
Memristive Reservoirs Learn to Learn
Ruomin Zhu

School of Physics,
The University of Sydney
Sydney, NSW, Australia

rzhu0837@uni.sydney.edu.au

Jason K. Eshraghian
Department of Electrical and

Computer Engineering,
University of California, Santa Cruz

Santa Cruz, CA, USA
jeshragh@ucsc.edu

Zdenka Kuncic
School of Physics and
Sydney Nano Institute,

The University of Sydney
Sydney, NSW, Australia

zdenka.kuncic@sydney.edu.au

ABSTRACT
Memristive reservoirs draw inspiration from a novel class of neu-
romorphic hardware known as nanowire networks. These systems
display emergent brain-like dynamics, with optimal performance
demonstrated at dynamical phase transitions. In these networks,
a limited number of electrodes are available to modulate system
dynamics, in contrast to the global controllability offered by neuro-
morphic hardware through random access memories. We demon-
strate that the learn-to-learn framework can effectively address this
challenge in the context of optimization. Using the framework, we
successfully identify the optimal hyperparameters for the reservoir.
This finding aligns with previous research, which suggests that the
optimal performance of a memristive reservoir occurs at the ‘edge
of formation’ of a conductive pathway. Furthermore, our results
show that these systems can mimic membrane potential behavior
observed in spiking neurons, and may serve as an interface between
spike-based and continuous processes.

CCS CONCEPTS
• Computing methodologies → Supervised learning by re-
gression; Multi-task learning; • Theory of computation →
Optimization with randomized search heuristics.
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1 INTRODUCTION
Nanowire networks are a novel class of neuromorphic devices that
demonstrate potential for brain-inspired computing and informa-
tion processing [5, 15, 21–25, 30, 35, 36, 40–42]. By embedding mem-
ristive switching dynamics into naturally-arising neuromorphic
connectivity structures [26, 29], these networks display emergent
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brain-like dynamics [6], including dynamical phase transitions and
avalanche criticality [8, 15].

The synaptic sites of nanowire networks are not directly accessi-
ble, in contrast to random access memories (RAM) [4, 9, 17], where
eachmemory cell is addressable and programmable. The lack of con-
trollability is compensated for by the dynamic nature of nanowire
networks, which is a key feature that enables them to adapt to
evolving input signals. Nevertheless, it is worth investigating how
these neuromorphic systems can be optimized for information pro-
cessing tasks. For example, previous studies have shown that in a
physical reservoir computing framework, nanowire networks can
achieve superior learning performance when operating near a dy-
namical phase transition [15, 40]. Rather than manually exploring
the optimal region of operation, an alternative and more effective
way to optimize the parameters that can be physically adjusted
(namely, inputs and outputs) is the learn-to-learn (L2L) framework,
commonly known as meta-learning.

The L2L approach is a scheme for optimizing learning capacity
from prior experiences [16]. Recent advances of L2L algorithms
are built upon the premise that the learning system – typically an
artificial neural network – is differentiable, so that the gradients can
be propagated through the network to adjust the hyperparameters
(e.g. learning rate) [1, 11, 14]. It has also been shown that biologically
or physically inspired systems are suitable candidates as learning
agents in the L2L framework [2, 37]. In particular, Bohnstingl et
al. [3] showed that non-differentiable systems could be optimized
using non-gradient-based optimization schemes.

This study demonstrates how learning is achieved using the
collective dynamics of a system abstracted from physical nanowire
networks (see details in [15, 40]) under a physical reservoir com-
puting (RC) framework [18, 28], namely a memristive reservoir,
where training is restricted to the readout layer to circumvent the
computation burden of training traditional deep artificial network
architectures [27]. The synaptic sites (recurrent weights) in the
reservoir are not individually programmable but this may be offset
by the highly rich set of dynamics available in the memristive sub-
strate as a response to external stimuli. The L2L approach is applied
to the memristive reservoir and we show that this system is able
to learn the dynamics of a family of nonlinearly filtered signals.
Furthermore, we also demonstrate that the memristive reservoir
system is able to generate dynamics that resemble the membrane
potentials of spiking neural networks (SNNs) directly from contin-
uous inputs, which implies its potential to bridge the gap between
continuous signals and spike-based computing paradigms. By learn-
ing across various membrane potential dynamics, meta-learning
can identify common principles or shared features that govern the
dynamics of both spiking neurons and nanowire networks, which
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may offer deeper insights into the underlying ionic mechanisms
that pervade both biology and emerging memory technologies. In
particular, a nested-loop structure is implemented as following:

• L2L is used in the outer loop to determine the optimal hy-
perparameters of the memristive reservoir;

• Linear regression is employed in the inner loop to optimize
the stimulus/readout protocol to achieve the task objectives.

Demonstrating how L2L is compatible with systems grounded
in physics, such as memristive reservoirs, opens up the potential
to optimize learning using adaptive networks where individual
internal weights are not trained, but rather allowed to self-adjust
in repsonse to dynamical inputs, in a manner similar to the brain’s
neural network. This has implications beyondmemristive reservoirs
and could lead to more efficient and effective optimization schemes
for learning complex physical phenomena.

2 RESEARCH METHODS

Figure 1: Schematic diagram of the L2L framework. At each
iteration of the outer loop, the hyperparameter set Θ =

{𝑊𝑖𝑛, 𝑏𝑖𝑛,Λ0, ...} is perturbed in multiple directions. These
perturbed hyperparameters are passed to the inner loop and
learning task Ω randomly selected from F are performed. Θ
is then optimized in the outer loop based on the returned
fitness of different tasks. The inner loop operations are in-
dicated by orange arrows and the outer loop operations by
blue arrows.

As continuous temporal input voltage signals are delivered to
a memristive reservoir via dedicated input nodes, the network
autonomously adjusts its internal state. Voltages of a subset of
the remaining nodes can be read out and used to train weights
in the fully-connected linear output layer. Two L2L task families
are studied: learning nonlinear Volterra dynamics and learning
membrane dynamics from SNNs.

2.1 The L2L Framework
Fig. 1 illustrates the L2L framework, where two iterative loops work
together to optimize the system’s learning performance for a chosen
family of tasks F . In this work, the task families are split into two
subsets, one used for meta-training and the other for meta-testing.

The objective of the outer loop (orange in Fig. 1) is to optimize the
reservoir hyperparameters Θ based on the fitness in the inner loop.

In each iteration of the inner loop (blue in Fig. 1), the system learns
from a specific task Ω𝑖 within the meta-training phase of F and
the fitness 𝑓 (Ω𝑖 ;Θ) is evaluated. Non-gradient-based techniques,
namely simulated annealing (SA) and evolutionary strategies (ES),
are applied to the fitness to determine the optimal hyperparam-
eter set Θ′ (or range), thus achieving the best collective learning
outcome for F :

Θ′ = argmax
Θ

(𝑓 (Ω;Θ)), Ω ∈ F . (1)

After 100 generations of outer-loop training, the performance of
the baseline (without meta-learning) and meta-learned reservoirs
are evaluated using tasks from the meta-testing set to evaluate the
influence of the L2L algorithm on the reservoir’s learning perfor-
mance.

2.1.1 Simulated Annealing. Simulated annealing optimizes the ob-
jective function by mimicking the physical annealing process [20].
The algorithm is parameterized by a decaying ‘temperature’ 𝑇 . At
each generation of the outer loop, the hyperparameters are per-
turbed in multiple directions by a step size 𝜖 drawn from a normal
distribution parameterized by 𝑇 . For each perturbed hyperparame-
ter Θ̃, the change in fitness (Δ𝑓 = 𝑓 (Ω, Θ̃) − 𝑓 (Ω;Θ)) is estimated.
Θ̃ is accepted if the corresponding fitness improves, otherwise the
probability (𝑃 ) of accepting Θ̃ is determined by an exponential
distribution:

𝑃 =

{
1, Δ𝑓 ≥ 0,
𝑒Δ𝑓 /𝑇 , Δ𝑓 < 0.

(2)

When 𝑇 is high, some sub-optimal solutions can be accepted and
the algorithm explores a broader parameter space. As it ‘cools
down’, the probability of accepting worse solutions decreases and
the solution eventually converges if a global optimum exists.

2.1.2 Evolution Strategies. Evolution strategies are inspired by nat-
ural selection and evolution [31, 38]. A population of candidate
solutions are generated and evolved based on weighted fitness and
a pre-determined learning rate 𝜂 [32, 34]. At generation 𝑘 , each
candidateΘ𝑘,𝑖 in the population is perturbed by a step size 𝜖𝑖 drawn
from a normal distribution (0, I ), with standard deviation 𝜎

After evaluating the fitness 𝑓 (Ω𝑖 ;Θ𝑘,𝑖 + 𝜎𝜖𝑖 ) for all candidates
in the same generation, Θ𝑘,𝑖 is evolved by:

Θ𝑘+1,𝑖 = Θ𝑘,𝑖 +
𝜂

𝑛𝜎

𝑛∑︁
𝑖=1

𝑓 (Ω𝑖 ;Θ𝑘,𝑖 + 𝜎𝜖𝑖 )𝜖𝑖 , (3)

where 𝑛 is the size of the population. The statistical setup enables
ES to deal with high-dimensional problems, making it useful for
optimization problems with many parameters.

2.2 Learning Volterra dynamics
Consider a two-terminal configuration of a memristive reservoir
with one source node and one drain node (see [40] for details). Fig. 2
shows how the memristive reservoir is used to learn the nonlinear
Volterra dynamics (Task 1). As the green box and arrows indicate,
the input signal 𝑥 (𝑡) is delivered to the source node, while the drain
node is grounded and an external fully connected output layer
linearly combines the voltage read outs ®𝑣 (𝑡) of 64 other nodes to
regress to each target signal 𝑢 (𝑡). The objective of the L2L process
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here is to fine-tune the hyperparameters to achieve optimal regres-
sion for the nonlinear time-delayed target signal. The input weight
(𝑊𝑖𝑛), input bias (𝑏𝑖𝑛), and initial reservoir state (Λ0) are optimized
by L2L via simulated annealing. Λ0 is parameterized by a pulse of
1 V DC with varying width 𝑇0 applied to the input node prior to
the task, as described in [40].

The input signal 𝑥 (𝑡) is generated by combining two sine waves:

𝑥 (𝑡) = 𝐴1 sin(2𝜋
𝑡

𝑇1
+ 𝜙1) +𝐴2 sin(2𝜋

𝑡

𝑇2
+ 𝜙2), (4)

where 𝑇1 = 0.323 s and 𝑇2 = 0.5 s, and where 𝐴1, 𝐴2 ∈ [0.5, 1]
and 𝜙1, 𝜙2 ∈ [0, 𝜋2 ] are chosen randomly. The target signal 𝑢 (𝑡) is
generated using a second-order Volterra filter:

𝑢 (𝑡) =
∫
𝜏

𝑘1Ω (𝜏)𝑥 (𝑡 − 𝜏)𝑑𝜏 +∫
𝜏1

∫
𝜏2

𝑘2Ω (𝜏1, 𝜏2) 𝑥 (𝑡 − 𝜏1) 𝑥 (𝑡 − 𝜏2) 𝑑𝜏1𝑑𝜏2, (5)

in which 𝜏, 𝜏1, 𝜏2 ∈ [0, 0.5] denote the time delay of the signals,
while 𝑘1Ω and 𝑘2Ω are task-specific random Volterra kernels (see
[37] for further information on generating the kernels). 100 target
signals are generated using different Volterra kernels to comprise
the family F . The green box in Fig. 2 shows an example of one
input signal (black) and Volterra-filtered target signals (colored)
with different random kernels.

The readout weights𝑊𝑜𝑢𝑡 are trained using least square to min-
imize the loss:

L = | |𝑈 −𝑊 ⊺𝑉 | |2, (6)

where | | · | |2 represents the L-2 norm, and𝑈 = [𝑢 (1), 𝑢 (2), ...𝑢 (𝑡)]
and 𝑉 = [®𝑣 (1), ®𝑣 (2), ..., ®𝑣 (𝑡)] are the stacked target and readout of
the reservoir. The learning results are estimated by normalized root
mean squared error (NRMSE):

NRMSE =

√︃
1
𝑇

∑𝑇
𝑡=1 (𝑊

⊺
𝑜𝑢𝑡 ®𝑣 (𝑡) − 𝑢 (𝑡))2

𝑢𝑚𝑎𝑥 − 𝑢𝑚𝑖𝑛
, (7)

where 𝑇 is the length of the signal.

2.3 Learning membrane dynamics of SNNs
The blue arrows in Fig. 2 illustrate the scheme for this task family. A
set of 20 randomly generated Volterra filter signals ®𝑢 (𝑡) are utilized
as input and converted to spike trains ®𝑢′ (𝑡) using delta modulation.
A fully connected SNN (S, developed using [10]) with 20 input
neurons, 1,000 hidden neurons, and 5 output neurons receives ®𝑢′ (𝑡)
as input. For each task, the internal weights𝑊S of the SNN are
randomly generated, and the membrane potentials of the 5 output
neurons, ®𝑚(𝑡) are employed as the target signals of the learning
task:

®𝑚(𝑡) = S(®𝑢′ (𝑡);𝑊S). (8)

The continuous Volterra signals ®𝑢 (𝑡) are delivered to 20 input
nodes in the memristive reservoir (R), and 64 nodes are used as
voltage readouts:

®𝑣 (𝑡) = R(𝑊𝑖𝑛 ⊙ ®𝑢 (𝑡) + ®𝑏𝑖𝑛 ;Λ0). (9)

Notice that𝑊𝑖𝑛 and ®𝑢 (𝑡) have the same dimensions and ⊙ repre-
sents element-wise multiplication.

For each task, the entire data stream is divided into three parts:
the first 2000 data points are considered as a transient phase [19];
the subsequent 6000 data points (from 2000th to 8000th) employed
as the support set (inner-loop training), and the last 1000 data points
(from 8000th to 9000th) comprise the query set (inner-loop testing).
The readout weights𝑊𝑜𝑢𝑡 are trained for each task using ridge
regression to minimize the loss function:

L = | |𝑀 −𝑊
⊺
𝑜𝑢𝑡𝑉 | |22 + 𝛼 | |𝑊𝑜𝑢𝑡 | |22, (10)

where 𝛼 is a regularization term ranging between 10−4 and 1, with
𝑀 = [ ®𝑚(1), ®𝑚(2), ..., ®𝑚(𝑡)] representing the stacked target mem-
brane potentials. A 5-fold cross validation scheme is employed to
avoid overfitting [13]. NRMSE of the query regime is reported as
result.

A family F of 150 tasks is created by utilizing SNNs with differ-
ent internal weights. The goal of L2L in this context is to adapt
the reservoir to new tasks by extrapolating information from past
learning experiences, allowing it to generate desired membrane
potentials. Simulated annealing and evolution strategies are used
separately to optimize the input weight (𝑊𝑖𝑛) and the input bias
(®𝑏𝑖𝑛) of each signal. Λ0 is fixed to the phase transition regime found
in task 1.

3 RESULTS
3.1 L2L Volterra dynamics

Table 1: NRMSE for Task 1 with and without meta-learning

Meta-train Meta-test
w/o meta-learning 0.209±0.003 0.211±0.014
Meta-learned (SA) 0.168±0.008 0.164±0.009

Fig. 3(a) shows the reservoir’s conductance (blue curve) in re-
sponse to a 1V DC pulse of varying width 𝑇0. The shaded region
represents the general phase transition regime, identified from pre-
vious studies [40], and the dashed line at 𝑇0 = 2.3 s indicates the
optimal initial reservoir state Λ0 found by the SA optimization
scheme, as shown in Fig. 3(b).𝑇0 (orange) converges toward ≃ 2.3 s
as RNMSE (green) converges to a minimum after approximately
60 generations. Fig. 3(c) compares the system’s learning outcomes
for a specific task in the Volterra family before (blue) and after
(red) the outer loop optimization (cf. Fig. 1) and Table. 1 shows the
corresponding NRMSE of the whole meta-testing set. A notable
improvement in regression to the target signal is evident.

These results demonstrate that the L2L framework is success-
ful in fine-tuning the reservoir’s initial state Λ0. Remarkably, the
optimization scheme finds the optimal Λ0 coinciding with the dy-
namical phase transition region identified independently in pre-
vious studies [40] as producing optimal task performance from
memristive reservoirs.

To gain deeper insight into the internal dynamics of memris-
tive reservoirs, Fig. 4 shows visualisation snapshots of network
graphs of the reservoir for different𝑇0. When the reservoir is under-
activated (𝑇0 < 2 s), most memristive components are inactive and
not enough information can be extracted to perform learning. On
the other hand, when the reservoir is over-activated (𝑇0 > 8 s), the
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Figure 2: Schematic diagram for the learning tasks employed in this study. The green box and arrows summarize the learning
Volterra dynamics task family (Task 1), where the original signal 𝑥 (𝑡) is the input and the Volterra-filtered signal 𝑢 (𝑡) is the
target for the reservoir. The blue arrows illustrate the flow of the learning SNN dynamics task family (Task 2), in which a set of
20 Volterra-filtered signals ®𝑢 (𝑡) is converted to spikes ®𝑢′ (𝑡) and delivered to a fully connected SNN. The membrane potentials
®𝑚(𝑡) of the readout neurons are used as target while the set of continuous Volterra-filtered signals are delivered directly to the
reservoir as input.

internal dynamics saturates.The initial reservoir state at𝑇0 ≈ 2.17 s
results in the best task performance and qualitatively, it is evident
from Fig. 4 that this corresponds to an intermediate state, where
conductance paths first span the network. At this ‘edge of forma-
tion’, the internal state of the reservoir produces voltage readout
features that are more diverse than at later activation times, as
shown in the corresponding node voltage distributions in Fig. 5.

3.2 L2L SNN dynamics

Table 2: NRMSE for Task 2 with and without meta-learning

Meta-train Meta-test
w/o meta-learning 0.212±0.041 0.235±0.036
Meta-learned (SA) 0.139±0.011 0.164±0.012
Meta-learned (ES) 0.109±0.011 0.128±0.004

Fig. 6(a) shows the NRMSE of the query part (task-specific in-
ner loop testing) for Task 2 during outer loop training for the
two gradient-free optimization strategies considered. Similar to
the previous task family, it can be observed that learning outcome
improves with number of training generations. Fig. 6(b) compares
the readouts generated by a baseline reservoir and an ES-optimized
reservoir to the target curves (SNNmembrane potentials) in a single
meta-testing task. As is evident from the query period, the opti-
mized system is considerably better in reproducing the fluctuating

dynamics of the membrane potential, which governs the spiking
behaviors of the SNN readout neurons.

To assess the learning gain from the L2L process, Table 2 com-
pares the NRMSE for Task 2 with and without meta-learning and
shows substantial improvement with optimized reservoirs, up to
≃ 50% in the case of ES optimization. Table 2 and Fig. 6(a) also indi-
cate that the learning outcome converges to a better result with ES
compared to SA optimization. This is because this task family (Task
2) employs more hyperparameters than the Volterra task family
(Task 1) and ES typically performs better for a larger parameter
space while SA is more suitable for stepping out of local minima.

4 DISCUSSION
Previous studies have demonstrated the memory capacity of mem-
ristive reservoirs as well as their capability to generate dynami-
cal features [12, 35, 40]. The results here suggest that memristive
reservoirs are able to combine these properties together to enable
learning of the rich, nonlinear time-delayed dynamics embedded by
the Volterra filter. Furthermore, the L2L framework consistently de-
termined that the optimal initial state for the memristive reservoir
was at what can be described as the ‘edge of formation’. This point
exists between where the memristive components first become
activated (cf. Fig. 4, 𝑇0=2.0 s), and before an exponential cascade
of parallel paths form (cf. Fig. 4, 𝑇0=2.3 s). The conductance expo-
nentially ramps up at the time of initial formation, and saturates
as more parallel pathways form. The intermediate internal state,
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Figure 3: L2L Volterra dynamics. (a) Memristive reservoir
conductance response (blue) to a varying 1V DC pulse width
𝑇0, showing a characteristic phase transition regime (shaded).
The dashed red line represents the reservoir’s optimal initial
state for learning Volterra dynamics, as found by the L2L
scheme. (b) Normalized RMSE of the learning tasks and op-
timal 𝑇0 with respect to outer loop generation number. (c)
Input signal, corresponding target, and the resulting learning
outcomes for one representative task in the family (baseline
is before optimization).

i.e., the ‘edge of formation’ was meta-learnt as the optimal starting
point prior to training in the outer loop.

This result opens up deeper insights to how memristive reser-
voirs can be optimally used in computation. It is somewhat intuitive
that the reservoir does not perform at the time of initial formation,
because the exponentially ramping conductance increase is highly
unstable and challenging to control. The opposite problem exists
after conductive pathways are formed, where switching has a neg-
ligible impact on the dynamics of the nanowire network. The ‘edge
of formation’ can be thought of as a linear region in small-signal
analysis, that fosters a controllable learning environment optimal
for learning the rich dynamics of higher-order systems.

Additionally, this work also demonstrates that memristive reser-
voirs can learn the fluctuating dynamics of SNN membrane poten-
tials. This is possible because, as shown in a previous study [15],

Figure 4: Reservoir activity with different pre-initialization
pulse widths. A 1V DC signal of varying width is delivered to
the reservoir in prior to the task. Nodes on the conductance
path from source to drain are colored based on their voltages.
Edges are catagorized as high (ON), intermediate (MID) and
low (OFF) conductance levels and colored respectively.

memristive switching in a heterogeneous, recurrent network pro-
duces fluctuating dynamics that resemble action potentials which,
when thresholded, generate spikes. In other words, the internal
dynamics of memristive reservoirs effectively encode spike-like
features into continuous input signals.

An immediate implication of this result is that memristive reser-
voirs have the potential to serve as an interface between continuous
data streams and spike-based computing paradigms, which could
substantially improve the workflow for SNN applications. The use
of trainable spike-based embeddings has offered an alternative ap-
proach to classical rate and temporal encoders in many recent SNN
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Figure 5: Reservoir node voltage histograms for different pre-
initialization pulse widths𝑇0. Blue indicates all nodes, orange
indicates nodes used as readouts for the learning tasks.

works, but relies on gradient-based optimization to compress data
into more efficient spike-based representations [7, 39, 43]. These
results demonstrate how native internal dynamics, constrained
by physics, naturally give rise to embeddings that can ultimately
reconstruct signals in the context of gradient-free meta-learning.

5 CONCLUSION
This study shows that the L2L framework can effectively adjust
the hyperparameters of memristive reservoirs, attaining a similar
optimal regime as found by a manual search in previous studies.
Moreover, we demonstrated that the learning capability of the sys-
tem can be extended and optimized for a family of related tasks,
rather than being limited to a single task. This approach could pave
the way for highly adaptive learning tasks based on real-world
settings, similar to how biological brains can learn quickly from
limited examples. Our finding that memristive reservoirs have the
ability to reproduce SNNmembrane potentials is significant because
of the potential to use them in place of spike-based embeddings
or encoders. In particular, membrane potential dynamics in com-
plex tasks may be encoded using memristive reservoirs as a more
efficient mode of compression.

Thememristive reservoirs studied here aremotivated by physical
reservoirs using self-assembled nanowire networks. The neuromor-
phic properties of these networks are influenced by various factors
such as nanowire density, diameter, average length and amount of
dielectric. Similar to how evolutionary optimization schemes can
be utilized to design and train neuromorphic systems [33], it may
be possible in the future to exploit the L2L framework to find the

Figure 6: L2L SNNmembrane dynamics. (a) NormalizedRMSE
of the learning tasks as a function of generations in the outer
loop. (b) Membrane potentials of 5 readout neurons from the
SNN (black) overlaid by the learned dynamics from the base-
line (blue) and the optimized (orange) memristive reservoirs
for one representative meta-testing task in the task family.
The left and right columns of panels show results for the
support and query periods of the task, respectively. Note: a
different timescale is used during the query phase for better
visibility at test time.

optimal nanowire networks for specific task families, effectively
realizing a ‘learn-to-build’ approach.
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