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Abstract
Many computing systems are constrained by their fixed
amount of shared memory. Modeling applications with task
or Synchronous DataFlow (SDF) graphs makes it possible to
analyze and optimize their memory peak. The problem stud-
ied by this paper is the memory peak minimization of such
graphs when scheduled sequentially. Regarding task graphs,
former work has focused on the Series-Parallel Directed
Acyclic Graph (SP-DAG) subclass and proposed techniques
to find the optimal sequential algorithm w.r.t. memory peak.
In this paper, we propose task graph transformations and an
optimized branch and bound algorithm to solve the problem
on a larger class of task graphs. The approach also applies to
SDF graphs after converting them to task graphs. However,
since that conversion may produce very large graphs, we
also propose a new suboptimal method, similar to Partial
Expansion Graphs, to reduce the problem size. We evaluate
our approach on classic benchmarks, on which we always
outperform the state-of-the-art.

CCS Concepts: • Theory of computation → Streaming
models.

Keywords: dataflow, task graph, SDF, memory peak, sequen-
tial scheduling
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1 Introduction
Memory footprint is an important constraint to consider
when developing software applications. In the domain of ar-
tificial intelligence, some neural networks require hundreds
of GigaBytes (as for GPT-3 [5]) to be stored and they cannot
entirely fit in the memory of a single GPU. The modeling
of neural networks with dataflow graphs [11] allows the
memory requirements to be analyzed and optimized. This
research topic is still very active today (see, e.g., [2, 3] for
recent results).
Similarly, embedded systems are subject to strict mem-

ory constraints, and, here again, dataflow graphs help to
efficiently schedule the tasks w.r.t. their consumed and pro-
duced amounts of data [4].
The problem we address is to find a sequential schedule

that minimizes the memory peak of a dataflow graph. This
is directly useful for single processor applications as found
frequently in the embedded context, but also for massively
parallel applications where a GPU executes, using the Single
Program Multiple Data model, the same sequence of tasks.
We take as input a dataflow graph with memory costs

attached to edges and/or nodes. We consider two variants
of dataflow graphs: task graphs and the more expressive
Synchronous DataFlow (SDF) graphs [9]. In a task graph,
each node is a task, i.e., a piece of code executed atomically,
and each edge between two nodes is a FIFO buffer. An SDF
graph refines the task graph model by attaching two rates
to each edge: the amount of data produced by its source
node and the amount of data consumed by its destination
node. An SDF graph can be transformed into a task graph,
but this transformation potentially entails an exponential
blow-up in the number of nodes in the SDF graph. In both
cases, our goal is to find a static and sequential schedule of
the dataflow graph whose memory peak is minimal among
all possible schedules. The memory peak is the maximum
shared memory needed to execute the dataflow graph.
The memory peak minimization problem of task graphs

is a variation of the pebble game [15], which is NP-complete.
A naive method to solve it is to generate all the linear exten-
sions of the graph, but it has at least factorial complexity [12].
The heart of our contribution is a polynomial-time pre-

processing of the task graph where we apply several graph
transformations that reduce the parallelism by fusing nodes
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such that: (i) the resulting graph’s set of schedules is a subset
of the initial graph’s set of schedules, and (ii) the result-
ing graph’s minimal memory peak is the same as the initial
graph’s. After this pre-processing, we apply classical algo-
rithms to compute the memory peak, but on a much smaller
task graph.

Our contributions consist of:
1. local task graph transformations that compress the

given task graph while preserving a schedule with the
optimal memory peak;

2. a proof that these transformations always compress
Series-Parallel Directed Acyclic Graphs (SP-DAGs) to
a single node representing their optimal schedule;

3. an optimized branch and bound (B&B) algorithm able
to find optimal schedules for medium sized (30-50
nodes) task graphs;

4. a sub-optimal algorithm to reduce the size of the con-
version of SDF graphs into task graphs;

5. experimental results that show that our transforma-
tions and algorithms outperform the state of the art for
dataflow applications for which sub-optimal memory
peaks are known.

The article is organized as follows. Sec. 2 presents the
two considered models of computation: task graphs and SDF
graphs. Sec. 3 defines the terminology and notations used in
the subsequent sections. Sec. 4 presents a collection of trans-
formations compressing task graphs while preserving the
existence of an optimal schedule (optimal w.r.t. the memory
peak). It also proves how these transformations are sufficient
to compress any SP-DAG into a single node representing
(one of) its optimal schedule. Sec. 5 presents our optimized
B&B algorithm to find optimal schedules of task graphs.
Sec. 6 describes techniques to apply our approach to the
more general model of SDF graphs. We provide benchmark
comparisons and other experimental results in Sec. 7. Finally,
Sec. 8 presents related work and Sec. 9 concludes.

2 Task Graphs and SDF Graphs
Our goal is to find a static sequential schedule with the
optimal (lowest) memory peak for task or SDF graphs. We
present the characteristics of these two models in turn.

2.1 Task Graphs
The task graph model we consider consists of a Directed
Acyclic Graph (DAG) where vertices represent tasks and
edges represent FIFO communication buffers between tasks.
Let 𝐴 be a task in the graph 𝐺 , then Succ(𝐴) returns the
set of its immediate successors, Pred(𝐴) its set of immedi-
ate predecessors, Succ+(𝐴) and Pred+(𝐴) the sets of all its
successors and predecessors in the transitive closure of 𝐺
respectively.
The atomic execution of a task, referred to as a firing,

consumes data from all its incoming edges (its inputs) and

𝐴 𝐵 𝐶 𝐷

𝐸

1 1 2 2 3 3
4 4

4
4 1

1

Figure 1. A simple task graph example.

produces data to all its outgoing edges (its outputs). The data
unit is called a token, and the same unit is used for all mea-
sures (production, consumption, memory peak). The number
of tokens consumed (resp. produced) on a given edge at each
firing is indicated on the edge and is called the consump-
tion (resp. production) rate. A task can fire only when all its
input edges contain enough tokens. It then consumes and
produces a number of tokens from its ingoing and on its
outgoing edges equal to the rate corresponding to each edge.

Fig. 1 presents a simple task graph with five tasks 𝐴, 𝐵, 𝐶 ,
𝐷 , and 𝐸. When fired, task 𝐵 consumes 1 token on its input
edge and produces 2 and 4 tokens on its two output edges,
which will be eventually consumed by 𝐶 and 𝐷 respectively,
when they will fire. Task 𝐴 does not have any ingoing edges:
it is a pure producer called a source. Task𝐷 is a pure consumer
and is called a sink. There are three possible schedules for
this graph. In general, for a connected graph of 𝑛 tasks, there
can be up to (𝑛 − 1)! schedules.

The memory occupied during execution by a task graph is
the sum of all the tokens present on all its edges, i.e., buffers.
We assume that the FIFO buffers are allocated in the same
global shared memory. Compared to implementations where
each buffer is allocated independently in memory, the model
we consider, called the shared buffer model [13], minimizes
memory requirement. The memory peak of a schedule is
the maximum memory needed at any execution step of that
schedule.

There exist two local memory models for tasks:
• the consumed-before-produced (CBP) model where a
task first consumes its input tokens, then executes its
block of code, and finally produces its output tokens;

• the produced-before-consumed (PBC) model where a
task keeps its input tokens to execute and produce its
result before consuming (freeing) them.

The memory peak of a schedule depends on the chosen
task memory model. For the task graph of Fig. 1, the minimal
memory peak is 8 for the CBP model and 10 for the PBC
model. Both are obtained for the schedule 𝐴;𝐸;𝐵;𝐶;𝐷 . Our
approach can take those two local task models (and others)
into account.

2.2 SDF Graphs
The SDF [9] dataflowmodel generalizes task graphs by allow-
ing different consumption and production rates on a given
edge. Nodes are called actors and have the same rules as tasks
for firing.
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Heterogeneous rates imply that each actor must be fired
multiple times to balance the production and consumption of
tokens on each edge. For instance, in the SDF graph𝐴

2 1−→ 𝐵,
each firing of 𝐴 produces 2 tokens and each firing of 𝐵 con-
sumes 1 token; hence, each firing of 𝐴 must be eventually
followed by two firings of 𝐵.
Consistent SDF graphs ensure on each edge 𝐴

𝑟 𝑠−→ 𝐵 the
balance equation (1), with #𝑋 denoting the number of firings
of actor 𝑋 .

#𝐴 · 𝑟 = #𝐵 · 𝑠 (1)

In other words, there exists a set of firings, called an iteration,
which consumes exactly all tokens produced on each edge.
For the basic graph 𝐴

2 1−→ 𝐵, the minimal solution of the
balance equation is #𝐴 = 1 and #𝐵 = 2 and the minimal
iteration is {𝐴, 𝐵, 𝐵} (see Fig. 7 in Sec. 6 for another SDF
example). Consistent SDF graphs can be executed indefinitely
with bounded memory and, as in most work, we consider
only consistent SDF graphs.

Finally, consistent SDF graphs can be converted into task
graphs (also called Single-Rate SDF (SRSDF) orHomogeneous
SDF (HSDF) [4]) by duplicating each actor into 𝑛 tasks, 𝑛 be-
ing its number of firings in the minimal iteration. This con-
version produces a number of tasks equals to the length of
the iteration which can be, in pathological cases, exponential
in terms of number of actors.

3 Preliminaries and Notations
We first define more precisely schedules and the key notions
of memory peak and memory impact. We then introduce
schedule graphs, the representation of task graphs that we
use in our analyses and transformations.

For a given task graph 𝐺 , a sequential schedule is either a
single task 𝐴 (a node of𝐺) or the sequence of two schedules
as formalized by the following grammar:

𝑆 ::= 𝐴 | 𝑆1; 𝑆2

For our purposes, a schedule 𝑆 has two key attributes:
• its peak, i.e., the maximal memory peak reached during
its execution;

• its impact, i.e., the final number of tokens added or
removed after its execution.

These attributes are either denoted directly on the schedule
as 𝑆 (𝑝𝑖 ) or referred to as 𝑝𝑠 and 𝑖𝑠 when the context makes
it unambiguous. For any 𝑆 (𝑝𝑖 ) , we have 𝑝 ≥ 𝑖 and 𝑝 ≥ 0
whereas 𝑖 can be negative.

A schedule’s peak and impact are expressed independently
of the state of the memory before its execution. For instance,
let 𝜋 be the current memory peak already reached and 𝜇 the
current number of tokens inmemory just before starting 𝑆 (𝑝𝑖 )
then, after its execution, the new peak will be max(𝜋, 𝜇 + 𝑝)
and the final number of tokens will be 𝜇 + 𝑖 .

𝐴(55) 𝐵(65) 𝐶 (31) 𝐷 ( 0
−8)

𝐸 ( 1
−3)

Figure 2. A schedule graph for the task graph of Fig. 1 in
the PBC model.

A node 𝐴 that produces 𝑟 tokens and consumes 𝑠 tokens
is represented by:

• 𝐴(max(0,𝑟−𝑠 )
𝑟−𝑠 ) in the CBP model;

• 𝐴( 𝑟
𝑟−𝑠) in the PBC model.

Both models entail the same impact, but the peak of a task
in the PBC model is always the number of tokens it produces
whereas, in the CBP model, the number of consumed tokens
is first subtracted and the peak might be null. Applications
where some tasks require more memory to perform their
computation could be expressed as well by adjusting their
peaks accordingly.
We represent task graphs as schedule graphs where each

node represents a schedule (a single task being a schedule of
length 1) decorated with its peak and impact, as in Fig. 2.

Thememory peak of a complete schedule can be computed
using the following associative operation:

𝐴(
𝑝𝑎
𝑖𝑎
) ;𝐵(

𝑝𝑏
𝑖𝑏
)
= (𝐴;𝐵) (

𝑚𝑎𝑥 (𝑝𝑎,𝑝𝑏+𝑖𝑎 )
𝑖𝑎+𝑖𝑏

) (2)

The impact of the sequential execution of nodes 𝐴 and 𝐵 is
the sum of their impacts, whereas its memory peak is the
maximum of the peak reached during𝐴 and the peak reached
during 𝐵 starting at the impact left by 𝐴.
For example, the peak of the schedule 𝐴;𝐸;𝐵;𝐶;𝐷 of the

graph of Fig. 2 can be computed as:

𝐴(55) ;𝐸 ( 1
−3) ;𝐵(65) ;𝐶 (31) ;𝐷 ( 0

−8) = (𝐴;𝐸) (
6
2) ; (𝐵;𝐶) (

8
6) ;𝐷 ( 0

−8)
= (𝐴;𝐸;𝐵;𝐶) (

10
8 ) ;𝐷 ( 0

−8)
= (𝐴;𝐸;𝐵;𝐶;𝐷) (

10
0 )

Each intermediate step in the above computation can be rep-
resented as a schedule graph as well. For instance, the node
(𝐴;𝐸) (

6
2) is a schedule with two outgoing edges towards

(𝐵;𝐶) and 𝐷 . A task graph or a consistent SDF graph con-
sumes exactly the number of tokens it produces: its global
schedule starts with a null memory peak and impact and
completes with an arbitrary peak but always with a null im-
pact. In the previous schedule, the peak 10 is reached while
executing task 𝐶 .
In the next section, we use the following order relation:

𝑆1
(𝑝1𝑖1 ) ⪰𝑝 𝑆2

(𝑝2𝑖2 ) ⇔ 𝑝1 ≥ 𝑝2 (3)

Our goal is to find minimal schedules according to this order.
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1 𝐴

2

𝐵 3 ⇛

1

2

𝐴;𝐵 3

Succ(𝐴) = {𝐵} ∧ (𝑖𝐴 ≥ 0) ∧ (𝑝𝐵 + 𝑖𝐴 ≥ 𝑝𝐴) (C1)

1 𝐴

𝐵

2

3

⇛ 1 𝐴;𝐵
2

3

Pred(𝐵) = {𝐴} ∧ (𝑖𝐵 ≤ 0) ∧ (𝑝𝐴 ≥ 𝑝𝐵 + 𝑖𝐴) (C2)

Figure 3. Clustering rules for single successor (left) and single predecessor (right). Striked through arrows represent 0 or
more incoming/outgoing edges.

4 Optimal Schedule Graph Compression
We present transformations that simplify the schedule graph
(in number of nodes and edges) while preserving the opti-
mality of the memory peak analysis. We reduce, cluster, and
sequentialize the graph but ensure that there still exists a
schedule with the same minimal memory peak than on the
original graph.
Combined and applied repetitively, these local transfor-

mations compress substantially most task graphs. They even
compress many graphs (and, among them, all SP-DAGs) to a
single node representing an optimal schedule. In the general
case, compressed graphs may remain large but have less
schedules than the original ones.
We first present the reduction transformation in Sec. 4.1,

followed by clustering in Sec. 4.2, and sequentialization in
Sec. 4.3. The global compression algorithm is presented in
Sec. 4.4 and its application to SP-DAGs in Sec. 4.5.

4.1 Transitive Reduction
The first graph transformation suppresses useless edges. It
does not directly remove schedules but makes the subsequent
transformations more effective.
In our schedule graphs, edges do not carry other infor-

mation than dependencies: removing one does not modify
the impact nor the peak of the nodes that it connects. How-
ever, removing an edge must not modify the scheduling con-
straints. Consider the subgraph 𝐵,𝐶, 𝐷 in Fig. 2. The edge
𝐵 → 𝐷 can be removed since it does not add any scheduling
constraint. In any case, those three nodes must be executed
in the order 𝐵;𝐶;𝐷 (possibly interleaved with some sub-
schedules), the edge 𝐵 → 𝐷 being present or not.

This is generalized by suppressing any edge between two
nodes 𝐴 and 𝐵 that are connected via another path made of
multiple edges. This transformation is the classic transitive
reduction [1]. It returns the graph with the fewest possible
edges that keeps the same reachability relation.

4.2 Node Clustering
Let 𝐴 and 𝐵 be two nodes such that Succ(𝐴) = {𝐵} and
Pred(𝐵) = {𝐴}. The 𝐴 → 𝐵 dependency implies that any
sequential schedule of the graph is of the form . . . ;𝐴; 𝑆 ;𝐵; . . .
with 𝑆 a schedule made of nodes that do not depend on 𝐴

nor 𝐵. Therefore, 𝑆 could also be executed before𝐴 or after 𝐵.

If we can prove that, for any 𝑆 , the peak of 𝐴; 𝑆 ;𝐵 is greater
or equal than the peak of 𝑆 ;𝐴;𝐵 or 𝐴;𝐵; 𝑆 , then there is no
gain in interleaving 𝑆 between𝐴 and 𝐵. In that case,𝐴 and 𝐵
can be clustered in a single node (𝐴;𝐵). The resulting graph
has much less schedules since we got rid of schedules that
could not lead to a strictly better peak.

This simple case is generalized by the two transformations
Rules (C1) and (C2) of Fig. 3 that are proved correct by the
two following properties.

• Succ(𝐴) = {𝐵}. Here, 𝐵 is the unique successor of 𝐴, but
𝐵 may have several predecessors. Here, all nodes that can
be executed between 𝐴 and 𝐵 can also be executed before 𝐴.
In general, they cannot all be executed after 𝐵 since 𝐵 has
predecessors that must be executed before. The following
property states the precise arithmetic conditions to allow
clustering 𝐴 and 𝐵 when Succ(𝐴) = {𝐵}.

Property 1. Let 𝐴 and 𝐵 be two nodes of a schedule graph.

∀𝑆, 𝑖𝑎 ≥ 0 ∧ 𝑝𝑏 + 𝑖𝑎 ≥ 𝑝𝑎 ⇔ (𝐴; 𝑆 ;𝐵) ⪰𝑝 (𝑆 ;𝐴;𝐵)
Proof.
(⇒) 𝑖𝑎 ≥ 0 ∧ 𝑝𝑏 + 𝑖𝑎 ≥ 𝑝𝑎 is a sufficient condition. Indeed,{

𝑖𝑎 ≥ 0 ⇒ 𝑝𝑠 + 𝑖𝑎 ≥ 𝑝𝑠
𝑝𝑏 + 𝑖𝑎 ≥ 𝑝𝑎 ⇒ 𝑝𝑏 + 𝑖𝑎 + 𝑖𝑠 ≥ 𝑝𝑎 + 𝑖𝑠

therefore

max{𝑝𝑎, 𝑝𝑠 + 𝑖𝑎, 𝑝𝑏 + 𝑖𝑎 + 𝑖𝑠 } ≥ max{𝑝𝑠 , 𝑝𝑎 + 𝑖𝑠 , 𝑝𝑏 + 𝑖𝑠 + 𝑖𝑎}
which is the expanded form of (𝐴; 𝑆 ;𝐵) ⪰𝑝 (𝑆 ;𝐴;𝐵) accord-
ing to Eqs. (2) and (3).

(⇐) We show that if the condition does not hold, i.e.,

(𝑖𝑎 < 0) ∨ (𝑝𝑎 > 𝑝𝑏 + 𝑖𝑎)
then there exists a schedule 𝑆 which must be executed be-
tween 𝐴 and 𝐵 to minimize the peak, i.e.,

(𝑆 ;𝐴;𝐵) ≻𝑝 (𝐴; 𝑆 ;𝐵)
◦ Case 𝑖𝑎 < 0. Let 𝑆 be a node of the schedule graph s.t.

(𝑖𝑠 = 0) ∧ (𝑝𝑠 > 𝑝𝑎) ∧ (𝑝𝑠 > 𝑝𝑏 + 𝑖𝑎)
It follows that 𝑝𝑠 = max{𝑝𝑠 , 𝑝𝑎 + 𝑖𝑠 , 𝑝𝑏 + 𝑖𝑠 + 𝑖𝑎} and 𝑝𝑠 >

max{𝑝𝑎, 𝑝𝑠 + 𝑖𝑎, 𝑝𝑏 + 𝑖𝑎 + 𝑖𝑠 }, hence (𝑆 ;𝐴;𝐵) ≻𝑝 (𝐴; 𝑆 ;𝐵).
◦ Case 𝑖𝑎 ≥ 0 and 𝑝𝑎 > 𝑝𝑏 + 𝑖𝑎 . Let 𝑆 be a node of the
schedule graph s.t.

(𝑝𝑠 = 𝑖𝑠 ) ∧ (𝑖𝑠 > 0)
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1

𝐴

𝐵

2

3
+ ⇛

𝐴

1

𝐵

2

3+

Pred(𝐴) ⊆ Pred+(𝐵) ∧ (𝑖𝐴 ≤ 0) ∧ (𝑝𝐵 ≥ 𝑝𝐴) (S1)

1

2

𝐴

𝐵

3

+ ⇛
1 𝐴

2

𝐵

3

+

Succ(𝐵) ⊆ Succ+(𝐴) ∧ (𝑖𝐵 ≥ 0) ∧ (𝑝𝐴 + 𝑖𝐵 ≥ 𝑝𝐵 + 𝑖𝐴) (S2)

Figure 4. Sequentialization rules for same predecessors (left) and same successors (right). The red arrow from 𝐴 to 𝐵 is added
by the transformation. Striked through arrows represent 0 or more incoming/outgoing edges.

Since peaks are positive, 𝑝𝑎 > 𝑝𝑏 + 𝑖𝑎 ⇒ 𝑝𝑎 > 𝑖𝑎 . It is easy to
check that 𝑝𝑎 + 𝑖𝑠 = max{𝑝𝑠 , 𝑝𝑎 + 𝑖𝑠 , 𝑝𝑏 + 𝑖𝑠 + 𝑖𝑎} and 𝑝𝑎 + 𝑖𝑠 >
max{𝑝𝑎, 𝑝𝑠 + 𝑖𝑎, 𝑝𝑏 + 𝑖𝑎 + 𝑖𝑠 } so (𝑆 ;𝐴;𝐵) ≻𝑝 (𝐴; 𝑆 ;𝐵). □

• Pred(𝐵) = {𝐴}. 𝐴 is the unique predecessor of 𝐵, but 𝐴
may have several successors. This case is the dual of the
previous one: all nodes that can be executed between 𝐴

and 𝐵 can also be executed after 𝐵. In general they cannot
all be executed before 𝐴 since 𝐴 has other successors that
must be executed after. The following property provides
the condition to ensure that 𝐴 and 𝐵 can be clustered when
Pred(𝐵) = {𝐴}.

Property 2. Let 𝐴 and 𝐵 be two nodes of a schedule graph.

∀𝑆, 𝑖𝑏 ≤ 0 ∧ 𝑝𝑎 ≥ 𝑝𝑏 + 𝑖𝑎 ⇔ (𝐴; 𝑆 ;𝐵) ⪰𝑝 (𝐴;𝐵; 𝑆)

The proof is similar to the proof of Prop. 1.
It can also be shown that clustering is an associative op-

eration. If 𝐴 and 𝐵 can be clustered as well as 𝐵 and 𝐶 , then
starting by clustering 𝐴;𝐵 or 𝐵;𝐶 does not matter; we end
up with (𝐴;𝐵;𝐶) in both cases.

4.3 Node Sequentialization
Another useful transformation is the sequentialization of
nodes that could be executed in any order in the original
graph. The interest of sequentialization is twofold: it sup-
presses useless schedules and creates new clustering oppor-
tunities. Of course, this comes with conditions to ensure that
sequentializing their execution cannot suppress a schedule
that minimizes the memory peak.

The sequentialization of two nodes 𝐴 and 𝐵 is performed
by the two Rules (S1) and (S2) of Fig. 4 which are proved
correct by the two following properties.

• Pred(𝐴) ⊆ Pred+(𝐵). This topological condition ensures
that every schedule that can be executed after 𝐵 and before
𝐴 can also be executed after 𝐴 and 𝐵. The following property
gives the exact arithmetic conditions for the sequentializa-
tion of 𝐴 and 𝐵.

Property 3. Let 𝐴 and 𝐵 be two nodes of a schedule graph.

∀𝑆, 𝑖𝐴 ≤ 0 ∧ 𝑝𝐵 ≥ 𝑝𝐴 ⇔ (𝐵; 𝑆 ;𝐴) ⪰𝑝 (𝐴;𝐵; 𝑆)

This entails that all schedules of the form . . . ;𝐵; 𝑆 ;𝐴; . . .
cannot lead to a strictly smaller peak than schedules of the

form . . . ;𝐴;𝐵; 𝑆 ; . . ., and therefore we can execute𝐴 before 𝐵.
This is not a sufficient condition to cluster 𝐴 and 𝐵 because
interleaving some schedule between them might be benefi-
cial w.r.t. the memory peak.

• Succ(𝐵) ⊆ Succ+(𝐴). This topological condition ensures
that every schedule that can be executed after 𝐵 and before𝐴
can also be executed before 𝐴 and 𝐵. The following property
gives the exact arithmetic conditions for the sequentializa-
tion of 𝐴 and 𝐵.

Property 4. Let 𝐴 and 𝐵 be two nodes of a schedule graph.

∀𝑆, 𝑖𝐵 ≥ 0 ∧ 𝑝𝐴 + 𝑖𝐵 ≥ 𝑝𝐵 + 𝑖𝐴 ⇔ (𝐵; 𝑆 ;𝐴) ⪰𝑝 (𝑆 ;𝐴;𝐵)

This entails that all schedules of the form . . . ;𝐵; 𝑆 ;𝐴; . . .
cannot lead to a strictly smaller peak than schedules of the
form . . . ; 𝑆 ;𝐴;𝐵; . . ., and therefore we can execute𝐴 before 𝐵.
The proofs of Props. 3 and 4 are similar to the proof of

Prop. 1.

4.4 The Compression Algorithm
The three above transformations are combined according to
their complexity into the compression algorithm sketched
in Alg. 1.

Algorithm 1: Global compression algorithm (sketch)
/* Takes a schedule graph 𝐺 and compresses it until

none of the transformations apply */

1 changed := false;
2 repeat
3 repeat
4 repeat
5 clustering(𝐺); ⊲ O(𝑛)
6 until ¬ changed;
7 basic_sequentialization(𝐺); ⊲ O(𝑛2 )
8 until ¬ changed;
9 complete_sequentialization(𝐺); ⊲ O(𝑛3 )

10 transitive_reduction(𝐺); ⊲ O(𝑛3 )
11 until ¬ changed;

The main procedure, which updates the graph 𝐺 and sets
the changed boolean to true, involves three nested loops.
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1. clustering. It traverses the whole graph and tries to
apply the two clustering Rules (C1) and (C2) (linear-time
complexity). When a clustering creates a transitive edge, a
local reduction is applied. It also computes the set of neigh-
bours of the clustered nodes. Indeed, only those nodes may
be candidates to further clustering. The subsequent steps of
clustering are done on this set (which may evolve) until no
further clustering can be done.

2. basic_sequentialization. This procedure is a simpli-
fied version of sequentialization where the topological con-
ditions for the two rules respectively become Pred(𝐴) =

Pred(𝐵) and Succ(𝐵) = Succ(𝐴). These are the most com-
mon cases and they are less costly to detect (quadratic-time)
than the complete ones. If this step changes the graph, a new
round of clustering is performed.

3. complete_sequentialization. This procedure detects
the most general conditions of sequentialization (S1 and S2)
and applies the corresponding transformation rules. It is
followed by a step of transitive reduction, provided by a stan-
dard library. These two procedures have a worst case cubic-
time complexity which may be problematic for large graphs.
If these two steps have changed the graph a new round of
clustering plus basic_sequentialization is performed.

The algorithm stops when no clustering, sequentialization,
or reduction are possible. Its global worst case complexity is
quartic-time.

4.5 The Case of Series-Parallel Graphs
The compression algorithm applies to any DAG and usually
reduces significantly its size. SP-DAGs (see Fig. 5 for a simple
example) are a well-know and important class of DAG for
which the compression algorithm is particularly effective.
For this class, it can be shown that the four Rules (C1), (C2),
(S1), and (S2) can compress any SP-DAG to a single node.
This single node is the clustering of (one of) its optimal
schedule.

Figure 5. An example of an SP-DAG.

Definition 5. SP-DAGs are graphs with a single source and
sink nodes which can be build fusing the following rules [18].
Let 𝐴 and 𝐵 be two nodes and𝐺1 and𝐺2 be two SP-DAGs then

• (base case) the two nodes connected 𝐴 → 𝐵 is an SP-
DAG;

• (sequential composition) identifying the sink of𝐺1 with
the source of 𝐺2 makes a new SP-DAG;

• (parallel composition) identifying the source of𝐺1 with
the source of 𝐺2 and the sink of 𝐺1 with the sink of 𝐺2
makes a new SP-DAG.

We first prove a property on linear chains, a sub-class
of SP-DAG, where each node has a single predecessor and
successor except the first and last nodes which have a single
successor and predecessor respectively.

Property 6. Any linear chain can be compressed by using
Rules (C1) and (C2) into a chain of the form:

𝑁1 → . . . → 𝑁𝑛 → 𝑃1 → . . . → 𝑃𝑚 with 𝑛,𝑚 ≥ 0
where the 𝑁𝑖 are nodes with a negative impact and the 𝑃𝑖 nodes
with a positive impact. They are referred to as sorted chains.

Proof. In the following we refer to nodes with a negative and
positive impact as negative and positive nodes. Any depen-
dency 𝑃 → 𝑁 with 𝑃 a positive node and 𝑁 a negative one,
will be clustered into the single schedule (𝑃 ;𝑁 ). Indeed, ei-
ther one of the Rule (C1) or (C2) conditions is satisfied in this
case. Therefore, by applying repetitively the clustering rules,
no positive node can be followed by a negative node. □

This property directly implies that task graph applications
represented by a linear chain can be clustered into a sin-
gle node. Indeed, in a dataflow application, a task can only
consume tokens what has been produced before: the size
of memory occupied during execution cannot be negative.
Therefore, the impact of any prefix of a linear chain repre-
senting a complete dataflow application is positive. Such a
chain always starts with a positive node (a producer) and
if it is followed by a negative one, their combined impact
remains positive.

Corollary 7. Any linear chain whose prefixes have all a posi-
tive impact can be compressed using Rules (C1) and (C2) into
a single node.

The property on SP-DAG is expressed as follows.

Property 8. Any SP-DAG can be compressed using Rules (C1),
(C2), (S1), and (S2) into a sorted chain.

Proof. By induction based on the Def. 5 of SP-DAGs .
◦ Base case. The basic dag 𝐴 → 𝐵 is sorted (possibly into a
single node) using Rules (C1) and (C2) (Prop. 6).
◦ Sequential case. The sequential composition of two SP-
DAGs 𝐺1 and 𝐺2 supposes that the sink of 𝐺1, say 𝐴, is also
the source of 𝐺2. By induction hypothesis, 𝐺1 and 𝐺2 can be
compressed into two sorted chains. If 𝐴 has been clustered
into𝐺1 or𝐺2 we extract it: a clustered node (𝑋 ;𝐴) or (𝐴;𝑋 )
can be unclustered into the chains 𝑋 → 𝐴 and 𝐴 → 𝑋 . The
chains are joined in 𝐴 in a single chain which can be sorted.
◦ Parallel case. The parallel composition of two SP-DAGs
𝐺1 and𝐺2 supposes that the source and sink of𝐺1, say𝐴 and
𝐵, are also the source and sink of𝐺2. By induction hypothesis,
𝐺1 and 𝐺2 can be compressed into two sorted chains. If 𝐴
or 𝐵 have been clustered into 𝐺1 or 𝐺2 we can extract them
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Figure 6. Parallel composition of two sorted chains.

as before. The two chains are joined in 𝐴 and 𝐵 to get a
graph of the form depicted in Fig. 6. If 𝐴 is connected to
two negative nodes 𝑁1 and 𝑁 ′

1 then Rule (S1) always applies.
We can sequentialize 𝑁1 or 𝑁 ′

1 depending on which has the
greater peak and suppress the edge of𝐴 → 𝑁 ′

1 or𝐴 → 𝑁1 by
(local) transitive reduction. Similarly, if the two predecessors
of 𝐵 are positive nodes then Rule (S2) always applies. In
both cases, one of the parallel branches get shorter: new
nodes are serialized before 𝐴 and after 𝐵 to form eventually
a linear chain. The problematic case is when𝐴 has a positive
successor and a negative one and 𝐵 has a positive predecessor
and a negative one. In this case, the conditions to apply
Rules (S1) and (S2) may not be satisfied. However, since the
two chains are sorted, this case can occur only when one
chain is made of only positive nodes 𝑃1 . . . 𝑃𝑛 while the other
is composed of only negative ones 𝑁1 . . . 𝑁𝑚 . The two chains
being maximally clustered, we know that:

• the peak condition of Rule (C1) is false on all the 𝑃𝑖 ,
which entails that 𝑝𝑝2 + 𝑖𝑝1 < 𝑝𝑝1 , 𝑝𝑝3 + 𝑖𝑝2 < 𝑝𝑝2 , . . .

and since all impacts are positive: 𝑝𝑝𝑚 < 𝑝𝑝1 ;
• the peak condition of Rule (C2) is false on all the 𝑁𝑖 ,
which entails that 𝑝𝑛1 < 𝑝𝑛2 + 𝑖𝑛1 , 𝑝𝑛2 < 𝑝𝑛3 + 𝑖𝑛2 , . . .

and since all impacts are negative: 𝑝𝑛1 < 𝑝𝑛𝑚 .
Now, assume that 𝑁1 and 𝑃1 cannot be sequentialized be-
cause the condition of Rule (S1) is not satisfied i.e., because
𝑝𝑝1 < 𝑝𝑛1 . Then, we just pointed out that 𝑝𝑝𝑚 < 𝑝𝑝1 < 𝑝𝑛1 <

𝑝𝑛𝑚 and since 𝑖𝑝𝑚 is positive and 𝑖𝑁𝑚
is negative we have

𝑝𝑛𝑚 + 𝑖𝑝𝑚 > 𝑝𝑝𝑚 + 𝑖𝑛𝑚 which is the condition of Rule (S2) to
sequentialize 𝑃𝑚 . Therefore, in any case, there always exists
node that can be sequentialized. The parallel composition
is eventually transformed into a linear chain which can be
sorted by Rules (C1) and (C2) if needed. □

According to Prop. 8 any SP-DAG representing a dataflow
application can be compressed into a linear chain represent-
ing a schedule. Being a dataflow application, all prefixes of
this chain have a positive impact and Corollary 7 applies.

Theorem 9. Any SP-DAG representing a dataflow application
can be compressed using Rules (C1), (C2), (S1), and (S2) into a
single node.

Even if Alg. 1 works well enough on SP-DAGs, those could
be compressed by a simpler recursive algorithm expressed
along Def. 5 decomposition. Global nested iterations and
transitive reduction become useless and sequentialization
can be specialized to deal only with the case of Fig. 6.

5 Branch and Bound Algorithm
On some DAGs, the previous compression techniques do not
manage to compress the graph into a single node containing
the optimal schedule achieving the minimal memory peak.
Instead, they produce a (smaller) DAG whose optimal mem-
ory peak has yet to be found. As already mentioned, this can
be done by computing all the linear extensions of the DAG
and their memory peak. This naive approach is costly and,
in our experience, can deal only with small graphs (≤ 15
tasks/nodes).

We propose instead to use a B&B algorithm that explores
the tree of all schedules in a depth-first manner. The depth
of this tree is equal to the number of tasks and each branch
corresponds to a decision to schedule one node of the DAG,
chosen in the so-called ready list that contains all the nodes
having all their predecessors already scheduled. Initially, the
ready list contains the source nodes of the DAG.
Even though the theoretical time complexity of B&B re-

mains exponential in the size of the DAG, since we compute
the minimum memory peak, we expect that branches that
will be cut in the tree will be closer to the root, resulting in a
better practical time complexity. Our algorithm is therefore
a classical B&B algorithm tuned with several optimizations.
A simple one is to start the algorithm with an initial upper
bound provided by the user or by a heuristic. We present
two other optimizations in the following sections.

5.1 Fast Backtracking
Our first optimization takes advantage of the minimization
nature of our problem. When building the sequential sched-
ule, we retain the node 𝑋 that caused the last memory peak
value. When we reach the end of the scheduling tree with
a full schedule, we backtrack directly to the immediate pre-
decessor of 𝑋 in the tree. Indeed, since the memory peak
of this schedule was already reached when scheduling 𝑋 ,
the entire sub-tree starting at 𝑋 cannot result in a smaller
memory peak.
This direct and long backtracking significantly reduces

the computation time by pruning the tree of schedules. If
we assume a constant branching factor 𝑏 and a number of
𝑘 remaining nodes to be scheduled from the backtracking
point, then the number of pruned schedules is 𝑏𝑘 .

5.2 Optimization for Negative Nodes
Our second optimization takes advantage of the peak/impact
information to prune the ready list present at each node.
Assuming we are at step 𝑛 with the ready list 𝑅𝑑𝑦𝑛 , the
current memory used𝑀𝑒𝑚𝐶𝑢𝑟𝑟𝑛 , and the current memory
peak 𝑀𝑒𝑚𝑃𝑒𝑎𝑘𝑛 , pruning can occur when 𝑅𝑑𝑦𝑛 contains
at least one negative node. We select the negative node 𝐴
(𝑖𝑎 ≤ 0) with the smallest peak 𝑝𝑎 . Two cases are possible:

• If 𝐴 does not increase the memory peak (𝑀𝑒𝑚𝐶𝑢𝑟𝑟𝑛 +
𝑝𝑎 ≤ 𝑀𝑒𝑚𝑃𝑒𝑎𝑘𝑛), then we only keep 𝐴 in the ready
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Figure 7. SDF example: the simple graph G.

list. The reason is that scheduling at this step any other
node can only result in a higher memory peak.

• If the above condition is not met, then we remove
from the ready list all nodes 𝐵 such that 𝑝𝑏 ≥ 𝑝𝑎 .
Indeed, since 𝐴 does not increase the current memory,
no gain can be expected by scheduling at this step
a node having a larger peak. However, nodes with a
positive impact and a smaller peak can eventually lead
to a better peak and are kept in 𝑅𝑑𝑦𝑛 .

In both cases, the nodes removed for the ready list at
this step remain to be scheduled and will be in the ready
lists of subsequent steps. Pruning nodes from 𝑅𝑑𝑦𝑛 yields a
computational benefit when backtracking to this step 𝑛. If
we assume a constant branching factor 𝑏 and a number of 𝑘
remaining tasks to be scheduled after step 𝑛, then removing
a single node from 𝑅𝑑𝑦𝑛 prunes 𝑏𝑘−1 schedules.
Our B&B algorithm finds the optimal memory peak of

applications up to 50 nodes/tasks. Combined with the com-
pression algorithm, many task graph applications can be
analyzed optimally. Furthermore, a timeout always permits
to retrieve at least an over-estimation of the peak.

6 Extension to SDF Graphs
As described in Sec. 2, SDF graphs are a strict extension of
tasks graphs. Our technique can be applied by first convert-
ing an SDF graph into an SRSDF graph [4], which is precisely
a task graph. This standard transformation can be applied
to any (even cyclic) consistent and live SDF graph and pro-
duces a task graph encoding a minimal iteration of the initial
SDF graph. Despite the potential exponential blow up of this
conversion, this approach remains effective to analyze the
memory peak of many SDF graphs. There are nonetheless
some SDF applications for which it produces too large task
graphs or schedules.

We present a technique to reduce the number of firings of
each SDF actor so that the task graph obtained after conver-
sion is analyzable optimally and/or the schedule is compact
enough. Fig. 8 summarizes the different transformation steps
from the input SDF graph G to a reduced SDF graph GR that
is converted to an SRSDF graph 𝐺 , compressed into 𝐺𝐶 and
analyzed by the B&B algorithm. The graphs G and GR have
the same number of actors, but the total number of firings
expressed in GR is lower than in G.

We first present a coarse but well-known conversion that
produces 𝐺 with the same number of nodes as actors in G,
i.e., |G| = |𝐺 |. Such coarse conversion allows the analysis of

G G𝑅 𝐺 𝐺𝐶
subopt.
To PEG
Sec. 6.2

opt.
To SRSDF
(task graph)

opt.
Compress.
Alg. 1

Figure 8. Graph transformation chain for an SDF graph G.

any SDF graph but the schedules have a much larger memory
peak than the optimal. We then present a more refined tech-
nique inspired from the work on Partial Expansion Graphs
(PEGs) [19] which can incrementally reach an objective ex-
pressed in terms of a maximum number of firings.

6.1 Flat Single Appearance Schedules
To reduce the number of nodes in the expanded graph, a
drastic approach is to ensure that each actor 𝑋 executes its
#𝑋 firings in a row. To enforce this policy, each edge rate is
set to the total production or consumption of an iteration as
in Eq. (1). Each node executes once and the graphs G and
𝐺 have the same number of nodes. The schedules of such a
graph correspond to what is called flat Single Appearance
Schedules (SASs) in [4].
For instance, solving the balance equations of the SDF

graph G in Fig. 7 yields the set of firings {#𝑈=2, #𝑇=2, #𝑆=6,
#𝑉=2, #𝑊 =1} for the minimal iteration. Regrouping all the
firings of each actor is enforced by changing the production
and consumption rates of all edges to 6. Denoting 𝑋𝑘 the ac-
tor that executes𝑋 𝑘 times in a row, all actors in the resulting
graph G𝑅 are of the form 𝑋 #𝑋 . For Fig. 7, the corresponding
schedule of G𝑅 is𝑈 2;𝑇 2; 𝑆6;𝑉 2;𝑊 , which is a flat SAS of G.
A flat SAS schedule usually has a much higher memory

peak than the optimal one obtained for the SRSDF expansion
of the same SDF graph. The flat SAS schedule prevents from
interleaving different node firings, in particular firings of
negative nodes between firings of positive nodes. For exam-
ple, the previous flat SAS schedule gives a peak of 18 tokens,
against only 12 tokens for the optimal.

6.2 Partial Expansion Graphs
Instead of grouping all the firings of an actor, a more refined
technique is to consider any possible grouping of its firings
according to its integer divisors. For example, the actor 𝑆 in
Fig. 7 could be transformed either into the actor 𝑆2, 𝑆3, or 𝑆6,
respectively appearing thrice, twice, or once in the schedule.

𝐴

#𝐴

...
...

𝑟𝑠

⇛ 𝐴𝑑

#𝐴
𝑑

...
...

𝑑 ·𝑟𝑑 ·𝑠

Figure 9. Firing reduction of actor 𝐴 by divisor 𝑑 .

Our PEG transformation is based on this idea: we modify
the graph progressively by setting a greater firing divisor to
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every actor. Eachmodification leads to a suboptimal schedule,
and iterating this process eventually produces a flat SAS.
When grouping the firings of an actor 𝐴, its input (resp.

output) rates 𝑠 (resp. 𝑟 ) are updated accordingly, as depicted
in Fig. 9. This modification is local to the considered actor
𝐴 and does not modify the balance equations of the graph.
As it may increase the memory peak, we define a score cri-
terion to always modify the actor with the smallest memory
requirement. Let {𝑑1 = 1, . . . , 𝑑𝑧 = #𝐴} be the ordered set
of divisors of #𝐴. Each divisor 𝑑𝑘 yields the corresponding
input (resp. output) rates 𝑠𝑘 = 𝑑𝑘 · 𝑠 (resp. 𝑟𝑘 = 𝑑𝑘 · 𝑟 ). The
score of 𝐴 currently at divisor 𝑘 is defined by Eq. (4).

score(𝐴,𝑘) =
∑︁

𝐴,𝑘
𝑟𝑘 𝑠ℓ−−−→𝑋,ℓ

⌈
𝑠ℓ

𝑟𝑘+1

⌉
𝑟𝑘+1 −

⌈
𝑠ℓ

𝑟𝑘

⌉
𝑟𝑘

+
∑︁

𝑋,ℓ
𝑟ℓ 𝑠𝑘−−−→𝐴,𝑘

⌈
𝑠𝑘+1
𝑟ℓ

⌉
𝑟ℓ −

⌈
𝑠𝑘

𝑟ℓ

⌉
𝑟ℓ

(4)

We take as the memory requirement of actor 𝐴 the sum
of tokens needed to be produced by its predecessors for a
single firing of 𝐴, and of tokens needed to be produced by 𝐴
to enable a single firing of each of its successors. Our criterion
score is defined as the difference between the requirements
before and after the modification using the next divisor 𝑑𝑘+1
of #𝐴; its unit is in tokens.
Consider actor 𝑆 in Fig. 7 and its first divisor 2; in this

case score(𝑆, 1) = 1: indeed,𝑈 must be fired once (as before)
to enable 𝑆2, but 𝑆2 must be fired twice to produce 4 tokens
to enable 𝑉 to fire, whereas 𝑆 needed to produce only 3
tokens to enable 𝑉 . For the second divisor 3, the memory
requirement does not change and score(𝑆, 2) = 0: indeed,
only 3 tokens must be produced by𝐴 and then by𝑉 as before.

Our PEG algorithm takes an objective expressed as a max-
imum of firings. Until the objective is reached, it repeats
the local transformation of Fig. 9 by selecting at each step
the actor 𝐴 and its next divisor 𝑑𝑘+1 that minimizes Eq. (4).
Then, the score needs to be updated only for node 𝐴 and its
immediate neighbors. If the objective in terms of number of
firings is equal or less than the number of actors, the result
will be the same as in Sec. 6.1.

7 Experiments
We compare the memory peaks obtained with previously
known results. Our experimental setup is a regular laptop (In-
tel® Core™ i5-8265U @1.60GHz processor, 16 GB of RAM),
with Linux Ubuntu 22.04. We use Python 3.10 with the graph
library Networkx 2.8.8. Our implementation is available on-
line1. All the results presented here assume the PBC model.

Concerning task graphs, most existing work focus on tree-
shaped graphs or SP-DAGs but do not provide benchmarks.

1https://gitlab.inria.fr/spades-pub/mastag

For such graphs, we always find the optimal memory peak
very quickly, even for very large ones.

Table 1. Memory peaks for the satellite application.

satellite |𝐺 | [14] [13] [8] [ours] sec.

flat SAS 22 1,920 — 1,680 1,680 0.002
SDF 4,515 — 991 960 960 7.7

Table 1 presents the results for satellite, one of the first SDF
applications used to analyze the memory peak. We handle it
as a task graph with 22 nodes (by analyzing only its flat SAS
schedules), and as an SDF graph that is converted into a task
graph with 4, 515 nodes. Ritz et al. [14] consider only flat
SAS schedules. The problem, which consists of scheduling 22
tasks, was expressed as an Integer Linear Programming (ILP)
problem and took 4 days to provide an over-estimation (in
1995). Murthy et al. [13] consider the SDF application and use
heuristics to producememory efficient schedules whose peak
is evaluated afterwards. The technique presented in [8] finds
optimal memory peaks for SP-DAGs and over-estimated
peaks for general task graphs. Even if the two versions of
satellite (flat SAS and SDF) are not SP-DAGs, [8] finds the
optimal memory peaks for both. Our graph transformations
compress both versions to a single node, giving the optimal
peaks in a short runtime (last two columns in Table 1).

Table 2.Memory peaks for different qmf filterbank bench-
mark applications in [13].

filterbank |𝐺 | [13] [8] [ours] sec.

qmf23_2d 78 22 18 13 0.007
qmf23_3d 324 63 53 31 0.06
qmf23_5d 4,536 492 405 247 6.7

qmf12_2d 40 9 10 7 0.003
qmf12_3d 112 16 20 11 0.009
qmf12_5d 704 58 79 35 0.1

qmf235_2d 190 55 45 22 0.03
qmf235_3d 1,300 240 133 47 0.7
qmf235_5d 50,000 5,690 1,190 272 802.5

Table 2 presents results obtained on Quadrature Mirror
Filterbanks (QMFs), a well-known tree-structured class of
signal processing applications often used in benchmarks for
SDF. Different versions of filterbank exist: the SDF graph
topology remains the same but the number of nodes (nesting
depth) and the rates vary. We evaluate the memory peak on
the nine filterbank versions used in [13], where qmf[ij]_[l]d
(resp. qmf[ijk]_[l]d) refers to a version with rates 𝑖 and 𝑗

(resp. 𝑖 , 𝑗 , and 𝑘) and a depth ℓ . The |𝐺 | column shows the to-
tal number of nodes of the corresponding SRSDF graph. The

https://gitlab.inria.fr/spades-pub/mastag
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next column gives the suboptimal results obtained by [13]
based on the same heuristics as for satellite. The SRSDF ex-
tensions of filterbank are not SP-DAGs and the technique
of [8] only finds over-estimations. The results obtained by
our algorithm Alg. 1 are given in the last two columns of
Table 2 where we indicate the memory peak found and the
total runtime. On all filterbank versions, our graph transfor-
mations always compress the corresponding SRSDF graph
to a single node with optimal memory peak.

Table 3. PEG reduction on filterbank applications in Table 1
with more than 4, 000 tasks.

filterbank PEG (increasing objective from flat SAS)
188 400 800 1,600 3,200

qmf23_5d 729 351 283 267∗ 253†

qmf235_5d 9,375 4,750 3, 625∗ 3, 625∗ 3, 275†

The PEG reduction is useful when graph transformations
cannot be completed in a reasonable time and/or to reduce
the size of schedules. In Table 3, we evaluate the PEG al-
gorithm presented in Sec. 6 to get shorter schedules for
qmf23_5d and qmf235_5d (forwhichwe found optimal sched-
ules but respectively 4, 536 and 50, 000 tasks long).
In Table 3, we present the memory peaks found for dif-

ferent PEGs objectives expressed as number of firings: 188
(which is the flat SAS), 400, 800, 1, 600, and 3, 200. In five
cases (marked by ∗ and †), the corresponding task graph is
not reduced to a single node and the B&B algorithm is ap-
plied. In only two of those cases (marked by †), the resulting
schedule graph is too large (123 and 225 nodes for qmf23_5d
and qmf235_5d respectively) and the B&B, stopped by its
600 sec. timeout, returns an over-estimated result. These
results show the trade-off between the schedules size and
the memory peak. For qmf235_5d, dividing the number of
firings by ∼ 266 (from 50, 000 to 188, which is the flat SAS
size) multiplies the memory peak by ∼ 34 (from 272, the
optimal peak, to 9, 375). Then, subsequent increases of the
number of firings decrease the memory peak.

8 Related Work
Much work aiming at minimizing memory requirements for
SDF graphs assume that buffers are allocated independently
in memory (nonshared model) [4, 7, 16]. The analyses search
for the minimal size of each buffer to ensure live executions.
The more memory efficient shared buffer model assume

that buffers are allocated in the same global shared memory.
The analyses focus on minimizing the gobal memory needed
i.e., the memory peak. The problem of sequential scheduling
of dataflow graphs for memory peak minimization has been
studied on two main aspects: optimal solutions for a subclass
of task graphs and suboptimal solutions for SDF graphs.

Regarding optimal solutions, previous work presented
algorithms to find the optimal schedules in O(𝑛2) for tree-
shaped task graphs [10], and in O(𝑛3) for SP-DAGs [8]. Our
graph transformations presented in Sec. 4 solve optimally
the same classes of graphs with the same time complexity.
Our graph transformations are more general though since
they apply to any task and SDF graph, and along with an
optimized B&B algorithm they find optimal schedules for a
larger class of task graphs.
Regarding over-estimated solutions, previous work fo-

cused on SDF graphs and reduced the problem complexity
by considering only SASs schedules. While [14] considered
only flat SASs, [13] relaxed this restriction to non flat SASs
schedules. In both cases, we outperform their benchmarks,
as seen in Sec. 7. A relaxed class of SASs was also studied
in [17] but we have not been able to compare with their
results because neither their code nor their benchmarks are
available to our knowledge.

9 Conclusion
In this article, we have proposed simple task graph transfor-
mations to reduce the problem size of sequential memory
peak minimization for dataflow graphs. These transforma-
tions are local, they are proved to preserve the minimal
memory peak, and they can be applied on all task graphs.
The transformations alone permit to solve the problem for
a larger class of task graphs than before. This class is not
formally characterized, but we proved that it includes SP-
DAGs. When transformations do not compress a task graph
to a single node, an optimized B&B algorithm explores the
(reduced) task graph to find its optimal memory peak with
the corresponding schedule. Still, the conversion of SDF pro-
duce very large task (SRSDF) graphs. To deal with those,
we designed a dedicated PEG transformation to reduce the
schedule size and so the problem size. Together, the algo-
rithms we have proposed significantly outperform the state
of the art and reveal new optimal and better sub-optimal
bounds on benchmarks.
Within an embedded context, the size of schedules can

be an issue of concern. For example, there is an optimal
schedule of size 5, 346 task firings in our benchmarks. As
future work, we intend to study this problem. Such schedules
comes from a small number of actors whose individual firing
is represented by a task. A first approach is to reuse work on
string compression [6] to get shorter optimal schedules. A
second approximated approachwould be to take into account
trade-offs between shorter schedules and higher memory
peaks as initiated by our PEG transformation.
A natural extension of this work is to consider parallel

executions with shared memory. Note that the optimal mem-
ory peak found by our approach for a sequential execution
already provides a lower bound for all its parallel versions.
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Another, more speculative, avenue for further research is
to investigate the application of our transformation-based
approach to the analysis of other task graph properties.
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