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ABSTRACT
In the realm of personalization, integrating diverse information
sources such as consumption signals and content-based represen-
tations is becoming increasingly critical to build state-of-the-art
solutions. In this regard, two of the biggest trends in research around
this subject are Graph Neural Networks (GNNs) and Foundation
Models (FMs). While GNNs emerged as a popular solution in indus-
try for powering personalization at scale, FMs have only recently
caught attention for their promising performance in personalization
tasks like ranking and retrieval. In this paper, we present a graph-
based foundation modeling approach tailored to personalization.
Central to this approach is a Heterogeneous GNN (HGNN) designed
to capture multi-hop content and consumption relationships across
a range of recommendable item types. To ensure the generality
required from a Foundation Model, we employ a Large Language
Model (LLM) text-based featurization of nodes that accommodates
all item types, and construct the graph using co-interaction signals,
which inherently transcend content specificity. To facilitate practi-
cal generalization, we further couple the HGNN with an adaptation
mechanism based on a two-tower (2T) architecture, which also
operates agnostically to content type. This multi-stage approach
ensures high scalability; while the HGNN produces general pur-
pose embeddings, the 2T component models in a continuous space
the sheer size of user-item interaction data. Our comprehensive
approach has been rigorously tested and proven effective in deliv-
ering recommendations across a diverse array of products within a
real-world, industrial audio streaming platform.
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1 INTRODUCTION
Foundation models have emerged as capable approaches in recent
years, resulting in unprecedented success across a broad spectrum
of applications, ranging from Natural Language Processing (NLP)
to Computer Vision and Audio Processing [2, 7, 14, 18, 23]. A Foun-
dation Model (FM) is a large-scale pre-trained neural network archi-
tecture, typically based on a Large LanguageModel (LLM), designed
to serve as a base or foundation for various downstream tasks [1].
The ability to perform on a wide range of tasks is largely attrib-
uted to their pre-training on vast amounts of data. To leverage
the capabilities of such a model, fine-tuning is typically applied
to further enhance its performance on specific tasks or domains.
Only lately in search and recommendation, or more broadly in
personalization, LLMs have gained growing attention, largely at-
tributable to their ability to map user preferences into natural lan-
guage. Recent research underscores the effectiveness of employing
fine-tuning strategies or leveraging few-shot-learning with LLMs,
both of which have been shown to yield competitive results in per-
sonalization tasks [8, 15, 25]. On the other hand, even if promising,
these approaches become challenging when the recommendations
are performed at scale because they struggle to adapt quickly to
catalog changes (e.g. when new items are introduced or when user
preferences change).

On the other hand, graph-based learning models, specifically
Graph Neural Networks (GNNs), have emerged as a powerful tech-
nology for recommendation systems at scale, becoming a core
functionality on different online and social platforms [4, 9, 19, 22].
Moreover, only lately, GNNs have been showing relevant gains also
for enabling discovery without loss in accuracy [3]. Their success
is often attributed to their capacity to explicitly model long-range
and heterogeneous relationships, content semantics, and content
features simultaneously. Furthermore, GNNs showcase strong in-
ductive capabilities, meaning they can generalize knowledge from
training data to unseen entities, a trait that is crucial for tackling
complex and evolving datasets, essential for applications such as
recommendation systems and social networks.
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Graph foundation models (GFMs) is a novel and promising direc-
tion that aims to bring the foundation modeling capabilities to the
domain of graph learning. However, there is still no clear consensus
in the community regarding a “definition” of a GFM, although such
a model would be expected to at least be able to generalize and
adapt across tasks [13]. Currently, there are limited published GFM
approaches, and their versatility does not typically reach that of
FMs for NLP or Computer Vision. This can largely be attributed to
the fact that a graph topology is a more complicated and arbitrary
structure compared to the ubiquitous sequential (e.g. textual or
visual) representation leveraged by LLMs. To make progress, vari-
ous more specialized notions of generalization and transferability
have been explored: [6] propose a task-specific FM model for KG
completion that inductively generalizes to unseen graphs; Huang
et al. [11] build in-context learning mechanisms over graphs.

In this paper we focus our attention on GFMs applied to the
broad domain of personalization. “Personalization” refers to the
process of tailoring item recommendations or search results to in-
dividual users. For example, a recommender system can suggest an
item 𝑐 to a user 𝑢 based on the item’s features x𝑐 that capture its
content characteristics and the user’s features, x𝑢 , that capture the
user’s characteristics, past behavior etc. As a GFM, our approach
possesses the properties of generalization and adaptability across
tasks; however, these properties are specialized for the general do-
main of personalization rather than applicable to any possible task
and graph (e.g. knowledge graphs, biology, molecular graph gen-
eration). This specialization allows us to make design choices that
render the GFM approach practical and scalable. Given the GFM
taxonomy proposed in [16], our approach would fall in the cate-
gory of “domain-specific GFM”. The ingredients that compose our
approach are a heterogeneous GNN (HGNN) with LLM-featurized
node features and an adaptation (across tasks) mechanism based
on a two-tower (2T) user/item model that, contrary to common 2T
architectures, operates agnostically to item type.

As a running example, which constitutes the motivation of our
work and corresponds to the experiments shown later on, we will
consider a real-world industrial audio streaming platform with a
massive catalog of users and content. The users can interact with
items of different types, such as podcasts or audiobooks.

Our Contribution. To the best of our knowledge, we propose
the first GFM that acts as foundation specifically for solving various
personalization tasks such as recommendations of diverse types
of items and flavors such as “similar to your item X” or “based
on your history”, as well as judging suitability of search results.
Before adapting to tasks, such a GFM can be pre-trained on an
entire catalog, which includes information about items’ content and
past user-interactions. By combining (inductive) GNNs and LLMs
we ensure that the overall foundation model can generalize and
extrapolate well even if it is only trained once – subsequent updates
can be relatively infrequent. The 2T component enables scalability
and adaptation of the foundational generalized representations. The
benefit of such an approach is that it unifies representation learning
across various tasks, it enables information sharing, improves the
quality of learned representations, simplifying production pipelines.
This comes in contrast to traditional personalization approaches
that develop siloed solutions for different item types or tasks. Finally,
our work is motivated by and tested on a real-world industrial

application, and thus it constitutes a valuable case-study on the
design of scalable and industry-appropriate GFMs.

2 GFM FOR PERSONALIZATION
We describe our proposed two-step architecture, comprising a
HGNN/LLM foundation core and a two-tower (2T) adaptationmech-
anism. The two components correspond to the introduced notions
of a “static” and a “dynamic” layer. After describing the details of
the approach, we explain how it has been applied on our motivating
scenario of personalization in an audio streaming platform.

Static (foundation) layer. This is an HGNN trained on an
item-item graph, where items are connected if they have been co-
interacted by the same user. A variety of node and edge types is con-
sidered. Each node is associated with text embedding node-features
coming from a general LLM applied on the item’s description. The
LLM embeddings allow any type of node to be uniformly repre-
sented in the graph. Crucially, interaction signals are part of the
graph but, still, users are not represented as nodes. This allows us
to (a) keep the HGNN representation generic and static, meaning
that it only needs to be updated infrequently, and (b) scale to very
large databases, deferring the task-specific user representation to
the downstream fine-tuning adaptation. This is the foundational
component of our approach; it combines content with interaction
signals and is generic since it can yield general purpose embeddings.

Dynamic (adaptation) layer. The foundation static layer learns
embeddings that represent each item node in the graph, which are
then passed as input to a 2T (item/user) model. The 2T model con-
stitutes the mechanism by which foundational representations are
adapted for a variety of downstream tasks. Because it is lightweight,
it allows for adaptation to user preferences at a large scale, reflected
in a continuous stream of interaction data. Hence, this component
is referred to as the dynamic layer of the overall architecture and
is trained often. Architecturally, a 2T model [21] consists of an
item tower that encodes content level information and a user tower
that encodes user demographics as well as item interactions. Item
interactions can be represented as learned embeddings where each
item identifier is mapped to a row in an embeddings matrix. This
embeddings matrix is also used by the item tower, which creates
a shared embeddings layer between the item and user tower. Tra-
ditionally, different item towers are considered for each type of
item. Here, we introduce a single, type agnostic item tower, which
heavily leverages the HGNN and LLM embeddings.

To exemplify the usage of our HGNN-based foundation model,
we return to our motivating challenge of driving personalization in
a real-world, industrial audio streaming platform.1 The approach
is illustrated in Figure 1. Here, the platform’s catalog and inter-
action data are represented as a graph that captures the top-level
item type information, such as podcast-podcast, audiobook-podcast
and audiobook-audiobook relationships. Edges are added between
nodes whenever at least one user interacts with both items. Each
node is associated with a node type, and multiple types of relations
between nodes are possible. To represent content, we incorporate
node features through LLM Sentence BERT embeddings. A HGNN
is trained on the graph, distilling as HGNN embeddings the inter-
action signals (used to form edges) with item content signals (node

1This architecture can be applied to other similar domains.
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Figure 1: Our GFM-based approach to personalization, instantiated for the domain of audiobook/podcast recommendations
in a real-world online streaming platform. The LLM embeddings are passed as node features for the HGNN as well as item
features in the 2T. The corresponding HGNN embedding for a given item is passed to the item tower. For a given user, we take
the average of the HGNN embeddings corresponding to all items that the user has interacted with. Notice how the HGNN
embeddings are, thus, shared between the two towers. With this approach, the resulting user and item embeddings (irrespective
of item type) all lie in the same vector space.

features), leveraging multi-hop relationships found in the graph.
Our implementation is based on GraphSAGE [10], and we refer the
reader to the paper for more details. The model is trained with a
self-supervised link-prediction loss, similar to Ying et al. [22], to
refine node representations, ensuring they not only reflect their self-
presentation independently of the graph structure but also align
with the representations of all connected nodes within the graph.

The 2T model comprises two feed-forward deep neural net-
works—one for users and the other for items. This model utilizes
the embeddings learned from the HGNN, minimal item metadata,
and user metadata within the user tower. Within the user tower we
also represent user interests on audiobooks and shows by averaging
the HGNN vectors that the user has interacted with in the last 90
days. We also add music interests as the average of music vectors
learned by the company owning the data. We aim to train the model
in such a way that user vectors closely match the content-agnostic
item vectors and enhance recommendation accuracy.

Notice that the item tower of the 2T component of our approach
treats audiobooks and podcasts agnostically, since it just expects
a HGNN and a LLM embedding of a certain dimension. Further,
lower-level item types, such as podcast episodes, can be used in
a zero-shot fashion: an episode inherits the HGNN embedding of
its corresponding show. Similarly, inference for new items in the
catalog is possible thanks to the inductive capabilities of the HGNN.

Overall, this static-dynamic architecture allows us to combine
the robust representation power of the HGNN with the scalable
and adaptable characteristics of the two tower model. Moreover,
the unified representation of all content types within the 2T model
allows us to (a) have all item embeddings in the same vector space,
(b) treat the 2T model as a lightweight FM task-adaptation mecha-
nism, (c) leverage overlapping information shared by the content
types, and finally (d) mitigate bias (e.g. popularity) by exporting a
lot of the content representation learning to the foundation HGNN
model, in effect de-coupling content representation learning from
user representation learning.

3 RELATEDWORK
While our work is, to our knowledge, the first to discuss GFMs
specifically for the domain of personalization, notable prior work
exists in the general area of GFMs. Recent efforts have introduced
the definition of GFMs [13, 16], with the first also proposing a tax-
onomy based on the type of technology powering the architecture.
In this work we propose a model powered by a static layer com-
bining a GNN and an LLM, showing how a synergy between the
two architectures can help to combine content and consumption
patterns. In a similar fashion, Xie et al. [19] in their work show how
a graph-aware Language Model framework can help to improve
performances on different downstream tasks on large scale industry
data. The static layer proposed in our work can be seen as analogous
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to the pre-training architecture proposed by Xie et al. It is worth
noting that there are multiple previous efforts combining graphs
with LLMs, but the focus has been less on creating a foundation
model. Notable works include joint training of GNNs and LLMs at
Amazon [12] and combining KGs with LMs [20, 24].

Galkin et al. [6] propose ULTRA, a FM task-specific model for
knowledge graph completion. Our paper proposes a GFM that is
domain-specific, as we aim to perform different downstream tasks
(e.g. ranking and recommendation) across multiple item types for
one domain (personalization).

Our work focuses on the importance of relational data, including
consumption-based signals, to unlock content semantic understand-
ing and building the graph foundation model for personalization.
Fey et al. [5] recently highlighted how classical machine learning
methods struggle to learn from interconnected data sources, requir-
ing manual crafting and feature engineering. They introduce the
paradigm of Relational Deep Learning (RDL), which offers a stream-
lined and improved solution without the need for extensive feature
engineering. In this work we bring further evidence of the impor-
tance of using GNN-based solutions to aggregate different sources
of information, without requiring complex feature engineering.

Graph-based methods for search and recommendation at scale
have demonstrated their effectiveness not only in optimizing ac-
curacy but also in enhancing the impact on long-tail items. Recent
work by Palumbo et al. [17] shows how graph learning methods ef-
fectively diversify without compromising accuracy. Similarly, in the
work by De Nadai et al. [3], a combination of a heterogeneous GNN
with a standard 2T model is designed to power recommendations
for a new product on an online platform. The GNN helps leveraging
consumption patterns of a quite consolidated and mature product,
to boost start rates for a new one.

4 EXPERIMENTS AND RESULTS
In this section, we present experimental results supporting the
usefulness and practicality of the proposed FM for personalization.
As a reminder, the 2T component is agnostic to item types and the
HGNN component is motivated by the generality of a GFM. In this
way, all item types can be represented in a unified vector space.
Henceforth, we will refer to this approach as the Unified 2T model.

For our experiments we consider as a dataset a sample of 10M
users, 3.5M podcasts and 250K audiobooks from an online audio
streaming platform. We use 90 days of data to train the model
and a hold-out dataset (for evaluation purposes) comprising all
the audiobook and podcast streams of users in the last 14 days.
We evaluate the performance of our recommendation task with
Hit-Rate@K (HR@K), where 𝐾 = 10.

Our investigation first explores the generalization capability of
the Unified model. For this purpose, we trained a 2T baseline model
focused solely on audiobook recommendations and compared it
with our Unified model, which is trained on both audiobook and
podcast recommendations. Despite the diverse content types han-
dled, both models employ identical input features and comparable
hyperparameters. As shown in Table 1, the Unified model outper-
forms the content-specific model in performance, highlighting its
superior generalization ability even when trained on multiple con-
tent types simultaneously. Note that the Unified model uses only

Table 1: Audiobook specific model vs. unified model

Model HR@10

Audiobooks 2T 0.271
Unified 2T 0.316

Table 2: Unified model without GNN embeddings

Model HR@10

Podcasts Audiobooks

Unified 2T w/o GNN 0.159 0.329
Unified 2T 0.165 0.343

Table 3: Unified model without daily retraining

Model HR@10

Podcasts Audiobooks

Unified 2T 0.151 0.284
Unified 2T w/o retraining 0.152 0.284

LLM embeddings without any specific adjustments or adaptations
between content types.

Then, we explore the impact of removing GNN content repre-
sentation from the Unified model. In this baseline, we learn content
vectors from scratch during training. Table 2 highlights the critical
role of the HGNN foundational representation, which significantly
improves the recommendation of both podcasts and audiobooks.
Note that Table 1 and Table 2 cannot be compared to each other as
the models have been trained on different days.

Finally, we challenge the previously discussed differentiation
between the static and dynamic layers of the model. We compare
our model to a variant in which both the 2T and HGNN components
are trained daily. Similarly to findings from seminal works in NLP
and Computer Vision regarding FMs [1], the results presented in
Table 3 confirm that the HGNN foundation representation remains
stable over time and can be effectively utilized in the Unified 2T
model on a daily basis without the need for frequent retraining.

Overall, our experiments confirm the effectiveness of our FM for
personalization. This model demonstrates that it can generalize well
across various content types. It consists of both static and dynamic
layers, which are both crucial for accurately representing content
and users. Notably, the static layer can be pre-trained through self-
supervision at infrequent intervals, confirming its similarity with
seminal literature in the FM field.

5 CONCLUSIONS AND FUTUREWORK
In this study we proposed, to the best of our knowledge, the first
GFM-based approach tailored to personalization at scale. Our blue-
print introduces a novel differentiation between static and dynamic
layers, enabling the exploitation of consumption and content pat-
terns at scale. This approach yields high-quality representations,
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facilitating seamless execution of diverse downstream personal-
ization tasks. While this work marks an initial step towards con-
solidating GFMs for personalization, there are several suggestions
for improvement that open different lines of future work. First,
the LLM and GNNs in the static layer are trained independently.
However, enhancing synergy between these architectures could in-
volve designing an end-to-end (e2e) solution where the final layers
of the LLM and the GNN weights are jointly trained. In addition,
the e2e training idea can be extended to also include the dynamic
layer, with the objective of finding a suitable solution to scale not
only content, but also user representation. Evaluation-wise, we
focused on recommendation tasks with multiple content-types. As
future work, we plan to collect further insights by extending our
experimentation to additionally include search-related tasks, such
as query suggestions. This can be achieved with few modification
of the existing framework, thanks to its generality.

REFERENCES
[1] R. Bommasani, D. A. Hudson, E. Adeli, R. Altman, S. Arora, S. von Arx, M. S.

Bernstein, J. Bohg, A. Bosselut, E. Brunskill, et al. On the opportunities and risks
of foundation models. arXiv preprint arXiv:2108.07258, 2021.

[2] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakan-
tan, P. Shyam, G. Sastry, A. Askell, et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:1877–1901, 2020.

[3] M. De Nadai, F. Fabbri, P. Gigioli, A. Wang, A. Li, F. Silvestri, L. Kim, S. Lin,
V. Radosavljevic, S. Ghael, D. Nyhan, H. Bouchard, M. Lalmas, and A. Dami-
anou. Personalized audiobook recommendations at spotify through graph neural
networks. In Proceedings of the ACM Web Conference 2024, Applied Track, 2024.

[4] A. El-Kishky, T. Markovich, S. Park, C. Verma, B. Kim, R. Eskander, Y. Malkov,
F. Portman, S. Samaniego, Y. Xiao, et al. Twhin: Embedding the twitter heteroge-
neous information network for personalized recommendation. In Proceedings of
the 28th ACM SIGKDD conference on knowledge discovery and data mining, pages
2842–2850, 2022.

[5] M. Fey, W. Hu, K. Huang, J. E. Lenssen, R. Ranjan, J. Robinson, R. Ying, J. You,
and J. Leskovec. Relational deep learning: Graph representation learning on
relational databases. arXiv preprint arXiv:2312.04615, 2023.

[6] M. Galkin, X. Yuan, H. Mostafa, J. Tang, and Z. Zhu. Towards foundation models
for knowledge graph reasoning. arXiv preprint arXiv:2310.04562, 2023.

[7] J. Gardner, S. Durand, D. Stoller, and R. M. Bittner. Llark: Amultimodal foundation
model for music. arXiv preprint arXiv:2310.07160, 2023.

[8] S. Geng, S. Liu, Z. Fu, Y. Ge, and Y. Zhang. Recommendation as language process-
ing (rlp): A unified pretrain, personalized prompt & predict paradigm (p5). In
Proceedings of the 16th ACM Conference on Recommender Systems, pages 299–315,
2022.

[9] J. Halcrow, A. Mosoi, S. Ruth, and B. Perozzi. Grale: Designing networks for
graph learning. In Proceedings of the 26th ACM SIGKDD international conference

on knowledge discovery & data mining, pages 2523–2532, 2020.
[10] W. Hamilton, Z. Ying, and J. Leskovec. Inductive representation learning on large

graphs. Advances in neural information processing systems, 30, 2017.
[11] Q. Huang, H. Ren, P. Chen, G. Kržmanc, D. Zeng, P. Liang, and J. Leskovec.

Prodigy: Enabling in-context learning over graphs, 2023.
[12] V. N. Ioannidis, X. Song, D. Zheng, H. Zhang, J. Ma, Y. Xu, B. Zeng, T. Chilimbi,

and G. Karypis. Efficient and effective training of language and graph neural
network models. arXiv preprint arXiv:2206.10781, 2022.

[13] J. Liu, C. Yang, Z. Lu, J. Chen, Y. Li, M. Zhang, T. Bai, Y. Fang, L. Sun, P. S. Yu,
et al. Towards graph foundation models: A survey and beyond. arXiv preprint
arXiv:2310.11829, 2023.

[14] J. Lu, C. Clark, S. Lee, Z. Zhang, S. Khosla, R. Marten, D. Hoiem, and A. Kembhavi.
Unified-io 2: Scaling autoregressive multimodal models with vision, language,
audio, and action. arXiv preprint arXiv:2312.17172, 2023.

[15] H. Lyu, S. Jiang, H. Zeng, Y. Xia, and J. Luo. Llm-rec: Personalized recommen-
dation via prompting large language models. arXiv preprint arXiv:2307.15780,
2023.

[16] H. Mao, Z. Chen, W. Tang, J. Zhao, Y. Ma, T. Zhao, N. Shah, M. Galkin, and J. Tang.
Graph foundation models, 2024.

[17] E. Palumbo, A. Damianou, A. Wang, A. Liu, G. Fazelnia, F. Fabbri, R. Ferreira,
F. Silvestri, H. Bouchard, C. Hauff, et al. Graph learning for exploratory query
suggestions in an instant search system. In Proceedings of the 32nd ACM Interna-
tional Conference on Information and Knowledge Management, pages 4780–4786,
2023.

[18] B. Xiao, H. Wu,W. Xu, X. Dai, H. Hu, Y. Lu, M. Zeng, C. Liu, and L. Yuan. Florence-
2: Advancing a unified representation for a variety of vision tasks. arXiv preprint
arXiv:2311.06242, 2023.

[19] H. Xie, D. Zheng, J. Ma, H. Zhang, V. N. Ioannidis, X. Song, Q. Ping, S. Wang,
C. Yang, Y. Xu, et al. Graph-aware language model pre-training on a large graph
corpus can help multiple graph applications. arXiv preprint arXiv:2306.02592,
2023.

[20] M. Yasunaga, A. Bosselut, H. Ren, X. Zhang, C. D. Manning, P. S. Liang, and
J. Leskovec. Deep bidirectional language-knowledge graph pretraining. Advances
in Neural Information Processing Systems, 35:37309–37323, 2022.

[21] X. Yi, J. Yang, L. Hong, D. Z. Cheng, L. Heldt, A. Kumthekar, Z. Zhao, L. Wei,
and E. Chi. Sampling-bias-corrected neural modeling for large corpus item
recommendations. In Proceedings of the 13th ACM Conference on Recommender
Systems, pages 269–277, 2019.

[22] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and J. Leskovec. Graph
convolutional neural networks for web-scale recommender systems. In Proceed-
ings of the 24th ACM SIGKDD international conference on knowledge discovery &
data mining, pages 974–983, 2018.

[23] L. Yuan, D. Chen, Y.-L. Chen, N. Codella, X. Dai, J. Gao, H. Hu, X. Huang, B. Li,
C. Li, et al. Florence: A new foundation model for computer vision. arXiv preprint
arXiv:2111.11432, 2021.

[24] X. Zhang, A. Bosselut, M. Yasunaga, H. Ren, P. Liang, C. D. Manning, and
J. Leskovec. Greaselm: Graph reasoning enhanced language models. In In-
ternational conference on learning representations, 2021.

[25] Y. Zhang, F. Feng, J. Zhang, K. Bao, Q. Wang, and X. He. Collm: Integrating
collaborative embeddings into large language models for recommendation. arXiv
preprint arXiv:2310.19488, 2023.

1802


	Abstract
	1 Introduction
	2 GFM for Personalization
	3 Related work
	4 Experiments and Results
	5 Conclusions and future work
	References



