients from this
prediction objective to the input word’s embedding enables the
learning of word embeddings. Consequently, these embeddings
encode information about the common usage context of the word.

2.2 Transformer Architectures

The Transformer architecture processes a set of vectors, allow-
ing each vector to interact flexibly with all others [26, 35]. In this
model, a transformer layer takes N input vectors and maps them
to N output vectors, facilitating interaction through self-attention
mechanisms [35]. Following self-attention, each vector undergoes
transformation via a MLP, enhancing the model’s expressiveness.
Residual connections are incorporated into both self-attention and
MLP steps to improve gradient flow. To boost modeling capacity,
multiple transformer blocks are stacked. Given their effectiveness
in capturing complex interactions, we aim to leverage the Trans-
former architecture to monitor drift in word embeddings over time
in this study.

1389

Nishtha Madaan, Prateek Chaudhury, Nishant Kumar, and Srikanta Bedathur

3 METHOD

In this section, we propose a method to model the drift in word
embeddings over time. We begin with the text distribution at each
time-step %, which provides us with a data sample D; ~ #;.
Crucially, this distribution evolves over time: ; — P41 as shown
in Figure 1. As a result, the semantics and usage of words in the
sampled datasets, Dy and D;1, change over time. We aim for these
evolving semantics to be reflected in word embeddings E; at each
time-step ¢, making them useful for downstream tasks.

While data at time ¢ is extensive, Dy1 at time ¢ +1 is often much
smaller and may even be empty. Thus, while word embedding E;
can be accurately learned from O; using standard methods like
word2vec, however, directly learning Es41 from Dy is usually in-
effective or impossible if Dy is empty. Therefore, during training,
we aim to learn drift dynamics that can be used at test time to
predict E;yq directly from E;, even when Dy,; is small or empty.

For this, we first train the embedding at time ¢ using the large
data set at time ¢ and then use a Transformer to map the word
embeddings at time-step ¢ to the embeddings of the next time-step
t + 1. Formally,

E; = TrainWordEmbeddings(D;),
E¢+1 = Transformery (E;).

Using a Transformer model enables each word embedding predic-
tion to consider the embeddings of all other words through attention
mechanisms. This capability allows our model to learn complex
embedding drift dynamics, enhancing prediction accuracy.
During inference, if a small dataset fo‘lau is available at timestep
t+1, we can use it to train embeddings for a subset of words. These
resulting embeddings, Eii“l"‘u, can serve as additional context for our
model during prediction. Alongside embeddings from the previous
timestep, our model predicts all embeddings for timestep t + 1 as

shown in Figure 2. This can be summarized as follows:

Ejrrlall = TrainWordEmbeddings(D?ﬂan),
Etr1 = Transformer¢ (E;, EinH).

In our experiments, we shall show that providing such additional
context can lead to moderate improvements in the prediction ac-
curacy. For downstream applications, providing such additional
embeddings can therefore be beneficial.

Training. For training, we assume that our historical data pro-
vides large datasets for both time-steps ¢ and ¢ + 1 which we denote
as Dy and Dyyq. Taking these two datasets, we train the word
embeddings as follows:

E; = TrainWordEmbeddings(Dy),
E;+1 = TrainWordEmbeddings(D;+1).
To train the Transformer, we minimize the following cosine embed-

ding loss LP™dit () for predicting the embedding at time ¢ + 1:

small
Ef))s

1—cos(E¢+1, Transformery (E;,
where cos(-, -) denotes cosine similarity.
Downstream Task. As our end goal of modeling the embed-

ding drift is to help downstream task, we now describe how we

TransDrift: Modeling Word-Embedding Drift using Transformer

utilize our predicted word embedding to achieve this. For our pur-
pose, we perform classification tasks for input review text (x) and
ground truth (y). We train a downstream task neural network on
the predicted word embeddings as follows:

Jo(X;E41).
Given embedding E;41, input x and target label y, we learn the
task-specific neural network at time-step t + 1 as:

LtaSk(Q) = CrossEntropy(y, fo (x; E¢+1)).

4 IMPLEMENTATION DETAILS

Before training word vectors, datasets undergo preprocessing: all
corpus sentences are converted to lowercase, non-alphabetic char-
acters are removed using a regular expression. NLTK’s sentence
and word tokenizer generate tokens from the processed data. Sub-
sequently, stop-words are removed from the tokens. Finally, the
tokenized data is employed to train a word2vec language model,
resulting in 50-dimensional word embeddings.

We utilized the Word2Vec language model to train embeddings
E;, Ezy1, and Ei‘ff“ for datasets Dy, Dyy1, and Z)ts?lau, respectively,
following incremental word embedding training as proposed by
Kim et al. [24]. This method initializes word embeddings E?Tfll
E;+1 for the drifted timestamps with E; from the preceding times-
tamp. The Word2Vec model was initialized using E; embeddings
and subsequently retrained on D;.1, following the same prepro-
cessing steps, to generate E;;1. A similar approach is used for Ei‘fl"ﬂl
This guarantees that the embeddings are aligned.

We prepared 1,000 sets of E;, E;y1, and Effff‘” from each dataset
(Amazon, Yelp, and Synthetic). Each set served as a training example
for the transformer, with input(X) consisting of word embedding
vectors from E; and Ei‘f{iu, and target(Y) containing vectors from
E¢+1. Only common words across all 1,000 instances of E; and E41

were selected to maintain coherence between training samples.

and

Words common across the 1,000 instances of E?Tlau were also in-
cluded with the E; embedding to provide context for predicting
E;+1. This comprehensive approach ensures proper training of our
transformer-based model.

The TransDrift model utilizes the transformer architecture, featur-
ing an encoder and decoder, each consisting of 4 layers. Within each
layer, there are 2 sub-layers: the first is a multi-headed attention
layer, and the second includes a RELU layer sandwiched between
2 linear layers. Each sub-layer is followed by layernorm, which
normalises the sum of the input and output and passes it to the
next layer.

We historically possess datasets D; and Dy for specific times-
tamps, corresponding to E; and E;4; embeddings. These datasets
train our model, allowing it to capture drift patterns. In future times-
tamps where Dy, is limited or absent, our model predicts E;41
embeddings using learned drift patterns and available context from
limited amount of Dy (Z)?frnlau). As the model undergoes periodic
training, the captured drift pattern evolves.

Downstream task is performed on reviews taken from both times-
tamps to check the robustness of our predicted embeddings.

5 EXPERIMENTS

The goal of our experiments is to show how well our model can
accurately predict the drifted word embeddings relying on little

1390

WWW ’24 Companion, May 13-17, 2024, Singapore, Singapore

Table 1: Comparison of word embedding prediction between
our model and the baselines. We report the cosine similarity
of the predicted embedding with the ground truth embedding
trained using large amount of data from the drifted distri-
bution. The predicted embeddings do not use any data from
the drifted distribution. We note that our model, TransDrift,
is significantly more accurate with respect to the baseline
models.

Drift Model
Dataset No-Drift Additive TransDrift
Synthetic 0.3200 0.3300 0.7724
Yelp 0.1900 0.7956 0.8910
Amazon -0.0040 -0.0002 0.8170

or no data from the drifted text distribution. Furthermore, we also
show the benefits of our predicted word embedding in improving
the performance of downstream classification tasks. As an instance
to test our idea, we intentionally choose simplest and widely used
embedding method word2vec so that our results can be interpreted
more generally.

5.1 Experiment Setup

5.1.1 Datasets. We evaluate our models on a synthetic dataset,
Yelp Academic dataset [9] and Amazon Customer Review dataset
[28]. For each dataset, we consider drift instances with each in-
stance consisting of D1, D5, and Z);mau during training. Here, the
subscript 1 denotes the source time-step ¢ = 1 and subscript 2 de-
notes the next time-step (i.e. ¢ = 2) in which the underlying text
distribution has undergone a shift.

Synthetic Dataset. The dataset comprises multiple instances,
each featuring a randomly generated sparse graph where nodes
represent tokens from the vocabulary. Edge weights in the graph
signify token co-occurrence patterns, and a random walk from a
random node yields encountered tokens as text. Transition probabil-
ities during the walk depend on edge weights, resulting in dataset
D;. Edge weights are randomly modified to create a drifted data
process. From this drifted graph, we perform another random walk
to sample both a small dataset ngall and a large dataset D;.

Yelp Academic Dataset. For Yelp Academic Dataset, we use the
businesses, reviews, and user data. For this, we divide the dataset
into two parts by timestamp - reviews before the year 2016 and
reviews after the year 2016. We denote these two parts as: D; and
D,. We take smaller subsets of D, to obtain Z);mau.

Amazon Customer Review Dataset. For Amazon Customer
Review dataset, we separately consider the categories: Books, Elec-
tronics, DVD, and Kitchen. For this, we divide the dataset into two
parts by timestamp — summer reviews and winter reviews. We call
these two parts as: D1 and D,. We take smaller subsets of D; to
be D;mall’

5.1.2 Metrics. We evaluate prediction accuracy by computing co-
sine similarity between E; learned from the full dataset D, and
our predicted embeddings, derived from previous embeddings E{
and E;mau. Additionally, downstream model accuracy reflects the
benefits of our predicted embeddings on task performance.

WWW ’24 Companion, May 13-17, 2024, Singapore, Singapore

Table 2: Comparison of the word embedding prediction per-
formance under varying percentages of D;mall data used. We
report the average cosine similarity.

Size of D;mau as % of Dy

Dataset 30% 20% 0%

Synthetic 0.8067 0.7913 0.7724
Yelp 0.9119 0.9075 0.8910
Amazon 0.8829 0.8076 0.8170

Table 3: Qualitative analysis of nearest neighbors of the pre-
dicted word embeddings on Yelp dataset. For each prediction
model, we find 30 nearest neighbors for each word shown in
the first column. We then count the number of these near-
est neighbors that are also the nearest neighbor in the tar-
get word embeddings. Thus, the higher number of nearest
neighbors of our model TransDrift shows that our predicted
embeddings agree significantly more with the target embed-
dings.

Common Neighbors

Word No-Drift Additive TransDrift
well 7 4 7

place 8 8 15

great 10 11 13

time 7 7 12

nice 11 9 15
customer 8 9 10

happy 3 1 7

people 9 8 12

Table 4: Downstream Prediction Results on Amazon Review
(AR) and Yelp Datasets. Using embeddings from the evalu-
ated methods, we train a downstream sentiment classifier
and report its test accuracy. We note that the No-Drift model
which re-uses the outdated embedding from the previous
time-step suffers compared to TransDrift. TransDrift is sig-
nificantly more accurate than the baseline models.

Accuracy (in %)

Dataset No-Drift Additive TransDrift
AR-Electro 60.50% 60.56% 69.60%
AR-Kitchen 63.60% 63.52% 75.70%
AR-DVD 59.00% 59.03% 63.50%
Yelp 58.00% 60.00% 65.00%

5.1.3 Baselines. As no previous work directly tackles our problem
setting, we develop the following baselines to show the efficacy of
our model.

No-Drift Model. In this baseline for predicting the future em-
beddings, the modeling assumption is that the word embeddings do
not undergo drift. That is, the model assumes that the embeddings
learned at time-step 1 using 9 can be naively re-used at time-step

1391

Nishtha Madaan, Prateek Chaudhury, Nishant Kumar, and Srikanta Bedathur

2 even though the underlying data distribution has drifted between
timesteps 1 and 2. The goal of this comparison is to justify the need
for predicting the word embedding instead of simply re-using the
previous outdated embeddings.

Additive-Drift Model. In this baseline for modeling the em-
bedding drift, we assume that the drift can be modeled by adding a
constant embedding vector to all the words in vocabulary as pro-
posed by [34]. That is, this model learns a vector A such that the
embedding at time-step 2 can be predicted as E; = E; + A. The goal
of this comparison is to show that it is not enough to simply model
the drift as a constant additive vector and it is required to model
complex interaction and non-linear drift dynamics to predict the
future embedding accurately.

5.2 Word-Embedding Prediction

We now evaluate the performance of word embedding prediction
by the models.

5.2.1 Quantitative Evaluation. We perform a quantitative evalua-
tion by reporting the average cosine similarity under two prediction
regimes: with and without the available data from the drifted dis-
tribution.

Prediction with No Data. In Table 1, we present the average
cosine similarity between the predicted word embeddings and the
target embeddings. The target embeddings, denoted as E, are ob-
tained by applying word2vec to a large dataset collected from the
drifted distribution. Notably, we generate embedding predictions
without using any data from the drifted distribution. Our Trans-
Drift model consistently outperforms all baselines across various
datasets. Particularly, the No-Drift baseline performs poorly, indi-
cating that relying on outdated embeddings is insufficient. Even
when assuming drift as a constant vector added to all words (i.e.,
the Additive-Drift model), performance is better than the No-Drift
model but significantly inferior to our model. This underscores
the importance of capturing complex interactions and non-linear
drift behavior, which our transformer-based predictor accomplishes
effectively.

Prediction with Available Drifted Data. In Table 2, we show
the effect of using increasingly larger amount of data Z);mau from
time-step 2 to inform the word embedding prediction in our model.
We note that with increasing the size of this data, we see an increase
in prediction accuracy across all datasets. In deployment settings,
this property may be useful to continually improve the embeddings
as increasingly more data is gradually collected. Interestingly, we
note that even with no data from the time-step 2, our prediction
accuracy already surpasses all our baselines reported in Table 1
across all datasets.

5.2.2 Qualitative Evaluation. To analyze prediction results quali-
tatively, we select eight words from Yelp dataset: well, place, great,
time, nice, customer, happy and people, computing their nearest
neighbors using predicted embeddings from all models. The target
embeddings are based on word embeddings trained using a large
amount of data from time-step 2. A higher number of common near-
est neighbors between predicted and target embeddings indicates
model effectiveness. We report the number of common nearest
neighbors for each word in Table 3. Notably, assuming No-Drift

TransDrift: Modeling Word-Embedding Drift using Transformer

WWW ’24 Companion, May 13-17, 2024, Singapore, Singapore

Table 5: Text samples from AR dataset that were misclassified when using No-Drift model compared to our TransDrift model.

Review Text

Ground Truth TransDrift

First off, the ipod jiggles no matter what you do, secondly, it doesn’t stay straight

Negati .
on the power plug, it constantly tilts(the whole thing)...not worth $10 egative Negative
Ib i i iti i i ic.

ought this famazmg product fmd now it is easy to have high quality music Positive Positive
Just plug the iPod to your music equipment and you are done.
I'love these dishes! The proportions, color vibrance, surface wearability and chip-resistance
can’t be beat for the price! I suggest buying a few colors to mix and match, these dishes - ..

Positive Positive

come in so many great colors! If you’re considering a lesser-priced set (I was), spend a little

bit more, the extra quality and classic style are definitely worth it

results in fewer nearest neighbors, indicating changing word usage
over time due to underlying data drift. However, using TransDrift
for embedding prediction yields the highest number of nearest
neighbors compared to No-Drift and Additive Drift baselines.

5.3 Downstream Tasks

We assess how effectively our predicted embeddings enhance down-
stream task performance, especially under data drift conditions at
time-step 2. If so then which prediction approach should be pre-
ferred. We compare different approaches for obtaining word embed-
dings under drift: i) No-Drift, ii) Additive-Drift and iii) TransDrift.
We train a downstream classification model using embeddings
from each method and report test accuracy in Table 4. We train a
binary classifier for Amazon Review dataset and multi-label clas-
sifier with 5 labels for the Yelp dataset. Results show that the No-
Drift model, which re-uses outdated embeddings, and Additive-Drift
model lag behind our TransDrift model, indicating the usefulness of
embedding prediction by our approach. We further analyze down-
stream performance by presenting qualitative examples of text
inputs from the drifted distribution misclassified by the No-Drift
model but correctly classified by TransDrift, as shown in Table 5.

5.4 Ablation Study

To better justify our choice of architecture for TransDrift, we per-
form additional experiments that we describe here. In terms of
architectural components, our model can be seen as Self-Attention
+ Feed Forward Network, while our baseline MLP can be seen as
Feed Forward Network. We analyze the effect of this choice in our
experiments. We compute the cosine similarity of the predicted
embedding with the ground truth embedding trained using large
amount of data from the drifted distribution. Our model, Trans-
drift, achieves 6.2% higher similarity than the MLP model. Using
embeddings from the evaluated methods, we train a downstream
sentiment classifier and observe that TransDrift is 10.8% more accu-
rate than the MLP model. Details of the ablation study are available
in [1].

6 RELATED WORK

Word Vectors. In the past decade, there has been significant inter-
est in learning word representations [3-7, 12, 21, 29]. Mikolov et al.
[29] propose CBOW and skip-gram architectures as the most com-
mon approach for learning high-quality word vectors from large
text datasets. CBOW predicts the current word based on context

1392

words, while skip-gram predicts nearby context words. Bojanowski
et al. [4] introduce a novel method by incorporating character n-
grams to the skip-gram model, considering sub-word information
to enhance embedding quality and predict embeddings for unseen
words.

Data Drift in Text. Recent years have witnessed significant inter-
est in analyzing text drift, yet efforts to model it are still in their
infancy. Researchs such as [22], [23] and [38] highlight the adverse
effects of drift on downstream performance when training and
test sets diverge due to drift. [8, 27] define task instability with re-
spect to word embeddings, identifying trade-offs between stability,
precision, and model dimension. Instability in word neighbors, as
observed in word2vec and fasttext embeddings, is discussed in [19]
and [2]. [31, 36] define stability as percent overlap among neighbors,
crucially serving as a task independent definition. Various factors
affecting word stability and their impacts on downstream tasks are
analyzed. Approaches like down-sampling by [20], drift reversal
by [34], and evolutionary approach by [18] aim to stabilize word
embeddings, yet they assume downstream tasks remain unaffected
by data drift. In contrast, our work integrates drift and changing
word semantics to enhance embedding and task performance. Xu
et al. [37] propose a meta-learning approach for adapting word
embeddings from source to target domains. However, unlike our
method, it requires direct access to all previously seen corpora,
making it unsuitable for domains lacking target data.

Contextual Embeddings. Contextual embeddings have also seen
a rise alongside word2vec. However, word2vec is widely used in
a lot of industrial applications [10, 13, 15, 32, 33], the scope of our
work is to deal with drift in regular word2vec embeddings.

7 CONCLUSION

In this paper, we proposed TransDrift, a framework to track embed-
dings under data drift. We showed that using a transformer model
perform this task effectively with no data. Optionally, our model
can also leverage small amount of data from drifted distribution to
further improve its prediction. Finally, by performing downstream
tasks using the predicted embeddings, we show a significant perfor-
mance improvement compared to other options. One of the future
work can be to study multi-step word embedding prediction.

REFERENCES

[1] anonymized due to double blind review. [n.d.]. Anonymized. Technical Report.
[available on request].

WWW 24 Companion, May 13-17, 2024, Singapore, Singapore

Maria Antoniak and David Mimno. 2018. Evaluating the Stability of Embedding-
based Word Similarities. Transactions of the Association for Computational Lin-
guistics 6 (2018), 107-119. https://doi.org/10.1162/tacl_a_00008

Oren Barkan, Avi Caciularu, Idan Rejwan, Ori Katz, Jonathan Weill, Itzik Malkiel,
and Noam Koenigstein. 2021. Representation Learning via Variational Bayesian
Networks. In Proceedings of the 30th ACM International Conference on Information
& Knowledge Management. 78—88.

Piotr Bojanowski*, Edouard Grave*, Armand Joulin, and Tomas Mikolov. 2017.
Enriching Word Vectors with Subword Information. Transactions of the Associa-
tion for Computational Linguistics 5 (2017), 135-146. https://arxiv.org/abs/1607.
04606v2

Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. 2017.
Enriching word vectors with subword information. Transactions of the association
for computational linguistics 5 (2017), 135-146.

Danushka Bollegala, Mohammed Alsuhaibani, Takanori Maehara, and Ken-ichi
Kawarabayashi. 2016. Joint word representation learning using a corpus and a
semantic lexicon. In Proceedings of the AAAI Conference on Artificial Intelligence,
Vol. 30.

Avi Caciularu, Ido Dagan, and Jacob Goldberger. 2021. Denoising word embed-
dings by averaging in a shared space. arXiv preprint arXiv:2106.02954 (2021).
Mansi Chugh, Peter A. Whigham, and Grant Dick. 2018. Stability of Word
Embeddings Using Word2Vec. In Australasian Conference on Artificial Intelligence.
Chris Crawford. 2018. Yelp Academic Data. https://www.kaggle.com/yelp-
dataset/yelp-dataset.

Leon Derczynski, Isabelle Augenstein, and Kalina Bontcheva. 2015. Usfd: Twitter
ner with drift compensation and linked data. arXiv preprint arXiv:1511.03088
(2015).

Haim Dubossarsky, Daphna Weinshall, and Eitan Grossman. 2017. Outta control:
Laws of semantic change and inherent biases in word representation models.
In Proceedings of the 2017 conference on empirical methods in natural language
processing. 1136-1145.

Manaal Faruqui, Jesse Dodge, Sujay K Jauhar, Chris Dyer, Eduard Hovy, and
Noah A Smith. 2015. Retrofitting Word Vectors to Semantic Lexicons, NAACL.
Hege Fromreide, Dirk Hovy, and Anders Sggaard. 2014. Crowdsourcing and
annotating NER for Twitter# drift.. In LREC. 2544-2547.

Nikhil Garg, Londa Schiebinger, Dan Jurafsky, and James Zou. 2018. Word
embeddings quantify 100 years of gender and ethnic stereotypes. Proceedings of
the National Academy of Sciences 115, 16 (2018), E3635-E3644.

[15] Josh Gordon. 2018. Introducing tensorflow hub: A library for reusable machine

learning modules in tensorflow. https://medium.com/tensorflow/introducing-
tensorflow-hub-a-library-for-reusable-machine-learning-modules-in-
tensorflow-cdee41fa18f9.

William L Hamilton, Jure Leskovec, and Dan Jurafsky. 2016. Cultural shift or
linguistic drift? comparing two computational measures of semantic change. In
Proceedings of the Conference on Empirical Methods in Natural Language Processing.
Conference on Empirical Methods in Natural Language Processing, Vol. 2016. NIH
Public Access, 2116.

William L Hamilton, Jure Leskovec, and Dan Jurafsky. 2016. Diachronic
word embeddings reveal statistical laws of semantic change. arXiv preprint
arXiv:1605.09096 (2016).

Yu He, Jianxin Li, Yangqiu Song, Mutian He, Hao Peng, et al. 2018. Time—evolving
Text Classification with Deep Neural Networks.. In IJCAL Vol. 18. 2241-2247.
Johannes Hellrich and Udo Hahn. 2016. Bad company—neighborhoods in neural
embedding spaces considered harmful. In Proceedings of coling 2016, the 26th
international conference on computational linguistics: Technical papers. 2785-2796.
Johannes Hellrich, Bernd Kampe, and Udo Hahn. 2018. The influence of
down-sampling strategies on SVD word embedding stability. arXiv preprint

[21

[22

[23

[24]

[25]

[26]

[27]

(28]

[29

(30]

[31

[32

[33

[34

[36

(37]

[38

Nishtha Madaan, Prateek Chaudhury, Nishant Kumar, and Srikanta Bedathur

arXiv:1808.06810 (2018).

Ziniu Hu, Ting Chen, Kai-Wei Chang, and Yizhou Sun. 2019. Few-shot repre-
sentation learning for out-of-vocabulary words. arXiv preprint arXiv:1907.00505
(2019).

Xiaolei Huang and Michael J Paul. 2018. Examining temporality in document
classification. In Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers), Vol. 2.

Zhenhao Huang and Chenxu Wang. 2020. Measuring the Semantic Stability of
Word Embedding. In CCF International Conference on Natural Language Processing
and Chinese Computing. Springer, 378-390.

Yoon Kim, Yi-I Chiu, Kentaro Hanaki, Darshan Hegde, and Slav Petrov.
2014. Temporal Analysis of Language through Neural Language Models.
arXiv:1405.3515 [cs.CL]

Andrey Kutuzov, Lilja @vrelid, Terrence Szymanski, and Erik Velldal. 2018.
Diachronic word embeddings and semantic shifts: a survey. arXiv preprint
arXiv:1806.03537 (2018).

Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Seungjin Choi, and
Yee Whye Teh. 2019. Set transformer: A framework for attention-based
permutation-invariant neural networks. In International Conference on Machine

Learning. PMLR, 3744-3753.
Megan Leszczynski, Avner May, Jian Zhang, Sen Wu, Christopher Aberger, and

Christopher Ré. 2020. Understanding the downstream instability of word embed-
dings. Proceedings of Machine Learning and Systems 2 (2020), 262-290.
Julian McAuley. 2018. Amazon Product
https://jmcauley.ucsd.edu/data/amazon/.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient
Estimation of Word Representations in Vector Space. International Conference on
Learning Representations (2013). https://arxiv.org/pdf/1301.3781.pdf

Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. GloVe:
Global Vectors for Word Representation. In Empirical Methods in Natural Lan-
guage Processing (EMNLP). 1532-1543. http://www.aclweb.org/anthology/D14-
1162

Bénédicte Pierrejean and Ludovic Tanguy. 2018. Predicting word embeddings
variability. In The seventh Joint Conference on Lexical and Computational Semantics.
154-159.

Tim Sell and Willem Pienaar. 2018. Introducing Feast: an open source feature
store for machine learning. https://cloud.google.com/blog/products/ai-machine-
learning/introducing-feast-an-open-source-feature-store-for-machine-learning.

Dan Shiebler, Chris Green, Luca Belli, and Abhishek Tayal. 2018. Embed-
dings@Twitter. https://blog.twitter.com/engineering/en_us/topics/insights/2018/
embeddingsattwitter.

Kevin Stowe and Iryna Gurevych. 2021. Combating Temporal Drift in Crisis with
Adapted Embeddings. arXiv preprint arXiv:2104.08535 (2021).

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, L ukasz Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In Advances in Neural Information Processing Systems 30, 1. Guyon, U. V.
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (Eds.).
Curran Associates, Inc., 5998-6008. http://papers.nips.cc/paper/7181-attention-
is-all-you-need.pdf

Laura Wendlandt, Jonathan K Kummerfeld, and Rada Mihalcea. 2018. Fac-
tors influencing the surprising instability of word embeddings. arXiv preprint
arXiv:1804.09692 (2018).

Hu Xu, Bing Liu, Lei Shu, and Philip S Yu. 2018. Lifelong domain word embedding
via meta-learning. arXiv preprint arXiv:1805.09991 (2018).

Yang Yang, Da-Wei Zhou, De-Chuan Zhan, Hui Xiong, and Yuan Jiang. 2019.
Adaptive deep models for incremental learning: Considering capacity scalability
and sustainability. In Proceedings of the 25th ACM SIGKDD International Confer-
ence on Knowledge Discovery & Data Mining. 74-82.

Data.

https://doi.org/10.1162/tacl_a_00008
https://arxiv.org/abs/1607.04606v2
https://arxiv.org/abs/1607.04606v2
https://arxiv.org/abs/1405.3515
https://arxiv.org/pdf/1301.3781.pdf
http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162
https://blog.twitter.com/engineering/en_us/topics/insights/2018/embeddingsattwitter
https://blog.twitter.com/engineering/en_us/topics/insights/2018/embeddingsattwitter
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf

	Abstract
	1 Introduction
	2 Background
	2.1 Word Embeddings
	2.2 Transformer Architectures

	3 Method
	4 Implementation Details
	5 Experiments
	5.1 Experiment Setup
	5.2 Word-Embedding Prediction
	5.3 Downstream Tasks
	5.4 Ablation Study

	6 Related Work
	7 Conclusion
	References

