
198

PG-Schema: Schemas for Property Graphs

RENZO ANGLES, Faculty of Engineering, Universidad de Talca, Chile
ANGELA BONIFATI, Lyon 1 University & Liris CNRS, France
STEFANIA DUMBRAVA, ENSIIE & SAMOVAR - Institut Polytechnique de Paris, France
GEORGE FLETCHER, Eindhoven University of Technology, Netherlands
ALASTAIR GREEN, LDBC, UK
JAN HIDDERS, Birkbeck, University of London, UK
BEI LI, Google, USA
LEONID LIBKIN, University of Edinburgh, UK and RelationalAI & ENS, PSL University, France
VICTOR MARSAULT, LIGM, Université Gustave Eiffel, CNRS, France
WIM MARTENS, University of Bayreuth, Germany
FILIP MURLAK, University of Warsaw, Poland
STEFAN PLANTIKOW, Neo4j, Germany
OGNJEN SAVKOVIĆ, Free University of Bozen-Bolzano, Italy
MICHAEL SCHMIDT, Amazon Web Services, USA
JUAN SEQUEDA, data.world, USA
SŁAWEK STAWORKO, RelationalAI, USA and Univ. Lille, CNRS, UMR 9189 CRIStAL, France
DOMINIK TOMASZUK, University of Bialystok, Poland
HANNES VOIGT, Neo4j, Germany
DOMAGOJ VRGOČ, University of Zagreb, Croatia and PUC Chile, Chile
MINGXI WU, TigerGraph, USA
DUŠAN ŽIVKOVIĆ, Integral Data Solutions, UK

Property graphs have reached a high level of maturity, witnessed by multiple robust graph database systems
as well as the ongoing ISO standardization effort aiming at creating a new standard Graph Query Language
(GQL). Yet, despite documented demand, schema support is limited both in existing systems and in the first

Authors’ addresses: Renzo Angles, Faculty of Engineering, Universidad de Talca, Curicó, Chile, rangles@utalca.cl; Angela
Bonifati, Lyon 1 University & Liris CNRS, Villeurbanne, France, angela.bonifati@univ-lyon1.fr; Stefania Dumbrava, ENSIIE
& SAMOVAR - Institut Polytechnique de Paris, Paris, France, stefania.dumbrava@ensiie.fr; George Fletcher, Eindhoven
University of Technology, Eindhoven, Netherlands, g.h.l.fletcher@tue.nl; Alastair Green, LDBC, London, UK, alastair@acm.
org; Jan Hidders, Birkbeck, University of London, London, UK, j.hidders@bbk.ac.uk; Bei Li, Google, Mountain View, USA,
bei@google.com; Leonid Libkin, University of Edinburgh, Edinburgh, UK and RelationalAI & ENS, PSL University, Paris,
France, l@libk.in; VictorMarsault, LIGM, Université Gustave Eiffel, CNRS, Champs-sur-Marne, France, victor.marsault@univ-
eiffel.fr; WimMartens, University of Bayreuth, Bayreuth, Germany, wim.martens@uni-bayreuth.de; Filip Murlak, University
of Warsaw, Warsaw, Poland, f.murlak@uw.edu.pl; Stefan Plantikow, Neo4j, Berlin, Germany, stefan.plantikow@neo4j.com;
Ognjen Savković, Free University of Bozen-Bolzano, Bolzano, Italy, ognjen.savkovic@unibz.it; Michael Schmidt, AmazonWeb
Services, Seattle, USA, schmdtm@amazon.com; Juan Sequeda, data.world, Austin, USA, juan@data.world; Sławek Staworko,
RelationalAI, Berkeley, USA and Univ. Lille, CNRS, UMR 9189 CRIStAL, F-59000 Lille, France, slawek.staworko@relational.ai;
Dominik Tomaszuk, University of Bialystok, Bialystok, Poland, d.tomaszuk@uwb.edu.pl; Hannes Voigt, Neo4j, Leipzig,
Germany, hannes.voigt@neo4j.com; Domagoj Vrgoč, University of Zagreb, Zagreb, Croatia and PUC Chile, Santiago de
Chile, Chile, vrdomagoj@uc.cl; Mingxi Wu, TigerGraph, Redwood City, USA, mingxi.wu@tigergraph.com; Dušan Živković,
Integral Data Solutions, London, UK, dusan.zivkovic@me.com.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2023 Copyright held by the owner/author(s).
2836-6573/2023/6-ART198
https://doi.org/10.1145/3589778

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 198. Publication date: June 2023.

HTTPS://ORCID.ORG/0000-0002-6740-9711
HTTPS://ORCID.ORG/0000-0002-9582-869X
HTTPS://ORCID.ORG/0000-0002-6664-0620
HTTPS://ORCID.ORG/0000-0003-2111-6769
HTTPS://ORCID.ORG/0000-0002-3166-6708
HTTPS://ORCID.ORG/0000-0002-8865-4329
HTTPS://ORCID.ORG/0009-0002-8102-978X
HTTPS://ORCID.ORG/0000-0002-6698-2735
HTTPS://ORCID.ORG/0000-0002-2325-6004
HTTPS://ORCID.ORG/0000-0001-9480-3522
HTTPS://ORCID.ORG/0000-0003-0989-3717
HTTPS://ORCID.ORG/0009-0006-2910-1050
HTTPS://ORCID.ORG/0000-0002-9141-3008
HTTPS://ORCID.ORG/0009-0002-3292-0349
HTTPS://ORCID.ORG/0000-0003-3112-9299
HTTPS://ORCID.ORG/0000-0003-3684-3395
HTTPS://ORCID.ORG/0000-0003-1806-067X
HTTPS://ORCID.ORG/0000-0002-2148-9592
HTTPS://ORCID.ORG/0000-0001-5854-2652
HTTPS://ORCID.ORG/0009-0009-2738-7018
HTTPS://ORCID.ORG/0009-0003-4658-3774
https://orcid.org/0000-0002-6740-9711
https://orcid.org/0000-0002-9582-869X
https://orcid.org/0000-0002-9582-869X
https://orcid.org/0000-0002-6664-0620
https://orcid.org/0000-0003-2111-6769
https://orcid.org/0000-0002-3166-6708
https://orcid.org/0000-0002-8865-4329
https://orcid.org/0009-0002-8102-978X
https://orcid.org/0000-0002-6698-2735
https://orcid.org/0000-0002-2325-6004
https://orcid.org/0000-0001-9480-3522
https://orcid.org/0000-0003-0989-3717
https://orcid.org/0009-0006-2910-1050
https://orcid.org/0000-0002-9141-3008
https://orcid.org/0009-0002-3292-0349
https://orcid.org/0000-0003-3112-9299
https://orcid.org/0000-0003-3684-3395
https://orcid.org/0000-0003-1806-067X
https://orcid.org/0000-0002-2148-9592
https://orcid.org/0000-0001-5854-2652
https://orcid.org/0009-0009-2738-7018
https://orcid.org/0009-0003-4658-3774
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3589778

198:2 Renzo Angles et al.

version of the GQL Standard. It is anticipated that the second version of the GQL Standard will include a rich
DDL. Aiming to inspire the development of GQL and enhance the capabilities of graph database systems,
we propose PG-Schema, a simple yet powerful formalism for specifying property graph schemas. It features
PG-Types with flexible type definitions supporting multi-inheritance, as well as expressive constraints based
on the recently proposed PG-Keys formalism. We provide the formal syntax and semantics of PG-Schema,
which meet principled design requirements grounded in contemporary property graph management scenarios,
and offer a detailed comparison of its features with those of existing schema languages and graph database
systems.

CCS Concepts: • Information systems → Integrity checking; • Theory of computation → Data model-

ing; Database constraints theory.

Additional Key Words and Phrases: property graphs; schemas; graph databases

ACM Reference Format:

Renzo Angles, Angela Bonifati, Stefania Dumbrava, George Fletcher, Alastair Green, Jan Hidders, Bei Li,
Leonid Libkin, Victor Marsault, Wim Martens, Filip Murlak, Stefan Plantikow, Ognjen Savković, Michael
Schmidt, Juan Sequeda, Sławek Staworko, Dominik Tomaszuk, Hannes Voigt, Domagoj Vrgoč, Mingxi Wu,
and Dušan Živković. 2023. PG-Schema: Schemas for Property Graphs. Proc. ACM Manag. Data 1, 2, Article 198
(June 2023), 25 pages. https://doi.org/10.1145/3589778

1 INTRODUCTION

Property graphs have come of age. The property graph data model is widely used in social and
transportation networks, biological networks, finance, cyber security, logistics, and planning do-
mains to represent interconnected multi-labeled data enhanced with properties given by key/value
pairs [47]. Its maturity is reflected in the ongoing efforts by ISO (International Organization for
Standardization)1 to create a standard Graph Query Language GQL, which is expected to appear in
2024 [1, 17].
Despite the maturity of commercial and open-source property graph databases, their schema

support is limited. Schemas are a fundamental building block for many data systems. They provide
structure to data in a formal language, and are used in different scenarios. In the schema-first
scenario, dominating in production settings of stable systems, the schema is provided during
the setup and plays a prescriptive role, limiting data modifications. In the flexible schema scenario,
suitable for rapid application development and data integration, schema information comes together
with data and plays a descriptive role, telling users and systems what to expect in the data. In the
partial schema scenario, applicable at advanced development stages, the user wants to enforce a
prescriptive schema over stable parts of the data and maintain a descriptive schema depicting the
whole data including its evolving parts.

A recent survey of graph processing users [45] revealed that schema compliance is a highly
desirable feature that is lacking in property graph database systems. Our inspection of eleven
property graph engines reveals a fragmented landscape, where no system offers comprehensive
support for schemas, which should allow the user to impose structure on nodes, edges, and properties
of the underlying graph instances, as well as enforce constraints. This calls for a unified property
graph schema language.
Our goal is to support the endeavours surrounding the GQL standard and accelerate the de-

velopment of a future standardized property graph schema language by presenting a concrete
proposal. Our proposal, called PG-Schema, consolidates and extends discussions arising out of the
Property Graph Schema Working Group of the Linked Data Benchmark Council [25]. This model

1ISO’s Working Group for Database Languages is known as ISO/IEC JTC1 SC32 WG3.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 198. Publication date: June 2023.

https://doi.org/10.1145/3589778

PG-Schema: Schemas for Property Graphs 198:3

Person

name STRING
Customer

id INT32

CreditCard

num STRING

Account

name STRING

Transaction

num STRING

owns

uses

charges

amount DOUBLE

deposits withdraws

Fig. 1. A diagram of a fraud graph schema.

CREATE GRAPH TYPE fraudGraphType STRICT {

(personType: Person {name STRING }),

(customerType: personType & Customer {id INT32}),

(creditCardType: CreditCard {num STRING }),

(transactionType: Transaction {num STRING }),

(accountType: Account {id INT32}),

(: customerType)

-[ownsType: owns]->

(: accountType),

(: customerType)

-[usesType: uses]->

(: creditCardType),

(: transactionType)

-[chargesType: charges {amount DOUBLE}]->

(: creditCardType),

(: transactionType)

-[activityType: deposits|withdraws]->

(: accountType)

}

Fig. 2. PG-Schema of a fraud graph schema.

of providing recommendations to standards committees has proven successful, as evidenced by
G-CORE [4] and PG-Keys [5] influencing GQL2.

To illustrate the key features required of schemas for property graphs, we now provide a concrete
example of a schema in fraud detection, a common application of graph databases [22], and
show how the schema can be used in interactive graph exploration, which in itself is a common
functionality provided by graph databases [23, 24, 38, 39, 48]. The diagram in Figure 1 represents
a schema describing a fraud graph. This schema is used by Andrea, who works as a financial
compliance officer and utilizes an interactive graph explorer to investigate fraud. The following
user session highlights how schema information can enhance Andrea’s user experience. (The
scenario is highly simplified and does not reflect the actual complexity of such tasks and applicable
techniques.)

2Seven authors of this paper are also members of ISO/IEC JTC1 SC32 WG3.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 198. Publication date: June 2023.

198:4 Renzo Angles et al.

(1) Andrea opens the graph explorer and connects to the fraud graph, one of the resources in
the data catalog. While establishing the connection, the application bootstraps by loading
schema information.

(2) Andrea first seeks to identify pairs of suspicious customers. Being aware of the schema, the
graph explorer leverages the node type definitions to construct a start page that proposes
search for any of the entities available in the domain: Customer, Account, etc. Andrea proceeds
with Customer.

(3) Based on the schema information, the graph explorer dynamically constructs a Customer

search form. It contains separate search fields for the known properties of Customer nodes: in
our example id and name (inherited from Person). Based on the data type constraints in the
schema, the id field accepts only integers as input. Andrea uses the name field to search for
customers of interest and obtains a visual representation of the customer nodes in response.

(4) To inspect potential fraudulent behavior, Andrea needs to understand the connections be-
tween customers. Exploiting the schema, the graph explorer leverages the edge type con-
straints to enumerate and propose specific types of connections. For instance, knowing
that Customers use CreditCards and Transactions charge CreditCards, it identifies structural
connection patterns, written here in Cypher/GQL style,

(x:Customer)

-[:uses]->(: CreditCard) <-[:uses]-

(y:Customer),

(x:Customer) -[:uses]->(: CreditCard)

<-[:charges]-(t:Transaction) -[:charges]->

(: CreditCard) <-[:uses]-(y:Customer)

and lets Andrea choose the patterns of interest.
(5) Andrea selects the first pattern, which aims to identify shared credit cards that were used by

two customers. Based on the schema knowledge, the application constructs and executes an
efficient query that quickly identifies all shared credit cards usages between customers.

(6) The graph explorer visualizes the results of the connection search. Upon further investigation,
Andrea confirms suspicious cross-customer usage of the same credit card and classifies the
cases as fraudulent behavior.

As illustrated by this sample session, the graph explorer would not have been able to effectively
guide Andrea through the exploration without concrete schema information. The suggestion
of property-specific search restrictions is made possible by content types. The schema-assisted
query formulation leverages node and edge types. Going beyond our example, it is easy to see
how other type and constraint information may help: for instance, key constraints could indicate
preferred search fields; more general participation constraints may improve the schema-assisted
query formulation process; orthogonal tooling for schema generation might give graph explorers
a standardized path to approximate schema information in case it has not been provided by the
graph database authors. These considerations lead to a number of design requirements (see Section
2), upon which we base our proposal. The design requirements reflect the consensus of all authors,
bringing to bear the theory and contemporary practice of graph schemas.

Our proposed PG-Schema (Property Graph Schema Language) comprises PG-Types and PG-Keys.
PG-Types specify possible combinations of labels and properties in nodes and edges of different
types, as well as constraining the types of edges allowed between nodes of certain types, with the
help of a rich inheritance mechanism and abstract types. PG-Keys [5] support diverse integrity
constraints, including keys and participation constraints. Via the mechanism of strict and loose
schemas, and partial validation, PG-Schema supports both the descriptive and prescriptive function

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 198. Publication date: June 2023.

PG-Schema: Schemas for Property Graphs 198:5

of schemas. No existing graph database system nor currently envisioned standard covers this
arsenal of features; nor do they provide full schema validation support. Our PG-Schema proposal
provides both existing systems (reviewed in Section 5) and forthcoming standards with these
features, responding to users’ demands.
We give a detailed description of PG-Schema in Section 4. As a sample, consider the graph

type definition in Figure 2, representing part of the schema diagram of Figure 1. The graph
type fraudGraphType specifies node types (e.g., personType, customerType), and edge types (e.g.,
activityType) using the ASCII-art notation of Cypher [21], also adopted by GQL. Properties are
declared in curly braces {...}. For example, the first statement defines a node type personType with
label Person and a property with key name of type STRING; and the last statement defines an edge
type activityType, whose label is either deposits or withdraws, which connects nodes of types
transactionType and accountType.
Contributions. We make the following contributions:
(1) an analysis of the requirements for property graph schemas;
(2) a proposal for a flexible, agile, usable, and expressive formalism called PG-Schema that fulfills

these requirements;
(3) full syntax and semantics of PG-Schema, making the proposal easy to incorporate into both

standards and systems;
(4) a parser for PG-Schema [9];
(5) a detailed analysis of schemas in other structured and semi-structured data models and

practical graph database systems, as well as their comparison with PG-Schema.
Our contributions impact the following audiences:

(a) graph database standards committee members, who can build upon our recommendations
for upcoming features,

(b) graph database vendors, who can use our framework as a guideline to incorporate schemas
in their systems, and

(c) researchers, who can use a concrete model of schemas for property graphs as a basis for
further investigation.

2 DESIGN REQUIREMENTS

In this section, we elaborate on the design requirements for a suitable notion of a schema for
property graphs. These requirements reflect a consensus reached in the course of a systematic
multi-phase process informed by the scientific literature, the key use cases from industry, and the
forthcoming GQL and SQL/PGQ standards [1, 2] (drafts of both standards are available to LDBC
members).

2.1 Property Graphs and Database Schemas

Beyond the ubiquity of applications that focus on graph-structured data and graph analytics, the
popularity of graph databases is also generally attributed to the following factors [34, 35, 43, 46].
Agility. Thanks to its proximity to conceptual data models, the property graph data model allows

for an efficient translation from domain concepts to database items. This facilitates high
responsiveness i.e., the ability to quickly and reliably adapt to emerging organizational and
domain needs, which is often achieved with iterative and incremental software development
processes.

Flexibility. Graph databases are aligned with an iterative and incremental development method-
ology because they do not require a rigid schema-based data governance mechanism, but
rather favor test-driven development, which embraces the additive nature of graphs. The

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 198. Publication date: June 2023.

198:6 Renzo Angles et al.

data does not need to be modeled in exhaustive detail in advance but rather new kinds of
objects and relationships can emerge naturally as new domain needs are addressed by evolving
applications.

Database schemas have a number of important functions that can be split into two general cate-
gories [12].
Descriptive function. Schemas provide a key to understanding the semantics of the data stored in

a database. More precisely, a schema allows to construct a (mental) map between real-world
information and structured data used to represent it. This knowledge is essential for any
user and application that wishes to access and potentially modify the information stored in a
database.

Prescriptive function. A schema is a contract between the database and its users that provides
guarantees for reading from the database and limits the possible data manipulations that
write to the database. To ensure that the contract is respected, a mandatory schema can be
enforced by the database management system.

Our primary objective is to develop a schema formalism for property graph databases that can
effectively serve both descriptive and prescriptive roles, while also facilitating and possibly enhanc-
ing the strengths of property graph databases. Additionally, we aim at a formalism which enforces
correct data modeling practices through its syntax. First, however, we discuss the meaning of two
fundamental terms that are essential for defining schemas but are often confused.

2.2 Types and Constraints

The notions of type and constraint are twomain building blocks in virtually any database schema for-
malism. When used sensibly, they enable the division of schematic information into self-contained
fragments that correspond to real-world classes of objects (types) and pieces of knowledge about
them (constraints). In general, there is no clear distinction between types and constraints, e.g.,
data value types are often considered as implicit (domain) constraints. We employ the following
nomenclature throughout the paper.
Type is a property that is assigned to elements (data values, nodes, edges) of a property graph

database. Types group together similar elements that represent the same kind of real-world
object and/or that share common properties, e.g., the set of applicable operations and the
types of their results.

Constraint is a closed formula over a vocabulary that permits quantification over elements of
the same type. The purpose of constraints is to impose limitations and to express semantic
information about real-world objects.

Both types and constraints impose limitations (and provide guarantees) but types are of local nature
while constraints are more global. More precisely, checking that an element has a given type should
require only inspecting the element itself and possibly the immediately incident elements. On
the other hand, validating constraints may require inspecting numerous database elements that
need not even be directly connected. Consequently, types are typically verified statically whereas
constraints are dynamically verified.

2.3 Requirements

Property Graph Types. The descriptive function of schemas can be particularly beneficial to the
agility of property graph databases. Indeed, agility requires a good grasp of the correspondence
between database objects and real-world entities, which is precisely the descriptive function of
schemas. To communicate this correspondence efficiently, schemas should allow and even encourage
a use of types that is consistent with how information about real-world objects is normally/typically

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 198. Publication date: June 2023.

PG-Schema: Schemas for Property Graphs 198:7

divided into nodes, edges, and properties of a property graph database. Nodes are used to represent
individual objects with all their attributes stored as node properties.
R1 Node types. Schemas must allow defining types for nodes that specify their labels and

properties.
Edges are used to represent relationships between objects of given kinds, and therefore should
additionally specify node types of their endpoints.
R2 Edge types. Schemas must allow defining types for edges that specify their labels and proper-

ties as well as the types of incident nodes.
Naturally, schemas must also allow a great degree of expressiveness when describing the content of
nodes and edges, i.e., sets of properties and their values.
R3 Content types. Schemas must support a practical repertoire of data types in content types.

Property Graph Constraints. To further ensure that schemas can properly fulfill the descriptive role
and strengthen the agility of property graph databases, we additionally consider the data modeling
power that a suitable schema formalism should have. We deliberately target minimal data modeling
capabilities and as a reference point we take the most basic variant of Entity-Relationship (ER)
diagrams (see Section 5), as the ultimate lower bound in the expressiveness of conceptual modelling
languages. To that end, schemas, in addition to the previous requirements, must allow defining keys,
which also provide the ability to define weak entities and functional (one-to-many) relationships.
R4 Key constraints. Schemas must allow specifying key constraints on sets of nodes or edges of

a given type.
Schemas must allow for participation constraints, which mandate that nodes of a given type
participate in a relationship of a given type.
R5 Participation constraints. Schemas must allow specifying participation constraints.

Finally, ER diagrams allow defining hierarchies of node types, a data modeling feature that is even
more crucial for property graphs, where a single node may be an instance of multiple node types.
R6 Type hierarchies. Schemas must allow specifying type hierarchies.

Flexibility. As we saw in Sections 1 and 2.1, Property Graphs in practice are often popular in
dynamic applications with volatile and evolving graph structures, where new kinds of objects are
introduced following the evolving application demands. These typical scenarios require support for
flexible schema design across the full range between schema-first and schema-later, with evolvable
and extensible schemas.
R7 Evolving data. Schemas must allow defining node, edge, and content types with a finely-

grained degree of flexibility in the face of evolving data.
R8 Compositionality. Schemas must provide a fine-grained mechanism for compositions of

compatible types of nodes and edges.

Usability. Finally, schemas must be usable in practice. The basic requirements here are that the for-
malism must be implementable, and have well-defined semantics and a human-friendly declarative
syntax. Furthermore, schemas must be easy to derive from graph instances and validation of graph
instances with respect to schemas must be efficient. These basic requirements are fundamental for
the practical success of any schema solution, as we saw in Section 1.
R9 Schema generation. There should be an intuitive easy-to-derive constraint-free schema for

each property graph that can serve as a descriptive schema in case one is not specified.
R10 Syntax and semantics. The schema language must have an intuitive declarative syntax and a

well-defined semantics.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 198. Publication date: June 2023.

198:8 Renzo Angles et al.

R11 Validation. Schemas must allow efficient validation and validation error reporting.

3 DATA MODEL

We assume countable sets L, K , and V of labels, property names (keys), and property values. A
record with keys fromK and values fromV is a finite-domain partial function 𝑜 : K ↦→ V mapping
keys to values. We write R for the set of all records.

Definition 3.1 (Property Graph). A property graph is defined as a tuple 𝐺 = (𝑁, 𝐸, 𝜌, 𝜆, 𝜋) where:
• 𝑁 is a finite set of nodes;
• 𝐸 is a finite set of edges such that 𝑁 ∩ 𝐸 = ∅;
• 𝜌 : 𝐸 → (𝑁 × 𝑁) is a total function mapping edges to ordered pairs of nodes (the endpoints of
the edge);

• 𝜆 : (𝑁 ∪ 𝐸) → 2L is a total function mapping nodes and edges to finite sets of labels (including
the empty set);

• 𝜋 : (𝑁 ∪ 𝐸) → R is a function mapping nodes and edges to records.

For an edge 𝑒 ∈ 𝐸 with 𝜌𝐺 (𝑒) = (𝑢, 𝑣), the nodes 𝑢 and 𝑣 are the endpoints of 𝑒 , where 𝑢 is the
source and 𝑣 is the target of 𝑒 . For an element 𝑥 ∈ 𝑁 ∪ 𝐸, the record 𝜋 (𝑥) collects all properties of 𝑥
(key-value pairs) and is called the content of 𝑥 .

4 PG-SCHEMA

Most existing data definition languages for relational and semistructured data consist of two parts:
types, which define the basic topological structure of the data, and constraints, which define data
integrity. Likewise, PG-Schema consists of two parts. The first part, PG-Types, describes the shape
of data and the types of its components such as nodes and edges, reflecting and extending work on
SQL/PGQ schemas [2, 26], Graph DDL in the openCypher Morpheus project for Apache Spark [36],
and GQL graph types [1, 51].3 It specifies

• node types, describing the allowed combinations of labels and contents;
• edge types, describing the allowed combinations of labels, contents, and endpoint types; and
• graph types, describing the types of nodes and edges present in the graph.

The second part describes constraints imposed on the typed data. Here, we propose a slight extension
of the existing proposal called PG-Keys [5], which specifies integrity constraints such as keys and
participation constraints, much like openCypher constraints [44].
This section starts with a guided tour of PG-Types; the full syntax can be found in Figure 3

and a parser is available on Zenodo [9] (with a third-party web alternative [56]). We then define
their semantics formally, provide a validation algorithm, and explain how PG-Types interact with
PG-Keys.

4.1 PG-Types by Example

We first discuss the basic ingredients of PG-Types (node types, edge types, and graph types) and
then move on to more sophisticated aspects such as inheritance and abstract types. We use GQL’s
predefined data types like DATE, STRING, and INT. These are orthogonal to our proposal and could, in
principle, be replaced by any other set of data types. Nevertheless, they take care of requirement R3.

Generally, there are two main options for creating types in schemas. One can create open types
and closed types. Both kinds of types are able to specify content that they require to be present.
The difference between the two is what they allow in addition to the explicitly mentioned content:
3Note that in GQL, the term GQL-schema refers not to a schema in our sense, but to a dictionary of primary catalog objects
such as graphs, graph types, or procedures.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 198. Publication date: June 2023.

PG-Schema: Schemas for Property Graphs 198:9

pgschema ::= (createType ";"?)+

createType ::= createNodeType | createEdgeType | createGraphType

createNodeType ::= CREATE NODE TYPE (ABSTRACT)? nodeType

createEdgeType ::= CREATE EDGE TYPE (ABSTRACT)? edgeType

createGraphType ::= CREATE GRAPH TYPE graphType

graphType ::= typeName graphTypeMode graphTypeImports? graphTypeElements

graphTypeMode ::= STRICT | LOOSE

graphTypeImports ::= IMPORTS typeName ("," typeName)*

graphTypeElements ::= "{" elementTypes? "}"

elementTypes ::= elementType ("," elementType)*

elementType ::= typeName | nodeType | edgeType

nodeType ::= "(" typeName labelPropertySpec ")"

edgeType ::= endpointType "-" middleType "->" endpointType

middleType ::= "[" typeName labelPropertySpec "]"

endpointType ::= "(" labelPropertySpec ")"

labelPropertySpec ::= (":" labelSpec)? OPEN? propertySpec?

labelSpec ::= "(" labelSpec ")"

| "[" labelSpec "]"

| labelSpec (("|" | "&") labelSpec | "?")

| label | typeName

propertySpec ::= "{" (properties ("," OPEN)? | OPEN)? "}"

properties ::= property ("," property)*

property ::= (OPTIONAL)? key propertyType

typeName ::= StringLiteral

label ::= 𝑙 for 𝑙 ∈ L
key ::= 𝑘 for 𝑘 ∈ K
propertyType ::= 𝑏 for 𝑏 ∈ B

Fig. 3. Core productions of the PG-Schema grammar with labels L, keys K , and base property types B

closed types forbid any content that is not explicitly mentioned, whereas open types allow any
such content. Closed types are what we have in SQL, but also in programming languages such
as C++ and Java. Open types are the default in JSON Schema. We provide both options here, and
use the keyword OPEN to indicate the places where we use open types. We use declarative syntax
closely aligned with the syntax of types in GQL. It adopts the evocative ASCII-art formatting ()

for node types and ()-[]->() for edge types, originating from Cypher [21].

Base Node Types. The most basic type is a node type. The following example specifies a node type
for representing a person:

(personType: Person {name STRING , OPTIONAL birthday DATE})

It specifies a node of type personType with a label Person. To distinguish type names from labels,
we end type names with the suffix Type. By default, types are closed. That is, Person is the only
allowed label. To permit nodes of type personType to have arbitrary additional labels, one should
use the keyword OPEN and write

(personType: Person OPEN {name STRING , OPTIONAL birthday DATE})

In terms of properties, the type requires the node to have a property name of type STRING. Optionally,
the node can have a property birthday. If it is present, it should have type DATE. No additional
properties are allowed for this node type. Again, if we would like to allow them, we should write

{name STRING , OPTIONAL birthday DATE , OPEN}

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 198. Publication date: June 2023.

198:10 Renzo Angles et al.

inside the definition. More precisely, this content description specifies that nodes should have
name of type STRING and arbitrary additional properties. If the property birthday is present, its type
should be DATE. Notice that the OPEN modifier applies independently to labels and properties: OPEN
inside {...} applies to properties only and the occurrence outside applies to labels only.

Nodes in property graphs carry sets of labels. In PG-Types, we can associate multiple labels to a
node type using the &-operator:

(customerType: Person & Customer {name STRING , OPTIONAL since DATE})

The node type customerType requires nodes to carry both labels Person and Customer, and no other
labels. In general, we specify the allowed combinations of labels with a variant of label expressions
built from ℓ (labels) and ℓ? (optional labels) using operators & (and), | (choice). Syntactically, these
constitute a subset of label expressions used by GQL and SQL/PGQ for pattern matching in queries.
We define their semantics in Section 4.2. Intuitively, A & B? would require A and additionally allow
B; and A | B gives the choice between the label A or B (not allowing both). It is easy to define an
inclusive or A \/ B as syntactic sugar for A | B | (A & B). A label expression can be accompanied with
OPEN which, if specified, allows arbitrary additional labels.
This part of PG-Schema fulfils requirement R1. Since we will introduce more advanced node

types later using inheritance, we refer to the node types that we explained here as base node types.

Base Edge Types. Let us define an edge type called friendType. Edges of type friendType carry the
labels Knows and Likes, and connect two nodes of type personType. They are required to have a
property since of type DATE. The ASCII art ()-[]->() indicates that we are talking about edges.

(: personType)

-[friendType: Knows & Likes {since DATE}]->

(: personType)

If one would like to be more liberal and allow customerType nodes on the ends of friendType edges,
one could use the |-operator:

(: personType|customerType)

-[friendType: Knows & Likes {since DATE}]->

(: personType|customerType)

One could be even more liberal and use personType OPEN to allow arbitrary labels and properties in
addition to the material required by personType. This part of PG-Schema fulfils requirement R2.

Graph Types. A graph type combines node and edge types in one syntactic construct. It includes the
types of the schema, as we will see here, but also the constraints, which we will see in Section 4.4.
Here is an example:

CREATE GRAPH TYPE fraudGraphType STRICT {

(personType: Person {name STRING , OPTIONAL birthday DATE}),

(customerType: Person & Customer {name STRING , OPTIONAL since DATE}),

(suspiciousType: Suspicious OPEN {reason STRING , OPEN}),

(: personType|customerType)

-[friendType: Knows & Likes]->

(: personType|customerType)

}

The graph type fraudGraphType contains three node types and one edge type. The keyword STRICT

specifies how a property graph should be typed against the schema. It means that, for a graph𝐺 to be
valid w.r.t. fraudGraphType, it should be possible to assign at least one type within fraudGraphType

to every node and every edge of 𝐺 . The alternative, LOOSE, allows for partial validation, addressing
R7. Informally, it means that the validation process simply assigns types to as many nodes and

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 198. Publication date: June 2023.

PG-Schema: Schemas for Property Graphs 198:11

edges in the graph as possible, but without the restriction that every node or edge should receive
at least one type. We discuss this further in Section 4.2.
We would like to point out the difference between open/closed element types and loose/strict

graph types. Why do we use different terminology (and keywords) here? Element types work
fundamentally differently from graph types. A node type of the form

(nodeType: Label {prop STRING , ...})

requires each node of type nodeType to have a property prop. A graph type such as fraudGraphType
does not require nodes of type customerType. It merely requires that every node gets assigned some
node type declared in the graph type. Therefore, an open node type can require a given label to be
present in a node, but a loose graph type cannot require a given element type to be present in the
graph.
The example also shows the keyword CREATE. If a node or edge type is created as a catalog

object, the declaration should likewise be preceded by CREATE NODE TYPE or CREATE EDGE TYPE,
respectively. Node (and edge) types outside CREATE GRAPH TYPE statements should therefore always
start with CREATE. If personType and customerType had been already created outside, one could
define fraudGraphType more succinctly as follows.

CREATE GRAPH TYPE fraudGraphType STRICT {

personType , // import the type personType

customerType , // import the type customerType

(suspiciousType: Suspicious OPEN {reason STRING , OPEN}),

(: personType|customerType)

-[friendType: Knows & Likes]->

(: personType|customerType)

}

This leads us to a subtle difference between simply referring to a type that has been declared
outside of the definition of a graph type, versus importing such a type. By default, we are always
allowed to refer to any type 𝑡 that is a catalog object. So, by omitting the import of personType and
customerType, the edge type friendType would still be well-defined. However, by importing 𝑡 we
also allow objects in the graph type to be assigned the type 𝑡 , which is important for the notion
of validity of a graph. When checking if a property graph 𝐺 is valid against FraudGraphType, one
needs to be able to assign at least one type 𝑡 to each element of 𝐺 such that 𝑡 is either declared
within FraudGraphType or imported to FraudGraphType.

Inheritance. Specifying contents for all relevant combinations of labels explicitly can be cumbersome
and error-prone. We therefore allow reusing previously defined types in definitions of other types.
Such reuse not only makes schemas more compact and modular, but also allows schema designers
to follow a natural approach of classifying things as more general or more specialised, as is done in
object-oriented modeling. With this mechanism, we fulfil requirement R6 (type hierarchies).
In the following example, the node type employeeType inherits labels and properties from

personType and salariedType.
(salariedType: Salaried {salary INT})

(employeeType: personType & salariedType)

That is, a node of type employeeType has the labels Person (inherited from personType) and Salaried

(inherited from salariedType). Its properties are name and optionally birthday (inherited from
personType), as well as salary (inherited from salariedType). Note that inheritance automatically
conflates properties that are compatible. If salariedType had a property name, then employeeType

would only be well-defined if its name were a STRING.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 198. Publication date: June 2023.

198:12 Renzo Angles et al.

Similar to nodes, PG-Types allow using edge types when specifying another edge type, which
allows inheritance for edge types:

(: employeeType)

-[buddyType: friendType {since DATE , casual BOOL}]->

(: employeeType)

The edge type buddyType is an edge of type friendType but restricts the end nodes to be of type
employeeType, i.e., end nodes also need to have a salary property and Salaried label. The type
additionally requires the properties since of type DATE and casual of type BOOL. Notice that since
is already required by friendType, so type buddyType would not change if we omitted it from
the definition of buddyType. Intuitively, we can think that inherited types collect all the property
specifications of the parent types, and add the newly specified ones. If we declared since to be
of a different type than DATE, the resulting edge type would be impossible to instantiate, and as
such it would be redundant. The precise rules for how edge types and node types of endpoints are
combined are in Section 4.2.
We also support graph inheritance, which amounts to importing all node and edge types from

one graph type to another graph type. For example, by writing
CREATE GRAPH TYPE fraudGraphType STRICT IMPORTS socialGraphType {...}

we import to fraudGraphType all types in socialGraphType.

Including Types in Label Expressions. We can combine inheritance with adding new properties or
labels. For instance, if we wrote

(employeeType: personType & salariedType {birthday DATE})

then birthdaywould be amandatory property in nodes of type employeeType, in addition to inherited
properties salary and name.

Formally, we combine properties using the ⊕-operator, inspired by mixins [13] and explained in
Section 4.2. Abstractly, if we define types

(xType: A & B {propertyA INT , propertyB INT})

(yType: B & C {propertyB INT , propertyC INT})

(zType: xType & yType)

then nodes of type zType have all labels A, B, and C, and all properties propertyA, propertyB, and
propertyC. Since both xType and yType are closed, this means that a node can be of type zType, but
not of type xType and not of type yType.
If both xType and yType were open types, i.e., declared their label sets and contents to be OPEN,

then nodes of type zType would automatically fulfill xType and yType. That is, for open types, we
support intersection types via the operator &.

More generally, in the definitions of types we allow arbitrary expressions built from labels and
previously defined types using operators ?, &, and |. Of course, declarations of node types should
only refer to node types and similarly for edge types. Also, references should not be cyclic, as is
standard in inheritance hierarchies. Notice that using | we can define a union type, which allows
going beyond base types. For instance,

(aType: A {propertyA INT})

(bType: B {propertyB INT})

(cType: aType | bType)

creates a node type cType which either has the label A or B. However, A is only allowed to occur
together with propertyA and B only with propertyB (but not A with propertyB). One cannot define
cType as a base type, since base types always admit all combinations of matching label sets and
matching property sets. Furthermore, if one of the base types were open, the derived type would
automatically be open. This holds for both label openness and property openness. However, if

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 198. Publication date: June 2023.

PG-Schema: Schemas for Property Graphs 198:13

both base types are closed, the derived type can be declared open (independently for labels and
properties).

The inclusion of types in label expressions makes the formalism highly compositional, fulfilling
requirement R8.

Abstract Types. In some cases, one may want to declare a type as abstract, which means that it
cannot be directly instantiated.

ABSTRACT (salariedType {salary INT})

(employeeType: personType & salariedType)

Notice that salariedType specifies nodes with no labels and a single property salary. On its own,
this type may not be very useful, since we expect nodes with property salary to have labels and
possibly other properties as well. Through inheritance from salariedType, the type employeeType

matches nodes with all the labels and properties allowed in personType, plus an additional property
salary.

4.2 Formal Definition and Semantics

So far we have been talking about graph types by means of syntax. We now present a syntax-
independent definition. Later we shall see how the two connect, thus providing the semantics for
our declarative syntax, and fulfilling design requirement R10.

Types and conformance. Recall from Section 3 that L is the set of labels, and R the set of all possible
records. We define a formal base type as a pair (𝐿, 𝑅), where 𝐿 ⊆ L and 𝑅 ⊆ R. We write T for the
set of all formal base types. An element (a node or an edge) with label set 𝐾 and content 𝑜 conforms
to a formal base type (𝐿, 𝑅), if 𝐾 = 𝐿 and 𝑜 ∈ 𝑅. For the formal definition, we allow arbitrary
subsets of R to form base types. In the concrete syntax of the previous section, these will be given
by record types; e.g., for the type {a INT, b STRING}, the set 𝑅 consists of all partial functions that
map a to an integer and b to a string.

Definition 4.1. A formal graph type is a tuple 𝑆 = (𝑁𝑆 , 𝐸𝑆 , 𝜈𝑆 , 𝜂𝑆) where
• 𝑁𝑆 and 𝐸𝑆 are disjoint finite sets of node and edge type names;
• 𝜈𝑆 : 𝑁𝑆 → 2T maps node type names to sets of formal base types;
• 𝜂𝑆 : 𝐸𝑆 → 2T×T×T maps edge type names to sets of triples of formal base types: one for the
source node, one for the edge itself, and one for the target node.

For brevity, we shall often refer to the elements of 𝑁𝑆 and 𝐸𝑆 as node and edge types, rather than
node and edge type names. For dealing with strict and loose typing, we will use slightly different
but connected notions, namely conformance and typings.

Definition 4.2. Let 𝐺 = (𝑁𝐺 , 𝐸𝐺 , 𝜆𝐺 , 𝜌𝐺 , 𝜋𝐺) be a property graph and 𝑆 = (𝑁𝑆 , 𝐸𝑆 , 𝜈𝑆 , 𝜂𝑆) be a
formal graph type. A node 𝑣 ∈ 𝑁𝐺 conforms to a node type 𝜏 ∈ 𝑁𝑆 if it conforms to a formal base
type in 𝜈𝑆 (𝜏). An edge 𝑒 ∈ 𝐸𝐺 conforms to an edge type 𝜎 ∈ 𝐸𝑆 if for the pair (𝑣1, 𝑣2) = 𝜌𝐺 (𝑒)
there is a triple (𝑡1, 𝑡, 𝑡2) ∈ 𝜂𝑆 (𝜎) such that 𝑣1 conforms to 𝑡1, 𝑒 conforms to 𝑡 , and 𝑣2 conforms 𝑡2. A
property graph 𝐺 conforms to a formal graph type 𝑆 if every element in 𝐺 conforms to at least one
type in 𝑆 .

The typing of 𝐺 wrt. 𝑆 is the mapping Types : 𝑁𝐺 ∪ 𝐸𝐺 → 2𝑁𝑆 ∪ 2𝑁𝑆 defined as follows for all
𝑢 ∈ 𝑁𝐺 and 𝑒 ∈ 𝐸𝐺 :

Types(𝑢) = {𝜏 ∈ 𝑁𝑆 | 𝑢 conforms to 𝜏} , Types(𝑒) = {𝜏 ∈ 𝐸𝑆 | 𝑒 conforms to 𝜏} .

Hence, 𝐺 conforms to 𝑆 if Types maps all nodes and edges to non-empty sets of types.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 198. Publication date: June 2023.

198:14 Renzo Angles et al.

Schema compilation. We now explain how to interpret the syntax described in Section 4.1 in terms
of formal graph types introduced above, thus providing the semantics for the syntax. This process,
which we call schema compilation, will effectively amount to unravelling and normalising all type
definitions.
Let 𝑇 be a syntactically represented graph type. We shall define a corresponding formal graph

type 𝑆 = (𝑁𝑆 , 𝐸𝑆 , 𝜈𝑆 , 𝜂𝑆). For 𝑁𝑆 and 𝐸𝑆 we take the sets of node and edge type names used in 𝑇 .
Because type definitions in 𝑇 are acyclic, we can use a bottom-up approach to unravel them.
Consider a node type definition (𝜏:𝐹) in 𝑇 . Recall that 𝐹 is an expression built from labels ℓ

and node type names 𝜎 using operators ?, &, and |, followed by an optional keyword OPEN and an
optional content description 𝑟 . Assume that 𝜈𝑆 is already defined over all node type names 𝜎 used
in 𝐹 (the base case is when 𝜏 is defined as a base node type). The expression 𝐹 defines the family
(𝐹) ⊆ T of formal base types allowed for type 𝜏 . Intuitively speaking, 𝐹 describes how the allowed
formal base types can be generated, starting from the simplest ones, much like a regular expression
describes how to generate words.

Let 𝑡∅ = (∅, {⊥}) and 𝑡ℓ = ({ℓ}, {⊥}), where ⊥ stands for the empty record. These are the empty
formal base type and the formal base type of a single label, with no content. We add content using
content descriptions, which are record types written as

𝑟 = { [OPTIONAL] 𝑘1 b1, . . . , [OPTIONAL] 𝑘𝑛 b𝑛, [OPEN] }
where the square brackets mean that the keywords OPTIONAL and OPEN are optional, the 𝑘𝑖s are keys
from K , and the b𝑖s are base property types such as INT or DATE. Let B𝑖 be the extent of b𝑖 (e.g., Z
for INT). When the keyword OPEN is present, the semantics (𝑟) of 𝑟 is the set of all records 𝑜 ∈ R
such that for all 𝑖 ≤ 𝑛, if 𝑘𝑖 ∈ dom(𝑜) then 𝑜 (𝑘𝑖) ∈ B𝑖 , and 𝑘𝑖 must belong to dom(𝑜) unless it is
preceded by the keyword OPTIONAL. When the keyword OPEN is absent, we additionally require that
dom(𝑜) ⊆ {𝑘1, . . . , 𝑘𝑛}.

With these tools, we could define the semantics of node types with a single label and a content
description. In order to handle more complex types we need a way to combine formal base types. We
begin from records. We call records 𝑜1, 𝑜2 ∈ R compatible if 𝑜1 (𝑘) = 𝑜2 (𝑘) for each 𝑘 ∈ dom(𝑜1) ∩
dom(𝑜2). For compatible 𝑜1 and 𝑜2 we define their combination 𝑜1 ⊕ 𝑜2 as (𝑜1 ⊕ 𝑜2) (𝑘) = 𝑜1 (𝑘) for
𝑘 ∈ dom(𝑜1) and (𝑜1⊕𝑜2) (𝑘) = 𝑜2 (𝑘) for 𝑘 ∈ dom(𝑜2) \dom(𝑜1). For sets𝑂1,𝑂2 ⊆ R we let𝑂1⊕𝑂2
be the set of all records of the form 𝑜1⊕𝑜2 for compatible 𝑜1 ∈ 𝑂1 and 𝑜2 ∈ 𝑂2. This operation is akin
to the natural join known from relational algebra. The only difference is that in relational algebra
columns are fixed for each relation, whereas a set of records may contain records with different sets
of keys. We lift the ⊕ operator to formal base types by letting (𝐿1, 𝑅1) ⊕ (𝐿2, 𝑅2) = (𝐿1 ∪𝐿2, 𝑅1 ⊕𝑅2).
Note that in the absence of content, this amounts to taking the union of two sets of labels.

Now we can define the semantics recursively for all subexpressions of 𝐹 as follows:

(ℓ) =
{
𝑡ℓ
}
, (𝜎) = 𝜈𝑆 (𝜎) ,

(𝐹1?) = (𝐹1) ∪
{
𝑡∅
}
, (𝐹1 | 𝐹2) = (𝐹1) ∪ (𝐹2) ,

(𝐹1 & 𝐹2) =
{
(𝐿1, 𝑅1) ⊕ (𝐿2, 𝑅2)

�� (𝐿𝑖 , 𝑅𝑖) ∈ (𝐹𝑖) for 𝑖 = 1, 2
}
,

(𝐹1 OPEN) =
{
(𝐿, 𝑅)

�� ∃ 𝐿′ ⊆ 𝐿 such that (𝐿′, 𝑅) ∈ (𝐹1)
}
,

(𝐹1 𝑟) =
{(
𝐿, 𝑅 ⊕ (𝑟)

) �� (𝐿, 𝑅) ∈ (𝐹1)
}
.

With that, the semantics of 𝜏 is defined as

𝜈𝑆 (𝜏) = (𝐹) .

For edge types, we proceed in the same vein as for node types. Consider an edge type in𝑇 defined
as (:𝐹src)-[𝜏:𝐹]->(:𝐹tgt). Expressions 𝐹src and 𝐹tgt specifying the source and target endpoints are

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 198. Publication date: June 2023.

PG-Schema: Schemas for Property Graphs 198:15

interpreted as explained above. Expression 𝐹 defines the set ⟦𝐹⟧ ⊆ T × T × T of triples of formal
base types, according to the following rules:

⟦ℓ⟧ =
{(
𝑡∅, 𝑡ℓ , 𝑡∅

)}
, ⟦𝜎⟧ = 𝜂𝑆 (𝜎) , ⟦𝐹1 | 𝐹2⟧ = ⟦𝐹1⟧ ∪ ⟦𝐹2⟧ ,

⟦𝐹1?⟧ = ⟦𝐹1⟧ ∪
{(
𝑡∅, 𝑡∅, 𝑡∅

)}
, ⟦𝐹1 & 𝐹2⟧ = ⟦𝐹1⟧ ⊕ ⟦𝐹2⟧ ,

⟦𝐹1 OPEN⟧ =
{(
𝑡1, (𝐿, 𝑅), 𝑡2

) �� ∃ 𝐿′ ⊆ 𝐿 s.t.
(
𝑡1, (𝐿′, 𝑅), 𝑡2

)
∈ ⟦𝐹1⟧

}
,

⟦𝐹1 𝑟⟧ =
{(
𝑡1, (𝐿, 𝑅 ⊕ (𝑟)), 𝑡2

) �� (𝑡1, (𝐿, 𝑅), 𝑡2) ∈ ⟦𝐹1⟧
}
,

where the ⊕ operator is extended to sets 𝑌1, 𝑌2 ⊆ T × T × T of triples of formal base types by
𝑌1 ⊕ 𝑌2 =

{(
𝑠1 ⊕ 𝑡1, 𝑠 ⊕ 𝑡, 𝑠2 ⊕ 𝑡2

) �� (𝑠1, 𝑠, 𝑠2
)
∈ 𝑌1,

(
𝑡1, 𝑡, 𝑡2

)
∈ 𝑌2

}
.

With that, we define the semantics of the edge type 𝜏 , specified by (:𝐹src)-[𝜏:𝐹]->(:𝐹tgt), as

𝜂𝑆 (𝜏) =
(
(𝐹src) × {𝑡∅} × (𝐹tgt)

)
⊕ ⟦𝐹⟧ .

After all type definitions in 𝑇 have been unravelled, as the last step, we restrict the sets 𝑁𝑆 and
𝐸𝑆 to type names whose definitions in 𝑇 are not preceded by the keyword ABSTRACT.
Having defined how a syntactically represented graph type 𝑇 corresponds to a formal graph

type 𝑆𝑇 = (𝑁𝑆 , 𝐸𝑆 , 𝜈𝑆 , 𝜂𝑆), we can now explain validation of a property graph 𝐺 against LOOSE and
STRICT graph types. In both cases, one begins by computing the typing of 𝐺 w.r.t. 𝑆𝑇 . If 𝑇 is LOOSE,
this is where the validation of𝐺 against 𝑇 ends; the mapping Types fully specifies which element
of 𝐺 can be assigned which types from 𝑇 . If 𝑇 is STRICT, we do one more step, namely we test if
Types assigns at least one type in 𝑆𝑇 to each element in 𝐺 . If it does, we say that 𝐺 conforms to 𝑇 .

4.3 Validation and Graph Type Generation

We now discuss how to validate a graph against a graph type. For a formal graph type, the process
is straightforward: for each node type we identify the nodes that conform to it, and we use this
information to identify for every edge type the set of edges that conform to it. The validation for
general graph types, defined with the syntax in Section 4.1, can be accomplished efficiently with
an analogous procedure thanks to the mathematical simplicity of the schema compilation rules in
Section 4.2. More importantly, such a validation procedure can be implemented in a reasonably
expressive graph query language. In essence, such a language would need to support standard set
operations and would need to allow identifying nodes and edges based on their labels, property
names, and property value types. Consequently, the proposed graph schema formalism satisfies
requirement R11.
We also propose a simple method of generating a graph type for a given property graph. For

every node, we introduce an anonymous node type that fits precisely its set of labels and properties,
we gather those types into a set, and finally generate their names. Using anonymous types allows to
eliminate repetitions of syntactically identical types easily. We next apply an analogous procedure
for edges remembering to use previously identified node types of the endpoints. Finally, we group
types of all elements into the resulting graph type. This shows the satisfaction of requirement R9.
One might wish for a more refined method of schema generation, but those fall into the domain of
schema inference [11, 27], which is out of the scope of this paper and left as future work.

4.4 Adding Constraints

Our focus until now was on types in PG-Schema. The other crucial aspect of PG-Schema is its
constraints. To this end, we leverage existing work on keys for property graphs [5], called PG-Keys.
Despite their name, PG-Keys go beyond the capability of expressing key constraints. Statements in
PG-Keys are of the form

FOR 𝑝 (𝑥) <qualifier > 𝑞 (𝑥, 𝑦) ,

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 198. Publication date: June 2023.

198:16 Renzo Angles et al.

where <qualifier> specifies the kind of constraint that is being expressed and consists of combina-
tions of EXCLUSIVE, MANDATORY, and SINGLETON. Both 𝑝 (𝑥) and 𝑞(𝑥,𝑦) are queries. For instance, if we
want to express that, for every output 𝑥 of 𝑝 (𝑥) there should be at least one tuple𝑦 = (𝑦1, 𝑦2, . . . , 𝑦𝑛)
that satisfies 𝑞(𝑥,𝑦), we write FOR 𝑝 (𝑥) MANDATORY 𝑞(𝑥,𝑦1, . . . , 𝑦𝑛). SINGLETONwould mean that there
should be at most one such 𝑦 for each 𝑥 , and EXCLUSIVE that no 𝑦 should be shared by two different
values of 𝑥 . Inside the queries, we can use the keyword WITHIN to make clear what the output of
the queries is, i.e., what we want to be EXCLUSIVE, etc.

In PG-Schema, we slightly extend the syntax of PG-Keys by allowing the constraints to refer to
a type name at each point where PG-Keys allows a label. The semantics of the resulting expression
is that a type name 𝑡 matches every node that conforms to 𝑡 .
Consider the following code snippet, describing a graph with two kinds of nodes, persons

(personType) and customers (customerType), and friend-edges between persons (the edge type
friendType, requiring labels Knows and Likes and allowing label Bestie on the edge).

CREATE GRAPH TYPE socialGraphType STRICT {

(personType: Person {name STRING , id INT}),

(customerType: Customer {id INT}),

(: personType)

-[friendType: Knows & Likes & Bestie?]->

(: personType),

// Constraints

FOR (x:personType)

EXCLUSIVE MANDATORY SINGLETON x.id,

FOR (x:customerType)

MANDATORY y.id WITHIN (y:personType) WHERE y.id = x.id,

FOR (x:personType)

SINGLETON y WITHIN (x)-[y: friendType & Bestie]->()

}

Apart from type declarations, the graph type also has three PG-Key constraints. The first expresses
that the value of the property id should be a key for nodes of type personType. The second PG-
Key expresses that every id value of a customer should be an id of a person, which is a foreign
key. PG-Keys (and therefore PG-Schema) can therefore handle key and foreign key constraints
(requirement R4). The third PG-Key expresses that each person is allowed to have at most one best
friend. Notice that y: friendType & Bestie means that 𝑦 should have label Bestie and it should
conform to the type friendType. If we wrote MANDATORY y WITHIN (x)-[y:friendType]->() in the
second constraint, it would express that each person participates in the friendType relation, i.e.,
it expresses a participation constraint (requirement R5). PG-Keys are also powerful enough to
express SQL-style CHECK constraints, such as

FOR (x:salariedType)

MANDATORY x.salary >= 0 ,

or denial constraints, such as
FOR (x:customerType)

MANDATORY (x:! employeeType) ,

where ! denotes negation.
The semantics of PG-Keys is the same in loose and strict graph types. In particular, constraints

in loose graph types are not trivially satisfied and can be useful. For instance, by changing STRICT

to LOOSE in the graph type above, we allow nodes that are neither of type personType, nor of type
customerType, but id must still be a key for all personType nodes.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 198. Publication date: June 2023.

PG-Schema: Schemas for Property Graphs 198:17

Concerning validation, notice that the typing of a property graph 𝐺 w.r.t. a graph type 𝑆 can
be computed efficiently. Once we have this typing, PG-Keys can be evaluated as in the original
paper [5], using types as if they were labels in the graph.

We conclude this section with the observation that PG-Schema satisfies all requirements identi-
fied in Section 2.

5 RELATIONSHIP TO OTHER PARADIGMS

We now compare PG-Schema with existing schema formalisms and with existing graph schema
technologies. We consider a wide range of formalisms. First, we consider conceptual data models
such as the Entity-Relationship Model and its variants. Second, we discuss graph schemas for RDF
graphs stemming from the Semantic Web setting. Third, we overview schema languages for tree-
structured data formalisms such as XML and JSON. A detailed description of these existing schema
formalisms is omitted for space reasons and can be found in an external technical report [10].

In order to perform this comparison, we define several features in Section 5.1, and discuss their
support in Section 5.2. Finally, we propose potential PG-Schema extensions in Section 5.3.

5.1 Existing Graph Schema Features

We briefly describe the main features used to compare state-of-the-art graph schema languages in
Table 1. We group these into: type features, constraint features, and schema features.

Type features. We considered: (PDT) the number of built-in primitive data types, (UIT) type
constructors for union and intersection types, (TH) type hierarchies, (AT) abstract types, (OCT)
open and closed types, (EP) edge properties, (MOP) mandatory and optional properties, (CPT)
complex nested property types consisting of nested collection types, and (RC) range constraints.

Constraint features. We examined: (KC) key constraints, (MP) mandatory participation of certain
types of nodes in certain types of edges, (CC) cardinality constraints for such participation, and
(BRC) properties of binary relations defined by certain edges, such as (ir)reflexivity, (in)transitivity,
(a)cyclicity, (a/anti)symmetry, etc.

Schema features. We assessed: (TV) if validation is tractable, (ISP) if introspection is possible,
i.e., the schema can be queried like a graph instance, and finallly (SFPX) if the schema can be
specified to be (1) first, and subsequently enforcing it for all instances, (2) partial, allowing some
of its components to be descriptive (e.g., the element types) and some to be prescriptive (e.g., the
constraints), or (3) flexible, creating and updating instances in an unconstrained manner while
possibly maintaining a descriptive schema.

5.2 Support of the Features

We comment on some of the differences between PG-Schema and the existing state-of-the-art
graph schema formalisms and systems from Table 1, with a focus on existing graph technologies.

Conceptual data models. ER-based data models tend to be agnostic with respect to attribute types,
since these may depend on the back-end for which the data model is designed. Most support
inheritance hierarchies and, in that way, can model union and intersection types. Entity types can
be modelled as abstract types by indicating that their entities must belong to at least one of their
subtypes. Since the final goal is to design a relational schema, which is closed, none of them support
open types. Most ER-based models allow attributes to be composed and/or multi-valued, and so
can model complex nested values. A surprising restriction is that most conceptual data models only
allow a single key and require it to be a single attribute. A notable exception is ORM2, which can

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 198. Publication date: June 2023.

198:18 Renzo Angles et al.

Table 1. Overview of the features supported by state-of-the-art graph schema formalisms

PDT = Primitive Data Types, UIT = Union and Intersection Types, TH = Type Hierarchy, AT = Abstract Types, OCT = Open/Closed Types,
EP = Edge Properties,MOP = Mandatory/Optional Properties, CPT = Complex Property Types, RC = Range Constraints,
KC = Key Constraints, MP = Mandatory Participation, CC = Cardinality Constraints, BRC = Binary-Relation Constraints,

TV = Tractable Validation, IS = Introspection, SFPX = Schema First/Partial/fleXible

PDT UIT TH AT OCT EP MOP CPT RC KC MP CC BRC TV IS SFPX

Chen ER [15] [-] - - - c n/e m - [-] [✓] ✓ - - [-] - f
Extended ER [53] [-] n/e n/e/p n/e c n/e m/o ✓ [-] ✓ ✓ ✓ - [-] - f
Enhanced ER [18] [-] n/e n/e n c n/e m/o ✓ [-] [✓] ✓ ✓ - [-] - f
ORM2 [28] [-] n/e/p n/e/p n/e c n/e m/o [-] ✓ ✓ ✓ ✓ ✓ [-] - f
UML Class Diagrams [20] [5] n n n c n/e m/o [-] ✓ ✓ ✓ ✓ [✓] [-] - f

RDFS [14] 34 - n/e/p - o [-] [o] - - - - - - ✓ ✓ f/[p]/x
OWL [30] [33] n/e/p n/e/p - o n [m]/[o] - ✓ ✓ [-] ✓ ✓ [✓] ✓ f/[p]/x
SHACL [33] 34 n/e/p n/e/p - o/c n m/o - ✓ [✓] ✓ ✓ - [✓] ✓ f/p/x
ShEx [7, 50] 34 n/e/p n/e/p - o/c n m/o - ✓ [✓] ✓ ✓ - [✓] ✓ f/p/x

DTD [59] 6 [n] - - o/c n m/o [-] - [-] ✓ - - ✓ [✓] f/x
JSON Schema [57] 6 n/e n/e/p n o/c n m/o ✓ ✓ [✓] ✓ ✓ - ✓ ✓ f/x
RELAX NG [31] [2] n n/e/p n o/c n m/o ✓ ✓ [-] ✓ - - ✓ ✓ f/x
XML Schema [49] [47] n n/e/p n o/c n m/o ✓ ✓ ✓ ✓ ✓ - ✓ ✓ f/x

GraphQL SDL [19, 29] 5 n/[e] n/e n/e c n/e m/o ✓ [✓] ✓ ✓ - - [-] ✓ f/[p]
openCypher Schema [12] [oC] [n] n/e n/e c n/e m ✓ - ✓ ✓ - - ✓ ✓ p/x
SQL/PGQ [2] [SQL] - [n]/[e] n/e c n/e m/o ✓ [✓] ✓ ✓ [-] - ✓ - f
GQL [1] [-] - - - [o]/c n/e m/o - - - - - - ✓ - f/x

AgensGraph [3] [-] - n/e/p - o [n]/[e] m/o [✓] [✓] [✓] ✓ - - [✓] [✓] f/[p]/x
ArangoDB [6] 6 [n]/[e] n/e/p n o/c n/e m/o ✓ [✓] [✓] ✓ [✓] - [✓] ✓ f/x
DataStax [16] [25] - - - [o] n/e m/o ✓ [✓] ✓ ✓ - - ? ✓ f/[p]/x
JanusGraph [32] 12 - - - [o] n/e m/o ✓ - ✓ ✓ ✓ - ✓ [✓] f/[p]/x
Nebula Graph/nGQL [58] 5 - - - c n/e m/o - - - - - - [-] ✓ f
Neo4j [37] 11 [n] [-] [-] o n/e m/o [✓] - ✓ - [-] - - ✓ p/x
Oracle/PGQL [40] 11 [n]/[e] - - c n/e [m]/[o] - [✓] [✓] [✓] [-] - [✓] ✓ f/[p]/x
OrientDB/SQL [41] 23 [n]/[e] [n]/[e] [n]/[e] o/c n/e [m]/[o] ✓ [✓] [✓] [✓] [-] - [✓] [✓] f/[p]
Sparksee [52] 8 - - - c n/e m/o [✓] - ✓ ✓ - - [-] [✓] f
TigerGraph/GSQL [54] 8 [n]/[e] - [-] c n/e [m]/[o] ✓ [✓] ✓ - [-] [✓] [✓] ✓ f
TypeDB/TypeQL [55] 5 - n/e/p n/e/p c n/e m ✓ [✓] ✓ ✓ [-] ✓ [-] ✓ f

PG-Schema [-] n/e n/e/[-] n/e/[-] o/c n/e m/o [-] [-] ✓ ✓ [-] [-] ✓ - f/p/x

Legend: ‘✓’ = supported, ‘-’ = not supported, ‘?’ = unknown, [𝑥] = qualified 𝑥 , n/e/p = supported for (n)odes, (e)dges, and (p)roperties,
o/c = (o)pen and (c)losed, m/o = (m)andatory and (o)ptional, f/p/x = schema (f)irst, (p)artial, and fle(x)ible, oC = openCypher,

support any number of composed keys. Schema validation is not applicable in this context, as there
is no notion of a schema-independent instance.

RDF formalisms. RDF-based formalisms inherit XML datatypes with some limitations (PDT). Both
SHACL and ShEx are based on a kind of open semantics in which the closeness of a constraint needs
to be specified with a keyword close (OCT). The element properties are expressible only over the
nodes, except the recent proposal of RDF-star, that extends RDF exactly with properties over edges
(EP). SHACL and ShEx are missing explicit support for key-like constraints (KC), but allow for
cardinality constraints (CC), to which SHACL applies set and ShEx bag semantics. The complexity
of validation (TV) of RDF-based formalisms is a well-researched topic. While it is not tractable in
general for the most expressive cases, practically useful fragments do have this property.

Tree-structured data. DTDs support union types (UIT) in content type expressions by allowing
disjunction, despite it not being applicable to the names of XML element types. This is, however,
possible in both RELAX NG and XML Schema, where we have full union types, although both
require the regular expressions that describe the content to be deterministic. DTDs do not support
inheritance (TH) or abstract types (AT), although element types can be embedded in the content
of other element types. However, RELAX NG and XML Schema have explicit support for these

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 198. Publication date: June 2023.

PG-Schema: Schemas for Property Graphs 198:19

features. In DTDs, the content of an element can be made open by using PCDATA, which allows any
XML fragment as content, so (OCT) is more or less supported. In RELAX NG and XML Schema,
it is possible to have an even more sophisticated mix of open and closed parts within a content
type. Attributes of XML elements can be declared as required and are optional by default. For some
basic attribute types there are multi-valued variants that can be assigned, but, otherwise, there are
no complex nested attribute types. Here again, RELAX NG and XML Schema offer a set of type
constructors that enable users to build new and more complex attribute types. Concerning (KC),
both in DTDs and RELAX NG, an attribute can be defined as key, by giving it the type ID, but there
is no way to declare an arbitrary set of attributes as key. XML Schema, on the other hand, has a
very elaborate notion of key constraint that can define a complex key for elements where this key
consists of several values, is not restricted to attributes of the element, and is applicable only to a
specified set of elements. DTDs support mandatory participation (MP), since they can require that
the content of a certain element be nonempty or that a certain attribute reference some document
element. This is the case in XML Schema, which also supports foreign keys, and RELAX NG. DTDs
offer some support for (IS), in the sense that they are regarded as included in the XML document,
and so are accessible by software processing the document. For both XML Schema and RELAX NG
there is an XML syntax, and so they allow full introspection. For DTDs, XML Schema, and RELAX
NG, it holds that XML documents can be created without a schema, but it is also possible to restrict
updates to only allow those which maintain the document’s conformance to the schema; thus, for
(SFPX), both schema-first and schema-flexible are supported.

JSON Schema supports unions and intersections of open types (UIT), through the anyOf and,
respectively, allOf keywords. The latter also supports building type hierarchies (TH), but only for
open types. Whether types are instantiated depends on the choice of the root object, and so there
is arguably support for abstract types (AT). One can control whether types are open or closed by
setting additionalProperties to True or False. Fields are optional by default, but can be marked
as mandatory through the required construct. Range constraints (RC) are limited to numerical
values and strings. Field values support (CPT), as they can encode nested objects and arrays. Key
constraints (KC) are not supported and cardinality constraints (CC) specify bounds for arrays.
Finally, as the schema is itself a JSON object, it allows introspection (IS).

Existing graph technologies. We now discuss the extent to which type, constraints, and schema
features are supported in several state-of-the-art graph schema languages and systems.
Type features, such as union and intersection types (UIT), type hierarchies (TH), and abstract

types (AT), are supported by GraphQL, and JSON Schema. These capabilities are also found in
SQL-based systems, such as OrientDB/SQL, and in systems able to leverage JSON Schema, such as
ArangoDB and AgensGraph. The strongly-typed TypeDB database has a rich type system that also
offers subtyping for entities, relations, and attributes/properties. While other considered systems
cannot directly handle TH, some can emulate it through multi-labels by adding all the intended
parent types of a node as its additional labels. Nevertheless, this is problematic for validation, as
one cannot ensure that all subtypes have been assigned the correct label. Note that most examined
technologies only implement closed types (OCT), except ArangoDB and OrientDB, in which also
open types are possible, and Neo4j, which considers types open and, hence, extensible, by default.

Nodes and edges can be enriched with element properties (EP) in all surveyed graph technologies,
and in AgensGraph these can be defined using JSON objects. Such properties are optional by default
in AgensGraph, ArangoDB, DataStax, JanusGraph, Neo4j, and Sparksee, though users can define
mandatory constraints to enforce them being non-nullable. In Nebula Graph, users can specify,
when designing their schema, whether null-valued attributes are allowed, while in TypeDB these
are not supported. Finally, the (MOP) feature is present in SQL-based technologies. Most reviewed

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 198. Publication date: June 2023.

198:20 Renzo Angles et al.

graph languages and system also allow for (CPT), although specific restrictions sometimes apply.
For example, in Neo4j, complex property values can only be homogeneous lists of simple types
and byte arrays, despite the latter not being first-class Cypher data types. AgensGraph draws its
support for (CPT) from openCypher and JSON, while in Sparksee, multi-valued properties can only
be defined using array attributes, using all but the String and Text data types. In addition, range
constraints (RC) can be specified for any data type, in SQL-based technologies, and for numerical
values and strings, in systems that build on JSON Schema or that provide regular expressions, such
as TypeDB.

Regarding constraint features, we remark that key constraints are available in all reviewed graph
schema languages except GQL. At a system level, AgensGraph, Neo4j, and Sparksee support node
uniqueness constraints, disallowing the same property values from appearing in more than one node
of a given label or type, while ArangoDB enables specifying uniqueItems for arrays, thanks to JSON
Schema. Some technologies, such as DataStax, Oracle/PGQL, and TigerGraph, offer primary keys
for nodes, which enforce property values to be unique, mandatory, and single-valued. TigerGraph
GSQL also supports the notion of a discriminator, which is an attribute or set of attributes that can
be used to uniquely identify an edge, when multiple instances of a given type exist between a pair
of vertices. Finally, the considered SQL-based systems can rely on SQL’s mechanism for defining
unique key constraints for tables. These systems also feature mandatory participation (MP) and
uniqueness constraints.

More general forms of cardinality constraints (CC) are only provided by a few systems. Among
these, JanusGraph allows declaring edge label multiplicity: the MULTI and SIMPLE keywords can
specify whether multiple edges or at most one can be defined between any node pair; MANY2ONE
and ONE2MANY respectively allow at most one outgoing/incoming edge, without constraining the
number of incoming/outgoing ones. The system also provides property key cardinalities, i.e.,
declaring whether one (SINGLE), an arbitrary number (LIST), or multiple, non-duplicate values
(SET) can be associated with a node key. Other examples include ArangoDB, leveraging JSON
Schema’s minProperties/maxProperties keywords to restrict the number of object properties,
and TypeDB, providing high-level CCs at the type level that require relationships to have at least
one role that specifies their nature. TypeDB is also the only system that handles binary-relation
constraints (BRC), such as symmetry and transitivity, by expressing them via inference rules. In
TigerGraph, the support for (BRC) is limited to declaring reverse edge types.

Tractable validation (TV) is a schema feature supported by systems that leverage JSON Schema
and SQL. In JanusGraph and Sparksee, the schema is defined through their specific APIs and there
is no formal account of their schema validation mechanisms. Concerning introspection (IS), all
reviewed systems support it either directly, through the query language itself, or indirectly, via a
management API (like in JanusGraph and Sparksee). Finally, the only reviewed system that natively
supports (SPFX) is OrientDB/SQL, which has schema-first, schema-less, and explicit schema-hybrid
modes. Partial conformance is possible in all systems that are not exclusively schema-first or that
do not have native schema mechanisms, like ArangoDB, which relies on JSON Schema.

PG-Schema. Like SQL/PGQ and GQL, PG-Schema views a set of node and edge types as the core
of a graph database schema. The support for type features is essentially complete, as discussed in
Section 4, except that (CPT) and (RC), as well as (UIT) and (TH) for properties, are delegated to
the property type system. While concrete property types have been used in examples, PG-Schema
deliberately leaves the choice of the property type system open, which allows it to function as
an embedded language in both GQL and SQL/PGQ, offering suitable property type features. In
Section 5.3 we discuss how some of these features could be supported directly in PG-Schema.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 198. Publication date: June 2023.

PG-Schema: Schemas for Property Graphs 198:21

In terms of constraint features, PG-Schema is also quite comprehensive. As discussed in Sec-
tion 4.4, it supports not only (KC) and (MP), but also denial constraints and uniqueness constraints.
In Section 5.3 we discuss an extension to support general cardinality constraints (CC) that fits well
with the support for (KC) and (MP).

Important design principles for PG-Schema were to preserve the spirit of schemas in SQL/PGQ
and graph types in GQL, keeping node and edge types locally verifiable, while at the same time
offering a powerful mechanism to express constraints. This is why PG-Keys are clearly separated
from PG-Types, and constraints can refer to types, but types cannot refer to constraints. This is in
contrast with other approaches, such as SHACL, where there is no such separation and a small
change in one element may affect the types of many distant elements.
Because types are locally verifiable, PG-Schema has tractable validation (TV), as long as each

constraint alone is tractable, which is the case for key, participation, and cardinality constraints.
PG-Schema fully supports (SFPX), as it allows defining strict schemas (schema first), loose schemas
that only enforce constraints on typed elements (partial schema), and schemas that allow every
graph (flexible schema); note that it is possible to generate a descriptive schema, as required (see
Section 4.3). Finally, owing to locally verifiable types and the design of PG-Keys, if a graph only
partially conforms to a given schema (strict or loose), this can be easily explained to users by
indicating which elements are typed and which satisfy the constraints, thus supporting meaningful
partial validation.

Basic graph types can be naturally represented as property graphs, as shown in Figure 1. However,
there is currently no commonly agreed-upon way of reflecting the powerful mechanism of type
combinations in PG-Types; hence, introspection (IS) is not supported. How such a representation
can capture all features and yet remain intuitive, is an issue for future research.

Conclusion. The table shows that there is quite some variety in which features are supported and
also that no formalism or system covers all of them. This likely reflects that they tend to target
different sets of use cases. Likewise, PG-Schema does not attempt to cover all features, but it does
aim to provide a foundation that could be extended to do so.

5.3 Possible Extensions of PG-Schema

Let us now discuss briefly how some of the currently unsupported features from Table 1 could be
integrated into PG-Schema.

Range constraints. Some schema languages allow for range constraints (RC). The syntax of PG-
Schema can be thus extended, specifying restrictions on acceptable values for properties. For
instance, the following example defines a node type Book, with properties title (a string with
maximum 100 characters), genre (an enumeration), and isbn (a string conforming to a regular
expression):

(bookType: Book {

title STRING (100),

genre ENUM("Prose", "Poetry", "Dramatic"),

isbn STRING ^(?=(?:\D*\d){10}(?:(?:\D*\d){3})?$)[\d-]+$})

The restrictions allowed in the example above can be based on XSD facets [42], with additional
features, such as enumerations, implemented similarly.

Complex datatypes. We have only included primitive datatypes in PG-Schema. Looking at the CPT
column in Table 1 we see that complex property values are widely supported in other formalisms.
Our syntax can easily be extended to support collections. For instance, if we wish to specify that a

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 198. Publication date: June 2023.

198:22 Renzo Angles et al.

name is an array of strings, we could write name STRING ARRAY {1,2}. The (optional) annotation in
curly braces specifies the minimum and the maximum number of elements in the array.

Intersections and unions for content types. In Section 4, we assumed that union and intersection can
be used in element types. Such combinations can also be introduced into properties (see UIT in
Table 1). We can for example allow the union (|) and intersection (&) operators from label expressions
also between property types and between content types. The following example allows the name to
be broken down into a givenName and a familyName:
(personType: Person

({name STRING} | {givenName STRING , familyName STRING})

& {height (INT | FLOAT)})

Note that we use round brackets to group content definitions.

Advanced cardinalities. The notation of PG-Keys can be readily extended to specify cardinality
constraints by taking the general form FOR 𝑝 (𝑥) <qualifier> 𝑞 (𝑥, 𝑦), and allowing for <qualifier>

an expression of the form COUNT <lower bound>?..<upper bound>? OF, expressing that the number of
distinct results returned by 𝑞(𝑥,𝑦) must be within that range. If the upper bound and lower bound
are identical, we allow the short-hand COUNT <bound> OF.

The constraint stating that each department has at least two employees working for it, could be
written as

FOR (d: Department)

COUNT 2.. OF e WITHIN (e: Employee) -[:worksIn]->(d) .
And if employees can work on at most 3 projects, this could be written as

FOR (e: Employee)

COUNT 0..3 OF p WITHIN (e) -[: worksOn]->(p: Project) .
This notation also allows us to express disjointness and denial constraints without using negation
in patterns. For example, if reptiles cannot be amphibians, we can write this as

FOR (a: Amphibian)

COUNT 0 OF (a: Reptile) .
As discussed in [8], such constraints are relevant for many practical use cases and can be efficiently
evaluated.

6 SUMMARY AND LOOKING AHEAD

PG-Schema is the first unifying schema language for property graphs, which serves as a recommen-
dation for future versions of GQL. This work is the result of academia and industry collaborating
to bridge gaps and accelerate standardization efforts that benefit both communities at large.

Summary. PG-Schema is a schema language that caters to basic needs such as defining node and
edge types, as well as advanced scenarios such as expressing complex type hierarchies and integrity
constraints. It has been designed to support both descriptive and prescriptive roles, with a focus
on enabling agile evolution, flexible validation, and usability. The language comes with an ASCII-
art, yet formal, syntax and well-defined semantics. The core of PG-Schema centers around the
rich PG-Types type system, with desirable features such as compositionality, abstract types, type
hierarchies, and multi-inheritance, as well as around PG-Keys, which allows the expression of
complex key and participation constraints. The language thus supports a wide-range of capabilities,
largely absent from the state-of-the-art schema languages and systems we have reviewed. Finally,
PG-Schema is easily extensible with further features, such as range constraints, complex data types,
content type combinators, and advanced cardinalities.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 198. Publication date: June 2023.

PG-Schema: Schemas for Property Graphs 198:23

Looking Ahead. In addition to the impact on standardization efforts, this is an opportunity for graph
database vendors to increase functionality and support current and future customer demands. Our
work also provides a basis for future research by the academic community. Finally, this successful
high-impact academia-industry collaboration model is one we hope will be replicated by other
communities at large, in data management and beyond.

ACKNOWLEDGMENTS

We thank all LDBC PGSWG members for the discussions around property graph schemas. Renzo
Angles was supported by ANID Millennium Science Initiative Program, Code ICN17_002 and ANID
FONDECYT Chile through grant 1221727. Angela Bonifati and Leonid Libkin were supported
by ANR-21-CE48-0015 VeriGraph. Leonid Libkin was supported by a Leverhulme Trust Research
fellowship and EPSRC grant S003800. WimMartens was supported by ANR project EQUUS ANR-19-
CE48-0019; funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
– project number 431183758. Filip Murlak was supported by NCN grant 2018/30/E/ST6/00042.
Domagoj Vrgoč was supported by ANID Millennium Science Initiative Program, Code ICN17_002
and ANID Fondecyt Regular project 1221799. For the purposes of open access, the authors have
applied a CC BY public copyright licence to any Author Accepted Manuscript version arising from
this submission.

REFERENCES

[1] ISO/IEC 39075. 2023. Information technology — Database languages — GQL. Standard. International Organization for
Standardization, Geneva, CH.

[2] ISO/IEC 9075-16. 2022. Information technology — Database languages SQL — Part 16: Property Graph Queries (SQL/PGQ).
Standard. International Organization for Standardization, Geneva, CH.

[3] AgensGraph. 2022. AgensGraph. https://bitnine.net/agensgraph (visited: 2022-11).
[4] Renzo Angles, Marcelo Arenas, Pablo Barceló, Peter A. Boncz, George H. L. Fletcher, Claudio Gutierrez, Tobias

Lindaaker, Marcus Paradies, Stefan Plantikow, Juan F. Sequeda, Oskar van Rest, and Hannes Voigt. 2018. G-CORE: A
Core for Future Graph Query Languages. In SIGMOD Conference. ACM, 1421–1432.

[5] Renzo Angles, Angela Bonifati, Stefania Dumbrava, George Fletcher, Keith W. Hare, Jan Hidders, Victor E. Lee, Bei
Li, Leonid Libkin, Wim Martens, Filip Murlak, Josh Perryman, Ognjen Savkovic, Michael Schmidt, Juan F. Sequeda,
Slawek Staworko, and Dominik Tomaszuk. 2021. PG-Keys: Keys for Property Graphs. In International Conference on
Management of Data (SIGMOD). ACM, 2423–2436.

[6] ArangoDB. 2022. ArangoDB. https://www.arangodb.com/ (visited: 2022-11).
[7] Thomas Baker and Eric Prud’hommeaux. 2019. Shape Expressions (ShEx) 2.1 Primer. W3C Community Group Final

Report. W3C. https://shex.io/shex-primer/index.html.
[8] Angela Bonifati, Stefania Dumbrava, George Fletcher, Jan Hidders, Matthias Hofer, Wim Martens, Filip Murlak, Joshua

Shinavier, Sławek Staworko, and Dominik Tomaszuk. 2022. Threshold Queries in Theory and in the Wild. Proc. VLDB
Endow. 15, 5 (may 2022), 1105–1118. https://doi.org/10.14778/3510397.3510407

[9] Angela Bonifati, Stefania Dumbrava, George Fletcher, Jan Hidders, Bei Li, Leonid Libkin, Wim Martens, Filip Murlak,
Stefan Plantikow, Ognjen Savković, Juan Sequeda, Sławek Staworko, Dominik Tomaszuk, Hannes Voigt, Domagoj Vrgoč,
and Mingxi Wu. 2022. domel/pgschema: PG-Schema Grammar 0.3. (Nov 2022). https://doi.org/10.5281/zenodo.7362078
https://zenodo.org/record/7362078.

[10] Angela Bonifati, Stefania Dumbrava, George Fletcher, Jan Hidders, Bei Li, Leonid Libkin, Wim Martens, Filip Murlak,
Stefan Plantikow, Ognjen Savković, Juan Sequeda, Sławek Staworko, Dominik Tomaszuk, Hannes Voigt, Domagoj
Vrgoč, and Mingxi Wu. 2022. PG-Schema: Schemas for Property Graphs. https://doi.org/10.48550/arXiv.2211.10962

[11] Angela Bonifati, Stefania-Gabriela Dumbrava, Emile Martinez, Fatemeh Ghasemi, Malo Jaffré, Pacome Luton, and
Thomas Pickles. 2022. DiscoPG: Property Graph Schema Discovery and Exploration. Proc. VLDB Endow. 15, 12 (2022),
3654–3657. https://www.vldb.org/pvldb/vol15/p3654-bonifati.pdf

[12] Angela Bonifati, Peter Furniss, Alastair Green, Russ Harmer, Eugenia Oshurko, and Hannes Voigt. 2019. Schema
Validation and Evolution for Graph Databases. In ER (Lecture Notes in Computer Science, Vol. 11788). Springer, 448–456.

[13] Gilad Bracha and William R. Cook. 1990. Mixin-based Inheritance. In Conference on Object-Oriented Programming
Systems, Languages, and Applications / European Conference on Object-Oriented Programming, OOPSLA/ECOOP 1990,
Ottawa, Canada, October 21-25, 1990, Proceedings, Akinori Yonezawa (Ed.). ACM, 303–311. https://doi.org/10.1145/

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 198. Publication date: June 2023.

https://bitnine.net/agensgraph
https://www.arangodb.com/
https://shex.io/shex-primer/index.html
https://doi.org/10.14778/3510397.3510407
https://doi.org/10.5281/zenodo.7362078
https://doi.org/10.48550/arXiv.2211.10962
https://www.vldb.org/pvldb/vol15/p3654-bonifati.pdf
https://doi.org/10.1145/97945.97982
https://doi.org/10.1145/97945.97982

198:24 Renzo Angles et al.

97945.97982
[14] Dan Brickley and Ramanathan Guha. 2014. RDF Schema 1.1. W3C Recommendation. W3C. https://www.w3.org/TR/

2014/REC-rdf-schema-20140225/.
[15] Peter P. Chen. 1976. The Entity-Relationship Model - Toward a Unified View of Data. ACM Trans. Database Syst. 1, 1

(1976), 9–36.
[16] DataStax. 2022. DataStax. https://www.datastax.com/ (visited: 2022-11).
[17] Alin Deutsch, Nadime Francis, Alastair Green, Keith Hare, Bei Li, Leonid Libkin, Tobias Lindaaker, Victor Marsault,

Wim Martens, Jan Michels, Filip Murlak, Stefan Plantikow, Petra Selmer, Oskar van Rest, Hannes Voigt, Domagoj
Vrgoc, Mingxi Wu, and Fred Zemke. 2022. Graph Pattern Matching in GQL and SQL/PGQ. In SIGMOD ’22: International
Conference on Management of Data, Philadelphia, PA, USA, June 12 - 17, 2022, Zachary Ives, Angela Bonifati, and Amr El
Abbadi (Eds.). ACM, 2246–2258.

[18] Ramez Elmasri and Shamkant B. Navathe. 2015. Fundamentals of Database Systems (7th edition) (7th ed.). Pearson.
[19] Facebook. 2018. GraphQL. https://spec.graphql.org/June2018/.
[20] Martin Fowler. 2003. UML Distilled: A Brief Guide to the Standard Object Modeling Language (3 ed.). Addison-Wesley

Longman Publishing Co., Inc., USA.
[21] Nadime Francis, Alastair Green, Paolo Guagliardo, Leonid Libkin, Tobias Lindaaker, Victor Marsault, Stefan Plantikow,

Mats Rydberg, Petra Selmer, and Andrés Taylor. 2018. Cypher: An Evolving Query Language for Property Graphs. In
SIGMOD Conference. ACM, 1433–1445.

[22] D.K. Gosnell and M. Broecheler. 2022. The Practitioner’s Guide to Graph Data. https://gra.fo/faq/ (visited: 2022-11).
[23] Gra.fo. 2022. Gra.fo. https://gra.fo/faq/ (visited: 2022-11).
[24] TigerGraph GraphStudioTM. 2022. TigerGraph GraphStudioTM. https://docs.tigergraph.com/gui/current/graphstudio/

overview (visited: 2022-11).
[25] LDBC Property Graph Schema Working Group. 2020. LDBC Property Graph Schema contributions to WG3. Open Access

to External Paper OAEP-2023-04. Linked Data Benchmark Council (LDBC). https://doi.org/10.54285/ldbc.OFJF3566
Edited and presented by Jan Hidders, George Fletcher and Bei Li.

[26] Neo4j SQLWorking Group, Peter Furniss, andAlastair Green. 2018. SQL/PGQ datamodel and graph schema. OpenAccess
to External Paper OAEP-2023-01. Linked Data Benchmark Council (LDBC). https://doi.org/10.54285/ldbc.QZSK3559

[27] Benoît Groz, Aurélien Lemay, Slawek Staworko, and Piotr Wieczorek. 2022. Inference of Shape Graphs for Graph
Databases. In 25th International Conference on Database Theory, ICDT 2022, March 29 to April 1, 2022, Edinburgh, UK
(Virtual Conference) (LIPIcs, Vol. 220), Dan Olteanu and Nils Vortmeier (Eds.). Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 14:1–14:20. https://doi.org/10.4230/LIPIcs.ICDT.2022.14

[28] Terry Halpin. 2015. Object-Role Modeling Fundamentals: A Practical Guide to Data Modeling with ORM. Technics
Publications.

[29] Olaf Hartig and Jorge Pérez. 2018. Semantics and complexity of GraphQL. In Proceedings of the 2018 World Wide Web
Conference. 1155–1164.

[30] Pascal Hitzler, Sebastian Rudolph, Markus Krötzsch, Peter Patel-Schneider, and Bijan Parsia. 2012. OWL 2Web Ontology
Language Primer (Second Edition). W3C Recommendation. W3C. https://www.w3.org/TR/2012/REC-owl2-primer-
20121211/.

[31] ISO/IEC 19757-2:2008 2008. Information technology — Document Schema Definition Language (DSDL) — Part 2: Regular-
grammar-based validation — RELAX NG. Standard. International Organization for Standardization, Geneva, CH.

[32] JanusGraph. 2022. JanusGraph. https://janusgraph.org/ (visited: 2022-11).
[33] Holger Knublauch and Dimitris Kontokostas. 2017. Shapes Constraint Language (SHACL). W3C Recommendation.

W3C. https://www.w3.org/TR/2017/REC-shacl-20170720/.
[34] Mark Needham and Amy E. Hodler. 2019. Graph Algorithms. O’Relly Media.
[35] Neo4j 2016. The Definitive Guide to Graph Databases for the RDBMS Developer. Neo4j.
[36] Neo4j. 2019. Graph DDL (Data Definition Language). https://github.com/opencypher/morpheus/blob/master/

documentation/asciidoc/backend-sql-graphddl.adoc (visited: 2023-04).
[37] Neo4j. 2022. Neo4j. https://neo4j.com/ (visited: 2022-11).
[38] Neo4j. 2022. Neo4j Browser. https://neo4j.com/product/developer-tools/#browser (visited: 2022-11).
[39] Graph Notebooks. 2022. Graph Notebooks. https://github.com/aws/graph-notebook (visited: 2022-11).
[40] Oracle. 2022. Oracle Spatial and Graph. https://www.oracle.com/database/technologies/spatialandgraph.html (visited:

2022-11).
[41] OrientDB. 2022. OrientDB. https://orientdb.org/ (visited: 2022-11).
[42] David Peterson, Sandy Gao, Paul V. Biron, Michael Sperberg-McQueen, Ashok Malhotra, and Henry Thompson.

2012. W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes. W3C Recommendation. W3C. https:
//www.w3.org/TR/2012/REC-xmlschema11-2-20120405/.

[43] Ian Robinson, Jim Webber, and Emil Eifrem. 2015. Graph Databases. O’Reilly Media.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 198. Publication date: June 2023.

https://doi.org/10.1145/97945.97982
https://doi.org/10.1145/97945.97982
https://doi.org/10.1145/97945.97982
https://www.w3.org/TR/2014/REC-rdf-schema-20140225/
https://www.w3.org/TR/2014/REC-rdf-schema-20140225/
https://www.datastax.com/
https://gra.fo/faq/
https://gra.fo/faq/
https://docs.tigergraph.com/gui/current/graphstudio/overview
https://docs.tigergraph.com/gui/current/graphstudio/overview
https://doi.org/10.54285/ldbc.OFJF3566
https://doi.org/10.54285/ldbc.QZSK3559
https://doi.org/10.4230/LIPIcs.ICDT.2022.14
https://www.w3.org/TR/2012/REC-owl2-primer-20121211/
https://www.w3.org/TR/2012/REC-owl2-primer-20121211/
https://janusgraph.org/
https://www.w3.org/TR/2017/REC-shacl-20170720/
https://github.com/opencypher/morpheus/blob/master/documentation/asciidoc/backend-sql-graphddl.adoc
https://github.com/opencypher/morpheus/blob/master/documentation/asciidoc/backend-sql-graphddl.adoc
https://neo4j.com/
https://neo4j.com/product/developer-tools/#browser
https://github.com/aws/graph-notebook
https://www.oracle.com/database/technologies/spatialandgraph.html
https://orientdb.org/
https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/
https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/

PG-Schema: Schemas for Property Graphs 198:25

[44] Mats Rydberg. 2016. Cypher schema constraints proposal. Open Access to External Paper OAEP-2023-03. Linked Data
Benchmark Council (LDBC). https://doi.org/10.54285/ldbc.KKHM1756

[45] Siddhartha Sahu, Amine Mhedhbi, Semih Salihoglu, Jimmy Lin, and M. Tamer Özsu. 2020. The ubiquity of large graphs
and surprising challenges of graph processing: extended survey. VLDB J. 29, 2-3 (2020), 595–618.

[46] Siddhartha Sahu, Amine Mhedhbi, Semih Salihoglu, Jimmy Lin, and M. Tamer Özsu. 2020. The ubiquity of large
graphs and surprising challenges of graph processing: extended survey. The VLDB Journal 29, 2 (2020), 595–618.
https://doi.org/10.1007/s00778-019-00548-x

[47] Sherif Sakr, Angela Bonifati, Hannes Voigt, Alexandru Iosup, Khaled Ammar, Renzo Angles, Walid G. Aref, Marcelo
Arenas, Maciej Besta, Peter A. Boncz, Khuzaima Daudjee, Emanuele Della Valle, Stefania Dumbrava, Olaf Hartig,
Bernhard Haslhofer, Tim Hegeman, Jan Hidders, Katja Hose, Adriana Iamnitchi, Vasiliki Kalavri, Hugo Kapp, Wim
Martens, M. Tamer Özsu, Eric Peukert, Stefan Plantikow, Mohamed Ragab, Matei Ripeanu, Semih Salihoglu, Christian
Schulz, Petra Selmer, Juan F. Sequeda, Joshua Shinavier, Gábor Szárnyas, Riccardo Tommasini, Antonino Tumeo,
Alexandru Uta, Ana Lucia Varbanescu, Hsiang-Yun Wu, Nikolay Yakovets, Da Yan, and Eiko Yoneki. 2021. The future
is big graphs: a community view on graph processing systems. Commun. ACM 64, 9 (2021), 62–71.

[48] Tom Sawyer. 2022. Graph Database Browser. https://www.tomsawyer.com/graph-database-browser (visited: 2022-11).
[49] Michael Sperberg-McQueen, Henry Thompson, David Beech, Murray Maloney, Noah Mendelsohn, and Sandy Gao.

2012. W3C XML Schema Definition Language (XSD) 1.1 Part 1: Structures. W3C Recommendation. W3C. https:
//www.w3.org/TR/2012/REC-xmlschema11-1-20120405/.

[50] Slawomir Staworko, Iovka Boneva, José Emilio Labra Gayo, Samuel Hym, Eric Gordon Prud’Hommeaux, and Harold
Solbrig. 2015. Complexity and Expressiveness of ShEx for RDF. In 18th International Conference on Database Theory
(ICDT 2015).

[51] Neo4j Query Languages Standards & Research Team. 2019. Introduction to GQL Schema design. Open Access to External
Paper OAEP-2023-02. Linked Data Benchmark Council (LDBC). https://doi.org/10.54285/ldbc.EPWQ6741 Edited by
Alastair Green and Hannes Voigt.

[52] Sparsity Technologies. 2022. Sparksee. https://sparsity-technologies.com/#sparksee (visited: 2022-11).
[53] Bernhard Thalheim. 2018. Extended Entity-Relationship Model. In Encyclopedia of Database Systems, Second Edition,

Ling Liu and M. Tamer Özsu (Eds.). Springer. https://doi.org/10.1007/978-1-4614-8265-9_157
[54] TigerGraph. 2022. TigerGraph. https://www.tigergraph.com/ (visited: 2022-11).
[55] Vaticle. 2022. TypeDB. https://vaticle.com/ (visited: 2022-11).
[56] Damian Wileński and Dominik Tomaszuk. 2022. damianw27/pgs-grammar-check: Version 1.0.0. (Nov 2022). https:

//doi.org/10.5281/zenodo.7344227 Available at https://damianw27.github.io/pgs-grammar-check/.
[57] Austin Wright, Henry Andrews, Ben Hutton, and Greg Dennis. 2020. JSON Schema: A Media Type for Describing JSON

Documents. Draft. Internet Engineering Task Force.
[58] Min Wu, Xinglu Yi, Hui Yu, Yu Liu, and Yujue Wang. 2022. Nebula Graph: An open source distributed graph database.

CoRR abs/2206.07278 (2022).
[59] François Yergeau, Michael Sperberg-McQueen, Tim Bray, Jean Paoli, and Eve Maler. 2008. Extensible Markup Language

(XML) 1.0 (Fifth Edition). W3C Recommendation. W3C. https://www.w3.org/TR/2008/REC-xml-20081126/.

Received November 2022; revised February 2023; accepted March 2023

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 198. Publication date: June 2023.

https://doi.org/10.54285/ldbc.KKHM1756
https://doi.org/10.1007/s00778-019-00548-x
https://www.tomsawyer.com/graph-database-browser
https://www.w3.org/TR/2012/REC-xmlschema11-1-20120405/
https://www.w3.org/TR/2012/REC-xmlschema11-1-20120405/
https://doi.org/10.54285/ldbc.EPWQ6741
https://sparsity-technologies.com/#sparksee
https://doi.org/10.1007/978-1-4614-8265-9_157
https://www.tigergraph.com/
https://vaticle.com/
https://doi.org/10.5281/zenodo.7344227
https://doi.org/10.5281/zenodo.7344227
https://damianw27.github.io/pgs-grammar-check/

	Abstract
	1 Introduction
	2 Design Requirements
	2.1 Property Graphs and Database Schemas
	2.2 Types and Constraints
	2.3 Requirements

	3 Data model
	4 PG-Schema
	4.1 PG-Types by Example
	4.2 Formal Definition and Semantics
	4.3 Validation and Graph Type Generation
	4.4 Adding Constraints

	5 Relationship to Other Paradigms
	5.1 Existing Graph Schema Features
	5.2 Support of the Features
	5.3 Possible Extensions of PG-Schema

	6 Summary and Looking ahead
	Acknowledgments
	References

