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ABSTRACT
In recent work, we have shown that neuromorphic (event-based)
cameras are highly efficient at detecting quadcopters. This is done
by directly detecting the frequency of the rotating blades. This
signal is highly characteristic of quadcopters, in that very few other
real-world phenomena generate frequencies that are tightly clus-
tered around a single peak. This makes this detection method highly
robust to false positives, and can be generated with very little com-
putational power. However, previous work in this direction has
dealt only with detection of the presence of the drone. Here, we
show that the same basic computations can also be used to localize
the drone within the visual field of the camera. This allows for a
system that not only alerts a user that a quadcopter is present, but
also provides the extra information of where the drone is located.
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1 INTRODUCTION
Given the recent proliferation of small Uncrewed Aerial Systems
(UAS), especially quadcopters, there is a strong desire to be able to
detect them. This detection may be for privacy or security reasons,
and is important for commercial, government, and military users.
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Figure 1: Tracking the physical location of a quadcopter
drone, shown as a blue box. Top: Event camera raw data,
binned over the previous 0.1 seconds. Left: Period similar-
ity image, indicating how close the current estimate of the
period at each pixel is to the target period 𝑝𝑖𝑑𝑒𝑎𝑙 . Left: a his-
togram of period measurements over the entire visual field
for the previous 0.5 seconds.

It is also of pressing importance given that quadcopters are now
being weaponized [4] .

A wide variety of methods exist for detecting quadcopters, in-
cluding radar, audio, radio frequency, visible-light cameras, and
infrared cameras [3]. In our recent work [7][6] we have demon-
strated that event cameras can be used to directly measure the high
frequency of rotating blades (1000 to 6000 rpm for NATO Class 1
drones). By measuring this spectral signature we are detecting a
physical signal that is core to the functionality of quadcopters (ro-
tating blades to generate lift), leading to a robust detection method.
Furthermore, by using event cameras to detect these frequencies,
the computation can be done extremely efficiently, as compared to
similar approaches with high-frame rate standard cameras[2]. In
our demonstrator system, we achieved detection in approximately
5 Watts using a Rasperry Pi 4 and a DVXplorer event camera[6].

In this work, we extend our implementation to also detecting the
physical location of the quadcopter in the visual field. We do this
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by directly applying the existing algorithm used for tracking high-
frequency LEDs[5][1]. Since this is related to the algorithm already
being used for computing the spectral signature of the quadcopter,
this requires minimal additional computational overhead.

2 SPECTRAL SIGNATURE
In [5] and [1], a method was proposed for using an event camera
to track the position of a high-frequency LED. In an event camera,
data is provided as a series of events, where each event is the tuple
< 𝑥,𝑦, 𝑡, 𝑠𝑖𝑔𝑛 >, giving the x-position, the y-position, a timestamp,
and whether that pixel got brighter (ON) or darker (OFF). The core
idea to use this for tracking was to note that the events at any given
pixel can always be thought of as a block of one or more ON events,
followed by one or more OFF events, followed by one or more ON
events, and so on. Thus, to get an estimate of the oscillation period
at any given pixel, we simply need to subtract the timestamp of the
first event in one block of ON events from the timestamp of the first
event in the next block of ON events (and the same can be done
for OFF events). Now, instead of the raw events < 𝑥,𝑦, 𝑡, 𝑠𝑖𝑔𝑛 >, we
have a sequence of what we call measurements < 𝑥,𝑦, 𝑝 >, where
𝑝 is the period measurement (i.e. the difference between the two
timestamps).

In our previous work on drone detection, we used these measure-
ments to build up an overall histogram of such measurements over
the entire visual field. This explicitly ignores the < 𝑥,𝑦 > location of
the measurements, and instead builds an overall spectral signature
of the drone. The bottom-right of Figure 1 shows such a histogram,
generated from the previous 0.5 seconds of measurements. The his-
togram has 256 bins, and each bin is 128 microseconds wide. Any
measurements of periods outside these bins (greater than 32,768
microseconds) are discarded.

In the presence of a quadcopter, this histogram shows a direct
physical signature of a quadcopter due the presence of the rotating
blades. Furthermore, we have found this signature to be very ro-
bust to false positives, and developed a simple (100-neuron) neural
network to detect the presence of a drone given this histogram as
input[6]. An interesting and consistent feature of the histogram
is the subharmonic peaks. In Figure 1 the main peak is visible at
6.14ms, but smaller peaks can be seen at 12.28ms and 18.42ms. This
is due to the event camera missing some ON→ OFF and OFF→
ON transitions, and we have used this consistent signature as part
of our detection algorithms[7][6].

3 TRACKING
In order to create the histograms shown in the previous section,
we collected measurements by taking the difference in time be-
tween two ON (or OFF) events. This generated a period measure-
ment at that pixel. In the original work we based our algorithm
on[5][1], these measurements were not combined into a histogram;
rather, they were used to update an estimated location of a blinking
LED with known frequency. The algorithm is as follows (adapted
from[5]).

First, we initialize our estimated location < 𝑥,𝑦 > to the centre
of our visual field. We do this in pixel coordinates, and for the
DVXplorer this is < 320, 240 >.

Next, every time there is a new measurement of the period (i.e.
every time we add a value into the histogram), we have the pixel
location < 𝑥,𝑦 > and the measured period (𝑝 = 𝑡𝑛𝑜𝑤 − 𝑡𝑝𝑟𝑒𝑣 ). This
allows us to compute two difference measures: the difference in
space (pixels) and the difference in time (period). For the difference
in space, we do the Euclidean distance between the current event
< 𝑥,𝑦 > and our current location estimate < 𝑥,𝑦 >.

𝑑2𝑠 = (𝑥 − 𝑥)2 + (𝑦 − 𝑦)2 (1)
For the difference in time, we start by noting that the period

measured by the event camera exhibits a specific pattern of sub-
harmonics. Three such peaks can be in the histogram in Figure 1.
As we have discussed in previous work [7], if the actual period
is 0.006s, the values measured by our algorithm may be integer
multiples of that period (0.0012s, 0.0018s, etc.), as the event camera
may miss one or more of the ON→ OFF (or OFF→ ON) transitions.
Thus to compare the measured period to a target ideal period 𝑝𝑖𝑑𝑒𝑎𝑙
we can compute the minimum distance for different scaled versions
of the measured period. For the purposes of this paper, we only use
the first term, but future work will explore the efficiency/accuracy
tradeoffs of using more terms, and introducing a scaling factor on
𝑤 based on which sub-harmonic is used. Furthermore, similarly
to [7], this could be further improved by online estimation of the
probability of missing ON→ OFF transitions, based on the relative
heights of the peaks in the histogram.

𝑑𝑝 = min(𝑝 − 𝑝𝑖𝑑𝑒𝑎𝑙 ,
𝑝

2 − 𝑝𝑖𝑑𝑒𝑎𝑙 ,
𝑝

3 − 𝑝𝑖𝑑𝑒𝑎𝑙 , ...) (2)

Given these two difference measures, we apply two Gaussians
to produce a weighting factor𝑤 which indicates how similar the
measurement is to the measurements we would expect. That is, the
tracking algorithm should pay more attention to measurements
that are near where the drone is currently believed to be, and are
of frequencies similar to that expected.

𝑤 = 𝑤𝑚𝑎𝑥𝑒
−𝑑2

𝑑
/𝜎2

𝑑 𝑒
−𝑑2

𝑝/𝜎2
𝑝 (3)

Finally, the tracked position is moved closer to the measurement
position based on this weighting𝑤 .

𝑥 ← 𝑥 +𝑤 (𝑥 − 𝑥)
𝑦 ← 𝑦 +𝑤 (𝑦 − 𝑦) (4)

It should be noted that this algorithm is identical to that pre-
sented in [5], except we multiply the Gaussians in Eq. 3, rather than
adding them. Both approaches should produce similar results, but
we have not yet rigorously analyzed the effect of this difference.

In addition, we note that a similar algorithm can be used to
compute the estimated period 𝑝 .

𝑝 ← 𝑝 +𝑤 (𝑝 − 𝑝) (5)

We initialize 𝑝 using the value of 𝑝𝑖𝑑𝑒𝑎𝑙 . The estimated period
could then be used to examine the variation of rotation rate of the
propellers, although that is not further explored here.

Furthermore, as slight optimizations, we only perform this com-
putation for measurements that produce periods that are within
our histogram (i.e. very long period measurements are ignored).
These measurements will produce small𝑤 values in any case. Also,
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if𝑤 is very small (< 0.00001), we do not perform the target update
(Eq. 4).

The result is a tracking algorithm with four free parameters: 𝜎𝑑
(the width of the Gaussian for space), 𝜎𝑝 (the width of the Gaussian
for the period measurements), 𝑤𝑚𝑎𝑥 (the maximum amount to
update the target position based on a single measurement) and
𝑝𝑖𝑑𝑒𝑎𝑙 (the centre of the Gaussian for the period measurements).
The value for 𝑝𝑖𝑑𝑒𝑎𝑙 can be set based on typical quadcopters, but
to set the other values we collected a data set and optimized for
algorithm performance, as discussed in the next section.

4 GROUND TRUTH
To optimize the parameters of our tracking system, and to evaluate
its overall performance, we need ground-truth data for comparison.
Given the complexities involved in calibrating an separate off-the-
shelf tracking system to the optics of the event camera and its
motion during recording, we chose to manually label the position
data for a set of event recordings. These recordings consisted of
200 seconds of footage of quadcopters, including entering/exiting
the camera field of view, moving away from the camera until they
are not observable, hovering against a forest background while
the camera pans, flying over a camera pointed upwards, and be-
ing recorded from an event camera mounted on another moving
quadcopter.

To hand-label this data set, we developed a software tool that
presents two views of the event data. First, we have a relatively
standard depiction of the event-camera data: a grayscale image
where each pixel has its value increased when an ON event oc-
curs, and decreased when an OFF event occurs. We also apply an
exponential decay with a time constant of 0.01 seconds. This is a
low-pass-filtered version of the raw event data itself. This approach
produces images that are similar to that seen for a more traditional
binning approach (i.e. generating an image based on all the events
occurring within a particular time window) but is more continuous
in time.

To accompany this image, we also produced an image showing
how drone-like each pixel in the image is. We compute this by
keeping track of the most recent 𝑝 value (the period measurement)
for each pixel. In addition, we track when in time that period mea-
surement occurred (𝑡𝑝 ). The current best estimate of the period of
a particular pixel is then computed as 𝑝𝑒 = max(𝑝, 𝑡 − 𝑡𝑝 ) where 𝑡
is the current time. That is, if a period of 0.1s was measured 0.05
seconds ago, then 0.1 is still the best estimate for the current period.
But, if a period of 0.1s was measured 0.2 seconds ago, then we know
the current period is at least 0.2 seconds, since there hasn’t been a
full ON-OFF-ON cycle in the last 0.2 seconds.

Given these period estimates 𝑝𝑒 at each pixel, we then produce a
grayscale image where the value is based on the similarity between
the period estimate 𝑝𝑒 and the target period 𝑝𝑖𝑑𝑒𝑎𝑙 . As with the
tracking algorithm (Eq. 3), we use a Gaussian 𝑒−(𝑝𝑒−𝑝𝑖𝑑𝑒𝑎𝑙 )

2/𝜎2 for
this. The result is an image that is mostly blank, except for pixels
that have periods similar to that of a drone. With the combination
of these two images, we found that the position of the drone was
relatively unambiguous to the human eye.

Our software interface shows both images, as well as an initial
tracking guess from our tracking algorithm. This can be seen in
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Figure 2: Accuracy of tracking for different size thresholds as
𝜎𝑝 is adjusted. Size is the minimum of the width and height
of the labelled bounding box. Tracking is accurate if the
Euclidian distance between the tracking algorithm and the
true position is less than half the size. Thus, any accurate
tracking result is inside the labelled bounding box. Vertical
dotted line indicates chosen best parameter setting.

Figure 1. The user then adjusts this guess by moving a bounding
box, including both position and size. We label the data at 0.1 second
intervals.

It should be noted that, for the current system, we are not using
the fact that we are labelling the size of the drone (width and height)
as well as its position. We are recording this data partly for statistics
(determining the accuracy of the tracking algorithm at different
drone sizes) and for future development.

5 RESULTS
We use two metrics for evaluating our tracking system. First, we
measure accuracy, defined as whether or not the tracked point
< 𝑥,𝑦 > is inside the hand-labelled bounding box for the quad-
copter. Second, we measure the relative error, which is the Euclidean
distance between the tracked point and the centre of the bounding
box, divided by the size of the bounding box, which we define to
be the minimum of the width and the height. With this definition,
note that any relative error less than 0.5 is guaranteed to be inside
the bounding box (i.e. accurate).

We used grid search to find parameter settings for 𝜎𝑑 , 𝜎𝑝 , and
𝑤𝑚𝑎𝑥 . Figure 2 provides a sensitivity analysis of 𝜎𝑝 . We measure
accuracy at different thresholds of size, as we find accuracy is
reduced when drones take up fewer pixels on the camera. For our
final parameter settings, the drones larger than 15 pixels (width or
height) are tracked to within their bounding box 95.2% of the time,
and 99.2% for drones larger than 18 pixels.

A depiction of the performance of the of the tracking is given in
Figure 3. Here we see a tight fit between the tracking (solid line)
and the ground truth (dashed line) for both 𝑥 and 𝑦 values, except
when the drone is smaller than 15 pixels (horizontal line at the top
of the graph).

Finally, Figure 4 provides a scatterplot of drone size plotted
against the relative error. Relative error values below the horizontal
line at 0.5 guarantee that the tracked point is inside the drone’s
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Figure 3: Tracking data for one test sequence, showing only
time points when a drone is present. Size of the drone (the
smaller of width or height) is shown at the top. Note that
tracking is accurate as long as the drone is larger than 15
pixels (horizontal line).
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Figure 4: Tracking accuracy at different pixel sizes. Size is
the minimum of the width and height of the hand-labelled
bounding box. Relative error below 0.5 (horizontal line) indi-
cates the prediction is inside the bounding box. The scatter-
plot shows individual measurements and the dotted line is
the geometric mean for each size.

bounding box. Again, for drones larger than 15 pixels we have
consistent high accuracy, but error increases significantly below
this point.

In Figure 5, we show two more examples of drone tracking, in
addition to the one given in Figure 1. In each case, note that the
period similarity plot (bottom left), where darker shading indicates
a larger value of 𝑒−(𝑝𝑒−𝑝𝑖𝑑𝑒𝑎𝑙 )2/𝜎2 , provides a clear and consistent
marker for the presence of a quadcopter across conditions, including
being almost directly in front of the sun (last example in Figure 5).

6 CONCLUSIONS AND FUTURE WORK
Weapplied the computationally efficient tracking algorithm from [5]
to the problem of tracking quadcopters using an event camera. On
our dataset we were able to track a quadcopter to within its bound-
ing box 95.2% of the time if it was larger than 15 pixels (in width
or height), and 99.2% of the time if it was larger than 18 pixels.
This forms a useful supplement to our current detection system[6]
without incurring significant computational overhead.
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Figure 5: Two examples of drone tracking, shown as a blue
box centred at < 𝑥,𝑦 >. For each example, we show the binned
event data (top), the similarity of the most recent period
estimate 𝑝𝑒 at each pixel with the ideal drone period 𝑝𝑖𝑑𝑒𝑎𝑙
(left), and the histogram of period measurements over the
entire visual field for the previous 0.5 seconds (right).

Our current efforts are to further develop this approach. One
primary goal improvement needed is to support multiple quad-
copters present in the visual scene. Furthermore, we note that the
tracking algorithm itself does have implicit information about the
possible presence of the drone, so the state of the tracking algo-
rithm (in particular, the 𝑤 value) could also be used as input to
the drone detection system[6]. Other improvements include using
non-Gaussian distributions for the different in period measurement
in Eq. 3, as well as exploring different ways of combining the two
weighting factors (addition vs multiplication).

Finally, while the emphasis of our approach is to provide highly
energy-efficient drone detection and tracking solutions, we are also
looking into other approaches for comparison. In particular, we be-
lieve that the drone similarity image that we developed for labelling
our data could also be used as the input to a YOLO-style object iden-
tification and localization system. This method for pre-processing
the data may improve performance of such a network over and
above the standard image approach. With modern neuromorphic
computing hardware it may be possible to build an energy-efficient
version of such a network, if it proves to be more accurate than the
algorithm we have presented here.
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