
High-Throughput Vector Similarity Search in Knowledge Graphs

Jason Mohoney∗†, Anil Pacaci∗, Shihabur Rahman Chowdhury∗, Ali Mousavi∗,
Ihab F. Ilyas∗, Umar Farooq Minhas∗, Jeffrey Pound∗, Theodoros Rekatsinas∗

∗Apple, †University of Wisconsin-Madison

ABSTRACT

There is an increasing adoption of machine learning for encoding
data into vectors to serve online recommendation and search use
cases. As a result, recent data management systems propose aug-
menting query processing with online vector similarity search. In
this work, we explore vector similarity search in the context of
Knowledge Graphs (KGs). Motivated by the tasks of finding related
KG queries and entities for past KG query workloads, we focus
on hybrid vector similarity search (hybrid queries for short) where
part of the query corresponds to vector similarity search and part
of the query corresponds to predicates over relational attributes
associated with the underlying data vectors. For example, given
past KG queries for a song entity, we want to construct new queries
for new song entities whose vector representations are close to the
vector representation of the entity in the past KG query. But entities
in a KG also have non-vector attributes such as a song associated
with an artist, a genre, and a release date. Therefore, suggested en-
tities must also satisfy query predicates over non-vector attributes
beyond a vector-based similarity predicate. While these tasks are
central to KGs, our contributions are generally applicable to hybrid
queries. In contrast to prior works that optimize online queries, we
focus on enabling efficient batch processing of past hybrid query
workloads. We present our system, HQI, for high-throughput batch
processing of hybrid queries. We introduce a workload-aware vec-
tor data partitioning scheme to tailor the vector index layout to the
given workload and describe a multi-query optimization technique
to reduce the overhead of vector similarity computations. We evalu-
ate our methods on industrial workloads and demonstrate that HQI
yields a 31× improvement in throughput for finding related KG
queries compared to existing hybrid query processing approaches.

CCS CONCEPTS

• Information systems→ Data management systems; Infor-
mation retrieval query processing.

ACM Reference Format:

Jason Mohoney, Anil Pacaci, Shihabur Rahman Chowdhury, Ali Mousavi,
Ihab F. Ilyas, Umar Farooq Minhas, Jeffrey Pound, and Theodoros Rekatsi-
nas. . High-Throughput Vector Similarity Search in Knowledge Graphs. In
Proceedings of ACM SIGMOD/PODS International Conference on Manage-

ment of Data (SIGMOD ’23). ACM, New York, NY, USA, 13 pages. https:
//doi.org/XXXXXXX.XXXXXXX

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGMOD ’23, June 18–23, 2023, Seattle, WA

© Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION

Vector similarity search has become a critical component in recom-
mendation systems and search engines. Modern machine learning
models are increasingly used to embed complex data such as images,
text, or entities in knowledge graphs into vector representations
that retain semantically meaningful information [5, 6, 9, 18, 29].
Similarity search over these vectors enables more accurate and
contextualized search [10, 13, 15, 36] and recommendations [26, 27,
31, 33, 41] over multi-modal data. Due to the universality of vector
embeddings, there is a recent increase in vector database offerings.
A new breed of data management systems, such as ADBV [44],
Milvus [42], Pinecone [2], Vearch [25], Vespa [3] and Vectara [1],
augments query processing with vector similarity search primitives
to power workloads where query processing requires searching
over vectors to find the most similar ones to a query vector.

In this work, we study constrained vector similarity search for
powering applications over industrial-scale Knowledge Graphs
(KGs). Such applications include finding related entities, perform-
ing link prediction, and detecting erroneous facts [5, 19, 43]. These
workloads require batch processing of hybrid queries, where a hy-
brid query consists of two parts: (i) vector similarity search and
(ii) evaluation of predicates over relational attributes. For example,
consider a service that recommends related artists given a song as
input. Given a collection of millions of songs for which we want to
support in such a service we may want to pre-compute all related—
similar in a vector space—entities to each song that are of type
Artist. Current approaches focus on online query processing and
lack necessary optimizations to support high-throughput batch
processing. To address this, we introduce a suite of system opti-
mizations that enable high-throughput hybrid query processing
over industrial-scale KGs. While we introduce these optimizations
in the context of KG-related tasks, the optimizations are general and
can be incorporated in general-purpose vector database systems.

Motivating Workloads and Requirements. We recently introduced
Saga [19], a platform for constructing and serving knowledge at
industrial scale. As part of this effort, we use similarity search over

KG embeddings to solve tasks such as finding related KG queries

or entities for past user queries and link prediction for missing fact
imputation, among others [19].

For related KG queries, our goal is to construct and pre-evaluate
a set of KG queries that are related to past user queries; the volume
of queries served by our system offers significant opportunities for
caching as queries are repeated across users. Such a service can
power richer user experiences. For example, given the user query
“How tall is Taylor Swift?” we want to construct queries of the form
“How tall is person?” for people that are similar/related to Taylor
Swift. For link prediction, our goal is to enrich the KG with new
inferred facts (e.g., imputing missing “collaborator” facts for “Taylor
Swift”) obtained via vector similarity search [47]. These use cases

SIGMOD ’23, June 18–23, 2023, Sea�le, WA Mohoney, et al.

exhibit one or more of the following characteristics:

• Hybrid queries: We need to evaluate hybrid queries that
combine vector similarity with relational attribute predicates.
For the query “How tall is Taylor Swift?”, we need to find the
top entities that are close to “Taylor Swift” in the KG embed-
ding vector space but they must also satisfy the predicates
that their entity type is equal to “Person” and they have a
non-NULL value for attribute “height”. The last two predi-
cates are necessary to get valid responses for the identified
related queries. Similarly, imputing missing “collaborator”
facts for “Taylor Swift” requires performing link prediction
to identify entities of type “Artist” that are close to “Taylor
Swift” conditioning on the predicate “collaborator”.
• Batch processing: In contrast to online similarity search,
these workloads often need to be processed in a batch setting,
e.g., find related queries for a batch of past user queries, or
perform link prediction for all KG entities [19]. To guarantee
efficient processing, we need a query evaluation design that
prioritizes throughput similarly to analytical workloads.
• Availability of prior workload: We find that industrial
question answering KG workloads exhibit filter common-

ality and filter stability, thus, allows us to tailor the vector
database design to the workload characteristics [38]. Further-
more, the relational predicates present in a hybrid query are
often correlated with the vectors used to compute similarity
(e.g., attribute “height” is correlated with entities represent-
ing people). Therefore, a workload-aware approach can help
optimize vector search by accounting for these properties.

The above requirements necessitate new optimizations that cur-
rent vector database systems do not cover. First, most systems pro-
vide limited support for relational attribute predicates i.e., primarily
numerical comparisons, and they are not optimized for queries with
multiple predicates. Second, all existing systems treat the relational
predicates and vector similarity search as separate queries whose
results are merged to generate final results. Doing so can lead to
unnecessary computational overhead or low recall, as we later show
in Section 6. Third, all existing systems aim to reduce the latency
of individual online queries and do not optimize for throughput.
However, many of our KG workloads evaluate hybrid queries in
bulk, requiring high-throughput batch processing. Lastly, the pres-
ence of past query workloads provides opportunities to leverage the
data and workload distributions for devising algorithms and data
structures tailored to particular use cases [24, 38]. Custom fitting
system components to a given workload and data has proven to pro-
vide significant performance improvements over their traditional
counterparts in the context of relational workloads [4, 7, 17, 38, 46].
To the best of our knowledge, no vector database system utilizes a
priori workload information for workload-aware database design.

Here we describe the key components of our proposed Hy-
brid Query Index (HQI) framework for high-throughput workload-
aware batch processing of hybrid queries. Our contributions target
two dimensions: (i) workload-awareness in vector index design
(workload-aware vs. workload-oblivious); and (ii) query processing
setting (batch vs. online). The space created by adopting optimiza-
tions that target these two dimensions is shown in Figure 1. In

the same figure, we also place KG tasks that can benefit from opti-
mizations in the corresponding quadrant. Current vector databases
adopt index designs that limit themselves to one quadrant: the vec-
tor index is workload-oblivious and queries are processed online.
In contrast, our KG-related workloads allow us to explore the re-
maining space. For example, a related queries or entities service
can leverage workload-aware search (e.g., online related KG queries
with a priori workload) to minimize query execution time. Similarly,
both this service and link prediction (without a priori workload)
can benefit from batch-optimized execution. The two optimization
opportunities are complementary. To this end, HQI proposes a suite
of solutions including a workload-aware vector index and a multi-

query optimization technique. These solutions cover the optimiza-
tion space of interest. Moroever, we show that these optimizations
can significantly improve query processing throughput compared
to baseline solutions employing a widely-used open-source library
for vector similarity search [23]. Our contributions are:

Batch

Online

Workload-

aware

Workload-

oblivious

▪ Batch related KG queries

with a priori workload

▪ Link prediction

▪ Batch related KG queries

without a priori workload

Workload-awareness in vector index design Query processing setting

▪ Online related KG queries

with a priori workload

▪ Online hybrid query

processing without a priori

workload (out-of-scope)

Figure 1: Optimization space for vector search and assign-

ment of supporting KG tasks.

Workload-aware vector index (Section 4): First, we intro-
duce a new workload-aware index for vector databases. Specialized
vector indexes that either partition the data or form multi-level
indexes over centroids are commonly used in vector databases to
speed-up vector similarity search [12, 42, 45]. Here, we use past
workload information to guide the partitioning of the vectors in
the underlying index in a way that hybrid queries can be answered
by accessing as few partitions as possible. Our approach is moti-
vated by the fact that the relational predicates in our target hybird
query workloads exhibit filter commonality and filter stability [38],
two properties that enable data layout optimizations tailored to
the characteristics of a given workload. To this end, we extend the
concept of query-data routing trees (qd-trees) [46] to consider both
vectors and relational predicates from a hybrid query workload
when generating physical data layout at data loading time. In ad-
dition, we discuss how this data layout enables joint evaluation
of attribute and similarity predicates during query runtime. When
used as a standalone optimization, our proposed workload-aware
vector indexing scheme significantly reduces the number of tuples
scanned to answer hybrid queries, resulting in 4× improvement in
throughput for an online related KG query use case compared to
workload-oblivious approaches.

Batch query optimization (Section 5): Second, we introduce
a multi-query optimization technique that (i) batches queries with
similar attribute and vector similarity constraints; and (ii) performs
batch vector distance computation against a posting list of vectors
obtained from a clustering-based index over the vectors. This op-
timization is motivated by the fact that our target hybrid query

High-Throughput Vector Similarity Search in Knowledge Graphs SIGMOD ’23, June 18–23, 2023, Sea�le, WA

Table 1: Query workload characteristics. Rows are sorted

from the lowest to highest selectivity.

Template
Historical Snapshots
(equal time windows)

Feasible KG
entities (%)

C0 C1 C2 C3

T1 15% 17% 17% 18% < 0.005%
T2 26% 26% 26% 26% <0.1%
T3 <1% <1% <1% <1% <0.1%
T4 24% 20% 20% 20% <0.5%
T5 11% 12% 11% 12% <0.5%
T6 2% 2% 2% 2% <1%
T7 3% 3% 4% 3% 2.5%
T8 15% 15% 15% 14% 30%
T9 <1% <1% <1% <1% 58%
T10 4% 4% 4% 4% 60%

workloads need to be evaluated in a batch setting, enabling com-
putation sharing across queries. This optimization is applicable to
any clustering-based vector index. When compared to executing
queries one-by-one using a system optimized for online search, our
approach provides 17× and 19× improvement in batch query pro-
cessing throughput for batch related KG queries (without consider-
ing prior workloads) and link prediction, respectively. Furthermore,
combining the query batching technique with the workload-aware
index layout yields up to 31× thoughput improvement for the re-
lated KG queries use case compared to prior approaches.

Finally, we provide several micro-benchmark experiments using
industrial KG workloads of hybrid queries and synthetic bench-
marks and conclude with a discussion of findings and recommenda-
tions for new optimizations in vector database systems (Section 6).

2 PRELIMINARIES

We discuss preliminary concepts that are necessary in the remain-
der of the paper. First, we describe the requirements of industrial
KG workloads that motivate our study and highlight their key
characteristics (Section 2.1). Then, we review existing solutions for
processing hybrid queries (Section 2.2), and discuss their limitations
with respect to the workloads we consider (Section 2.3).

2.1 Workload Characteristics

In Section 1, we discussed how hybrid vector search is used in Saga
to power several applications such as finding related entities, link
prediction, and detecting erroneous facts [19]. We use the related
KG queries use case as a running example to introduce necessary
concepts. Nonetheless, all use cases exhibit the same or subset of
the characteristics of this use case and all can benefit from the
optimizations in this work.

The related KG queries use case requires analyzing historical
queries over a KG to either suggest new related queries to past
queries or identify entities related to input KG queries (see mo-
tivating examples in Section 1). As discussed in our prior work
on Saga [19], one can use technologies that embed a KG into a
vector space [30, 40], i.e., every entity is associated with a vector
representation. We also define relatedness between two entities
in a KG to be the similarity between their vector representations.
Given the above, both tasks correspond to evaluating a collection
of hybrid queries over a KG, i.e., queries where we want to find KG
entities that satisfy a conjunction of relational constraints and their
vector representations are similar to the vectors associated with
the entities given as input to historical KG queries.

Example. Following the example in Section 1, the user query
& , “How tall is Taylor Swift?” requires a query corresponding to a
predicate template “Height” over the entity “Taylor Swift”. Finding
related queries to this user query requires performing hybrid search
to identify entities whose vector is similar to that of “Taylor Swift”
and that have a non-NULL “height” value and are type of “Person”.

To power the related KG queries service, we construct a hybrid
query workload by using past KG queries. The corresponding dis-
tribution of predicate templates and KG entities that satisfy the
relational predicates for these templates is determined by the past
KG queries. For the constructed hybrid query workload, we use the
term selectivity to refer to the probability that an entity satisfies
a predicate, i.e., the lower the selectivity the smaller the number
of entities satisfying the predicate will be [37]. Next, we analyze
four historical snapshots of randomly sampled and aggregated in-
dustrial query workload each spanning equal time windows. The
sampling was done in a way to not alter the distribution of predicate
templates within each snapshot. Table 1 summarizes distributional
characteristics for the top-10 predicate templates in these historical
snapshots. Our key observations are:

• The distribution of predicate templates exhibits filter com-

monality [38], i.e., a small number of predicates are com-
monly used by the majority of queries. For instance, ≈80% of
queries in the workload corresponds to only four templates.
• Predicate templates are repeatedly used over time and their
distribution exhibit filter stability [38], i.e., the majority of
predicate templates in queries at a given time have already
occured in the past. Furthermore, the composition of query
workload does not drastically change across snapshots, i.e.,
the ratio of a particular template does not change across
snapshots in Table 1.
• Hybrid queries exhibit a variety of predicate templates that
consist of complex attribute constraints beyond simple nu-
merical comparisons. For instance, some commonly occur-
ring predicate templates in this workload consist of set mem-
bership and non-NULL checks on KG entity attributes.
• Predicate templates exhibit a wide range of filtering capabil-
ities. For instance, less than 0.005% KG entities satisfy the
predicate template with the lowest selectivity (T1). Mean-
while, more than half of the KG entities satisfy the predicate
template with the highest selectivity (T10).
• The set of attributes an entity has is impacted by its type,
resulting in a varying distribution of attribute occurrences
and correlations across entity types.

These characteristics necessitate workload-aware techniques to
ensure consistently high-throughput across workloads processed
over time. Especially, due to the filter commonality and filter sta-
bility properties, we can benefit from building a workload-aware
index once and reuse it over time.

2.2 Methods for Evaluating Hybrid Queries

An emerging class of data management systems provide query
processing primitives to support hybrid queries [1–3, 25, 42, 44].
Given a hybrid query, these systems facilitate searching for objects
in a vector database where (i) the vector representation of the object
is similar to the query vector, and (ii) the object attributes satisfy

SIGMOD ’23, June 18–23, 2023, Sea�le, WA Mohoney, et al.

the structured attribute constraint. Existing systems commonly
process these two sub-tasks disjointly and employ one or more of
the following evaluation strategies:

Strategy A – Exhaustive search: This approach constructs a
traditional relational index (e.g., B-tree index) over attributes and
evaluates the attribute constraint using an index scan. Then, it
exhaustively computes the distances between the query vector and
all vectors that satisfy the attribute constraint to perform similarity
search. This strategy produces exact results with respect to both
the vector similarity and attribute constraints.

Strategy B – Attribute filtering then vector search: This
strategy relies on two disjoint indices over the database: (i) an
approximate nearest neighbor (ANN) index over the vectors [20,
21, 23, 28]; and (ii) a relational index over the vector attributes.
Similar to Strategy A, this approach first evaluates the attribute
constraint to obtain a candidate set. Then, it uses the ANN index to
perform similarity search over the resultant vectors. This strategy is
commonly implemented by generating a bitmap from the identifiers
(IDs) of the candidate vectors to filter out vectors that do not satisfy
the attribute constraint during the index traversal.

Strategy C – Attribute-based partitioning: This approach
generates a two-tier vector index by range partitioning the vectors
based on a frequently searched attribute and constructing an ANN
index within each partition. Given a hybrid query with a predi-
cate over the partitioning attribute, this approach first identifies
the partitions whose assigned range satisfies the query constraint,
then performs either exhaustive search or ANN search within each
qualifying partition depending on the partition size.

Strategy D – Vector search with post-filtering: This strategy
constructs an ANN index over the vectors, and first performs a
vector similarity search using the ANN index, then it filters out
candidates that do not satisfy the attribute constraint.

Strategy A is an exhaustive solution that produces exact results
with respect to the vector similarity search constraint. The perfor-
mance of Strategy A is determined by the selectivity of the attribute
constraints and consequently this approach is preferred either for
small datasets or hybrid queries with highly selective attribute
constraints. Strategies B, C, and D aim to address these scalability
limitations over large-scale datasets by augmenting a specialized
index for vector similarity search and are commonly adopted in
industrial solutions for hybrid query processing [1–3, 25, 42, 44].
All the above approaches are designed for online query evalua-
tion, and as we discuss next, they do not fit the requirements for
high-throughput batch evaluation of hybrid query workloads with
characteristics as those outlined in Section 2.1.

2.3 Limitations of Existing Methods

No optimizations for batch processing: Existing approaches for
hybrid query processing are optimized for online query execution.
Although these systems can functionally support batch workloads
by processing each query individually, they cannot utilize the data
layout and query processing optimizations that are possible in
the batch setting. Also, hybrid query workloads we target exhibit
commonalities between the query vectors as well as between the
relational predicates over the attributes, providing opportunities
for executing similar queries together for efficient index traversals,

which is not considered by the online query processing solutions.
In Section 6, we empirically show that batch query optimization
by itself provides up tp 17× improvement in execution time for the
related KG queries workload compared to using online solutions.

Disjoint execution of sub-queries: Existing systems com-
monly treat attribute filtering and vector search as two separate
sub-queries whose results are merged to generate final results. They
either perform attribute filtering and vector search separately over
the corresponding attribute and ANN indices, and combine the re-
sults (Strategies A, B, and C); or perform attribute filtering as a post-
processing step after ANN search (Strategy D). The first approach
leads to unnecessary computational overhead since the pruning
power of two sub-queries cannot be combined; the vector search
performs redundant vector similarity computations for tuples that
the attribute filter would otherwise prune. The latter approach suf-
fers from low recall since ANN search is oblivious to the vector
attributes and performing attribute filtering as a post-processing
step might prune a large portion of the ANN search results. Jointly
considering vector search and attribute filtering provides opportuni-
ties for efficient hybrid query evaluation by eliminating redundant
computations without sacrificing result quality.

Limited support for attributes: Existing strategies provide lim-
ited support for attribute constraints, e.g., attribute constraints are
limited to numerical comparisons or exact text match [25, 42, 44].
A common approach for structured constraints over attributes is to
use a range partitioning of vectors over a frequently used numerical
attribute (Strategy C). Although this approach is effective when
queries can be routed to a single partition, queries with constraints
over a non-partitioning attribute must be evaluated over all parti-
tions. The storage overhead of supporting multiple attributes grows
linearly with the number of attributes as it involves replicating and
partitioning the vectors for each attribute.

Lack of workload awareness: Optimized for online query ex-
ecution, existing solutions do not utilize the available workload
information. Structured predicates in attribute constraints and the
vectors representing real-world entities are often correlated in real-
world hybrid query workloads. Consider the vector representa-
tion for the song "Billie Jean" with the entity type “Song”. It is
likely to be similar to vectors representing other songs than to
vectors representing cities. These correlations, when considered,
can significantly improve the batch query execution performance
by informing the index design as we show in Section 6.

3 BATCH PROCESSING OF HYBRID QUERIES

3.1 Problem Definition

Definition 1 (Vector Database). + represents the set of tuples

(vectors) in the form C = (83, 4, 0) where C .83 is the tuple identifier, C .4

represents a 3-dimensional real-value vector, and C .0 represents the

attribute values associated with that tuple as discussed next.

� represents a finite set of attributes where the domain of each

attribute�8 is �8 . A tuple can be associated with a subset of attributes

from �; w.l.o.g., we represent C .0, the attributes of a tuple C as a |�|-
dimensional vector where C .0[8] ∈ �8 represent the value of attribute

�8 for tuple C (with null values set for non-existent attributes).

We neither make any assumption about how the vectors and
their attributes are generated nor about their sizes. Devising an

SIGMOD ’23, June 18–23, 2023, Sea�le, WA Mohoney, et al.

When vectors in a database are associated with relational at-
tributes, existing solutions for processing hybrid queries combine
attribute-based partitioningwith vector partitioningmethods (Strat-
egy C described in Section 2.2). Such partitioning typically consid-
ers only one attribute — typically a commonly queried attribute —
and uses range partitioning to first split the database into a set of
attribute-based partitions. Then, a separate vector index such as
Inverted File Index (IVF) [21] or Hierarchical Navigable Small Worlds

(HNSW) [28] is constructed within each partition. Given such a
partitioning, a hybrid query with an attribute constraint over the
partitioning attribute can be evaluated by considering only the par-
titions that satisfy that predicate, effectively limiting the scope of
vector similarity search by pruning partitions that do not satisfy the
predicate. While this approach can be effective in use cases where
online queries conform to a specific relational attribute, it does
not satisfy the requirements of workloads we target in this work;
recall that we aim to process hybrid query workloads that feature
attribute constraints with predicates over multiple attributes (Sec-
tion 2.1). The above partitioning scheme cannot utilize the pruning
power of attribute constraints when queries impose predicates on
non-partitioning attributes.

Designing an index for processing hybrid queries with high
pruning capabilities in the presence of multiple attributes involves
answering the following technical questions:

• How to custom fit the partitioning and data layout to the
dataset and the workload?
• How tominimize the size of the index by avoiding replication
of database vectors across partitions over multiple attributes?
• How to incorporate vector similarity and complex attribute
constraints with multiple attributes in a unified manner?

The following section introduces a workload-aware vector index
design that addresses these questions.

4.1 Workload-aware Partitioning and Indexing

Algorithm 1: ConstructBalancedQDTree

Input: % = partition and its vectors;& = queries;
1 function ConstructBalancedQDTree(%,&)
2 � ← ExtractCutPredicates(Q)
3 root← init_qdtree_node()
4 if |% | > MIN_SIZE then
5 split_predicates← ∅
6 left_split_size← 0
7 while left_split_size ≤ |% | / 2 do
8 predicate← GetMinCostPredicate(% ,&)
9 � ← �\ {predicate}

10 split_predicates← split_predicates ∪ {predicate}
11 (%!, %') ← % .split(split_predicates)
12 left_split_size← |%! |
13 (&;4 5 C ,&A86ℎC) ← &.B?;8C (%! .�, %' .�)
14 root.left← ConstructBalancedQDTree(%!,&!)
15 root.right← ConstructBalancedQDTree(%' ,&')
16 return root

The goal of our workload-aware vector index design is to gen-
erate a partitioning of a vector database for a given hybrid query
workload where attribute constraints of queries feature various
predicates over multiple attributes. To obtain such an index, we ex-
tend the qd-tree data structure [46], which is a generalization of the
classical kd-tree [8] for workload-aware partitioning of relational

Algorithm 2: GetMinCostPredicate

Input: % = partition and its vectors;& = queries;
1 function GetMinCostPredicate(+ ,&)
2 � ← ExtractCutPredicates(Q)
3 (min_predicate, min_cost)← (nil, 2|Q|)
4 for predicate ∈ � do
5 (%!, %') ← %.B?;8C (?A43820C4)
6 (&!,&') ← &.B?;8C (%! .�, %' .�)
7 2>BC ← &! .B8I4 () +&' .B8I4 ()
8 if 2>BC <<8=_2>BC then
9 (min_predicate, min_cost)← (predicate, cost)

10 return min_predicate

tables. In a nutshell, a qd-tree creates a tree-based partitioning of a
table by iteratively splitting the tuples using predicates present in
a given query workload. The root node of a qd-tree corresponds
to the entire dataset and is associated with a Boolean cut predicate
? such that its left subtree consists of tuples that satisfy ? and its
right subtree consists of tuples that satisfy ¬? . The cut decisions are
made such that the number of partitions that need to be accessed for
processing the given query workload is minimized. Given a qd-tree,
a disjoint partitioning of the dataset can be generated from its leaves
by routing each tuple from the root to the leaves by evaluating the
nodes’ predicates on the tuple. A concise representation of tuples
within each partition, called semantic description, is generated from
its ancestor’ cut predicates and used to decide if the tuples within
that partition can answer a given query.

The qd-tree’s ability to consider various predicates over mul-
tiple attributes from a given workload enables us to address the
first two challenges. The key issue for adapting qd-trees to hybrid
query workloads is to consider both vector similarity and attribute
constraints on the tuples and queries when making cut decisions.
To accomplish this, we design a transformation methodology to
represent vector similarity constraints using categorical attributes
(Section 4.1.1). This enables us to represent both vector similarity
constraints and relational predicates on attributes in a uniform
manner. Then, our modified qd-tree construction algorithm gener-
ates a partitioning of vectors by jointly considering vector search
predicates and structured attribute predicates across multiple at-
tributes (Section 4.1.2). The result of this approach is a partitioned
index design that accounts for both the underlying vector database
and the predicates of the given hybrid query workload. Finally, we
process a batch of queries by routing them to the relevant partitions
based on the semantic description of the partitions (Section 4.1.3).

4.1.1 Incorporating vector similarity constraints. A qd-tree relies on
unary Boolean predicates (range or equality predicates) extracted
from a query workload for making cut decisions, and for data and
query routing. We augment the query vectors and the database
tuples with a categorical attribute based on vector similarity con-
straints to incorporate vector similarity constraints into qd-tree
construction. First, we apply k-means clustering to the vectors in
+ to obtain a list of centroids � , and assign an integer identifier
2.83 to each centroid s.t. 2.83 ∈ [0, |� | − 1]. Then, each tuple in +

is mapped to the centroid with the highest similarity, i.e., nearest
centroid in vector space, and the centroid identifier is used as a
categorical attribute representing the vector. Similarly, the vector
similarity constraint in each query @ ∈ & can be transformed to a
Boolean predicate by representing the vector with their closest<

High-Throughput Vector Similarity Search in Knowledge Graphs SIGMOD ’23, June 18–23, 2023, Sea�le, WA

Vector Type

“song”

“song”

“artist”

0

0

Centroid

“artist” 1

“artist” 1

“artist” 1

“song” 1

ID

0

0

1

2

3

4

5

6

0

(a) Vectors & attributes

Vector Filter

type=“song”

type=“song”

type=“artist”

0

0

1

Centroid

type=“song” 1

(b) Workload

type=“song”

centroid=0 centroid=1

P
0

P
1

P
2

P
3

(c) Constructed qd-tree

P
0

P
1

P
2

P
3

Vector TypeID

“song”

“song”

0

1

0

“song”6

“artist”

“artist”

“artist”

3

4

5

“artist”2

(d) Resulting partitioning

Figure 3: (a) A sample vector database, (b) hybrid query workload, (c) and example qd-tree constructed over vectors in (a) based

on the workload (b), and (d) 4-way partitioning of tuples in (a) based on the qd-tree in (c).

centroids. Intuitively, this gives us a subset of tuples from+ that are
relevant to a given query based on their vector similarity where the
parameter< controls the size of this subset. After the transforma-
tion, each tuple C ∈ + has a centroid assignment C .2 and each query
has a set of< centroid assignment @.2 = {20, 21, . . . 2<}. For the rest
of the paper, we use C .2 and @.2 to denote the closest centroid for a
tuple C , and the set of< closest centroids for a query @, respectively.
Figure 3a and Figure 3b illustrates centroid assignments for + and
& , respectively, where |� | = 2 and< = 1.

4.1.2 Partition generation. Given a hybrid query workload, we
extract all unary Boolean predicates that appear in attribute con-
straints, and we extract the centroids from vector similarity con-
straints using the transformation strategy described in Section 4.1.1.
For instance, the set of cut predicates extracted from the example
workload in Figure 3b are as follows:

{(C .�C~?4 = song), (C .�C~?4 = artist), (C .2 ∈ {20}), (C .2 ∈ {21})}

Each node in a qd-tree corresponds to a partition of tuples+ and
is associated with a semantic description � that is used to process
cuts. As in [46], the semantic description of a qd-tree node is a
bitmap denoting which of the extracted predicates evaluate to true
for any tuple in the partition.

Optimal qd-tree construction is a computationally hard prob-
lem [46], therefore, we adopt a greedy construction process similar
to the one presented by Yang et al. [46]. We observe that the default
greedy strategy presented by Yang et al. [46] results in imbalanced

qd-trees with high construction time and low pruning power, i.e.,
the number of partitions that can be skipped for a given hybrid
query workload is low. This is due to the presence of highly selec-
tive predicates from attribute constraints (as shown in Table 1) and
centroid assignments. To this end, we propose a modified greedy
qd-tree construction algorithm (ConstructBalancedQDTree pro-
cedure presented in Algorithm 1) to create balanced qd-trees. Al-
gorithm 1 starts with a single partition that contains all tuples in
+ , and it recursively creates balanced splits of the nodes until a
minimum partition size, MIN_SIZE, is reached (line 4). To ensure
splits are balanced, our algorithm chooses multiple predicates from
the set of cut predicates for splitting the current subtree root instead
of a single one. For each split decision, Algorithm 1 iterates over the
set of predicates and greedily selects the predicate minimizing the
splitting cost (line 7 – 12). Recall from Section 3.1, our objective is to
minimize the number of tuple scans for evaluating& . Consequently,
the greedy predicate selection aims to minimize the number of par-
titions that need to be accessed when evaluating a hybrid query

workload & (i.e., maximize the number of partitions that can be
skipped for evaluating&). Given a partitioning % = {%8 , · · · %=} of+
and a workload& ,� (%,&) computes the total number of partitions
that need to be accessed as follows:

� (%,&) =
∑

%8 ∈%
|%8 |

∑

@∈&

{

1, (D1BD<4B (%8 .�, @)
0, >Cℎ4AF8B4

(1)

Here, |%8 | corresponds to the number of tuples in a partition
%8 , %8 .� corresponds to the semantic description of a partition
%8 , and Subsumes is a binary function indicating whether parti-
tion %8 needs to be accessed when processing @, i.e., %8 ’s semantic
description %8 .� subsumes @’s constraints. Algorithm 1 invokes
GetMinCostPredicate procedure described in Algorithm 2 to min-
imize the above cost function. For each predicate in a workload
& , the splitting cost in Algorithm 2 is computed as the number of
queries that need to be routed to both subtrees, i.e., the number that
need to access both partitions after the split (lines 5 – 7). Figure 3
shows an example qd-tree and database partitioning constructed
over a toy database and workload.

4.1.3 �ery processing. Given a qd-tree constructed by Algorithm
1, its leaf nodes define a disjoint, complete partitioning of the orig-
inal database. The partitions’ semantic descriptions are used for
determining the set of partitions that need to be accessed for evalu-
ating a given query. An incoming query is routed to all partitions
whose semantic description subsumes the attribute constraints and
centroid assignments of that query. Note that this qd-tree-based
partitioning of a database is orthogonal to vector query processing,
and a separate ANN index can be created within each partition
similar to the Strategy C described in Section 2.2. In this work, we
adopt a per-partition clustering-based ANN index, i.e., we create a
separate IVF index within each partition and perform vector simi-
larity search over the IVF indices of the partitions whose semantic
description subsumes the query predicates.

4.1.4 Analysis. HQI construction consists of two tasks: (i) building
a qd-tree using Algorithm 1; and (ii) training an IVF index for
each partition corresponding to the qd-tree leaves. In the worst-
case, if the resulting qd-tree becomes degenerate, the complexity
of Algorithm 1 grows as $ (|+ |2). This can only happen when the
workload consists of |+ | many cut predicates and each predicate
evaluates to true for a unique set of |+ |−1 rows in+ . However, this is
a pathological example and we do not observe such imbalance in qd-
trees generated by Algorithm 1 in practice. In the case of a balanced
qd-tree, the complexity of Algorithm 1 grows as$ (|+ | log ?) where

SIGMOD ’23, June 18–23, 2023, Sea�le, WA Mohoney, et al.

? is the number of vector partitions in the resulting qd-tree. For

each such partition %8 , training an IVF index with
√

|%8 | centroids
has a time complexity of $ (|%8 |

√

|%8 |). For a balanced qd-tree, we

have ∀8 : |%8 | = |+ |? . Therefore, the total cost of building ? instances

of IVF indexes is$ (|+ |
√

|+ |
?). Thus, the overall time complexity of

building a HQI for a balanced qd-tree is $
(

|+ | (log? +
√

|+ |
?)

)

.

4.2 Attribute constraint aware ANN index

The workload-aware indexing strategy described in Section 4.1
reduces the total number of tuples scanned by pruning partitions ir-
relevant to the query.Within each partition, we employ a clustering-
based ANN index for performing vector similarity search. We can
eliminate unnecessary vector distance computations within the
ANN index by constructing a structured index over attributes of
tuples in + and using sideways information passing between the
two indices, i.e., by pushing a succinct representation of attribute
constraints into the ANN index. We achieve this by evaluating the
attribute constraint on a structured index (such as B-Tree Scan) and
construct a bitmap that encodes the set of resultant tuple iden-
tifiers. We then pass this bitmap encoding of the filtered tuple
identifiers to the ANN index along with the query vector. We mod-
ify the corresponding search algorithm of the underlying ANN
index such that this bitmap is used to skip distance computations
for vectors that would be discarded anyway due to not satisfying
the attribute constraints. Specifically, we modify the index scan
phase of clustering-based indexes such as IVF to use bitmap tests
to skip vector distance computations while scanning posting lists.
A similar strategy can be applied to graph-based indices such as
HNSW by using bitmap tests to exclude vectors from the candidate
set during the graph traversal phase [12, 44].

Pushing bitmaps into the ANN index to prune unnecessary vec-
tor distance computations is orthogonal to the partitioning scheme
and can be used in a standalone manner to incorporate attribute
constraints into existing vector similarity search techniques. Indeed,
this is similar to Strategy B (Section 2.2) and is gaining popularity
for the online evaluation of hybrid queries in open-source vector
similarity search libraries and commercial systems [23, 42, 44]. One
potential limitation with its standalone application is that vector
index construction is oblivious to the structured attributes. There-
fore, evaluating queries with highly selective constraints might
require accessing a large portion of the index. Combined with our
workload-aware index layout, this approach can reduce both the
portion of the index that needs to be accessed and the number of
distance computations performed, as shown in Section 6.

5 BATCH QUERY OPTIMIZATION

The workload-aware index design and query processing strategy
from Section 4 utilize the information of past queries and reduce
the total number of tuple scans and vector distance computations
by skipping partitions irrelevant to a given query. The batch na-
ture of query processing provides optimization opportunities for
further eliminating redundant computations that are orthogonal to
workload indexing. Specifically, we observe from our motivating
workload that a subset of query vectors and attribute constraints

Algorithm 3: BatchProcessing

Input: � = IVF index;& = query workload; : = Number of nearest neighbors
to return; =?A>14 = number of posting lists to scan for each query

1 function BatchProcessing(� ,&, :,=?A>14)
2 � ← ExtractPredicates(&)
3 ' = ResultsHeap(num_results= |& | , max_size=k)
4 for filter 5 ∈ � do
5 & 5 ← GroupBy(& , 5)
6 # ← FindNearestCentroids(& 5 , � , =?A>14)
7 for centroid 2 ∈ # do
8 &2

5
= GroupBy(& 5 , 2)

9 candidates = ApplyFilter (� [2], filter)
10 (neighbors, dist) = KNN(&2

5
, candidates, :)

11 for q ∈ &2
5
do

12 ' [@.83].push(neighbors[@.83], dist[@.83])
13 return '.ids, '.values

are used by a majority of the queries in the workload (Section 2.1).
As such, given a workload of hybrid queries, we can batch queries
based on the similarity of their constituent vectors and attribute
constraints and execute them in batches. By sharing tuple scans
and vector distance computations across a batch of queries, we can
improve throughput without impacting result quality.

Batching queries by their attribute constraints is a commonly
used technique in commercial solutions to amortize the cost of
evaluating constraints across a batch of queries containing the same
attribute constraint. This strategy is particularly effective for our
motivating workload given the frequent occurrence of a small set of
templates and their corresponding attribute constraints, as shown
in Table 1. Batching queries based on vector similarity, however,
provides an opportunity to eliminate redundant tuple scans and
vector distance computations by sharing ANN index traversals,
which is the main bottleneck for hybrid query execution. Consider
the IVF indexes created within each qd-tree partition. A query
vector is routed to a subset of posting lists based on the vector’s
nearest centroids, and each posting list is exhaustively scanned to
find similar vectors. Our key idea is to first find the subset of queries
that need to be evaluated over each posting list by grouping queries
based on their vector similarity, i.e., by their nearest centroids in the
IVF index. Then, we calculate the distances between grouped query
vectors and posting list vectors using efficient matrix multiplication
instead of exhaustively scanning the posting list for each query.

We outline the aforementioned batch execution of a hybrid query
workload on an IVF index in Algorithm 3. Given a hybrid query
workload& and an IVF index � over a set of vectors from a partition
%8 , Algorithm 3 evaluates queries in batches as follows:

(1) Queries in & are first grouped based on the predicates in
their attribute constraints (line 5).

(2) Within each group, =?A>14 nearest centroids for each query
vector are obtained (line 6) and a list of query vectors per
centroid is produced (line 8).

(3) For each posting list, the set of candidate vectors that satisfy
the attribute constraint is obtained (line 9). Then, distances
between candidate vectors and query vectors are computed
as a single matrix multiplication operation (line 10).

(4) Finally, a min-heap for each query is updated with the dis-
tances computed by matrix multiplication to keep track of
the : nearest results for each query (line 12).

High-Throughput Vector Similarity Search in Knowledge Graphs SIGMOD ’23, June 18–23, 2023, Sea�le, WA

6 EXPERIMENT RESULTS

For our evaluation, we use both industrial and publicly available
benchmark datasets and compare HQI against different recent solu-
tions. We first describe our experimental setup (Section 6.1), then,
we present an end-to-end performance evaluation of HQI (Sec-
tion 6.2), present a series of microbenchmarks of our technical
contributions (Section 6.3), and demonstrate the generalizability
of HQI to unseen workloads (Section 6.4). The highlights of our
results compared to existing solutions are:

(1) Workload-aware partitioning and indexing of the vectors pro-
vides up to a 95% reduction in the number of tuples scanned
and vector distance computations, depending on selectivity.

(2) The proposed query batching strategies are effective in shar-
ing vector distance computations across a batch of hybrid
queries, providing up to an 19× improvement in overall work-
load evaluation time.

(3) Combined together, HQI provides up to a 31× improvement
in overall workload execution time.

6.1 Experimental Setup

Table 2: Evaluation datasets (=@ = Number of query vectors).

Dataset =@ Datatype Metric Attributes

SIFT-100M 10K 128 uint8 L2 synthetic

MSTuring-100M 100K 100 f32 L2 synthetic

YandexT2I-100M 100K 200 f32 IP synthetic

LP - 128 f32 IP entity types

RelatedQS - 128 f32 IP entity properties

Datasets. Table 2 summarizes the properties of publicly avail-
able datasets and the randomly sampled industrial dataset we use
for evaluation. The public datasets we use are SIFT-100M [34],
MSTuring-100M, and YandexT2I-100M; all from the BIGANN bench-
mark [22]. Vectors in these datasets do not contain any attributes,
andwe follow prior work [42, 44] for generating synthetic attributes
for vectors and query predicates. We assign each vector in the
dataset two random floating point attributes, A and B. We then gen-
erate 20 range predicates, 10 on attribute A and 10 on attribute B,
such that the selectivity of a range predicate 8 over a given column
is 2−8 : 8 ∈ [0, 9], i.e., 2−8 fraction of the vectors satisfy the predi-
cate 8 . We then construct the query log by performing a Cartesian
product of all 20 filters and all =@ query vectors provided with the
dataset resulting in 20 · =@ queries.

For the industrial workload we use two datasets: RelatedQS
and LinkPrediction (LP). For RelatedQS, we use a subset of KG
entity embedding vectors and a randomly sampled and aggregated
query workload from anonymized, historical queries. The hybrid
query workload is obtained by transforming the historical query log
into (Template, Entity) pairs, where Template is a conjunctive
Boolean predicate over KG entity attributes, and Entity is the em-
bedding vector of the corresponding KG entity. For LP, we generate
the workload by sampling entites and relations from an internal
KG to form (Template, Entity) pairs, however here the Template
corresponds to a Boolean predicate over the type of the entity. The
size of query sets accompanying these workloads range from a few
millions to hundreds of millions of queries. RelatedQS represents
an industrial workload that has historical queries and therefore can

benefit from both workload-aware indexing and batching, while the
LP workload does not have historical queries and only benefits from
batching. The vector representations for KG entities are obtained
by training the GraphSage model [14] over the KG.

We use all datasets in an end-to-end evaluation in Section 6.2
and use RelatedQS and MSTuring-100M for additional microbench-
mark experiments in Section 6.3. For end-to-end evaluation with
RelatedQS, we use all queries from one of its four equal temporal
splits (C0 from Table 1) for constructing the workload-aware index
and use the trained index to process all queries from the same split.
We run all experiments using a single AWS r5.16xlarge instance
with 64 vCPUs and 512 GiB of DRAM.

Evaluation metrics. We use the following metrics for a given
hybrid query workload: 1) total query processing time, 2) the num-
ber of tuples scanned to process the workload, 3) top-: recall. We
compute recall as the fraction of results present in the ground
truth (obtained via exhaustive search, i.e., Strategy A from Sec-
tion 2.2). Unless otherwise noted, we report runtime numbers for
'420;; ≥ 0.8 for : = 10, where =?A>14 , the number of posting lists
scanned, is tuned for each query template to reach the target recall.

Compared approaches. We compare our proposed techniques
against the strategies described in Section 2.2. Specifically, we com-
pare the following specific hybrid query processing strategies that
are used in several commercial offerings [1–3, 25, 42, 44]:

• PreFilter: Strategy B using IVF index implementation based
on the FAISS [23] open source library.
• Range: Strategy Cwhere vectors are range partitioned based
on a frequently searched attribute, and a separate FAISS-
based IVF index is created within each partition.
• PostFilter: Strategy D implemented using FAISS where at-
tribute constraints are evaluated after vector search.
• HQI: Our proposedworkload-aware approachwhere vectors
are partitioned using the qd-tree constructed using a given
hybrid query workload, and queries are batched based on
their attribute constraints and vector similarity.

Strategy A from Section 2.2 is omitted as exhaustively scanning
all vectors is prohibitively slow for large datasets used in our ex-
periments. Unless otherwise specified, we batch queries by their
attribute constraints by default for all baselines, as it is a commonly
used optimization strategy in many existing commercial solutions.
Similarly, we use the bitmap pushdown technique described in Sec-
tion 4.2 to reduce the number of vector distance computations for
all approaches. FAISS recently introduced the capability to push
attribute filters into an ANN index for pruning vector distance com-
putations1. We use this feature to implement a bitmap based ID
selector, which allows us to push attribute filter results into the IVF
index when required. In addition, we use

√
= clusters for training an

IVF index, where = is the number of vectors in a given partition or a
dataset for a non-partitioned index. For HQI, we tune< and report
runtime for the best configuration (< = 0, where centroids are not
used for query routing, is used as it provides the best end-to-end
performance over RelatedQS as described in Section 6.5).

1https://github.com/facebookresearch/faiss/commit/
dd814b5f146b9fb5f5f76070ff1e27b86e31a058
2Attribute constraints in RelatedQS and LP contain existence (IS NOT NULL) and
membership (IN) checks over multiple attributes, hence, Range cannot be applied.

High-Throughput Vector Similarity Search in Knowledge Graphs SIGMOD ’23, June 18–23, 2023, Sea�le, WA

layout for hybrid workloads. Proceedings of the VLDB Endowment 12, 13 (2019),
2393–2407.

[5] Hongyun Cai, Vincent W Zheng, and Kevin Chen-Chuan Chang. 2018. A com-
prehensive survey of graph embedding: Problems, techniques, and applications.
IEEE Transactions on Knowledge and Data Engineering 30, 9 (2018), 1616–1637.

[6] Ines Chami, Sami Abu-El-Haija, Bryan Perozzi, Christopher RÃ©, and Kevin
Murphy. 2022. Machine Learning on Graphs: A Model and Comprehensive
Taxonomy. Journal of Machine Learning Research 23, 89 (2022), 1–64. http:
//jmlr.org/papers/v23/20-852.html

[7] Jialin Ding, Umar Farooq Minhas, Badrish Chandramouli, Chi Wang, Yinan Li,
Ying Li, Donald Kossmann, Johannes Gehrke, and Tim Kraska. 2021. Instance-
optimized data layouts for cloud analytics workloads. In Proceedings of the 2021
International Conference on Management of Data. 418–431.

[8] JeromeH Friedman, Jon Louis Bentley, and Raphael Ari Finkel. 1977. An algorithm
for finding best matches in logarithmic expected time. ACM Transactions on
Mathematical Software (TOMS) 3, 3 (1977), 209–226.

[9] Albert Gordo, Jon Almazán, Jerome Revaud, and Diane Larlus. 2016. Deep
image retrieval: Learning global representations for image search. In European
conference on computer vision. Springer, 241–257.

[10] Mihajlo Grbovic and Haibin Cheng. 2018. Real-time personalization using em-
beddings for search ranking at airbnb. In Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining. 311–320.

[11] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for
networks. In Proceedings of the 22nd ACM SIGKDD international conference on
Knowledge discovery and data mining. 855–864.

[12] Rentong Guo, Xiaofan Luan, Long Xiang, Xiao Yan, Xiaomeng Yi, Jigao Luo,
Qianya Cheng, Weizhi Xu, Jiarui Luo, Frank Liu, et al. 2022. Manu: A Cloud
Native Vector Database Management System. arXiv preprint arXiv:2206.13843
(2022).

[13] Malay Haldar, Mustafa Abdool, Prashant Ramanathan, Tao Xu, Shulin Yang,
Huizhong Duan, Qing Zhang, Nick Barrow-Williams, Bradley C Turnbull, Bren-
dan M Collins, et al. 2019. Applying deep learning to airbnb search. In Proceedings
of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining. 1927–1935.

[14] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. Advances in neural information processing systems 30
(2017).

[15] Helia Hashemi, Aasish Pappu, Mi Tian, Praveen Chandar, Mounia Lalmas, and
Benjamin Carterette. 2021. Neural instant search for music and podcast. In
Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data
Mining. 2984–2992.

[16] Shizhu He, Kang Liu, Guoliang Ji, and Jun Zhao. 2015. Learning to represent
knowledge graphs with gaussian embedding. In Proceedings of the 24th ACM
international on conference on information and knowledge management. 623–632.

[17] Benjamin Hilprecht, Carsten Binnig, and Uwe Röhm. 2020. Learning a parti-
tioning advisor for cloud databases. In Proceedings of the 2020 ACM SIGMOD
International Conference on Management of Data. 143–157.

[18] MD Zakir Hossain, Ferdous Sohel, Mohd Fairuz Shiratuddin, and Hamid Laga.
2019. A comprehensive survey of deep learning for image captioning. ACM
Computing Surveys (CsUR) 51, 6 (2019), 1–36.

[19] Ihab F. Ilyas, Theodoros Rekatsinas, Vishnu Konda, Jeffrey Pound, Xiaoguang Qi,
and Mohamed Soliman. 2022. Saga: A Platform for Continuous Construction and
Serving of Knowledge at Scale. In Proceedings of the 2022 International Conference
on Management of Data. 2259–2272. https://doi.org/10.1145/3514221.3526049

[20] Piotr Indyk and Rajeev Motwani. 1998. Approximate nearest neighbors: towards
removing the curse of dimensionality. In Proceedings of the thirtieth annual ACM
symposium on Theory of computing. 604–613.

[21] Herve Jegou, Matthijs Douze, and Cordelia Schmid. 2010. Product quantization
for nearest neighbor search. IEEE transactions on pattern analysis and machine
intelligence 33, 1 (2010), 117–128.

[22] Hervé Jégou, Romain Tavenard, Matthijs Douze, and Laurent Amsaleg. 2011.
Searching in one billion vectors: re-rank with source coding. In 2011 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE,
861–864.

[23] Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2017. Billion-scale similarity
search with GPUs. https://doi.org/10.48550/ARXIV.1702.08734

[24] Tim Kraska. 2021. Towards instance-optimized data systems. Proceedings of the
VLDB Endowment 14, 12 (2021).

[25] Jie Li, Haifeng Liu, Chuanghua Gui, Jianyu Chen, Zhenyuan Ni, Ning Wang,
and Yuan Chen. 2018. The design and implementation of a real time visual
search system on jd e-commerce platform. In Proceedings of the 19th International
Middleware Conference Industry. 9–16.

[26] David C Liu, Stephanie Rogers, Raymond Shiau, Dmitry Kislyuk, Kevin C Ma,
Zhigang Zhong, Jenny Liu, and Yushi Jing. 2017. Related pins at pinterest:
The evolution of a real-world recommender system. In Proceedings of the 26th
international conference on world wide web companion. 583–592.

[27] Zhuoran Liu, Leqi Zou, Xuan Zou, CaihuaWang, Biao Zhang, Da Tang, Bolin Zhu,

Yijie Zhu, Peng Wu, Ke Wang, and Youlong Cheng. 2022. Monolith: Real Time
Recommendation System With Collisionless Embedding Table. In 5th Workshop
on Online Recommender Systems and User Modeling (ORSUM2022), in conjunction
with the 16th ACM Conference on Recommender Systems.

[28] Yu A Malkov and Dmitry A Yashunin. 2018. Efficient and robust approximate
nearest neighbor search using hierarchical navigable small world graphs. IEEE
transactions on pattern analysis and machine intelligence 42, 4 (2018), 824–836.

[29] Shervin Minaee, Nal Kalchbrenner, Erik Cambria, Narjes Nikzad, Meysam
Chenaghlu, and Jianfeng Gao. 2021. Deep learning–based text classification:
a comprehensive review. ACM Computing Surveys (CSUR) 54, 3 (2021), 1–40.

[30] Jason Mohoney, Roger Waleffe, Henry Xu, Theodoros Rekatsinas, and Shivaram
Venkataraman. 2021. Marius: Learning massive graph embeddings on a sin-
gle machine. In 15th {USENIX} Symposium on Operating Systems Design and
Implementation ({OSDI} 21). 533–549.

[31] Shumpei Okura, Yukihiro Tagami, Shingo Ono, and Akira Tajima. 2017.
Embedding-based news recommendation for millions of users. In Proceedings of
the 23rd ACM SIGKDD international conference on knowledge discovery and data
mining. 1933–1942.

[32] Mingdong Ou, Peng Cui, Jian Pei, Ziwei Zhang, and Wenwu Zhu. 2016. Asym-
metric transitivity preserving graph embedding. In Proceedings of the 22nd ACM
SIGKDD international conference on Knowledge discovery and data mining. 1105–
1114.

[33] Aditya Pal, Chantat Eksombatchai, Yitong Zhou, Bo Zhao, Charles Rosenberg,
and Jure Leskovec. 2020. Pinnersage: Multi-modal user embedding framework
for recommendations at pinterest. In Proceedings of the 26th ACM SIGKDD Inter-
national Conference on Knowledge Discovery & Data Mining. 2311–2320.

[34] Loïc Paulevé, Hervé Jégou, and Laurent Amsaleg. 2010. Locality sensitive hash-
ing: A comparison of hash function types and querying mechanisms. Pattern
recognition letters 31, 11 (2010), 1348–1358.

[35] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learning
of social representations. In Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining. 701–710.

[36] An Qin, Mengbai Xiao, Yongwei Wu, Xinjie Huang, and Xiaodong Zhang. 2021.
Mixer: efficiently understanding and retrieving visual content at web-scale. Pro-
ceedings of the VLDB Endowment 14, 12 (2021), 2906–2917.

[37] P Griffiths Selinger, Morton M Astrahan, Donald D Chamberlin, Raymond A
Lorie, and Thomas G Price. 1979. Access path selection in a relational database
management system. In Proceedings of the 1979 ACM SIGMOD international
conference on Management of data. 23–34.

[38] Liwen Sun, Michael J Franklin, Sanjay Krishnan, and Reynold S Xin. 2014. Fine-
grained partitioning for aggressive data skipping. In Proceedings of the 2014 ACM
SIGMOD international conference on Management of data. 1115–1126.

[39] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei.
2015. Line: Large-scale information network embedding. In Proceedings of the
24th international conference on world wide web. 1067–1077.

[40] Roger Waleffe, Jason Mohoney, Theodoros Rekatsinas, and Shivaram Venkatara-
man. 2023. MariusGNN: Resource-Efficient Out-of-Core Training of Graph Neural
Networks. In ACM SIGOPS European Conference on Computer Systems (EuroSys).

[41] Jizhe Wang, Pipei Huang, Huan Zhao, Zhibo Zhang, Binqiang Zhao, and Dik Lun
Lee. 2018. Billion-scale commodity embedding for e-commerce recommendation
in alibaba. In Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining. 839–848.

[42] Jianguo Wang, Xiaomeng Yi, Rentong Guo, Hai Jin, Peng Xu, Shengjun Li, Xi-
angyu Wang, Xiangzhou Guo, Chengming Li, Xiaohai Xu, et al. 2021. Milvus:
A purpose-built vector data management system. In Proceedings of the 2021
International Conference on Management of Data. 2614–2627.

[43] Quan Wang, Zhendong Mao, Bin Wang, and Li Guo. 2017. Knowledge graph
embedding: A survey of approaches and applications. IEEE Transactions on
Knowledge and Data Engineering 29, 12 (2017), 2724–2743.

[44] Chuangxian Wei, Bin Wu, Sheng Wang, Renjie Lou, Chaoqun Zhan, Feifei Li,
and Yuanzhe Cai. 2020. Analyticdb-v: A hybrid analytical engine towards query
fusion for structured and unstructured data. Proceedings of the VLDB Endowment
13, 12 (2020), 3152–3165.

[45] Wen Yang, Tao Li, Gai Fang, and Hong Wei. 2020. Pase: Postgresql ultra-high-
dimensional approximate nearest neighbor search extension. In Proceedings of the
2020 ACM SIGMOD international conference on management of data. 2241–2253.

[46] Zongheng Yang, Badrish Chandramouli, Chi Wang, Johannes Gehrke, Yinan Li,
Umar Farooq Minhas, Per-Åke Larson, Donald Kossmann, and Rajeev Acharya.
2020. Qd-Tree: Learning Data Layouts for Big Data Analytics. In Proceedings of
the 2020 ACM SIGMOD International Conference on Management of Data. 193–208.
https://doi.org/10.1145/3318464.3389770

[47] Muhan Zhang and Yixin Chen. 2018. Link prediction based on graph neural
networks. Advances in Neural Information Processing Systems 31 (2018), 5165–
5175.

