
PinIt: In�uencing OS Scheduling via
Compiler-Induced A�nities

Girish Mururu
Georgia Institute of Technology

Atlanta, GA, USA

girishmururu@gatech.edu

Kangqi Ni
Georgia Institute of Technology

Atlanta, GA, USA

vincent.nkq@gatech.edu

Ada Gavrilovska
Georgia Institute of Technology

Atlanta, GA, USA

ada@cc.gatech.edu

Santosh Pande
Georgia Institute of Technology

Atlanta, GA, USA

santosh.pande@cc.gatech.edu

Abstract

In multi-core machines, applications execute in a complex-

co-execution environment in which the number of concur-

rently executing applications typically exceeds the number

of available cores. In order to fairly and e�ciently utilize

cores, modern operating systems (OS) such as Linux mi-

grate threads between cores during execution. Although

such thread migrations alleviate the problem of stalling and

load balancing yielding better core utilization, they also tend

to destroy data locality, resulting in fewer cache hits, TLB

hits, and thus performance loss for the group of applications

collectively. This problem is especially severe in embedded

servers which execute media and vision applications that

exhibit high data locality. On one hand, mitigating this prob-

lem across a group of applications based on OS only solution

is infeasible since OS treats applications as blackboxes and

has no knowledge of applications’ locality and other behav-

ior. On the other hand, to-date, compiler optimization have

focused on analysis, transformations and performance en-

hancement of applications in isolation ignoring the problem

of optimizing performance for applications as a group. This

is because of the infeasibility of global-compiler analysis

across applications as well as due to the dynamic nature of

inter-application interactions which is statically unknown.

To address this problem, we propose PinIt, a compiler-

directed methodology that analyzes applications individually

yet induces the operating system to mediate actions across

applications to minimize harmful migrations and maintain

locality. PinIt determines the regions of a program in which

LCTES ’23, June 18, 2023, Orlando, FL, USA

© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0174-0/23/06.

h�ps://doi.org/10.1145/3589610.3596279

the process should be pinned onto a core so that adverse mi-

grations causing excessive cache and TLBmisses are avoided.

PinIt �rst calculates memory reuse density, a new measure

that quanti�es the reuses within code regions which may not

be migrated. Pin/unpin calls are then hoisted at the entry and

exits of the region which exhibit high values of reuse den-

sity. The paper presents new analyses and transformations

that optimize the placement of such calls. In an overloaded

environment compared to priority-cfs, PinIt speeds up high-

priority applications in Mediabench workloads by 1.16x and

2.12x and in vision-based workloads by 1.35x and 1.23x on

8cores and 16cores, respectively, with almost the same or

better throughput for low-priority applications.

CCS Concepts: • Computing methodologies→ Concur-

rent computing methodologies.

Keywords: dynamic compiler optimization, cache-a�nity,

server consolidation, process a�nity

ACM Reference Format:

Girish Mururu, Kangqi Ni, Ada Gavrilovska, and Santosh Pande.

2023. PinIt: In�uencing OS Scheduling via Compiler-Induced A�ni-

ties. In Proceedings of the 24th ACM SIGPLAN/SIGBED International

Conference on Languages, Compilers, and Tools for Embedded Sys-

tems (LCTES ’23), June 18, 2023, Orlando, FL, USA. ACM, New York,

NY, USA, 12 pages. h�ps://doi.org/10.1145/3589610.3596279

1 Introduction

Modern servers based on multi-core systems execute several

applications simultaneously. This is facilitated by the operat-

ing system (OS) that e�ciently schedules multiple processes

and manages shared resources. OS schedulers dynamically

determine both the CPU time and/or the core that should be

allocated to each workload component through time- and

space- multiplexing workloads on available cores. As a result,

workload threads are continuously dispatched on CPU cores,

preempted after a period of time, and potentially migrated to

another core on the same or a di�erent socket on modern

multi-core platforms. Such migrations are e�ected by the OS

to achieve load balancing (and thus, better utilization) for

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

87

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3589610.3596279
https://doi.org/10.1145/3589610.3596279
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3589610.3596279&domain=pdf&date_stamp=2023-06-13


LCTES ’23, June 18, 2023, Orlando, FL, USA Girish Mururu, Kangqi Ni, Ada Gavrilovska, and Santosh Pande

gaining higher performance; However, such actions could

lead to the loss of a cached working set of a process resulting

in cache misses, TLB misses, memory stalls, and degraded

process performance [9, 13, 25]. This e�ect intensi�es when

processes are migrated by the OS to a processor on another

socket, which has its own low-level cache. In such cases,

when a migration occurs, multiple levels of the cache have to

be warmed up by transferring data from a socket to another

over the system interconnect. Such process migrations can

be especially problematic for embedded media servers which

execute applications involving multi-media and vision that

exhibit high data locality and reuse. Therefore, the OS entails

a tradeo� between moving a process around for better use of

computing resources in terms of their utilization and for the

purpose of load balancing vs. improving the cache e�ciency

of the process by leaving it where it is without migrating it

which could leave all its data intact in its cache undisturbed.

This tradeo� is a very common scenario, especially when

the number of executing applications exceeds the available

resources.

To maximize cache usage, applications have traditionally

been optimized in isolation by a compiler [1, 4, 5, 15]. How-

ever, because of shared resources and the tradeo� mentioned

above, modern applicationsmust be optimized as an ensemble

executing together; unfortunately, performing global com-

piler analysis across applications is not only infeasible but

is unrealistic due to lack of knowledge about the dynamic

concurrency of individual applications cache-heavy regions.

This work proposes a methodology that limits analysis to

individual applications yet induces the operating system to

mediate actions across applications that minimize harmful

migrations and maintain data locality in the cache. The prob-

lem of cache misses is well known to schedulers in OSes

such as Linux, which strive to maintain the natural a�n-

ity of processes in the execution queue. By scheduling a

process on the processor on which it had executed before,

the scheduler attempts to maintain cache a�nity. When OS

must perform migration for the purpose of load-balancing,

the process is scheduled onto a nearby free processor [24].

Such a migration to a nearby free processor will not a�ect

the performance if a process is executing in a program re-

gion with very few access to memory or one which exhibits

very little data locality. However, if that region is memory

intensive and the data locality/reuse is signi�cant, the e�ect

can be quite adverse [12]. To avoid the e�ects of migration,

hardware resources such as memory can be partitioned such

that certain workload components are always executed on

a dedicated CPU by pinning (processor a�nity). However,

pinning the workload components permanently to a given

core takes away the scheduling �exibility to load-balance in

an overloaded environment and thus, adversely a�ects the

aggregate performance of the workload. Therefore a solution

that pins a process to a core only in a region of heavy reuse

and also allows free process migrations otherwise, achieves

the best of both worlds.

We developed PinIt – a compiler-assisted technique, which

(1) automatically identi�es critical program regions with

high cache requirements and sensitivity, (2) instruments the

program around critical regions to generate pinit requests to

the underlying scheduler, and then (3) uses this information

to dynamically inform the underlying OS scheduler of poten-

tially harmful thread migrations which are then prevented.

The outcome is a scheduling framework that migrates pro-

cesses for resourcemanagement only when the cache locality

is not hurt due to migrations. In developing PinIt we make

the following technical contributions:

• A new metric Memory Reuse Density (MRD) that charac-

terizes cache a�nity/property of a program in terms of

its locality.

• Compiler transformation/optimization to insert/hoist PinIt

calls minimizing overhead – number of calls and avoiding

pinning of non-critical regions.

• Implement and evaluate PinIt framework and demonstrate

practical and e�ective scheduling of workloads utilizing

the above.

The utility of this work is pronounced for those work-

loads that exhibit heavy memory reuse and locality plays

a dominant role, prominent examples of which are media

and vision based applications. Media servers typically house

media applications serving thousands of users. Users stream

media content online and expect low latency. The stored

media must be decoded without causing jitters and delays

and hence decoders are on a critical path and must execute at

a higher priority. On the other hand, when the media content

is either uploaded by users or media enablers such as Net�ix,

the media can be encoded o�ine and hence media encoders

could be executed at a lower priority. Similarly, video and im-

ages frommany sources are typically streamed to a server for

analysis through computer vision applications with the ex-

pectation of low latency and high throughput from these ap-

plications and would be thus executed at higher priority. We

evaluated benchmarks from the mediabench and san-diego

vision suite (sd-vbs). For e�ective work consolidation, we

classify the jobs into high -and low -priority applications as

in [27]. We run these set of high- and low-priority processes

such that the total number of processes is more than the num-

ber of processors, which is necessary to exercise scheduling

scenarios e�ectively. Compared to low-priority processes,

which are limited to a set of encoders, high-priority pro-

cesses consist of a set of decoders and vision workloads that

are in the critical path. In such an overloaded environment,

compared to priority-CFS, PinIt speeds up high-priority ap-

plications in mediabench workloads by 1.16x and 2.12x and

in vision-based workloads by 1.35x and 1.23x on average

on 8cores and 16cores, respectively, while completing the

low-priority batch 23% faster on 16 cores in mediabench and

almost within the same time for other workloads.

88



PinIt: Influencing OS Scheduling via Compiler-Induced A�inities LCTES ’23, June 18, 2023, Orlando, FL, USA

2 PinIt Framework

The Pinit framework is best described by the goals that can

be summarized as follows:

1. To identify application’s regions with large cache reuse

where scheduling actions involving process migration

can have the most adverse e�ects.

2. To determine the placement (hoisting) of pin/unpin

directives to the underlying scheduler such that in-

tervals within which an application remains pinned

to a core is minimised or conversely the scheduler’s

freedom to migrate applications for load balancing is

maximized. The secondary goal is to determine the

placement of pin/unpin calls such that their frequency

of scheduler interactions is minimized in order to mini-

mize the total overheads of the calls and the frequency

of the interruptions they may cause.

In order to meet these goals the framework must strive to

achieve the following three objectives.

Maximize reuse density. With respect to the �rst goal, the

sections of code that exhibit large data reuse typically are

those loops that can access the same line of memory multiple

times within a short span of execution; thus, the migration

of a process when executing such loops during such spans is

very harmful. Hence, for pinning to be most e�ective PinIt

must �nd those loops that exhibit high memory reuse. Thus,

one key goal of PinIt is to identify and maximize the density

of reuse (or the average reuse exhibited per statement). PinIt

achieves this by �nding loops with high reuse per instruction

and by splitting the loops if possible by removing statements

without memory reuse or dependencies. Section 4.2 gives

further details of loop splitting transformation.

Minimize runtime overheads. In order to preclude the

scheduler from migrating a process with high reuse den-

sity, our framework requests the OS scheduler that this loop

region be pinned. Since pin/unpin calls to the OS involve

overhead, they must be carefully hoisted. The pinning calls

should be ideally moved outside the outermost loop encom-

passing the pinned regions. In addition, if multiple pinned

regions are neighbors, these regions can be merged thus

removing unnecessary (intervening) pin/unpin calls.

Maintain scheduler �exibility. In our system, we avoid

pinning multiple processes to the same core to avoid cache

contention and core sharing which could lead to a slowdown.

Restricting only one process to a core also ensures that no

other core is starved when processes are waiting to run on a

busy core. Based on the above discussion, the overall �ow of

the above phases is pictured in Figure 1.

3 PinIt Analysis

We de�ne a few terms for developing the analysis necessary

for identifying the critical loops that should be pinned.

Input
Program

PinIt
Analysis

PinIt
Optimization

Output 
Program

PinIt
Library

Figure 1. Steps to minimal pinning in PinIt.

3.1 Memory Reuse Density

In order to determine regions with high memory reuse, PinIt

analyzes the dependency between the memory accesses of in-

structions. Consecutive accesses to the memory that was ac-

cessed earlier in the loop’s iteration space result in reuse. The

distance or number of loop iterations after which the mem-

ory was reused is the reuse distance which is also equal to the

dependence distance. We quantify memory reuse through

reuse distance. If the reuse distance between memory ac-

cesses is higher, then the penalty resulting from migration

in the middle of such accesses is higher since the number of

cache misses is equal to the reuse-distance of the accesses.

For example, if a process is migrated while executing a state-

ment, 0[8] = 0[8 − =], assuming the size of each element in

0 is equal to the cache-line size, the subsequent accesses to

0[8 − =] from iterations 8 to 8 + = result in = cache misses

assuming the migration takes place during the iteration 8 .

Thus, by considering the reuse distance, memory reuse (MR)

is calculated as follows:

"' = Σ
=
8=0A38 , (1)

where

A38 =

{

A4DB4_38BC0=24, if A4DB4_38BC0=24 > 0

1, otherwise
(2)

where the respective A4DB4_38BC0=24B are calculated with

respect to all other instructions in the loop and Memory

Reuse (MR) is the summation of these values over all memory

instructions in the loop. If the size of each element in 0 is not

equal to the cache-line size, then"' depends on the number

of elements that can be held in a cacheline which is equal to

#�;4<4=CB$;8=4 =
�02ℎ4;8=4(8I4

(8I4> 5 (0[8])
(3)

and each A38 is equal to

A38 =

{

⌈ A4DB4_38BC0=24
#�;4<4=CB$;8=4

⌉, if A4DB4_38BC0=24 > #�;4<4=CB$;8=4

1, otherwise

(4)

For example, if four elements of 0 can be held within a cache-

line, and if the A4DB4_38BC0=24 is �ve, the"' for the memory

accesses depends on two di�erent cachelines and similarly, if

only half an element of 0 can be held within a cacheline, then

for a A4DB4_38BC0=24 of 1, two cachelines must be accessed as

captured in Equation 4. For simplicity, all discussions below

assume the size of each element is equal to the size of the

89



LCTES ’23, June 18, 2023, Orlando, FL, USA Girish Mururu, Kangqi Ni, Ada Gavrilovska, and Santosh Pande

cacheline. Note that the instructions itself when migrated in-

curs a loss within the i-cache. Every new instruction accessed

within the loop incurs one i-cache miss because of migration.

If the body of the loop entails a large number of instructions

exceeding the i-cache capacity then the previously cached

instructions are evicted resulting in more i-cache-misses,

however, these are not due to migration and would have oc-

curred, regardless. Modern i-caches have signi�cant capacity

and smart prefetching policies which minimize e�ective i-

cache misses. Due to the above reasons, in this analysis we

do not include i-cache misses.

The total memory reuse, however, does not capture the

total cache penalties due to migration. In other words, loops

can have a large number of unique memory accesses that

can result in a higher total reuse across them but could still

exhibit very little individual reuse for a given access. Such

loops are classi�ed as streaming loops. Pinning such stream-

ing loops is not of much value because these hardly require

any cache misses upon process migration due to low individ-

ual array element reuse. This contrast is clearly explained

below in the following Fibonacci and summation examples.

1 for ( in t i = 0 ; i < N ; ++ i )

2 a [ i ] = a [ i −1] + a [ i − 2 ] ;

Listing 1. Fibonacci

1 for ( in t j = 0 ; j < M; ++ j )

2 for ( in t i = 0 ; i < M; ++ i )

3 b [ j ] = b [ j ] + b [ i ] ;

Listing 2. Summation

In Fibonacci (Listing 1), 0[8], 0[8 − 1], and 0[8 − 2] access

an individual array element only three times. If the process

is migrated while executing this loop (at iteration 8), two

array elements must be transferred between the caches for

access 0[8 − 2] and one element for access 0[8 − 1] (if the

loop was migrated between the execution of a[i-1] and a[i-

2])1, which hardly incurs any cost. However, in Summation

((Listing 2), 1 [8] leads to" accesses of each array element,

and every iteration touches" array elements. If this loop is

migrated, then in the worst case," cache elements must be

transferred. To account for the penalty during migration, we

de�ne "Unit Memory Reuse (UMR)," which is the memory

reuse generated by each unique access. i.e.

*"' =
"4<>A~_'4DB4 ("')

*=8@D4_0224BB4B
. (5)

Unit memory reuse (UMR) is (4 ∗ # )/# or 4 for Fibonacci

and (" ∗")/" or" for summation. We now co-relate the

migration penalty to the Unit Memory Reuse (UMR).

1The analysis is worst case analysis and considers migration could happen

at any and all points

In the absence of any optimization and for large elements

where the register allocation cannot be done across array el-

ements, the code produced for Fibonacci sequence generator

in Listing 1 will do the following:

1. Prefetch a in cache

2. Load 0[8 − 1] into a register

3. Load 0[8 − 2] into another register

4. Add the two

5. Store the result into 0[8]

Consider the above instruction sequence; migration dur-

ing the execution of a certain instruction could be worse

than others. Migration could occur at any point during the

above �ve steps. Worst case occurs if the migration takes

place at the beginning of the �rst step, then all four accesses

0, 0[8 − 1], 0[8 − 2], and 0[8] requires the memory to be trans-

ferred into the new cache. Migration at subsequent steps will

require one less access to the cache, i.e., migration at step 2,

step 3, step 4, and step 5 will require 3, 2, 1, and 1 new cache

access for completing the above steps. Also since this is a

streaming loop, as discussed before, the subsequent itera-

tions will require one new access for each of 0[8]. Assuming

that the migration occurs at each of the above steps, a total

of 11 misses occur during 4 migrations or on an average a

total of 2.5 cache misses could occur during each migration;

in other words, pinning this loop will save 2.5 misses on an

average. On the other hand, similar analysis for summation

code(Listing 2) shows a saving of" cache misses(migration

occurring after each reuse of 1 [ 9] in inner loop and there

are" such reuses). Thus, pinning the summation loop will

save " cache misses in the worst case and thus, pinning

summation loop will be advantageous over the Fibonacci

loop in case one has to make a choice in terms of pinning

decision on a given core.

Apart from memory reuse, another factor which plays a

critical role in terms of pinning one loop vs. the other relates

to the size of the loop bodies. The ratio of Unit Memory

Reuse (UMR) to the total number of instructions in the loop

body is de�ned asMemory Reuse Density (MRD) (Equation

6), and is a measure of the trade-o� between reuse and the

size of the regions that participates in the reuse. As indicated

earlier, for legal execution of loops, not only the statements

that directly participate in reuse must be encapsulated in

the same loop nest but also all the other statements that

exhibit the dependencies with rest to these must also be en-

capsulated in the same loop nest. Due to this reason, one

must account for the extra (dependency carrying) statements

that are included in the loop nest which is captured by the

MRD measure. Given the same UMD values, compared to

regions with larger loop bodies (and correspondingly lower

reuse densities), regions that smaller loop bodies (and the

ones exhibiting higher reuse densities) are more desirable

candidates for pinning since they are likely to place lesser

90



PinIt: Influencing OS Scheduling via Compiler-Induced A�inities LCTES ’23, June 18, 2023, Orlando, FL, USA

restrictions on the scheduler �exibility (due to faster execu-

tion of smaller loop bodies). This motivates the calculation

of MRD as follow:

"'� =
*"'

8=BCAD2C8>=B
(6)

The following code excerpt will help illustrate the key

idea behind MRD.

1 void foo ( in t M, in t N)

2 {

3 . . .

4 for ( in t j = 0 ; j < M; j ++)

5 for ( in t i = j ; i < ( j +N) ; i ++)

6 {

7 A[ i ] = A[ i −1] + A[ i − 2 ] ;

8 B [ i ] = B[ i −3] + B[ i − 2 ] ;

9 C[ i ] = C[ i −5] + k ;

10 x = i + 2 + x ;

11 y = n + i + y ;

12 z = z +1 ;

13 m = m− − ;

14 k = i + k ;

15 }

16 . . .

17 }

Listing 3. Function foo()

Within the inner loop, the �rst statement has three memory

accesses in �[8], �[8 − 1], �[8 − 2]. The write to �[8] is read

in the next iteration as �[8 − 1] and the iteration after the

next in �[8 − 2]. From Equation 1, the memory reuse is 1 for

�[8 − 1] and 2 for�[8 − 2] for accessing an element accessed

by �[8]. The memory reuse of �[8 − 1] is 1 for accessing

an element accessed by �[8 − 2]. Again note that the reuse

between �[8 − 1] and �[8 − 2] is considered to account for a

migration between these accesses. The total MR from this

statement within the inner loop is # +# ∗ 2+# , where # is

the iterations of the inner loop. Hence, for the loop nest with

outer loop iterations" , theMR is"∗[#+2∗#+# ]. Similarly,

the second statement contributes " ∗ [3 ∗ # + 2 ∗ # + # ],

and the third statement adds" ∗ [5∗# ] to the total memory

reuse of the loop nest. In other words, the total memory reuse

MR of the loop nest is 15 ∗" ∗ # . This reuse is generated

by 3# unique accesses. Note that, the total accesses are still

3 ∗ # ∗" , that is 3# array elements accessed" times, but

unique accesses are only 3# . By substituting these accesses

in Equation 5, UMR is 15 ∗" ∗ # /3# = 5 ∗" ∗ # . The loop

contains ten instructions and by substituting the values in

Equation 6, we �nd memory-reuse density equal to 5 ∗"/10.

Examining the dependencies, one can notice that statements

10 through 13 can be moved out of the loop, reducing the

number of instructions to only 4 and improving MRD to

5 ∗"/4, such a loop with higher MRD will execute faster than

the original loop, will be pinned by the scheduler for a smaller

amount of time giving it more �exibility to perform better load

balancing across cores. MRD drives the loop optimizations

for this reasons as explained in section 4.2

4 PinIt Optimization

PinIt optimization focuses on determining the locationwhere

pin/unpin calls should be hoisted to reduce call overheads

and on transforming loops to maximize their memory reuse

density (MRD).

4.1 Call Hoisting

The pin (pin/unpin) calls are hoisted at the outermost loops.

Hoisting prevents repeated calling of pin/unpin functions

when present inside a loop. However, some of the pin/unpin

calls could still remain inside some inter-procedural-external

loops, that is, the call site is located inside the caller’s loop,

the pin/unpin calls being hoisted at the outermost loop level

of callee. With the use of call graphs, such external loops can

be determined, and pin/unpin calls can be moved outside

the external loop. Because the external loops can reside in

various �les such as header �les and libraries, hoisting is

accomplished after the entire program is linked. After cal-

culating the intra-procedure hoist point, the reuse analysis

is extended interprocedurally. The reuse density (MRD) is

recalculated at the inter-procedural hoist point to check if

the external loop nest has enough memory reuse to negate

the loss of scheduler �exibility. We calculate unit memory

reuse (UMR) and count the instructions along the path of

the external hoist point enclosing several procedural calls.

Using these values, we calculate the new MRD at the hoist

points. At runtime, the new MRD is checked against RDT

(reuse density threshold), a threshold that decides if a loop

should be pinned or not. RDT’s role is to avoid overpinning

of short loops and is explained in details in section 5.

Formally, let 5? be a function originally containing pin

calls and �? the set of instructions within 5? ; 5? is called by a

set of functions, � = {51, 52....5=}. �! , which calls 5? inside a

loop, is a subset of � ; that is, �! = {58 , 59 ....5<} ⊂ � , and �8 is

the set of instructions corresponding to the loop in 58 ∈ �! . If

"'� 5? is the reuse density of the pinned loop in 5? ,"'5? is

the memory reuse inside 5? , and"'!8 is the reuse in external

loop, !8 in 58 ∈ �! , the pin call must be hoisted outside the

loop if

"'5? +"'!8

�? + �8
> '�) . (7)

For functions in �/�! , in which the calls to the function 5?
are not inside a loop, the pin/unpin calls must surround the

call to 5? if

"'� 5? > '�) & �! ≠ ∅, (8)

where '�) is the "Reuse Density Threshold". The steps for

minimizing pinning and hoisting pin calls are summarized

in Algorithm 1.

91



LCTES ’23, June 18, 2023, Orlando, FL, USA Girish Mururu, Kangqi Ni, Ada Gavrilovska, and Santosh Pande

Algorithm 1 Pinning Algorithm

1: procedure PinLoop

2: for each Outermost loop ! ∈ Function � :

3: #! ← Number of Iterations of !

4: Memory_Reuse("'!) =

5: Σ Memory_Reuse of Subloops(!)+ Σ(Memory_Reuse)

6: "'�! =
"'!

�=BCAD2C8>=B

7: Pin Loop L If"'�! > '�)

8: End for

9: procedure Hoisting

10: for each Pinned Loop ! ∈ Function � :

11: '4<>E4%8= ← �0;B4

12: * ← D1, D2, ..D= s.t each D8 calls �

13: for each D8 ∈ * :

14: if � is within Loop ;8 of D8 then

15: '4<>E4%8= ← )AD4

16: Recalculate MRD for ;8 with �

17: Hoist Pin Outside ;8

18: Pin Loop L If"'�! > '�)

19: End for

20: if '4<>E4%8= == )AD4 then

21: if "'�>5 F> '�) then

22: Hoist Pin outside non-Loop calls of � , D 9 ∈ *

23: Remove Pin calls from �

24: End for

Figure 2. hoisting outside external loops

As an illustration, Figure 2, the loop in function Foo() is

initially pinned at the pre-header and unpinned at the exit

blocks of the loop based on the intra-procedural analysis.

However, inter-procedurally, function Foo() is called in pro-

cedure Boo() and within a loop in Goo(). To prevent multiple

system call overhead, PinIt by using the information from

the call graph hoists the pin/unpin calls at points H3 and H4

in Goo and at points H1 H2 in Boo. At runtime, the loop is

pinned through these hoist points only if equations 8 and 7

are satis�ed. Note that in function Boo(), calls are hoisted

surrounding the call for Foo(), and in Goo(), the calls are

hoisted outside the loop.

4.2 Loop Transformation

Pinning a large loop with low memory reuse not only de-

creases the gain from pinning but also restricts the scheduler

from using resources e�ciently. To avoid this, we pin the

loop only if the reuse density is above a certain threshold.

Furthermore, to increase the MRD of a loop, we carry out

loop splitting, so that only dependent instructions containing

high memory reuse form one loop nest and the rest another.

4.3 Putting It Together

The compiler analysis shown in Figure 1 �rst calculates UMR

followed by MRD for each loop nest. The pin/unpin calls are

then hoisted inter-procedurally. After splitting any loop to

improve MRD, the framework determines a pin threshold as

discussed below. The pin call at runtime checks if the MRD

is greater than the threshold before pinning the loop.

5 Pin Threshold

To determine the reuse density threshold value that bene�ts

all the co-executing programs, we chose to cluster the MRD

values using kmeans. We �rst calculate the MRD values

for all the loop nests using pro�le data of the programs

to be co-executed. Note that such pro�les of applications

are commonly used for optimized execution in servers; the

pro�le data useful forMRD calculations involves loop bounds

which are functions of problem sizes (image sizes, resolution,

etc). We derive : means that lies within the range of MRD

value of di�erent loops of a program. We start with : = 1

and increment : till we �nd a mean MRD value that is within

the range of MRD values for the application. For example,

when : = 1, K-means could lead to a �rst mean such that

we might not have any loop in some benchmark with an

MRD value higher or equal to this �rst mean. We increment

: to �nd the second mean, if the mean is still greater than

the maximum MRD, we increment : and repeat until we

�nd a mean value that lies within the range of MRDs of the

applications. We use this mean value as the Reuse Density

Threshold for the application. Note that in many hosted

servers, especially embedded media servers, the group of

programs to be executed on the server is pre-determined

and �xed through con�guration �les. This forms a batch of

co-executing applications and is used for �nding RDT.

6 Pinit Runtime

In order that too many processes do not get pinned to the

same core and slow each other down (due to time multi-

plexing), we perform a runtime optimization. Pin calls are

92



PinIt: Influencing OS Scheduling via Compiler-Induced A�inities LCTES ’23, June 18, 2023, Orlando, FL, USA

implemented using the cpu_schedseta�nty system call in a

shared library that maintains a shared bit-mask, a mask of

reserved processors in the system. Shared bit-mask tracks

the CPU cores to which processes are currently pinned; the

bit mask is set when a process is pinned to a respective CPU

core and is unset when no process is pinned to that core. The

library �rst invokes 64C_2?D system call which returns the

CPU mask on which the process is currently executing. PinIt

always attempts to pin a process where it is currently exe-

cuting to preserve its data locality and a�nity. The library

then checks if the corresponding CPU core in the shared

bit-mask is free for pinning. If the process can be pinned,

the mask bit is atomically set in the shared bit-mask and any

subsequent requests to the same CPU are denied. In case

the core is unavailable for pinning the process, the pin call

attempts to �nd a free core on the same socket following

the above process in order to preserve last level cached data

of the process. Unpin call works by resetting the CPU core

mask bit in shared bit-mask to allow other processes to claim

the core for pinning.

The shared library in the pinit framework consists of four

exposed functions–?8=8=8C, ?8=,D=?8=, 0=3?8=5 A44 . ?8=8=8C

is inserted at the entry block of themain function and?8=5 A44

is instrumented at all the exit blocks of the program.We track

the shared processors with the help of Bℎ< semantics pro-

vided by Linux and use the 2?D_B2ℎ43_B4C05 5 8=8C~ system

call to pin a process inside the pin function. The average

overhead of each call is in the order of few microseconds.

The applications were instrumented with passes written in

LLVM 3.8 and compiled with O3 optimization.

7 Experiments

7.1 Experimental Setup

Testbed: We used Linux OS running on two di�erent Intel

Xeon Processor machines, one with 8 cores and the other

with 16 cores with con�gurations as mentioned in Table 1 in

a carefully controlled environment. Speci�cally, to prevent

the e�ects from warmup, we cleared shared resources such

as the cache before every run and disabled hyper-threading.

In such an environment, the machine was overloaded by 50%,

that is, the number of processes scheduled was 1.5 times the

number of processors. Consequently, in 8 core machine we

ran 12 processes, and in 16 core machine we scheduled 24

processes for execution. Among the processes in the load,

100% processes was of high-priority and the rest overloaded

50% was of low-priority. In other words, 8 high-priority ap-

plications and 4 low-priority applications were scheduled

on 8 core machine, and 16 high-priority and 8 low-priority

applications were executed on 16 core machine.

Benchmarks: To demonstrate the usage of Pinit, we used

Mediabench II benchmark suite [19] and san-diego vision

based benchmark suite (sd-vbs) [26]. MediaBench and sd-vbs

represent real-world media and computer vision workloads

Table 1. Con�guration of experiment machines

Features 8 core 16 core

Core count 8 16

CPU Base frequency 2.40 GHz 2.2 GHz

CPU architecutre Nehalem SandyBridge

Sockets 2 2

Core/socket 4 8

L1 Cache 32 KB 32 KB

L2 Cache 256 KB 256 KB

LLC Cache 8 MB 20 MB

Linux kernel 4.5.0 4.5.0

very typical of embedded software. Such workloads are typi-

cally served near the edge via the fog compute servers that

play a critical part of IoT and Edge based infrastructure. Me-

diabench are large benchmarks with between 7602 to 35162

LOC (Lines of Code) and execution time ranging from 2 to 12

seconds with complex and multiple loops in each benchmark.

The seven sd-vbs benchmarks encompasses around 20 di�er-

ent kernels that form the core of vision processing including

some prominent full applications such as sift and stitch [23].

All the benchmarks are written in C/C++. The applications

were classi�ed into higher- and lower-priority applications.

As mentioned previously, media decoders are on the critical

path of Media Servers and demand higher-priority compared

to the media encoders. Hence for Mediabench, we use 12 dif-

ferent combinations of benchmarks from the set of decoders–

djpeg, h263dec, h264dec, and mpeg2decode– as high-priority

mixes along with all the encoders as low-priority set. With

sd-vbs as high-priority set, we used the same set of low-

priority applications consisting of encoders, that is, all the

experiments entailed the encoders in mediabench executing

simultaneously as low-priority set coupled with each Mix

shown in Table 2. Di�erent applications used have di�erent

characteristics in terms of the loops that are pinned and their

execution times. While we demonstrate the e�ectiveness of

PinIt on di�erent hetero-and-homogeneous mixes of Me-

diabench, we only consider homogeneous mixes of sd-vbs.

Di�erent mixes of the above applications allow us to stress

test the scheduling behavior of PinIt with di�erent overlaps

of pinned and non-pinned regions. In the homogeneous mix

in high-priority set, the pin phases of all the tasks overlap

thus pressurizing the demand of resources, while the hetero-

geneous mixes provide options for the scheduler to �exibly

migrate processes as necessary. Altogether these mixes of

such diverse applications push the scheduler to capture vari-

ous scenarios thus testing the robustness of PinIt.

7.2 Scheduler Setting and Experimental Goals

The process when pinned must be non-preemptive, other-

wise the cache of the pinned process will be polluted by

93



LCTES ’23, June 18, 2023, Orlando, FL, USA Girish Mururu, Kangqi Ni, Ada Gavrilovska, and Santosh Pande

Table 2. Mixes of high-priority applications in MediaBench

MixBench High Priority Set

Mix1 djpeg h263dec h264dec mpeg2decode

Mix2 h263dec h264dec mpeg2decode

Mix3 h264dec mpeg2decode

Mix4 mpeg2decode

Mix5 djpeg

Mix6 h263dec

Mix7 h264dec

Mix8 djpeg h263dec h264dec

Mix9 djpeg h263dec

Mix10 djpeg h264dec

Mix11 djpeg mpeg2decode

Mix12 h263dec mpeg2decode

the process that pre-empted the pinned process. The de-

fault CFS scheduler pre-empts pinned processes and is not

suited for PinIt. In the function call PinInit, the scheduling

for the high-priority applications is changed from CFS to

FIFO, which prohibits pre-emption of pinned process except

only when an IO operation is requested by the process. The

IO request can be very time consuming to skip the precious

cpu cycles. Only the high-priority applications are scheduled

non-preemptively. The low-priority applications are sched-

uled using the default CFS in PinIt. We compare PinIt against

priority CFS that di�erentiates the high- and low-priority

applications through nice values. The nice value was set

to -20 (highest) for high-priority applications and default

0 for low-priority applications. In the red-black tree based

run-queue of CFS, the nice value plays a part in selecting the

next application for execution. Lower the nice value, higher

the priority for an application to be picked up for execution.

7.3 Experimental Results

We demonstrate the speedups gained by PinIt over priority

CFS scheduler. Each overloaded batch of mix was run for 12

iterations with each framework – PinIt and priority CFS, to

collect various results of the applications in the batch. The

speedup reported in the �gures is normalized to that of the

priority CFS scheduler.

Table 3. Average Latency and batch throughput for

16threads(8threads) of PinIt normalized to priority CFS

Benchmark Suite Latency Throughput

Mediabench 45% (13%) 1.23x (1.01x)

sd-vbs 8% (19%) 0.98x(1x)

7.3.1 Mediabench. The average speedup of high-priority

applications in PinIt compared to CFS priority scheduling is

16% in 8 cores as shown in Figure 3a and 2.12x in 16 cores as

shown in Figure 3b. Although, the low-priority applications

in each framework were scheduled with default CFS sched-

uling mechanism, scheduling decisions for high-priority ap-

plications directly e�ect the completion time of low-priority

applications. For each framework, we also show the com-

pletion time of the batch normalized to that of the priority

CFS scheduling. In 8 cores, PinIt managed to complete the

batch as fast as priority CFS scheduling, and in 16 cores, the

ample time saved in completing the high-priority job was

used in completing the low-priority jobs improving overall

throughput by 23% as shown in Table 3. To demonstrate that

the increase in the overall throughput of the high-priority

applications is not at the expense of the latency of each ap-

plication, we calculate the average latency of applications in

terms of execution time for the high-priority mixes for each

framework. PinIt compared to priority-CFS was faster on

average by 13% on 8 cores and by 45% on 16 cores as shown

in Table 3.

We compare the system behavior when using PinIt versus

the priority CFS by reporting cache misses, page faults and

cpumigrations collected using Perf tool. PinIt relies on avoid-

ing dubious migrations than can lead to super�uous cache

misses as well as page faults. These three factors together

contribute to the speedup of the application. Migrations can

not only increase data misses but also can result in ine�-

cient use of cpu cycles. Cache misses and page faults directly

a�ect the execution of an application. In NUMA machines,

such as the ones used in our experiments, the cache-misses

because of migration from one NUMA node to another can

be more drastic than intra-NUMA node migration. In 8 cores,

for entire batch, on average , cache misses are reduced by

6% (Figure 4a) , page faults (minor and major together) are

decreased by 17.4%, and migrations are reduced by 55.6% in

PinIt. Also in 16 cores, for whole batch, on average, cache

misses are reduced by 25% (Figure 4b), page faults are re-

duced by 15%, and migrations are cut down by 63%.The stalls

in PinIt are almost the same as priority CFS.

7.3.2 sd-vbs. The average speedup of high-priority ones

in PinIt was 1.35 times that in priority CFS on 8 cores as

shown in Figure 5a, and 1.23 times on 16 cores as shown in

Figure 5b. On 8 and 16 cores, PinIt completed the batch as

fast as priority CFS as shown in Table 3. Latency wise, PinIt

compared to priority-CFS was faster on average by 19% on 8

cores and by 8% on 16 cores as shown in Table 3.

On 8 core, for the entire batch, on average , MPKI is not

reduced, however, PinIt memory reuse bene�ts manifests

as TLB hits which is reduced page faults (minor and major

included). Note that minor page faults indicate TLB misses.

On 8 cores page faults are decreased by 16.4% and migrations

are reduced by 23.3%. On 16 cores, page faults are reduced by

11% and migrations by 25%. Although in PinIt cache misses

do not show a considerable di�erence with priority CFS,

fewer migrations in PinIt compared to priority CFS avoid

94



PinIt: Influencing OS Scheduling via Compiler-Induced A�inities LCTES ’23, June 18, 2023, Orlando, FL, USA

(a) 8 core (b) 16 core

Figure 3. Mediabench: speedup of high-priority applications normalized to priority CFS vs PinIt

(a) 8 core (b) 16 core

Figure 4. Mediabench: cache Misses (MPKI) in priority CFS vs PinIt

(a) 8 core (b) 16 core

Figure 5. sd-vbs: speedup of high-priority applications normalized to priority CFS vs PinIt

the unnecessary halting of a process, migrating to a new pro-

cessor, and resuming the process overheads thus achieving

speedup. The speedup achieved in sd-vbs can be attributed

to the reduction in page faults (TLB misses) and migrations.

7.4 Experimental Analysis

PinIt performance. PinIt improves the performance of the

applications by reducing all or some of the factors among

cache misses, page faults (TLB misses), and migrations. In

Mediabench, all three factors reduced thus improving perfor-

mance phenomenally, and in sd-vbs page-faults (TLB misses)

and migrations reduced.

Non-preemptive scheduling:Although PinIt bene�ts from

non-preemption, it outperforms non-preemptive scheduling

by as much as 28% in Mediabench and 26% in sd-vbs.

Non-preemptive a�nity: We observed that PinIt when

compared to complete non-preemptive a�nity fairs up to

95



LCTES ’23, June 18, 2023, Orlando, FL, USA Girish Mururu, Kangqi Ni, Ada Gavrilovska, and Santosh Pande

Figure 6. Average normalized speedup: Pinit extracts the

best of scheduler �exibility and processor a�nity

16% faster in Mediabench and 51% faster in sd-vbs. Few appli-

cations in Mediabench, however, gained higher bene�ts with

complete non-preemptive a�nity than pinning fewer areas

denoted by PinIt. We observed that PinIt missed gains mainly

from �le read operations that were pinned in complete non-

preemptive a�nity. Figure 6 compares PinIt with purely

non-preempitve scheduling and complete non-preemptive

a�nity. PinItextracts the bene�ts of scheduler �exibility and

processor a�nity as and when necessary, thus mostly per-

forming better than both just non-preemptive scheduling and

non-preemptive whole process pinning.

Fairness. The environment in which PinIt is used entails a

set of high-priority applications equal to the number of cores

and a low-priority set simultaneously executed as a batch.

Since each high-priority application is executed by a core in a

non-preemptive manner, no high-priority application starves

for processing time, and from the above results, we can safely

conjure that the low-priority job takes almost same time or

less to complete in PinIt as in priority CFS. The standard

deviation in the execution time is reduced in PinIt because of

reduced migrations due to pinning. That is, the repeatability

of the high priority applications is increased because random

behavior caused by non-deterministic migrations is reduced.

Loop Splitting: The hoisting optimization hoisted the pin

calls to inter-procedural outermost loops, thereafter Loop

Splitting pass did not �nd loops to split for all benchmarks

except djpeg. The di�erences in djpeg before and after loop

splitting is shown in Table 4. Note that djpeg has two pinned

loops and the MRD of one loop was increased with un-

changed number of pin calls.

Table 4. Djpeg before and after loop splitting optimization

Metric Before After

MRD 13.97 17.55

Speedup 17.9% 20.9%

8 Related Work

Bubble-up [18] generates a QOS versus memory pressure

sensitivity curve to co-locate two programs together. [17]

attempts to assign VCPU for entire time to a CPU based on

the history of execution. However, it does not dynamically

pin/unpin sections or regions of code. Autopin [14], an of-

�ine tool similar to valgrind, �nds the best thread-to-core

mapping through an o�ine iterative process. To overcome

disadvantages of o�ine pro�ling, authors of Bubble-up de-

veloped Bubble-�ux [27], in which low-priority processes are

simultaneously executed along with high-priority processes

only when QOS of high-priority processes do not drop. We

use a similar environment of a set of high- and low-priority

processes in our setup.

Thread tranquillizer [22] reduces the side-e�ects of pro-

cess migration via scheduling and memory allocation tech-

niques. [8] uses cache space isolation technique and [7] pro-

poses scheduling policies to reduce cache contention for

time constrained tasks executing on shared multi-core sys-

tems. [10] context-switches only when executing a region

that has minimal amount of state to be saved found through

live register analysis. [20] proposes compiler-assisted appli-

cation speci�c demand-paging for embedded systems with

�ash memory. [3] uses reuse distance analysis to inform the

processor about the cache in which the memory is likely

to be found. [16] schedules the process to the appropriate

processor, whose cache has the memory region by building

a cache map. Works in [6], [2], [21], [11] present loop opti-

mization techniques for improving data reuse by the loop

and are orthogonal to our work. We have demonstrated the

merits of our work in an overloaded environment, a set of

high- and low-priority processes executing together as in

Bubble-�ux [27]. None of the works to the best of our under-

standing in�uence the scheduling decisions of the operating

system scheduler non-intrusively towards processor a�nity

to minimize the harmful e�ects of process migration on la-

tency, which is critical for media applications executing on

embedded servers.

9 Conclusion

To achieve optimal pinning, PinIt o�ers a solution through

compiler analysis of memory reuse and carefully balancing

the sizes of the regions pinned by relying on a new metric

calledMemory Reuse Density (MRD) for deciding if the loops

must be pinned. In an overloaded environment, PinIt speeds

up high-priority applications in Mediabench workloads by

1.16x and 2.12x and in vision-based workloads by 1.35x and

1.23x on 8cores and 16 cores, respectively, on average while

completing the low-priority jobs in almost the same time as

priority-CFS thus demonstrating the optimization ofmultiple

programs as an ensemble as against in isolation without un-

dertaking infeasible inter-application analysis and without

modifying the OS.

96



PinIt: Influencing OS Scheduling via Compiler-Induced A�inities LCTES ’23, June 18, 2023, Orlando, FL, USA

References
[1] Jennifer M. Anderson and Monica S. Lam. 1993. Global Optimiza-

tions for Parallelism and Locality on Scalable Parallel Machines.

In Proceedings of the ACM SIGPLAN 1993 Conference on Program-

ming Language Design and Implementation (Albuquerque, New Mex-

ico, USA) (PLDI ’93). ACM, New York, NY, USA, 112–125. h�ps:

//doi.org/10.1145/155090.155101

[2] Bin Bao and Chen Ding. 2013. Defensive Loop Tiling for Shared

Cache. In Proceedings of the 2013 IEEE/ACM International Symposium

on Code Generation and Optimization (CGO) (CGO ’13). IEEE Computer

Society, Washington, DC, USA, 1–11. h�ps://doi.org/10.1109/CGO.

2013.6495008

[3] Kristof Beyls and Erik H. D’Hollander. 2002. Reuse Distance-Based

Cache Hint Selection. In IN PROCEEDINGS OF THE 8TH INTERNA-

TIONAL EURO-PAR CONFERENCE. 265–274.

[4] Edouard Bugnion, Jennifer M. Anderson, Todd C. Mowry, Mendel

Rosenblum, and Monica S. Lam. 1996. Compiler-directed Page Color-

ing for Multiprocessors. In Proceedings of the Seventh International Con-

ference on Architectural Support for Programming Languages and Oper-

ating Systems (Cambridge, Massachusetts, USA) (ASPLOS VII). ACM,

New York, NY, USA, 244–255. h�ps://doi.org/10.1145/237090.237195

[5] Steve Carr, Kathryn S. McKinley, and Chau-Wen Tseng. 1994. Compiler

Optimizations for Improving Data Locality. In Proceedings of the Sixth

International Conference on Architectural Support for Programming

Languages and Operating Systems (San Jose, California, USA) (ASPLOS

VI). ACM, New York, NY, USA, 252–262. h�ps://doi.org/10.1145/

195473.195557

[6] Jason Cong, Peng Zhang, and Yi Zou. 2011. Combined Loop Trans-

formation and Hierarchy Allocation for Data Reuse Optimization. In

Proceedings of the International Conference on Computer-Aided Design

(San Jose, California) (ICCAD ’11). IEEE Press, Piscataway, NJ, USA,

185–192. h�p://dl.acm.org/citation.cfm?id=2132325.2132368

[7] G. Giannopoulou, N. Stoimenov, P. Huang, and L. Thiele. 2013. Sched-

uling of mixed-criticality applications on resource-sharing multicore

systems. In 2013 Proceedings of the International Conference on Embed-

ded Software (EMSOFT). 1–15. h�ps://doi.org/10.1109/EMSOFT.2013.

6658595

[8] Nan Guan, Martin Stigge, Wang Yi, and Ge Yu. 2009. Cache-Aware

Scheduling and Analysis for Multicores. In Proceedings of the Seventh

ACM International Conference on Embedded Software (Grenoble, France)

(EMSOFT ’09). Association for Computing Machinery, New York, NY,

USA, 245–254. h�ps://doi.org/10.1145/1629335.1629369

[9] Anoop Gupta, Andrew Tucker, and Shigeru Urushibara. 1991. The

Impact of Operating System Scheduling Policies and Synchronization

Methods of Performance of Parallel Applications. In Proceedings of

the 1991 ACM SIGMETRICS Conference on Measurement and Modeling

of Computer Systems (San Diego, California, USA) (SIGMETRICS ’91).

Association for Computing Machinery, New York, NY, USA, 120–132.

h�ps://doi.org/10.1145/107971.107985

[10] Pekka Jääskeläinen, Pertti Kellomäki, Jarmo Takala, Heikki Kultala,

and Mikael Lepistö. 2008. Reducing Context Switch Overhead with

Compiler-Assisted Threading. In Proceedings of the 2008 IEEE/IFIP Inter-

national Conference on Embedded and Ubiquitous Computing - Volume

02 (EUC ’08). IEEE Computer Society, Washington, DC, USA, 461–466.

h�ps://doi.org/10.1109/EUC.2008.181

[11] Aamer Jaleel, Hashem H. Najaf-abadi, Samantika Subramaniam, Si-

mon C. Steely, and Joel Emer. 2012. CRUISE: Cache Replacement and

Utility-aware Scheduling. In Proceedings of the Seventeenth Interna-

tional Conference on Architectural Support for Programming Languages

and Operating Systems (London, England, UK) (ASPLOS XVII). ACM,

New York, NY, USA, 249–260. h�ps://doi.org/10.1145/2150976.2151003

[12] Nagakishore Jammula, Moinuddin Qureshi, Ada Gavrilovska, and Jong-

man Kim. 2014. Balancing Context Switch Penalty and Response Time

with Elastic Time Slicing. In 21st International Conference on High

Performance Computing (HiPC). Goa, India.

[13] Vahid Kazempour, Alexandra Fedorova, and Pouya Alagheband. 2008.

Performance Implications of Cache A�nity on Multicore Processors.

In Euro-Par.

[14] Tobias Klug, Michael Ott, Josef Weidendorfer, and Carsten Trinitis.

2011. Transactions on High-performance Embedded Architectures and

Compilers III. Springer-Verlag, Berlin, Heidelberg, Chapter Autopin:

Automated Optimization of Thread-to-core Pinning on Multicore Sys-

tems, 219–235. h�p://dl.acm.org/citation.cfm?id=1980776.1980792

[15] Rakesh Kumar and Dean M. Tullsen. 2002. Compiling for Instruction

Cache Performance on a Multithreaded Architecture. In Proceedings

of the 35th Annual ACM/IEEE International Symposium on Microarchi-

tecture (Istanbul, Turkey) (MICRO 35). IEEE Computer Society Press,

Los Alamitos, CA, USA, 419–429. h�p://dl.acm.org/citation.cfm?id=

774861.774906

[16] Min Lee and Karsten Schwan. 2012. Region Scheduling: E�ciently

Using the Cache Architectures via Page-level A�nity. In Proceedings

of the Seventeenth International Conference on Architectural Support

for Programming Languages and Operating Systems (London, England,

UK) (ASPLOS XVII). ACM, New York, NY, USA, 451–462. h�ps://doi.

org/10.1145/2150976.2151023

[17] Zhi Li, Yuebin Bai, Huiyong Zhang, and Yao Ma. 2010. A�nity-Aware

Dynamic Pinning Scheduling for Virtual Machines. In Cloud Comput-

ing Technology and Science (CloudCom), 2010 IEEE Second International

Conference on. 242–249. h�ps://doi.org/10.1109/CloudCom.2010.51

[18] Jason Mars, Lingjia Tang, Robert Hundt, Kevin Skadron, and Mary Lou

So�a. 2011. Bubble-Up: Increasing Utilization in Modern Warehouse

Scale Computers via Sensible Co-locations. In Proceedings of the 44th

Annual IEEE/ACM International Symposium onMicroarchitecture (Porto

Alegre, Brazil) (MICRO-44). ACM, New York, NY, USA, 248–259. h�ps:

//doi.org/10.1145/2155620.2155650

[19] MediaBenchII 2006. MediaBench II Benchmark. h�ps://cs.slu.edu/

~fri�s/mediabench/. Accessed: 2021 Oct 17.

[20] Chanik Park, Junghee Lim, Kiwon Kwon, Jaejin Lee, and Sang Lyul

Min. 2004. Compiler-Assisted Demand Paging for Embedded Sys-

tems with Flash Memory. In Proceedings of the 4th ACM Interna-

tional Conference on Embedded Software (Pisa, Italy) (EMSOFT ’04).

Association for Computing Machinery, New York, NY, USA, 114–124.

h�ps://doi.org/10.1145/1017753.1017775

[21] Louis-Noel Pouchet, Peng Zhang, P. Sadayappan, and Jason Cong.

2013. Polyhedral-based Data Reuse Optimization for Con�gurable

Computing. In Proceedings of the ACM/SIGDA International Symposium

on Field Programmable Gate Arrays (Monterey, California, USA) (FPGA

’13). ACM, New York, NY, USA, 29–38. h�ps://doi.org/10.1145/2435264.

2435273

[22] Kishore Kumar Pusukuri, Rajiv Gupta, and Laxmi N. Bhuyan. 2012.

Thread Tranquilizer: Dynamically Reducing Performance Variation.

ACM Trans. Archit. Code Optim. 8, 4, Article 46 (Jan. 2012), 21 pages.

h�ps://doi.org/10.1145/2086696.2086725

[23] Sift and Stitch 2009. Sift and Stitch Applications in SD-VBS Bench-

marking Suite. h�p://parallel.ucsd.edu/vision/SD-VBS.pdf. Accessed:

2021 Oct 17.

[24] M. S. Squiillante and E. D. Lazowska. 1993. Using Processor-Cache

A�nity Information in Shared-Memory Multiprocessor Scheduling.

IEEE Trans. Parallel Distrib. Syst. 4, 2 (Feb. 1993), 131–143. h�ps:

//doi.org/10.1109/71.207589

[25] Josep Torrellas, Andrew Tucker, and Anoop Gupta. 1993. Bene�ts

of Cache-A�nity Scheduling in Shared-Memory Multiprocessors: A

Summary. In Proceedings of the 1993 ACM SIGMETRICS Conference on

Measurement and Modeling of Computer Systems (Santa Clara, Califor-

nia, USA) (SIGMETRICS ’93). Association for Computing Machinery,

New York, NY, USA, 272–274. h�ps://doi.org/10.1145/166955.167038

[26] Sravanthi Kota Venkata, Ikkjin Ahn, Donghwan Jeon, Anshuman

Gupta, Christopher Louie, Saturnino Garcia, Serge Belongie, and

97

https://doi.org/10.1145/155090.155101
https://doi.org/10.1145/155090.155101
https://doi.org/10.1109/CGO.2013.6495008
https://doi.org/10.1109/CGO.2013.6495008
https://doi.org/10.1145/237090.237195
https://doi.org/10.1145/195473.195557
https://doi.org/10.1145/195473.195557
http://dl.acm.org/citation.cfm?id=2132325.2132368
https://doi.org/10.1109/EMSOFT.2013.6658595
https://doi.org/10.1109/EMSOFT.2013.6658595
https://doi.org/10.1145/1629335.1629369
https://doi.org/10.1145/107971.107985
https://doi.org/10.1109/EUC.2008.181
https://doi.org/10.1145/2150976.2151003
http://dl.acm.org/citation.cfm?id=1980776.1980792
http://dl.acm.org/citation.cfm?id=774861.774906
http://dl.acm.org/citation.cfm?id=774861.774906
https://doi.org/10.1145/2150976.2151023
https://doi.org/10.1145/2150976.2151023
https://doi.org/10.1109/CloudCom.2010.51
https://doi.org/10.1145/2155620.2155650
https://doi.org/10.1145/2155620.2155650
https://cs.slu.edu/~fritts/mediabench/
https://cs.slu.edu/~fritts/mediabench/
https://doi.org/10.1145/1017753.1017775
https://doi.org/10.1145/2435264.2435273
https://doi.org/10.1145/2435264.2435273
https://doi.org/10.1145/2086696.2086725
 http://parallel.ucsd.edu/vision/SD-VBS.pdf
https://doi.org/10.1109/71.207589
https://doi.org/10.1109/71.207589
https://doi.org/10.1145/166955.167038


LCTES ’23, June 18, 2023, Orlando, FL, USA Girish Mururu, Kangqi Ni, Ada Gavrilovska, and Santosh Pande

Michael Bedford Taylor. 2009. SD-VBS: The San Diego vision bench-

mark suite. In 2009 IEEE International Symposium on Workload Char-

acterization (IISWC). IEEE, 55–64.

[27] Hailong Yang, Alex Breslow, Jason Mars, and Lingjia Tang. 2013.

Bubble-�ux: Precise Online QoS Management for Increased Utiliza-

tion in Warehouse Scale Computers. In Proceedings of the 40th Annual

International Symposium on Computer Architecture (Tel-Aviv, Israel)

(ISCA ’13). ACM, New York, NY, USA, 607–618. h�ps://doi.org/10.

1145/2485922.2485974

Received 2023-03-16; accepted 2023-04-21

98

https://doi.org/10.1145/2485922.2485974
https://doi.org/10.1145/2485922.2485974

	Abstract
	1 Introduction
	2 PinIt Framework
	3 PinIt Analysis
	3.1 Memory Reuse Density

	4 PinIt Optimization 
	4.1  Call Hoisting
	4.2  Loop Transformation
	4.3 Putting It Together

	5 Pin Threshold
	6 Pinit Runtime
	7 Experiments
	7.1 Experimental Setup
	7.2 Scheduler Setting and Experimental Goals
	7.3 Experimental Results
	7.4 Experimental Analysis

	8 Related Work
	9 Conclusion
	References

