
EESMR: Energy Efficient BFT—SMR for the masses
Adithya Bhat

abhatk@purdue.edu

Purdue University

West Lafayette, IN, USA

Akhil Bandarupalli

abandaru@purdue.edu

Purdue University

West Lafayette, IN, USA

Manish Nagaraj

mnagara@purdue.edu

Purdue University

West Lafayette, IN, USA

Saurabh Bagchi

sbagchi@purdue.edu

Purdue University

West Lafayette, IN, USA

Aniket Kate

aniket@purdue.edu

Purdue University

West Lafayette, IN, USA

Michael K. Reiter*

michael.reiter@duke.edu

Duke University

Durham, NC, USA

ABSTRACT
Modern Byzantine Fault-Tolerant State Machine Replication (BFT-

SMR) solutions focus on reducing communication complexity, im-

proving throughput, or lowering latency. This work explores the

energy efficiency of BFT-SMR protocols. First, we propose a novel

SMR protocol that optimizes for the steady state, i.e., when the

leader is correct. This is done by reducing the number of required

signatures per consensus unit and the communication complexity

by order of the number of nodes 𝑛 compared to the state-of-the-art

BFT-SMR solutions. Concretely, we employ the idea that a quorum

(collection) of signatures on a proposed value is avoidable during

the failure-free runs. Second, we model and analyze the energy

efficiency of protocols and argue why the steady-state needs to be

optimized. Third, we present an application in the cyber-physical

system (CPS) setting, where we consider a partially connected

system by optionally leveraging wireless multicasts among neigh-

bors. We analytically determine the parameter ranges for when our

proposed protocol offers better energy efficiency than communicat-

ing with a baseline protocol utilizing an external trusted node. We

present a hypergraph-based networkmodel and generalize previous

fault tolerance results to the model. Finally, we demonstrate our ap-

proach’s practicality by analyzing our protocol’s energy efficiency

through experiments on a CPS test bed. In particular, we observe as

high as 64% energy savings when compared to the state-of-the-art

SMR solution for 𝑛 = 10 settings using BLE.
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• Security and privacy→ Distributed systems security.
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1 INTRODUCTION
Byzantine faults are not new to the computing world. For more

than four decades, the distributed system literature has addressed

Byzantine faults using a variety of consensus mechanisms over

replicated nodes. Among those mechanisms, we focus on State

Machine Replication (SMR) [6, 15, 21, 39, 48, 61, 63, 76] as it is

a generic consensus problem that ensures that the correct nodes

agree on the same sequence of values in the presence of Byzantine

nodes. SMR is of general interest in applications such as Multi-party

computation [9, 13] which require repeated usages of one-shot

consensus problems such as Byzantine Agreement (BA) [49] or

Reliable Broadcast [19]. An SMR can also implement a distributed

ledger (or a blockchain), which has resulted in the tremendous

recent interest in these protocols [4, 6, 21, 24, 39, 76].

Due to its widespread adoption, energy-efficiency of SMR is an

important factor as they are employed in data-centers to ensure

system resilience [1, 65]. They are also considered for the CPS/IoT

environments [17, 26, 50, 56–58, 60, 77–79] where energy-efficiency

can determine how long the system functions. Even in energy-rich

environments such as data-centers, energy costs can be reduced by

running a more energy-efficient SMR protocol in large scales, and

thus this problem is of general interest.

Meanwhile, Cyber-Physical Systems (CPS) provide integrated

computational, mechanical, and communication components that

interact with each other. CPS can vary from a system of temperature

sensors deployed in power plants [62] to a network of soil nutrient

monitoring sensors spread over a farm field, to unmanned aerial

vehicles or drones deployed to monitor traffic [67]. In many of

these scenarios, the various nodes or devices in such systems need

to agree on a common state. For example, in a military setting,

several CPS nodes could be deployed to survey an area; they should

maintain a shared state, which they report during their sporadic

contacts with a base station.
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An adversary may try to intervene in these consensus processes

by compromising some nodes: the compromised nodes may com-

municate incorrect values, possibly in collusion with other compro-

mised nodes, or prevent the correct nodes in the system from per-

forming a consistent action (e.g., Byzantine Generals Problem [49]).

While such adversarial threats are obvious in battlefield CPS, they

are also becoming pervasive across the entire CPS application spec-

trum [17, 26, 50, 77–79]. For example, a recent US Department

of Homeland Security (DHS) report on precision agriculture [54]

asks to pay particular attention to Byzantine/malicious faults. The

agency observes that an intentional falsification of data can disrupt

crop or livestock sectors as the introduction of rogue data into a

sensor network can damage crops or herds.

Today, with the focus on Internet-based instantiations, the state-

of-the-art SMR solutions try to solely reduce the latency or com-

munication overhead by using, for example, threshold signature

schemes [18]. While theoretically interesting, threshold signatures

are computationally intensive and have high energy demands, mak-

ing SMR unsuitable for CPS.
1
In general, naïvely employing an

SMR protocol that is not optimized for energy efficiency reduces

the lifetime of CPS, and we set out to explore energy efficiency for

the SMR problem for the CPS setting.

Indeed, the state-of-the-art latency-optimal SMR protocols Opt-

Sync [63] and Sync HotStuff [6] are not energy-efficient solutions

for SMR due to their high (bit-level) communication complexity

and extensive use of expensive cryptographic primitives. In general,

for SMR in CPS, since communication and cryptography are the

main sources of energy drain, one might try to use the state-of-

the-art SMR protocol, and optimize away the bottleneck. However,

generally optimizing in one direction leads to degradation of the

other. For example, an attempt toward energy efficiency can be to

substitute expensive cryptography such as threshold signatures or

public-key cryptography with simpler symmetric-key primitives.

Doing so results in increased communication footprint [11, 14, 21]

or reduced fault tolerance [10, 21, 52], both of which are not ideal.

Contributions. This work makes the following four contributions

towards energy-efficient consensus for CPS:

(1) We present EESMR
2
, an energy-efficient, leader-based SMR

protocol (Section 3). In the steady state, i.e., when the leader is

correct, EESMR consumes less energy than the state-of-the-art SMR

protocols Sync HotStuff and OptSync. The trade-off is that during

the view-change phase, i.e., the sub-protocol to change the leader,

EESMR performs slightly worse than Sync HotStuff [6] by adding

an extra round. Concretely, EESMR avoids using computationally

expensive certificates and voting in the steady state and pushes

those overheads to the view-change phase invoked when a leader

stops making progress or if it equivocates.

(2) As every application setting is different, we derive an easy-to-

use template for comparing SMR protocols in various CPS settings

(Section 4). We model the energy cost of protocols as functions of

system parameters such as the number of nodes 𝑛 and message size

𝑚. Our analysis shows the conditions (number of faults, number

1
Threshold signing operations are also inefficient that many of the protocols, e.g., [6,

39, 76], forgo threshold signatures in their implementations, opting instead for multiple

traditional digital signatures and resulting linear growth in communication complexity.

2
EESMR stands for Energy Efficient State Machine Replication. Also pronounced as

easy-SMR.

of nodes, wireless communication modalities, etc.) where an SMR

protocol A will be more energy-efficient than a competing protocol

B. We demonstrate the use of this analysis to determine the con-

ditions EESMR is desirable compared to a baseline solution where

nodes always communicate with a trusted control node.

(3) We observe that in some CPS settings, a node can communi-

cate with its 𝑘 neighbors using a single multicast message, instead

of 𝑘 unicasts with each neighbor. We take advantage of such mul-

ticasts if they are available, reliable and are more energy-efficient

when handling protocol messages than unicasts, to improve the

energy efficiency of protocols. In order to capture this communica-

tion modality, we extend the standard directed graph model of the

network using hypergraphs.

(4) Finally, using an experimental CPS test-bed, we analyze the

energy efficiency of cryptographic primitives along with parame-

ters as well as the available communication modalities (Section 5).

Moreover, we measure and choose energy-efficient digital signature

schemes. As EESMR and other SMR protocols heavily employ the

communication pattern of a single leader signing and the others

verifying, we find that the verification-efficient RSA signatures

are more energy-efficient than the ECDSA signature scheme. We

also analyze the energy-vs.-reliability trade-off for Bluetooth Low

Energy (BLE) multicasts and demonstrate that 𝑘-casts with four

nines reliability are more efficient than unicasts. For our optimal

choice of cryptographic primitives and communication modality,

we show that EESMR is 2.8 times more energy-efficient than the

state-of-the-art SMR protocol Sync HotStuff [6] in the failure-free

runs, and 2 times worse than Sync HotStuff during leader changes,

demonstrating the positive trade-offs of our approach.

2 PRELIMINARIES
System Model. Consider an 𝑛-node system N = {𝑝1, . . . , 𝑝𝑛},
with up to 𝑓 < 𝑛/2 nodes being Byzantine. We assume a static

fully-connected point-to-point communication graph. The links

are bounded synchronous [4, 6, 8, 35, 38, 59, 73, 74, 80]. We assume

that Δ is a public upper bound on the message delivery time for any

correct sender. The adversary can control the delivery of messages

as long as the bounded-synchrony assumption is not violated.

State Machine Replication — SMR. SMR is an abstraction of a

state machine that applies input requests from clients to a state

and outputs new state. An SMR protocol [61] (defined formally

in Definition 2.1) ensures all correct nodes implement the SMR

abstraction where the nodes reach agreement on an ordering of

requests (or transactions) via a linearizable log.

Definition 2.1 (State Machine Replication (SMR) [6]). An SMR

protocol generates a linearizable log of transactions satisfying the

following:

(1) Safety. For any position𝑚 in the log, if two correct nodes

output 𝐵𝑚 and 𝐵★𝑚 respectively, then 𝐵𝑚 = 𝐵★𝑚 .

(2) Liveness. Each client request is eventually committed by all

the correct nodes.

We make the same assumptions as existing SMR literature [6, 23,

24, 57, 58, 63] with respect to the role of clients and the validity of

the requests. Some example assumptions include: all the clients are

honest when measuring the throughput, every transaction can be

validated for correctness, every protocol message has an identifier

2
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for that instance so messages from one instance will not become

equivocation
3
in another instance, the hash functions are all seeded,

PKI is used to setup (possibly threshold) keys before starting the

protocol, and the public information is agreed upon by all the nodes

as part of the setup before the start of the protocol.

Blocks. In our instantiation of SMR, we use blocks to denote a unit

of the linearizable log. A block is defined as

𝑏𝑙𝑜𝑐𝑘.𝑐𝑜𝑛𝑡𝑒𝑛𝑡𝑠 = Cmds,

𝑏𝑙𝑜𝑐𝑘.𝑝𝑎𝑟𝑒𝑛𝑡 = hash of the parent block.

𝑏𝑙𝑜𝑐𝑘.𝑝𝑎𝑟𝑒𝑛𝑡 is the hash of the parent block. 𝑏𝑙𝑜𝑐𝑘.𝑐𝑜𝑛𝑡𝑒𝑛𝑡𝑠 is the
set of requests from clients called Cmds. We let 𝐺 be the genesis

block with height 0, and recursively define the height of other

blocks as the height of the parent plus one. We refer to the highest
block as the block with the highest height.

Clocks.We assume that the clocks of all the nodes have a constant

bounded skew achieved using network time protocol [64, 66, 68]

and that all the nodes start within time Δ of each other, which is

ensured using a clock synchronization protocol [4]. All nodes start

at local time 𝑡 = 0
4
.

Cryptographic Primitives. Generally, there are two classes of

authentication primitives: digital signatures which are asymmetric

(public-key) primitives, and Message Authentication Codes (MACs)

schemes which are symmetric-key primitives.

A digital signature scheme consists of three algorithmswhich fail

with negligible probability in the security parameter: KeyGen, Sign,
and Verify. (𝑠𝑘, 𝑝𝑘) ← KeyGen(𝜅), where 𝜅 is the security parame-

ter. 𝑠𝑘 is the secret key used to sign the message and 𝑝𝑘 is the public

key used by others to verify that the message was signed by who-

ever possesses 𝑠𝑘 . 𝜎 ← Sign (𝑠𝑘𝑖 ,𝑚), where 𝜎 denotes the signature

on𝑚 signed by using secret key 𝑠𝑘𝑖 . {0, 1} ← Verify (𝑚,𝜎, 𝑝𝑘) out-
puts 1 if the signature 𝜎 signed by 𝑠𝑘 on𝑚 is valid, and outputs 0

otherwise. We denote ⟨𝑚⟩𝑖 as (𝑚,𝜎) where 𝜎 ← Sign (𝑠𝑘𝑖 ,𝑚) and
𝑠𝑘𝑖 is the secret key of node 𝑝𝑖 .

A Message Authentication Code (MAC) scheme consists of three

similar algorithms. AMAC is generally more energy-efficient than a

digital signature, but a digital signature scheme ensures transferable

authentication, i.e., a node can convince others that a particular

node sent a particular message using a signature on it without

possessing 𝑠𝑘 which is useful for detecting equivocation. In a MAC

scheme, it is harder to verify equivocation [11] in the distributed

environment even for a moderate number of nodes.

We use both primitives for energy-analysis, and use digital signa-

tures in our protocol. We assume a public key infrastructure (PKI)

to set up digital signatures. Similar to the related work [4, 6, 63],

threshold signatures can reduce the certificate size to 𝑂 (1).

3 EESMR PROTOCOL
The EESMR protocol implements the SMR abstraction (Defini-

tion 2.1). It builds a chain of blocks linked using hashes, and all the

nodes execute the client requests in the blocks in the same sequence.

The clients waits to receive 𝑓 + 1 identical acknowledgments with

3
An equivocation is a Byzantine behavior where a node sends two conflicting messages

to two different nodes.

4
The local time may be off by Δ across different nodes. This is known as the non-lock

step model [6] as opposed to the lock-step synchrony model which assumes that all

the nodes are in the same round at the same time.

execution results and accepts the results. We omit the clients and

the execution from the rest of the discussion and focus on the nodes

that run the SMR.

EESMR protocol runs in a sequence of rounds and views with
monotonically increasing numbers from 1. Each view consists of

a dedicated unique leader 𝐿 ∈ N known to all. Within a view, the

leader proposes blocks in every round. All nodes maintain pending

commands in a local data structure 𝑡𝑥𝑝𝑜𝑜𝑙 . The leader proposes

blocks using the commands from 𝑡𝑥𝑝𝑜𝑜𝑙 and the other nodes on

committing a block, remove the commands in the block from the

𝑡𝑥𝑝𝑜𝑜𝑙 .

3.1 Data Structures
Messages and Quorum Certificates. Every message𝑚 contains

the view number in the field 𝑚.𝑣𝑖𝑒𝑤 and a threshold signature

validating it in the field𝑚.𝑑𝑎𝑡𝑎𝑆𝑖𝑔 and𝑚.𝑣𝑖𝑒𝑤𝑆𝑖𝑔. The message is

customizable into different messages in the protocol by specifying

its type in𝑚.𝑡𝑦𝑝𝑒 (as specified in Algorithm 1). 𝑛/2+ 1 valid thresh-
old signed messages𝑚 from the same view and type is combined

into a Quorum Certificate (using the QC function in Algorithm 1).

Algorithm 1 Helper functions for EESMR (for node 𝑝𝑖 ).

101: functionMsg(𝑡𝑦𝑝𝑒 , 𝑑𝑎𝑡𝑎)

102: 𝑚.𝑡𝑦𝑝𝑒 ← 𝑡𝑦𝑝𝑒

103: 𝑚.𝑑𝑎𝑡𝑎 ← 𝑑𝑎𝑡𝑎

104: 𝑚.𝑣𝑖𝑒𝑤 ← 𝑣𝑐𝑢𝑟

105: 𝑚.𝑣𝑖𝑒𝑤𝑆𝑖𝑔← ⟨𝑚.𝑡𝑦𝑝𝑒, 𝑣𝑐𝑢𝑟 ⟩𝑖
106: 𝑚.𝑑𝑎𝑡𝑎𝑆𝑖𝑔← ⟨𝑚.𝑑𝑎𝑡𝑎, 𝑣𝑐𝑢𝑟 ⟩𝑖
107: return 𝑚

108: function CreateProposal(𝑏𝑙𝑜𝑐𝑘 , Cmds)

109: 𝑛𝑒𝑤𝐵𝑙𝑜𝑐𝑘.𝑝𝑎𝑟𝑒𝑛𝑡 ← 𝑏𝑙𝑜𝑐𝑘

110: 𝑛𝑒𝑤𝐵𝑙𝑜𝑐𝑘.𝑐𝑜𝑛𝑡𝑒𝑛𝑡𝑠 ← Cmds

111: return 𝑛𝑒𝑤𝐵𝑙𝑜𝑐𝑘

112: function MatchingMsg(𝑚, 𝑡𝑦𝑝𝑒 , 𝑣𝑖𝑒𝑤)

113: return 𝑚.𝑡𝑦𝑝𝑒 = 𝑡𝑦𝑝𝑒 ∧𝑚.𝑣𝑖𝑒𝑤 = 𝑣𝑖𝑒𝑤

114: function QC(𝑉 )

115: 𝑞𝑐.𝑡𝑦𝑝𝑒 ←𝑚.𝑡𝑦𝑝𝑒 :𝑚 ∈ 𝑉
116: 𝑞𝑐.𝑣𝑖𝑒𝑤 ←𝑚.𝑣𝑖𝑒𝑤 :𝑚 ∈ 𝑉
117: 𝑞𝑐.𝑐𝑒𝑟𝑡 ← C (𝑚.𝑡𝑦𝑝𝑒,𝑚.𝑣𝑖𝑒𝑤 ) : {𝑚.𝑣𝑖𝑒𝑤𝑆𝑖𝑔 | 𝑚 ∈ 𝑉 }
118: return 𝑞𝑐

119: function MatchingQC(𝑞𝑐 , 𝑡𝑦𝑝𝑒 , 𝑣𝑖𝑒𝑤)

120: return 𝑞𝑐.𝑡𝑦𝑝𝑒 = 𝑡𝑦𝑝𝑒 ∧ 𝑞𝑐.𝑣𝑖𝑒𝑤 = 𝑣𝑖𝑒𝑤

121: function LockCompare(𝐵𝑙𝑐𝑘 , 𝑏)

122: if 𝑣𝑖𝑒𝑤 (𝐵𝑙𝑐𝑘 ) ≠ 𝑣𝑖𝑒𝑤 (𝑏 ) and 𝑏 extends 𝐵𝑙𝑐𝑘 then
123: return 𝑏

124: if 𝑟𝑜𝑢𝑛𝑑 (𝐵𝑙𝑐𝑘 ) ≠ 𝑟𝑜𝑢𝑛𝑑 (𝑏 ) and 𝑏 extends 𝐵𝑙𝑐𝑘 then
125: return 𝑏

126: return 𝐵𝑙𝑐𝑘 // Retain the old lock

Book-keeping variables. We maintain state variables to track

the current state of the protocol: (i) 𝑣𝑐𝑢𝑟 tracks the current view

number, initialized with 1. (ii) 𝑟𝑐𝑢𝑟 tracks the current round number,

initialized with 3. (iii) 𝐿 tracks the current leader. (iv) 𝐵𝑙𝑐𝑘 tracks

the currently locked chain, initialized to the genesis block 𝐺 . A

locked chain is only updated using the LockCompare function

in Line 121 and always extends the highest committed block. A

node will never allow any other chain to fork-away from the locked

block 𝐵𝑙𝑐𝑘 (unless it is safe to do so, described in the view-change)

3
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while ensuring that it always extends the highest committed block.

(v) 𝐵𝑐𝑜𝑚 tracks the highest committed block, and is initialized to

the genesis block 𝐺 . (vi) Timers 𝑇𝑐𝑜𝑚𝑚𝑖𝑡 (𝑏𝑙𝑜𝑐𝑘) and 𝑇𝑏𝑙𝑎𝑚𝑒 (𝑣𝑐𝑢𝑟 )
are used to commit blocks and send blame messages for a round

respectively.

3.2 Protocol Overview
Our protocol is motivated from Sync HotStuff [6] and OptSync [63].

We present the technical version of our protocol in Algorithm 2.

A crash-version of our protocol can be obtained by removing the

blocks in Lines 220 and 224 as they are associated with equivocation

which is allowed only for Byzantine faults.

The description contains code regions, which are atomically

executed. All blocks such as the conditional on regions are running

concurrently. The same node may act in multiple roles, for instance,

a node maybe a leader as well as a node and thus execute both parts

of the as regions.
The protocol consists of two sub-protocols: steady-state protocol

and view-change protocol. The steady-state is a period when the

leader is behaving correctly. The steady-state protocol can be a

separate protocol, with safety guarantees but no liveness guarantees.

The view-change is the phase that handles Byzantine behavior

of the steady-state leader, by transitioning from view 𝑣 with the

Byzantine leader to view 𝑣+1. If the leader of view 𝑣+1 is Byzantine,
then another view-change protocol is initiated. The view-change

protocol needs to ensure both safety and liveness. Technically, with

minor modifications, the view-change protocol can be a stand-alone

SMR protocol. However, it is inefficient, and is only used to bring

the system back into a steady-state to enjoy efficiency benefits of

the steady-state.

The protocol proceeds in views 1, . . . and rounds 3, . . .. The first

2 rounds in the counter are reserved for the view-change protocol,

and ensures that the view starts with a safe block. We assume that

the leaders are chosen using the Leader(𝑣𝑐𝑢𝑟 ) function. This func-

tion can be round-robin for simplicity, but for expected constant-

latency it is required that the leaders are chosen randomly [4]. All

messages are validated for correctness, such as formatting, signa-

ture checks, etc, and processed when the round is current. If mes-

sages are received from rounds larger than 𝑟𝑐𝑢𝑟 they are buffered

and processed on entering the round to ensure liveness.

Note on chain synchronization. Our description of the protocol ac-

counts for chain-synchronization, i.e., when a node obtains a block

and does not know its parent blocks, it will request them from

the sender first. To ease the exposition, we do not include this

request-response in the protocol description, but the timers in our

description account for these synchronization. Note that the chain

synchronization is not a by-product of our protocol, but is used in

protocol and thus does not affect the results. Since a Byzantine node

can trigger chain synchronization once every round, this results in

a communication-complexity 𝑂 (𝑛2) per round.

3.3 EESMR — Steady State
In the steady-state, the leader proposes blocks for every round.

These blocks are broadcast to all the nodes (Line 205). The leader

continuously streams proposals allowing the protocol to use all

available bandwidth. The other nodes receive the proposal before

the timer (Line 216) runs out. On receiving a new block, all nodes

also update their locked block 𝐵𝑙𝑐𝑘 . All nodes broadcast this pro-

posal to all the other nodes (Line 213).

Committing. For a block 𝐵 to be committed Lines 214 and 278, the

node waits for 4Δ time using 𝑇𝑐𝑜𝑚𝑚𝑖𝑡 (𝐵) after broadcasting 𝐵 to

all the nodes. During this wait, the node ensures that it does not

hear any equivocating blocks for that view and round. When the

𝑇𝑐𝑜𝑚𝑚𝑖𝑡 (𝐵) expires, the node also tracks the highest committed

block in the variable 𝐵𝑐𝑜𝑚 .

The 4Δ wait ensures that if a node commits a block at time 𝑡 ,

then the nodes must have forwarded it to all the nodes at time 𝑡−4Δ
which was received by all the correct nodes by time 𝑡 − 3Δ. After
chain-synchronization, all nodes would have this block by time

𝑡 − Δ. Since, no equivocation was heard by time 𝑡 , all the correct

nodes will lock on this block, i.e., the 𝐵𝑙𝑐𝑘 of all correct nodes will

always extend 𝐵. The view-change ensures that the first block in the

new view always extends the highest committed block of all correct

nodes, thus ensuring safety for 𝐵 even if a view-change occurs. We

discuss the details of this in the description of the view-change

protocol.

Voting in the head. In the steady-state, by waiting for 4Δ time before

committing a block 𝐵 and not hearing any equivocating blocks,

a node has implicitly collected votes for 𝐵 from all the correct

nodes. We describe this as voting in the head, as opposed to explicit

quorum certificate construction. These implicit votes are made

explicit during a view-change. On a high-level, in the view-change

protocol, the correct nodes send their vote for blocks that extend

their locked block 𝐵𝑙𝑐𝑘 . Due to hash-chaining of blocks, a vote for

any child block is also a vote on all its ancestors, and thus all the

committed blocks obtain explicit votes during the view-change.

Firstly, this results in𝑂 (1) signing operations per node for every
committed block in the steady-state, which contributes to energy-

savings. Secondly, since this is a re-broadcast of the leader’s pro-

posal and not broadcast of explicit vote messages, in partially con-

nected networks, it results in a flooding of only one message reduc-

ing the communication complexity of our protocol.

3.4 EESMR — View Change
In EESMR, a view change can occur if the leader of a view (i) allows

𝑇𝑏𝑙𝑎𝑚𝑒 to time out for at least 1 correct node, (ii) equivocates in a

round with two blocks at the same height, or (iii) does not correctly

extend the highest committed block during the view change (rounds

1 and 2).

If a correct node 𝑝𝑖 does not receive the next proposal on time,

it sends a blame message (Line 216). If no correct node hears a

block then there will be 𝑛 − 𝑓 > 𝑓 blames, and a view change will

occur. But, if a correct node 𝑝𝑖 blames, it may not always result in

a view-change, as less than 𝑓 + 1 correct nodes may send this, but

it is still safe. If other correct nodes hear a proposal for that round,

then they will forward it to node 𝑝𝑖 within Δ and this results in a

reset of the blame timer (Line 210).

A leader 𝐿 can equivocate by sending 𝐵 and 𝐵′ for any round (not
just the latest round). From bounded-synchrony, we can ensure all

correct nodes will hear it in time Δ. On observing two equivocating

(conflicting) proposals (Line 220), all correct nodes 𝑛 − 𝑓 > 𝑓 send

4
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Algorithm 2 EESMR Protocol (for node 𝑝𝑖 ).

201: for 𝑣𝑐𝑢𝑟 ← 1, 2, 3, . . . do
202: for 𝑟𝑐𝑢𝑟 ← 3, 4, 5, . . . do

⊲ Steady-State Phase (Safe)

203: as a leader // 𝐿 ← Leader(𝑣𝑐𝑢𝑟 )

204: // Cmds is obtained from 𝑡𝑥𝑝𝑜𝑜𝑙

205: 𝑛𝑒𝑤𝐵𝑙𝑜𝑐𝑘 ← CreateProposal(𝐵𝑙𝑐𝑘 ,Cmds)
206: 𝑝𝑟𝑜𝑝𝐷𝑎𝑡𝑎 ← (𝑛𝑒𝑤𝐵𝑙𝑜𝑐𝑘, 𝑟𝑐𝑢𝑟 )
207: 𝑐𝑢𝑟𝑃𝑟𝑜𝑝𝑜𝑠𝑎𝑙 ←Msg(Propose, 𝑝𝑟𝑜𝑝𝐷𝑎𝑡𝑎)

208: broadcast 𝑐𝑢𝑟𝑃𝑟𝑜𝑝𝑜𝑠𝑎𝑙 once

209: as a node // Also executed by the leader

210: start or reset𝑇𝑏𝑙𝑎𝑚𝑒 (𝑣𝑐𝑢𝑟 ) to time 4Δ
211: wait for first valid 𝑛𝑒𝑤𝑃𝑟𝑜𝑝𝑜𝑠𝑎𝑙 from any node

// Vote in the head

212: update 𝐵𝑙𝑐𝑘 ← 𝑛𝑒𝑤𝑃𝑟𝑜𝑝𝑜𝑠𝑎𝑙 .𝑑𝑎𝑡𝑎[0]
213: broadcast 𝑛𝑒𝑤𝑃𝑟𝑜𝑝𝑜𝑠𝑎𝑙 once

214: set𝑇𝑐𝑜𝑚𝑚𝑖𝑡 (𝐵𝑙𝑐𝑘 ) ← 4Δ
215: call NextRound

⊲ View-Change Phase (Safe + Live)

// Handle lack of progress

216: on time out of𝑇𝑏𝑙𝑎𝑚𝑒 (𝑣𝑐𝑢𝑟 ) // Crash

217: 𝑏𝑙𝑎𝑚𝑒𝐷𝑎𝑡𝑎 = ⊥
218: 𝑏𝑙𝑎𝑚𝑒𝑀𝑠𝑔←Msg(Blame, 𝑏𝑙𝑎𝑚𝑒𝐷𝑎𝑡𝑎)

219: broadcast 𝑏𝑙𝑎𝑚𝑒𝑀𝑠𝑔

// Handle equivocation

220: on 𝑝𝑟1, 𝑝𝑟2 ∧ 𝑝𝑟1 .𝑟𝑜𝑢𝑛𝑑 = 𝑝𝑟2 .𝑟𝑜𝑢𝑛𝑑 // Byz.

221: 𝑏𝑙𝑎𝑚𝑒𝐷𝑎𝑡𝑎 ← ⊥
222: 𝑏𝑙𝑎𝑚𝑒𝑀𝑠𝑔←Msg(Blame, 𝑏𝑙𝑎𝑚𝑒𝐷𝑎𝑡𝑎)

223: broadcast (𝑏𝑙𝑎𝑚𝑒𝑀𝑠𝑔, 𝑝𝑟1, 𝑝𝑟2 ) once
224: on blame𝑚 with𝑚.𝑑𝑎𝑡𝑎 = (𝑝𝑟𝑜𝑝1, 𝑝𝑟𝑜𝑝2 ) // Byz.

225: cancel all commit timers𝑇𝑐𝑜𝑚𝑚𝑖𝑡 ( ·)
226: broadcast𝑚 once

// Change the view

227: on 𝑓 + 1 MatchingMsg(𝑚, blame, 𝑣𝑐𝑢𝑟 ) as𝑉
228: cancel all commit timers𝑇𝑐𝑜𝑚𝑚𝑖𝑡 ( ·)
229: 𝑏𝑙𝑎𝑚𝑒𝑄𝐶 ← QC(𝑉 )

230: broadcast 𝑏𝑙𝑎𝑚𝑒𝑄𝐶 once

231: on valid 𝑏𝑙𝑎𝑚𝑒𝑄𝐶

232: broadcast 𝑏𝑙𝑎𝑚𝑒𝑄𝐶 once

233: wait Δ // Ensure all correct nodes quit the view

234: call QuitView

235: procedureQuitView

236: 𝑐𝑜𝑚𝑚𝑖𝑡𝐷𝑎𝑡𝑎 ← 𝐵𝑐𝑜𝑚

237: 𝑐𝑜𝑚𝑅𝑒𝑞𝑀𝑠𝑔←Msg(CommitUpdate, 𝑐𝑜𝑚𝑚𝑖𝑡𝐷𝑎𝑡𝑎)

238: broadcast 𝑐𝑜𝑚𝑅𝑒𝑞𝑀𝑠𝑔

239: wait 5Δ to obtain 𝑐𝑜𝑚𝑚𝑖𝑡𝑄𝐶

240: broadcast 𝑐𝑜𝑚𝑚𝑖𝑡𝑄𝐶 and wait Δ
241: call NewView(𝑐𝑜𝑚𝑚𝑖𝑡𝑄𝐶)

242: on CommitUpdate msg𝑚 with 𝑏 :=𝑚.𝑑𝑎𝑡𝑎

243: if 𝑏 does not conflict with 𝐵𝑙𝑐𝑘 then
244: send Msg(Certify, 𝑏) to the sender of𝑚

245: on 𝑓 + 1 MatchingMsg(𝑚, Certify, 𝑣𝑐𝑢𝑟 ) as𝑉

246: 𝑐𝑜𝑚𝑚𝑖𝑡𝑄𝐶 ← QC(𝑉 )
247: 𝑐𝑜𝑚𝑚𝑖𝑡𝑈𝑝𝑑𝑎𝑡𝑒𝑀𝑠𝑔←Msg(CommitUpdate, 𝑐𝑜𝑚𝑚𝑖𝑡𝑄𝐶)

248: on 𝑐𝑜𝑚𝑚𝑖𝑡𝑄𝐶′ for 𝑏′ from other nodes

249: if 𝑏′ does not conflict with 𝐵𝑙𝑐𝑘 and extends 𝑐𝑜𝑚𝑚𝑖𝑡𝑄𝐶 then
250: 𝑐𝑜𝑚𝑚𝑖𝑡𝑄𝐶 ← 𝑐𝑜𝑚𝑚𝑖𝑡𝑄𝐶′

251: procedure NewView(𝑐𝑜𝑚𝑚𝑖𝑡𝑄𝐶)

252: 𝑣𝑐𝑢𝑟 ← 𝑣𝑐𝑢𝑟 + 1
253: 𝑟𝑐𝑢𝑟 ← 1

254: 𝐿 ← Leader(𝑣𝑐𝑢𝑟 )

255: as new leader

256: wait 4Δ to hear 𝑐𝑜𝑚𝑚𝑖𝑡𝑄𝐶 from 𝑓 + 1 nodes in 𝑠𝑡𝑎𝑡𝑢𝑠

257: 𝑝𝑟𝑜𝑝 ←Msg(NewViewProposal, 𝑠𝑡𝑎𝑡𝑢𝑠)

258: broadcast 𝑝𝑟𝑜𝑝 once // Line 267 calls NextRound

259: wait for 𝑓 + 1 MatchingMsg(𝑚, VoteMsg, 𝑣𝑐𝑢𝑟 ) with

𝑚.𝑑𝑎𝑡𝑎 = 𝐻 (𝑝𝑟𝑜𝑝 ) as𝑉
260: 𝑞𝑐 ← QC(𝑉 )

261: 𝑝𝑟𝑜𝑝𝐷𝑎𝑡𝑎 ← 𝑞𝑐

262: 𝑐𝑢𝑟𝑃𝑟𝑜𝑝𝑜𝑠𝑎𝑙 ←Msg(Propose, 𝑝𝑟𝑜𝑝𝐷𝑎𝑡𝑎)

263: broadcast 𝑐𝑢𝑟𝑃𝑟𝑜𝑝𝑜𝑠𝑎𝑙 once

264: as a node
265: send 𝑐𝑜𝑚𝑚𝑖𝑡𝑄𝐶 to 𝐿

266: set𝑇𝑏𝑙𝑎𝑚𝑒 (𝑣𝑐𝑢𝑟 ) to 8Δ

267: on valid NewViewProposal msg ∧𝑟𝑐𝑢𝑟 = 1

268: broadcast 𝑝𝑟𝑜𝑝 once

269: if 𝑝𝑟𝑜𝑝.𝑑𝑎𝑡𝑎 extends highest block in 𝑝𝑟𝑜𝑝.𝑑𝑎𝑡𝑎.𝑠𝑡𝑎𝑡𝑢𝑠 then
270: 𝑑𝑎𝑡𝑎 ← 𝐻 (𝑝𝑟𝑜𝑝 )
271: 𝑣𝑜𝑡𝑒𝑀𝑠𝑔←Msg(VoteMsg, 𝑑𝑎𝑡𝑎)

272: broadcast 𝑣𝑜𝑡𝑒𝑀𝑠𝑔

273: 𝑇𝑏𝑙𝑎𝑚𝑒 (𝑣𝑐𝑢𝑟 ) ← 6Δ
274: call NextRound

275: on valid Propose msg ∧𝑟𝑐𝑢𝑟 = 2∧ valid QC in𝑚𝑠𝑔.𝑑𝑎𝑡𝑎

276: broadcast𝑚𝑠𝑔

277: call NextRound // Go to steady-state

⊲ Commit Rule // Anytime

278: on time out of𝑇𝑐𝑜𝑚𝑚𝑖𝑡 (𝑏𝑙𝑜𝑐𝑘 )
279: update 𝐵𝑐𝑜𝑚 to 𝑏𝑙𝑜𝑐𝑘

280: commit block and its parents

blame messages and also cancel their commit-timers (Line 225) to

preserve safety.

Quitting the View. On receiving 𝑓 + 1 blame messages for 𝑣𝑐𝑢𝑟
(Line 227), the nodes build a certificate and broadcast it, signaling

other correct nodes to quit the view 𝑣𝑐𝑢𝑟 (Line 231). After sending

the blame certificate, correct nodes wait for Δ to ensure that all

correct nodes quit the old view 𝑣 .

After quitting the view 𝑣𝑐𝑢𝑟 , the nodes first obtain certificates for

their highest committed block 𝐵𝑐𝑜𝑚 . They do this by broadcasting

their 𝐵𝑐𝑜𝑚 . All correct nodes vote for other’s 𝐵𝑐𝑜𝑚 if it does not

conflict with the node’s local 𝐵𝑐𝑜𝑚 and 𝐵𝑙𝑐𝑘 . As we show in the

proofs, this will always be true for all correct nodes.

The nodes then broadcast their highest certificate to all the nodes.

The other node’s update their local highest certificate if the newly

received certificates are longer and does not conflict with their local

𝐵𝑙𝑐𝑘 . This ensures that no matter whose certificate the (potentially

Byzantine) leader picks alongwith 𝑓 other Byzantine server’s certifi-

cates, it must extend the highest committed block of all the correct

nodes. The final highest certificate is input to the next function

NewView.

5
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In this step, the nodes wait 5Δ time before starting the next view

to ensure that all correct nodes have sufficient time to collect a

certificate for their 𝐵𝑐𝑜𝑚 . Say, the first correct node quits the view

𝑣𝑐𝑢𝑟 at time 𝑡 . By time 𝑡 + Δ, all correct nodes will quit the view
𝑣𝑐𝑢𝑟 . All correct nodes will have broadcast their 𝐵𝑐𝑜𝑚 by this time,

which will reach all correct nodes by time 𝑡 + 2Δ, which will have

been chain synchronized by time 𝑡 + 4Δ. By time 𝑡 + 5Δ, all correct
nodes will have collected 𝑓 + 1 votes for their 𝐵𝑐𝑜𝑚 .

Starting the New View. In this function, all correct nodes send their

certificates for 𝐵𝑐𝑜𝑚 to the new leader. The new leader collects

certificates from all the nodes and proposes a block containing 𝑓 +1
such certificates.

5
The nodes vote for this proposal if it extends the

highest block among all the certificates.

A correct leader can always build a valid proposal. Say, the leader

is the first node to enter the new view at time 𝑡 . By time 𝑡 + Δ,
all correct nodes will have entered the new view and sent their

certificates. These reach the leader by time 𝑡 + 2Δ, and accounting

for chain synchronization, the leader can construct a proposal by

time 𝑡 + 4Δ. Then it will propose a NewViewProposal message

for the round 1 in the new view. It then builds a quorum certificate

and proposes the round 2 message, after which it transitions to the

steady state.

While the new leader is collecting the highest certificates from

all the other correct nodes, we need to ensure that the other correct

nodes wait for sufficient time so that they do not blame an correct

leader. Otherwise, it can result in liveness problems, as the system

changes views all the time. Let the earliest node enter the new view

𝑣 + 1 at time 𝑡 . The latest correct node (possibly the leader) will

enter the view 𝑣 + 1 by time 𝑡 + Δ (Lines 233 and 239). The leader

will receive the latest locked blocks from all the correct nodes by

time𝑇 + 5Δ and it will propose a block at this time which will reach

all the correct nodes by time 𝑇 + 6Δ. Adding 2Δ time for chain

synchronization, if the leader is correct, it suffices to wait for 8Δ
time in Line 266. By time𝑇 +9Δ, the leader can collect votes from all

correct nodes and propose. This proposal will reach all the correct

nodes by time 𝑇 + 10Δ and time 𝑇 + 12Δ after synchronization.

However, some correct nodes may have started their timer for the

proposal in round 2 of the new view at time 𝑇 + 6Δ. Therefore, for
the second round, a timer of 6Δ will suffice in Line 273 to prevent

blaming a correct leader.

If the new leader is Byzantine, as long as it extends one correct

node’s commit certificate, safety is guaranteed. The intuition is

that this certificate is at least the highest committed block from

the previous view(s). If the new leader does not make progress in

round 1 or fails to produce a valid quorum certificate in round 2,

then the timers are triggered, and another view-change protocol

begins. This preserves liveness in the protocol.

The drawback of the savings during the steady-state is that

during the view-change, all the nodes need to generate certificates

for their committed blocks. In this step, the nodes convert their

votes in the head to explicit votes.

5
This step can be optimized to reduce the size, if there are 𝑓 + 1 certificates for the
same block.

3.5 Discussion
In this section, we present optimizations, analysis, and general

discussions about protocol and model.

Equivocation scenario speedups. We can speed up the view

change in the event of an equivocation by skipping the wait to

construct a quorum certificate. This follows from the fact that all

correct nodes will vote for the equivocation as the signatures must

match for all the correct nodes. We can thus save communication

in this phase.

Add commands in rounds 1 and 2. For ease of exposition, client
commands Cmds are not included in rounds 1 and 2 of the view

change. This can be added to improve throughput slightly.

Taking advantage of control planes. For instance, CPS nodes
may be managed by online trusted control nodes and if such a

trusted node is available, we can use it during the view-change to

simplify and improve energy-efficiency. Most SMR protocols can

drop liveness and only preserve safety, i.e., the nodes will ensure

that if two correct nodes output blocks 𝐵 and 𝐵′ at height ℎ, then
𝐵 = 𝐵′. By forgoing liveness, i.e., if two correct nodes output two

blocks 𝐵 and 𝐵′ at height ℎ then 𝐵 = 𝐵′; this does not state that all
correct nodes will output 𝐵 at height ℎ, when the leader is correct,

we can guarantee safety. When the leader equivocates or does not

make progress, the nodes can simply stop and wait for the control

nodes to change the view. This can improve energy-efficiency.

Security Analysis.We defer the security analysis to the full ver-

sion [16].

Note on optimizations and security. It is easy to show that these

optimizations do not violate the safety and liveness of the system.

We can easily extend the proofs provided in [16] to show that the

protocols with the optimizations are still secure.

4 ENERGY ANALYSIS
In this section, we formalize the energy-measurement model, argue

for the need to optimize the common-case and push complexities to

the worst-case. We also develop a framework to compare protocols

that allows us to make better decisions.

The need for best-case optimality. Let ®𝑋 define a vector, which

consists of system parameters such as ®𝑋 = (𝑛, 𝑓 ,𝑚, 𝑆 , 𝑅, 𝜎𝑠 , 𝜎𝑣)𝑇 ,
where 𝑛 is the total number of nodes tolerating 𝑓 faults;𝑚 is the

maximum supported payload size, e.g., the size of Cmds; 𝑆 and 𝑅

are the costs to send and receive per byte; and 𝜎𝑠 and 𝜎𝑣 are the

costs to sign and verify digital signatures.

Let𝜓 denote the energy cost function of a leader based protocol

per unit of consensus (typically a block of client requests). The

function takes a column vector ®𝑋 of energy-costs of primitives and

computes the energy cost of the protocol. An example is:𝜓 ( ®𝑋 ) =
𝑐1𝑚+𝑐2𝑛+𝑐3𝑚𝑛+𝑐4𝑚𝑛𝑆 +𝑐5𝑚𝑛𝑅+𝑐6𝜎𝑠 +𝑐7𝑛𝜎𝑣 for some constants

𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5, 𝑐6 and 𝑐7. This function ignores the common state

machine replication costs such as verifying the semantic validity

of client requests, checking if the client has correctly generated the

requests, execution of a request, etc. When comparing two different

protocols, we drop ®𝑋 , and just use𝜓 . In later section, we use such

functions to model protocols and perform energy analysis.

We denote a particular protocol by placing its name in the su-

perscript (e.g.,𝜓𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒
), the best-case energy-cost (without faults)

of the protocol using subscript 𝐵 such as𝜓𝐵 , the worst-case (with

6
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faulty leader and faults)
6
energy cost and the view change energy

costs (costs to change the leader) using the subscripts𝑊 and 𝑉

respectively such as𝜓𝑊 and𝜓𝑉 . We assume𝜓𝑉 = 𝜓𝑊 −𝜓𝐵78.
We wish to design a protocol𝜓 that is more energy efficient than

another protocol 𝜓★
. Trivially, if 𝜓𝐵 ≤ 𝜓★

𝐵
and 𝜓𝑊 ≤ 𝜓★

𝑊
, then

we have already achieved our goal. Therefore, let us consider the

case where𝜓 ≤ 𝜓★
is not true always. Let 𝑁 be the total number

of blocks agreed upon in which𝑊 worst-case events occur which

result in𝑉 =𝑊 view changes. Then using (𝑁 −𝑉 )𝜓𝐵 +𝑉 (𝜓𝑊 ) ≤
(𝑁 −𝑉 )𝜓★

𝐵
+𝑉

(
𝜓★
𝑊

)
, we get 𝜈 𝑓 = 𝑉

𝑁
≤ 𝜓★

𝐵
−𝜓𝐵

𝜓𝑉 −𝜓★
𝑉

. Let 𝜈 𝑓 = 𝑉
𝑁

be the

ratio of view changes 𝑉 to total number of blocks 𝑁 . The fraction

of good (best-case) runs are 1 − 𝜈 𝑓 with 0 ≤ 𝜈 𝑓 ≤ 1.

(Un)Favorable conditions. There are two regions of solutions

for the above inequality when 𝜈 𝑓 ≥ 0: (i) 𝜓𝐵 > 𝜓★
𝐵
(worse best-

case) with 𝜓𝑉 < 𝜓★
𝑉

(better worst-case), which we term as the

worst-case optimal solution set, and (ii)𝜓𝐵 < 𝜓★
𝐵
(better best-case)

with𝜓𝑉 > 𝜓★
𝑉
(worse worst-case), which we term as the best-case

optimal solution set.

This means that we want to either make the protocol worst-case

efficient (region i) or best-case efficient (region ii) for𝜓 to be more

energy efficient than𝜓★
. In bounded-synchrony, since the number

of faults are bounded by 𝑓 , 𝑉 is also bounded by 𝑓 . Therefore, for

our setting, asymptotically we need a best-case optimal𝜓 , i.e., the

best-case optimal solution set. We also want𝜓𝑉 −𝜓★
𝑉
to be as close

as possible. In other words, if𝜓𝑉 is much better than𝜓★
𝑉
, then the

number of best-case events 𝑁 −𝑉 we need to run the protocol will

be large, in which case a worst-case optimal solution set may be

better.

𝑁 ≥ 𝑉
(
𝜓𝑉 −𝜓★

𝑉

𝜓★
𝐵
−𝜓𝐵

)
For non-synchronous systems, observe that the adversary can

choose which phase the protocol spends the most time on. As a

result, an adversary with the goal of thwarting energy-efficiency

can always do so by ensuring that the protocol is spending most

of its time in the non-optimal phases. Hence, we restrict ourselves

to bounded-synchronous systems in this work and leave the op-

timization problem for non-synchronous systems an interesting

open problem for the future.

For any network setting, Dolev and Strong [32] showed in The-

orem 4.1 that in the worst-case it is impossible to avoid the 𝑓 + 1
round lower bound. For our synchronous setting, the network is al-

ways reliable within the Δ parameter. In a leader based protocol we

will have at most 𝑓 Byzantine leaders. Thus, intuitively, protocols

must be designed to be best-case optimal.

6
By worst case, we ignore a denial-of-service adversary that spams invalid messages.

Such adversaries are out-of-scope of this work and addressing them is an orthogonal

problem [4, 6, 8, 22]. For example Elmamy et al. [34] classify DoS and jamming as a

network-layer concern and not application layer (where we design protocols).

7
Note that we do not assume that𝜓𝑉 > 0. There exist protocols where the protocol

aborts early in case of Byzantine failures such as Tendermint [20], which results in

𝜓𝑉 < 0.

8
What about cases that are neither best or worst-case? Examples of such cases are

nodes that send incorrect messages, spam messages, etc. We ignore such cases as

they are an orthogonal problem common to all SMR protocols and can be resolved by

heuristics such as reputation or banning mechanisms for such peers.

Theorem 4.1 (Lower bound on BA [32]). Byzantine agreement
using authentication can be achieved for 𝑛 processors with at most 𝑓
faults within 𝑓 + 1 phases, assuming 𝑛 > 𝑓 + 1.

This bound reiterates that we need to make protocols energy

efficient in the best-case scenario with lower view-change costs to

maximize 𝑓𝑒 , compared to the baseline justifying the fit of EESMR

when compared to other protocols.

In practice, protocols may exist where a view-change may exceed

the energy available (say the energy available in a fully-charged

battery). In such conditions, the worst-case optimal solution might

be more practical, or energy-efficiency may not possible for the

given 𝑓 faults and the given energy-budget.

Adversary for Energy-Efficiency. Let 𝑓𝑠 be Byzantine nodes

that attack safety. These may send incorrect messages, but send

messages when they must, i.e., they do not attack liveness. Let 𝑓𝑐
be Byzantine nodes that attack liveness (they do not send messages,

but if they do, they will send the correct messages). For safety, we

have 𝑛 > 𝑓𝑠 , and for liveness we have a necessary condition 𝑛 > 2𝑓𝑐 .

We explore a similar relationship for energy faults 𝑓𝑒 , i.e., faults

that wish to drain the energy of correct nodes. If we want a protocol

to be energy fault-tolerant, then the number of faults 𝑓𝑒 ← 𝑓 should

be such that 𝑓𝑒 of the worst-cases for𝜓 should still be better than

𝑓𝑒 of the worst-cases for𝜓
★
. Solutions for 𝑓 that satisfy𝜓 (𝑓 , ·) ≤

𝜓★(𝑓 , ·) dictate the energy bound. This is true for example, when𝜓

and𝜓★
are monotonic in 𝑓 . For our setting, let 𝑓𝑒 Byzantine nodes

cause the worst case scenario to occur 𝑓𝑒 times after which finally

a best-case scenario occurs. Then using 𝑓𝑒 ·𝜓𝐸𝐸𝑆𝑀𝑅
𝑊

+𝜓𝐸𝐸𝑆𝑀𝑅
𝐵

≤
𝜓𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒

, we obtain

𝑓𝑒 ≤
𝜓𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 −𝜓𝐸𝐸𝑆𝑀𝑅

𝐵(
𝜓𝐸𝐸𝑆𝑀𝑅
𝐵

+𝜓𝐸𝐸𝑆𝑀𝑅
𝑉

) (EB)

In many applications, despite the main protocol tolerating up

to 50% faults, the actual protocol might tolerate 𝑓 < 𝑓max due to

connectivity bottlenecks or other reasons. Obtaining 𝑓𝑒 in rela-

tion to another protocol helps to choose the more energy-efficient

protocol.

Our analysis allows administrators and protocol stake-holders

and deployers to model protocols and use the application details

such as expected number of faults, communication and computation

primitives used to make energy-aware protocol choices.

5 CPS AND PERFORMANCE ANALYSIS
In this section, we consider the Cyber-Physical System (CPS) con-

text to evaluate the energy efficiency of our protocol. Our choice

of CPS is motivated by two different observations. a) The energy-

starved nature of conventional CPS nodes makes it essential to

ensure that the energy overhead of a BFT protocol is minimal on

the system. b) Conventional machines run a heavy operating system

withmillions of CPU instructions. Calculating the energy consumed

by the protocol from the machine’s overall energy consumption

requires us to separate the operating system’s inherent energy con-

sumption, which is prone to a lot of noise. This noise masks the

energy consumed by the BFT protocol. Hence, we consider low-

powered CPS nodes, which run a lightweight OS with much lower

energy consumption. Consequently, the noise contributed by the

7
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Figure 1:An example feasible region plot for differentmessage sizes
(𝑚) and number of nodes (𝑛) . This plot is generated for RSA-1024,
and the nodes communicate with each other using Wi-Fi and the
external trusted node uses 4G. BL is Baseline. The z-axis is the differ-
ence between EESMR energy cost and the baseline. When negative,
EESMR is more energy-efficient.

OS to the energy readings of the device is also lower, allowing us

to measure the energy of the protocol accurately.

5.1 Protocol Energy Comparison
In the previous sections, we designed our EESMR to bemore energy-

efficient than the state-of-the-art protocol Sync HotStuff. However,

every application is unique andmay contain several communication

media alongwith trusted control nodes. EESMRmay not be themost

optimal solution in all of these scenarios. In this part, we present

analysis techniques to compare energy-efficiency of protocols.

Comparison with trusted-baseline. We compare our work with

a trusted-baseline protocol using theoretical tools. In this baseline

protocol, we assume the existence of a trusted node. Trivially, if the

trusted node uses the same communication network as the other

nodes, then the trusted-baseline is always energy-efficient. We

consider the case where the trusted node is on a different (more ex-

pensive) communication medium than the communication medium

among nodes (e.g., satellites to communicate with the trusted node

and ground-stations for local communication among other nodes).

An example of such scenario is communication between CPS/IoT

devices and the control servers.

The baseline protocol assumes that all the CPS nodes are directly

connected to the trusted node using the expensive medium and not

use the links between the CPS nodes. The baseline still assumes

that 𝑓 out of 𝑛 CPS nodes are Byzantine.

We analytically count operations and build equations for𝜓𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒
,

𝜓𝐸𝐸𝑆𝑀𝑅
𝐵

and 𝜓𝐸𝐸𝑆𝑀𝑅
𝑉

in MATLAB software. We use the energy

measurement values observed by related works and from our ex-

periments in Section 5.4 in our analysis. We present an example

feasible region in Fig. 1 which shows when EESMR is favorable over

a trusted-baseline protocol (BL) assuming an external trusted party

over a slightly more expensive medium 4G, while the CPS nodes use

Wi-Fi to run EESMR. Such modeling is useful for example, to choose

the more efficient protocol for a given set of parameters. This anal-

ysis can be extended to consider our crash-fault tolerant version,

or our steady-state can be combined with the trusted-baseline only

for the view-change to improve the energy-efficiency.

5.2 CPS System Model
Multicasts.We take advantage of the multicasts available in the

CPS setting by modeling the network as hypergraphs ([16]). The

wirelessmulticast for instance guarantees that all correct nodes hear

a consistent value in a time-bounded fashion (see note on jamming).

We assume that all nodes have access to a multicast channel with at

least 𝑘 nodes such that the system remains 𝑓 -connected, i.e., every

node can connect with 𝑓 + 1 nodes.
Notations.We refer to thesemulticast channels as𝑘-casts as we can

multicast once to reach 𝑘 nodes. These are realized using Ethernet

multicasts or wireless multicasts in the CPS system. Our protocols

are updated accordingly, to use these 𝑘-casts instead of broadcast,

and an appropriate Δ parameter is used to ensure that all correct

nodes receive a message sent by any other correct node. We denote

by 𝐷𝑖𝑛 and 𝐷𝑜𝑢𝑡 the number of incoming and outgoing 𝑘-cast links.

Note on Bounded-Synchrony for CPS. The employed equivocation de-

tection is only applicable to bounded-synchronous (CPS) networks,

which is viable in closed controlled environments [25, 35, 42, 59, 73,

74, 80] such as remote, industry and military applications. Notice

that for asynchronous and partially synchronous network models,

due to the unknown delays, an adversary can always deplete any

finite energy resources of the CPS devices, making any meaningful

energy analysis challenging. The energy-efficiency analysis of such

protocols during periods of synchrony is of independent interest

and presents an interesting future work.

Note on Jamming. We assume that the hyper-edges are synchro-

nous [25, 31, 35, 42, 59, 71–74, 80], and similar to the relatedworks [4,

6, 22, 56–58, 60, 63] consider network jamming to be an orthogonal

problem. Nevertheless, we note that the location of deployment

such as data-centers, military networks using satellites, or remote

large areas will dictate whether jamming is a part of the threat

model. If large-scale jamming is a part of the threat model for a

setting, unicast links
9
are reliable. The use of unicasts do not affect

our claims on energy-efficiency over prior SMR protocols.

We measure and compare the costs of multicasts and unicasts

and measure their reliability. We implement our proposed protocol

EESMR and the state-of-the-art protocol Sync HotStuff [6] on CPS

devices and compare their energy costs.

5.3 System setup
We implemented our protocol and the baseline protocol Sync Hot-

Stuff in C++ and tested them on NUCLEO-F401RE nodes with ARM

Cortex M4 84 MHz processors. The main board has 512 kB of flash

memory and 96 kB of SRAM. The nodes communicate using Blue-

tooth Low Energy (BLE) modules. We used Saleae Logic-Pro 8

9
Jamming in unicast links in wireless networks can be mitigated by Spread-Spectrum

Frequency Hopping [69].

8
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and INA169 sensors to measure the energy consumed by the nodes

running the protocols.

5.4 Evaluating primitives
We measure the energy costs of the communication and crypto-

graphic primitives described in Section 2.

Communication primitives. We measured the cost of sending a

message through different communication media in Table 1. The

energy reading for BLE is the energy needed to transmit one packet

of data. However, this BLE transmission does not verify if the other

party received it reliably. We notice that BLE’s energy requirement

is two orders of magnitude lower than WiFi and three orders of

magnitude lower than 4G, which is the primary reason of us using

BLE in our implementation. We evaluated this mode of commu-

nication further by measuring the energy costs of sending and

receiving messages of various sizes using unicasts and multicasts in

BLE. We use BLE advertisement packets as multicasts and 𝑘-casts.

We observe that these packets have payloads limited to 25 bytes

per packet by the BLE GAP specification. For large messages, we

must therefore fragment them into multiple advertisements. BLE

advertisements are packets in the link layer, with no inherent capa-

bility to handle packet losses. We tackled this inherent unreliability

using redundant transmissions. We conducted experiments to chart

the reliability of 𝑘-casts. The setup involved a set of BLE-enabled

embedded devices placed within a 10 meter distance of each other,

which is within the range of BLE. We transmitted batches of 10, 000

packets with varied levels of redundancy and measured the number

of successful packets received by the receivers. The failure rate was

measured against the redundancy factor of transmission and the

energy values were measured accordingly. A 𝑘-cast is considered

to be a success only if all the 𝑘 receivers successfully receive the

data. We repeated this experiment for different values of 𝑘 and

recorded the experimental results in Fig. 2a. We observe that the

failure rates exponentially decrease with the increase in the redun-

dancy factor and energy spent per transmission. The probability of

a transmission failure increases with the value of 𝑘 and the energy

needed to guarantee a 99.99% reliability also increases accordingly.

However, for specific applications, a threshold of 99.99% might not

be sufficient. For such applications, the reliability can be customly

set using concepts like erasure and error-correcting codes, where

the amount of redundancy can be set according to the desired reli-

ability. Based on the noise in the environment, we can measure a

value Δ such that the desired reliability is achieved.
10

With the added redundancy, we experimentally observe that it

takes bounded 200 ms to transmit a 25 byte message with 99.99%

reliability over a multicast link in BLE, with 𝑘 = 7. BLE has a low

bandwidth resulting in a high transmission time, but it is energy ef-

ficient when compared to other alternatives. The experiments were

conducted in a laboratory with many rogue advertisement packets

from other devices which increased the energy consumption of the

receiver nodes. But this also mimics a practical setting due to the

ubiquity of BLE. For all further experiments, we use this setting of

𝑘-casts that guarantees 99.99% reliability for each k-cast link.

10
It can be an interesting optimization to improve the reliability without redundant

transmissions using erasure coding. However, we note that erasure coding solutions

typically employ large pre-computed tables, which will not fit on the employed CPS

boards without non-trivial implementation efforts.

Multicasts vs. unicasts on BLE. We explore the unicast alter-

native to multicasts. Unicasts offers better reliability at the cost of

more point-to-point transmissions. The unicast links use the GATT

(Generic Attribute Profile) protocol, which is a connection-based

protocol in the BLE realm. GATT offers reliable data transmission

by inherently handling packet drops and re-transmitting data when

necessary. Fig. 2b compares the energy consumption of 99.99% 𝑘-

cast on BLE with the equivalent 𝐷𝑜𝑢𝑡 = 𝑘 unicast links for BLE

to transmit messages with different payloads. We observe that ex-

pectedly, the energy required to transmit a 𝑘-cast using equivalent

unicasts increases linearly with the 𝑘 .

Fig. 2b compares the energy costs to transmit the same payloads

using the 99.99% reliable multicast and equivalent unicasts. We

observe that a unicast link is more effective compared to a multicast

for bigger payloads, but this advantage is quickly negated as the

value of 𝑘 increases. The embedded devices used in our experiments

cannot handle concurrent unicast connections with its neighbors,

due to which data transfers using unicasts add extra time overheads.

5.5 Cryptographic Primitives
Hash and HMAC costs. We instantiate the MAC (message au-

thentication code) algorithm using SHA-256 as the underlying hash
function, and measure the hashing cost for different message sizes.

We use short keys of recommended size 64 bytes. The cost of signing

(𝜇𝑆 ) and verifying (𝜇𝑉 ) is the same as for the HMAC scheme. The

major cost in the HMAC scheme was mostly due to the underlying

SHA-256 algorithm. We found that the cost of hashing increased

linearly with message size.

Public key primitives. We measured the energy costs for Elliptic

Curve Digital Signature Algorithm (ECDSA) [43] and RSA [28]

for various security parameters, and recorded their energy read-

ings in Table 2. For ECDSA [43], we found that brainpool curves

(BP-XXX) [51] were generally expensive to sign (5J), and verify (11J)

for 160 bit curves. NIST optimized curves (SECP-XXX) [36] offer
better performance in comparison (1J and 2J respectively) for 160-

bit curves. We use the implementations from MbedTLS [3] (com-

mit: b6229e304) for our measurements. We implemented BP160R1

using MbedTLS and RFC 5639 [51]. Finally, RSA using 1024-bit

modulus costs 400mJ and 20mJ to sign and verify, being an ideal

candidate for CPS.

RSA using 1024-bit modulus provides 80-bits of security and

should be practical for most CPS settings [2, 46]. RSA provides two

benefits over ECDSA: (i) reduced energy costs, and (ii) the benefit

of asymmetry in verification and signing costs. The latter implies

higher energy costs for Byzantine nodes (to equivocate) while the

impact is significantly less on the correct nodes that verify.

5.6 Evaluating EESMR
We implemented EESMR on embedded devices using BLE advertise-

ments as 𝑘-casts with sufficient redundancy to achieve a reliability

of 99.99% for message transmission. Considering the memory limi-

tations of the devices we used, we performed experiments on the

blocking variant of EESMR.
11

We use 𝐷𝑖𝑛 = 𝑘 , and 𝐷𝑜𝑢𝑡 = 1 in our

11
The non-blocking variant of our protocol requires more memory (theoretically

unbounded) to process all the proposed blocks. The only changes required in the

protocol are to let the timers run concurrently, andmultiple proposals can be forwarded

by a node. The energy analysis still hold with respect to every block. A common issue

9
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Table 1: Sample energy consumption data for different media. All the measurements are in milliJoule (mJ).

Message

Size

BLE 4G LTE [41] WiFi

Send Recv Multicast Send Recv Send Recv

256 B 0.73 0.55 0.58 494.84 69.54 81.2 66.66

512 B 1.31 1.11 1.17 989.68 139.08 153.98 123.23

1 kB 2.93 2.64 2.35 1979.36 278.17 310.54 231.52

2 kB 5.91 5.23 4.70 3958.72 556.35 610.55 423.58
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(a) The failure rate of 𝑘-casts as a %mapped
against the energy consumed by the sender
and receiver. We achieve a reliability rate
of 99.99% by spending 5.3 mJ per message
by the sender and 9.98mJ per message for
the receiver.
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Figure 2: Energy characterization of various scenarios realized on embedded devices

Table 2: Comparing energy costs (in J) for signature generation (𝜎𝑆 )
and verification (𝜎𝑉 ) for ECDSA curves and RSA schemes.

Algorithm Parameters Sign (in J) Verify (in J)

ECDSA

BP160R1 5.80 11.03

BP256R1 13.88 27.34

SECP192R1 0.84 1.50

SECP192K1 1.16 2.24

SECP224R1 1.10 2.14

SECP256R1 1.60 3.04

SECP256K1 1.72 3.35

RSA

1024-bit modulus 0.40 0.02

1260-bit modulus 0.79 0.03

2048-bit modulus 2.41 0.06

HMAC – 0.19 0.19

experiments, where each hyper-edge has degree 𝑘 . The network

topology is defined as follows: In a system of N = {𝑝1, . . . , 𝑝𝑛}
nodes using 𝑘-casts, every node 𝑝𝑖 transmits messages to nodes

𝑝𝑖+1 mod 𝑛 . . . , 𝑝𝑖+𝑘 mod 𝑛 . Every node 𝑝𝑖 receives messages from

𝑝𝑖−1 mod 𝑛, . . . 𝑝𝑖−𝑘 mod 𝑛 , because of which only these nodes need

to be in communication range. The physical placement of the nodes

is such that each node is within communication range of all nodes

with which it has an edge. We measured the energy consumption

of EESMR by varying 𝑛, 𝑘 and the block size. We take the Δ value

to be 10𝑛 seconds. We took this metric because of the inability of

our devices to scan and transmit data simultaneously. We designed

a time-sequenced schedule and allocated an interval of 10 seconds

with non-blocking protocols (all works so far) is that an adversary can propose a large

number of non-blocking proposals but revert them during a view-change leading to

wasted energy. We leave this as an orthogonal problem of independent research, as it is

generally applicable to all non-blocking protocols. This can be mitigated by bounding

the number of allowed non-blocking proposals.

10
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for every node to transmit data reliably. In this interval, all other

nodes will only listen to packets from the designated node sched-

uled for transmission. Even if Byzantine nodes try and transmit

their messages in undesignated intervals, the honest nodes will ig-

nore their packets and only listen to the designated node. We show

that the network is synchronous with this value of Δ. However, in
rare situations where the network’s Δ is higher, honest nodes can

trigger the view change protocol to replace the leader, even when

the leader was honest. We instantiate the abstract block structure,

concretely as 𝐵 = ⟨𝑚,𝐻 (𝑏𝑚) , 𝐻 (ℎ𝑚−1) , ⟨𝑖, 𝐻 (𝑏𝑖 )⟩𝐿⟩, where 𝐻 is

a cryptographic hash function,𝑚 is the block height, and 𝐿 is the

leader. In CPS, these blocks contain data 𝑏𝑚 to maintain state.

We also implemented optimizations for the equivocation sce-

nario, by avoiding construction of quorum certificates and using

the equivocation and proof to quit the view. We also optimize the

no-progress scenario for the blocking version of our protocol, by

avoiding the highest certificate construction, and ensuring that the

status message only contains node’s locked block. This is secure

because the highest committed block is either the locked block or

its parent, and thus it is safe to extend any one of the locked blocks

among 𝑓 + 1 locked blocks.

We recorded the energy consumed by the protocol by subtracting

the energy consumed by the device in sleep state. While doing

so, we noticed that each node consumes 0.3 mW of power while

in the sleep state and consumes approximately 1 mW of power

while conducting SMR. Even at a modest frequency of one SMR

per hour, the energy consumed by the SMR causes a substantial

load on the node’s limited energy resources. Hence, energy-optimal

SMR protocols are necessary to reduce the overhead of SMR on

lightweight nodes.

Our first observation is that the energy cost of EESMR is inde-

pendent of 𝑛 in the best case as we do not use certificates (which

are 𝑓 + 1 signatures). The energy cost only depends on 𝑘 . We show

this in Fig. 2f, where the total energy consumption of all the cor-

rect nodes increases linearly with respect to the number of correct

nodes in the network.

Next, we measured the difference in energy costs between the

leader and the other correct nodes for different values of 𝑘 . In Fig. 2c,

we observed this difference. The linearity of energy consumption

with 𝑘 is due to 𝑘 incoming edges. The two energy costs are close,

with the leader having a higher cost. We also evaluated the variation

of energy consumption with block size and show that EESMR scales

well with increasing message payloads (Fig. 2d).

We measured the energy consumed by EESMR to perform a

view change operation, in case of a Byzantine leader. The energy

consumed per view change is plotted (Fig. 2e) with respect to the

value of 𝑓 , in case of an equivocating leader and a stalling leader.

The value of 𝑘 has been taken to be 𝑓 + 1 to measure the minimum

energy that a leader spends in the view change. Comparison with

correct case SMR has also been performed with 𝑘 =𝑓 +1. The stalling
case is much more expensive in terms of energy because of the vote

casting and the 𝑓 + 1 blame messages that need to be verified. It

should be noted that the energy measurement for the view change

is only for the blocking version of EESMR.
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Figure 3: The energy consumed by a leader in EESMR vs. Sync
HotStuff to tolerate 𝑓 Byzantine faults in a system of 𝑛 = 13 nodes.
We show both the faulty and non-faulty leader cases.

5.7 Comparison with Sync HotStuff
We compare in Fig. 3 EESMR’s energy readings with our implemen-

tation of Sync HotStuff [4]. We made simplifying assumptions in

favor of Sync HotStuff, by partially implementing vote forwarding.

The minimum energy to tolerate 𝑓 faults has been measured for

EESMR and Sync HotStuff. We designed our 𝑛 = 13 graph to ensure

that it is 𝑓 fault-tolerant. We measure the energy consumed by a

correct leader in a network consisting of ⌊𝑛
2
⌋ faulty nodes. The

amount of energy consumed by a node linearly increases with the

value of 𝑘 . As 𝑘 increases, every node receives messages from an

increasing number of nodes, which increases the energy spent in

receiving them. Additionally, Sync HotStuff uses a certificate of

size 𝑓 + 1 increasing the energy costs. When the leader is correct,

Sync HotStuff is 2.85× more energy hungry than EESMR. In a view

change, the ratio of the energy consumed by EESMR Energy with

respect to Sync HotStuff is 2.05. To repeat our earlier argument, in

the steady state, the number of SMR rounds where there will be

a view change will become far smaller than where the leader will

be benign. We also compare the total energy consumed by correct

nodes per SMR for both protocols in Fig. 2f. This demonstrates the

scalability of EESMR in the best-case.

6 RELATEDWORK
To the best of our knowledge, there is no prior work that formally

analyzes SMR protocols for energy-efficiency.

SMR. Prior works [6, 8, 15, 20, 21, 39, 48, 76] focused on improving

the message complexity or the commit latencies of SMR. But nodes

in CPS tend to be constrained in their energy and computational re-

sources, and decreasing communication complexity and increasing

the computation does not help the CPS nodes. Protocol designs as

of today use votes and cryptographic certificates while completely

ignoring their energy costs on CPS devices. In the absence of sig-

nature aggregation techniques, these protocols [6, 39, 76] increase

the energy requirements for SMR. We present a comparison of the

related works in Table 3.

Let 𝛿 be the actual network speed between any two nodes in

a fully connected system. OptSync [63] commits and produces a

block every 2𝛿 . To achieve this all nodes verify 3𝑛/4 + 1 signatures.
Sync HotStuff [6] on the other hand produces a block every 2𝛿 , has

a commit latency of 2Δ, and verifies𝑛/2+1 signatures. Clearly, Sync
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Table 3: Comparison of best-case and worst-case scenarios in related SMR works. Here, the number of nodes is 𝑛; We consider a partially
connected network with all nodes connected to 𝑑 neighbors such that the graph remains connected even if 𝑓 nodes are Byzantine. Some of the
protocols are for fully connected graphs but we compare them in our partially connected setting. Block period refers to the time difference
between two successive proposed blocks. 𝛿 ≤ Δ represents the actual message delivery time.

Protocol

Correct Leader (best-case) Faulty Leader (worst-case)

Communication

Complexity

Public Key Ops. Block

Period

Communication

Complexity

Public Key Ops. Block

Period
Sign Verify Sign Verify

Abraham et al.[4] 𝑂 (𝑛2𝑑 ) 𝑂 (𝑛) 𝑂 (𝑛2 ) — 𝑂 (𝑛3𝑑 ) ∗ 𝑂 (𝑛) 𝑂 (𝑛2 ) —

Sync HotStuff [6] 𝑂 (𝑛2𝑑 ) 𝑂 (𝑛) 𝑂 (𝑛2 ) 2𝛿 𝑂 (𝑛3𝑑 ) ∗ 𝑂 (𝑛) 𝑂 (𝑛2 ) 14Δ
OptSync [63] 𝑂 (𝑛2𝑑 ) 𝑂 (𝑛) 𝑂 (𝑛2 ) 2𝛿 𝑂 (𝑛3𝑑 ) ∗ 𝑂 (𝑛) 𝑂 (𝑛2 ) 14Δ
Rotating BFT SMR [8] 𝑂 (𝑛2𝑑 ) 𝑂 (𝑛) 𝑂 (𝑛2 ) 2𝛿 𝑂 (𝑛2𝑑 )† 𝑂 (𝑛) 𝑂 (𝑛2 ) 14Δ

EESMR O(nd) O(1) O(n) 0 O(n3d)∗ O(n) O(n2 ) 21∆
∗
A Byzantine leader can make the communication complexity in a view change to be𝑂 (𝑛3𝑑 ) , but this results in all correct nodes committing𝑂 (𝑛) blocks
after the view change.

†
For the rotating leader protocol, we report the worst-case for one iteration with a bad leader. In theory, we could have 𝑜 (𝑛) bad

leaders consecutively, leading to an increase in all the numbers by a factor of 𝑛.

HotStuff is more energy efficient than OptSync with an increase

in latency from 2𝛿 to 2Δ. EESMR can create blocks as soon as it

has enough messages without any other delays giving it a block

period of 0. It has a commit latency of 4Δ (accounting for chain-

synchronization), and uses only 1 signature. Thus, EESMR is more

efficient than both Sync HotStuff and OptSync to commit blocks.

Efficient SMR. MinBFT [70] and CheapBFT [44] are partially

synchronous SMR protocols that use trusted counters and subsys-

tems to improve the amount of communication of PBFT [21]. They

use trusted components to assign sequence numbers to requests,

thereby restricting the equivocating capabilities of Byzantine ad-

versaries. They also use only 𝑓 + 1 active replicas which replicate

the state thereby saving system resources. Apart from the stronger

assumptions, they still use certificates per block and 3 rounds of

all-to-all diffusion, leading to the similar energy inefficiencies.

Other metrics of efficiency such as bit-complexity [12, 29, 33, 55]

or latency [5, 7, 8] have been considered in the literature. However,

they use impractical techniques such as expander graphs or com-

putationally expensive primitives such as threshold cryptography

or online error correction.

There is an orthogonal set of works that improve the efficiency

of protocols by using trusted components [30, 75]. Indeed, as evi-

denced in Fig. 1, trusted components can significantly lower energy

costs. But existing works assume all-to-all communication which

makes the protocol flood 𝑂 (𝑛) messages in every round. However,

it remains an interesting open problem to combine our techniques

with trusted components for improved energy-efficiency.

Usingmulticasts. Multicasts occur frequently due to the spatial ar-

rangement of CPS nodes and the omni-directional nature of wireless

communication media. It may not cost more energy to use multicast

links over unicast links. Several prior works [27, 37, 40, 45, 47, 53]

leverage multicasts to address BA. A common drawback of these

works is that they are not tailored to leverage practical multicasts,

e.g., considering the drop in reliability with increasing degree.

Koo et al. [47] provide a bound on the number of Byzantine nodes

that can be tolerated in the neighborhood of a correct sender while

using multicasts to achieve BA. Montemanni et al. [53] and Guo et
al. [40] propose models in determining the optimal transmission

power of a sender. However, these works [40, 47, 53] cannot be

directly used for CPS since the transmission power of the antennae

is typically fixed.

Fitzi et al. [37] assume the existence of reliable multicasts be-

tween every three nodes. They show that the bound on the number

of faulty nodes that can be supported in such a fully connected

synchronous network can be improved from 𝑛/3 to 𝑛/2 to solve BA.
Considine et al. [27] show that a resilience of

𝑛
𝑓
> (𝑘 + 1)/(𝑘 − 1)

can be achieved in a system with 𝑛 nodes and 𝑘-casts, with 𝑓 of

them being faulty. Khan et al. [45] consider multicasts as undirected

edges in a graph and provide necessary and sufficient conditions for

BA in their model. The main drawback in these works is that there

is an assumption that every subset of 𝑘 nodes have a reliable 𝑘-cast

present. In this work, we make weaker multicast assumptions of

links existing only between neighboring nodes.

CONCLUSION
We present EESMR, an SMR protocol with improved communica-

tion in partially connected networks, signature generation, and ver-

ification costs. We present analysis techniques to determine choice

of protocols and argue why optimizing the best-case is important.

We provide a general hypergraph model that can take advantage of

multicasts in wireless CPS, when available. Finally, we empirically

show a 33 − 64% reduction in energy costs in the steady-state as

compared to the state-of-the-art solution Sync HotStuff.
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