
An End-to-End Performance Comparison of Seven Permissioned
Blockchain Systems

Frank Christian Geyer
Munich University of Applied Sciences

Munich, Germany
frank@coconut.sh

Hans-Arno Jacobsen
University of Toronto

Toronto, Canada
jacobsen@eecg.toronto.edu

Ruben Mayer
University of Bayreuth
Bayreuth, Germany

ruben.mayer@uni-bayreuth.de

Peter Mandl
Munich University of Applied Sciences

Munich, Germany
peter.mandl@hm.edu

ABSTRACT
The emergence of numerous blockchain solutions, offering innova-
tive approaches to optimise performance, scalability, privacy, and
governance, complicates performance analysis. Reasons for the
difficulty of benchmarking blockchains include, for example, the
high number of system parameters to configure and the effort to
deploy a blockchain network. In addition, performance data, which
mostly comes from system vendors, is often opaque. We provide a
reproducible evaluation of the performance of seven permissioned
blockchain systems across different parameter settings. We employ
an end-to-end approach, where the clients sending the transactions
are fully involved in the data collection approach. Our results un-
derscore the unique characteristics and limitations of the systems
we examined. Due to the insights given, our work forms the basis
for continued research to optimise the performance of blockchain
systems.

CCS CONCEPTS
• Computer systems organization → Peer-to-peer architec-
tures.

KEYWORDS
blockchain, distributed ledger, benchmark, performance, decentral-
ization, throughput, latency, reproducibility

ACM Reference Format:
Frank Christian Geyer, Hans-Arno Jacobsen, Ruben Mayer, and Peter Mandl.
2023. This is the author’s version of the work. It is posted here for your
personal use. Not for redistribution. The definitive version was published
in 24th International Middleware Conference (Middleware ’23). An End-to-
End Performance Comparison of Seven Permissioned Blockchain Systems.
In 24th International Middleware Conference (Middleware ’23), December
11–15, 2023, Bologna, Italy. ACM, New York, NY, USA, 14 pages. https:
//doi.org/10.1145/3590140.3629106

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Middleware ’23, December 11–15, 2023, Bologna, Italy
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0177-1/ 23/12. . . $15.00
https://doi.org/10.1145/3590140.3629106

1 INTRODUCTION
Following the hype around public blockchains such as Bitcoin [50]
and Ethereum [26], practitioners and academics found that such
systems do not suit the needs of business users due to their lack
of performance, privacy, and governance. Hence, they developed
permissioned systems such as Hyperledger Fabric [6, 16],Corda [23,
43] andQuorum [12, 22].

Blockchains can be run on custom hardware, can be configured
as needed, can enforce a permission concept to keep data private,
and they can offer different architectures according to a specific use
case. Given the vast number of options available, it’s challenging
to predict expected performance.Vendors often tout remarkable
performance [8, 16, 18, 48, 55], but there is lack of a fair compar-
ison of systems under comparable conditions and workloads. As
the permissioned blockchain systems widely differ in their design,
benchmarking them is difficult.

Whilst various publications for benchmarking multiple block-
chains already exist (cf. Table 1), these publications do not fully
satisfy our needs to enable a comprehensive performance evalua-
tion. By comprehensive performance evaluation, we mean examin-
ing multiple blockchains using different architectures with custom
workload scenarios, which includes using custom smart contracts
and changing system parameters.

To close this gap, we are conducting a performance evaluation
of seven systems with a specially developed benchmarking system
based on selected load scenarios. The seven systems compriseCorda
Open Source (OS) [23, 43], Corda Enterprise [23, 43], BitShares [3,
28] which is based on the Graphene blockchain framework [36],
Hyperledger Fabric (Fabric) [6, 16], Quorum [12, 22], Hyperledger
Sawtooth (Sawtooth) [7, 41] and Diem [5, 55].

After a comprehensive review of the vast blockchain landscape,
which comprises a plethora of approaches, we strategically selected
seven unique and popular blockchains. Our choices were influenced
by the desire to represent a diverse set of use case scenarios and,
to an extent, by the necessity to start with a manageable subset
given the rarity of performance benchmarks in the field. Impor-
tantly, these selected blockchain systems are not just theoretical
constructs but have been employed in various real-world scenarios,
further emphasizing their relevance and significance in the broader
blockchain arena. These platforms not only stand as representa-
tives of the broader ecosystem but also provide a balanced blend of
functionalities, consensus algorithms, and architectural variances.

https://doi.org/10.1145/3590140.3629106
https://doi.org/10.1145/3590140.3629106
https://doi.org/10.1145/3590140.3629106

Middleware ’23, December 11–15, 2023, Bologna, Italy Frank Christian Geyer, Hans-Arno Jacobsen, Ruben Mayer, and Peter Mandl

Table 1: Overview of publications using custom benchmarking and performance evaluation frameworks.

Name Analyzed Blockchains Custom Smart
Contracts

End-to-end
scenario to

measure metrics

Comparison of
system parameters

influence

BBB [47] Ethereum [26] No. No. No.

BCTMark
[49]

Ethereum, Fabric [6, 16] Yes, incl. three
sorting algorithms.

No. No.

BlockBench
[25, 38]

Ethereum, Parity [4], Fabric Yes, multiple, incl.
SmallBank [14].

No. No.

Diablo
[24, 39]

Algorand [29], Ethereum, Avalanche [52], Diem [5,
55], Quorum [12, 22], Redbelly [10], Solana [15]

Yes, 6 smart
contracts.

No. No.

DLPS [51] Ethereum, Parity, Fabric, Hyperledger Indy [1],
Quorum, Sawtooth [7, 41]

Yes, KeyValue-Write
smart contract.

No. No.

Gromit
[37, 45]

Ethereum, Algorand, BitShares [3, 28], Diem, Stel-
lar [42], Fabric, Avalanche

No. No. No.

xBCBench
[53]

Ethereum, Fabric, Sawtooth, FISCO-BCOS [11] Yes, different smart
contracts.

No. No.

Our paper Corda OS & Enterprise [23, 43], BitShares, Fab-
ric, Quorum, Sawtooth, Diem

Yes, DoNothing,
KeyValue-storage,

banking app.

Yes, measurements
by clients.

Yes, comparing
seven systems.

Additionally, we examine the influence of the impact of network
latency and the adjustment of the size of the network on the perfor-
mance leading to a total of more than 3,000 executed experiments
for the selected blockchain systems. To date and to the best of
our knowledge, our paper is the only one paying attention to all
relevant factors outlined in Table 1.
This paper makes the following contributions:

(1) We conduct an analysis of the performance of the blockchain
systems using the results from the experiments executed by
us. In this paper, we concentrate on two key metrics, which
are the throughput in mean transactions per second and the
mean finalization latency. Compared to existing work, our
key metrics are obtained in an end-to-end scenario from a
client perspective. Our contribution and the lessons learned
can be used by researchers and practitioners to further un-
derstand and thus optimize the performance of blockchain
systems.

(2) We use our results to show how each system is influenced by
different parameter settings and highlight the most impor-
tant key findings, which include that various systems cease
their operation under high load and performance drops in
different scenarios. These findings should create awareness
for performance pitfalls when using these systems.

(3) We introduce the novel benchmarking framework COCONUT
(an automatiC blOckChain perfOrmaNce evalUation sys-
Tem). This open-source framework allows to fully reproduce
our executed benchmarks and enables users to define custom
benchmarks using a wide variety of parameters, regarding

the workload, network settings and blockchain-specific set-
tings. Also, it allows metric collection on the client side to
be suitable for an end-to-end evaluation approach.

The paper is further structured as follows. Section 2 gives a brief in-
troduction to the benchmarked blockchain systems. Section 3 gives
an explanation of the new benchmarking framework COCONUT,
which is used for the benchmarks. Section 4 describes the evalua-
tion environment and the configuration of the benchmarks. The
results of the benchmarks conducted, and our insights are discussed
in Section 5. Section 6 gives a summary of the lessons learned. Sec-
tion 7 discusses related work. Section 8 provides a summary and
an outlook for further research.

2 BLOCKCHAIN SYSTEMS
Blockchain technology is characterized by a data structure com-
posed of blocks, with each block linked to its predecessor. The
blocks contain transactions. To ensure tamper protection, the blocks
are linked by cryptographic methods, for example with hashes of
the predecessor block in the header of each block.

We provide an overview of the examined blockchain systems
in Table 2, highlighting key features including their supported
consensus algorithms, versions, and transaction structures. Given
the range of terms used across technologies, such as "chaincode"
or "operation", we will adopt interface execution layer (IEL) as a
standardized term for the smart contract constructs.

Blockchain nodes participating in the network must reach a
consensus on the order and the validity of the transactions within
a block and the blocks themselves. To improve the performance,
various consensus algorithms have emerged with some examples

An End-to-End Performance Comparison of Seven Permissioned Blockchain Systems Middleware ’23, December 11–15, 2023, Bologna, Italy

Table 2: Overview of evaluated blockchain systems.

System Consensus Algorithm Execution Layer Version Transaction structure

Corda OS & Enter-
prise

Single notary Flow 4.8.6 Multiple input/output states

BitShares DPoS [28] Operation 195881c32f Multiple operations; added to block

Fabric Raft [46] Chaincode 2.2.1 Single transaction

Quorum Istanbul BFT [44] Smart Contract d967b695df Single transaction

Sawtooth PBFT [20] Transaction Pro-
cessor

1.2.6 Transactions in atomic batch; added to block

Diem (prev. Libra) DiemBFT [13] Module/Script 94a8bca0fa Single transaction

shown in Table 2. We can mostly observe byzantine fault toler-
ant (BFT) and Raft-based implementations used by the selected
blockchain systems. One exception is BitShares, which uses the
Delegated Proof-of-Stake (DPoS) consensus algorithm. DPoS uses
witnesses as authorities who are allowed to produce blocks. When-
ever a new block is getting finalized, a new round is started, where
a witness can sign and finalize a new block. Corda uses notaries to
check for conflicting and already used states. Fabric outsources the
consensus component to external entities, called orderers.

Beside the consensus algorithms, some of the blockchain systems
also use different techniques to form blocks, which usually consist
of transactions. BitShares allows multiple operations that result
in single state changes to be put into a single transaction. The
atomic transaction will get added to a block. Sawtooth allows to
add transactions to an atomic batch. The batch will get added to a
block. In this context, atomic means that when a single operation
within a transaction or a single transaction within a batch fails, the
whole transaction or batch will get rejected and not be added to a
block.

Corda holds a unique position among blockchain systems. Corda
does not use blocks, but relies on the UTXO model (Unspent Trans-
action Output) [23, 43]. Using the UTXO model, it is possible to add
multiple input and output states to a transaction.

In contrast to the UTXO model, Quorum due to using Ethereum
as its basis, uses an account model. Fabric and Sawtooth, for ex-
ample, allow the implementation of both the account and UTXO
model in the interface execution layer.

In summary, benchmarking blockchain systems is more chal-
lenging than ever, making a comparison difficult. Given the dif-
ferent architectures, consensus algorithms, transaction structures,
network components and different interface execution layer imple-
mentation procedures discussed in this section highlight the scope
and complexity of performance evaluations.

Besides the blockchain system itself, clients submitting transac-
tions primarily want information about the status of a transaction.
This information allows them to initiate further processing or, in
the case of an issue, renew the processing of transactions. Our work
takes this aspect into account using an end-to-end scenario, where
the clients collect transaction finalization notifications, which are
used for metric calculation.

3 COCONUT BENCHMARKING FRAMEWORK
To take a comprehensive approach, we introduce COCONUT. CO-
CONUT is a benchmarking framework that allows, among other
things, the adaptation of consensus algorithms, transaction struc-
tures, distribution of network components and block finalization
settings of the respective systems for the benchmarks.

We develop COCONUT with the aim to support the following
aspects: The extensibility with further systems and interface execu-
tion layers, the possibility to adjust a high number of configuration
parameters per system, the collection of logs and metrics and the
open source availability. The blockchain system represents the en-
tire underlying infrastructure of a blockchain technology under
test. The client runs the workloads, collects the data to be evaluated
and contains the blockchain access layer (BAL). The blockchain
access layer provides the driver implementation that ensures proper
communication with the blockchain system and the interface ex-
ecution layer, for example, smart contracts. The database system
provides a persistent storage for the collected evaluation data. CO-

COCONUT-Client

Blockchain System

Interface Execution LayerDatabase

Blockchain Access Layer

Figure 1: The base architecture of COCONUT.

CONUT is designed to be event-based. This means that the clients
collect notifications. These notifications include, for example, in-
formation about when a new block is added and sent out by the
blockchain system. This approach provides an end-to-end scenario
in our benchmarks to determine the coherent performance of the
blockchain systems analyzed. We define an end-to-end scenario
in such a way that a client is involved in the entire process from
sending a transaction to receiving the confirmation of a transaction
and provides the collected data and metrics for evaluation.

Middleware ’23, December 11–15, 2023, Bologna, Italy Frank Christian Geyer, Hans-Arno Jacobsen, Ruben Mayer, and Peter Mandl

COCONUTwas developedwith extensibility inmind. Our design
proved its flexibility in supporting the seven diverse blockchains
we chose.

4 EXPERIMENTAL SETTINGS
This section describes all relevant configurations that can be ad-
justed before the benchmarks are carried out. Our goal is to obtain
an assessment of the performance and limitations of the blockchain
system by generating a load that aims for a broad comparison that
includes an extensive range of settings.

4.1 Interface Execution Layers
To run the benchmarks, we use the three different interface exe-
cution layer (IEL) implementations listed in Table 3. The first two
implementations are inspired by the work of Dinh et al. [25] who
characterise and benchmark layers of different systems.

Table 3: Interface Execution Layers used for the benchmarks.

Name Function(s) Brief description

DoNothing DoNothing Represents an empty function.

KeyValue Set Writes a KeyValue pair.
Get Reads a value based on its key.

BankingApp CreateAccount Creates checking and saving ac-
counts with defined money.

SendPayment Sends a payment.
Balance Checks an account balance.

The clients send payloads packaged in transactions to the inter-
face execution layer to interact with the blockchain system. This
interaction includes, for example, writing and reading data. The
interface execution layers consist of functions. The benchmarks
that we discuss below are implemented by the interface execution
layer. We define a benchmark as the combination of a client sending
payloads, which is the workload and the interface execution layer
receiving those transactions.

The DoNothing IEL is used to evaluate the performance without
the execution complexity of the interface execution layer. There-
fore, using this benchmark will reveal the performance of the other
involved components, for example, the consensus component of the
system. We expect the DoNothing benchmark to give the best re-
sults with respect to throughput compared to the other benchmarks
due to its design.

The KeyValue IEL allows read and write operations of data,
which are essential when dealing with blockchain systems and
targets the storage component. The related benchmark is designed
in such a way that no duplicates occur during writing.

The BankingApp IEL is designed in such a way that side ef-
fects occur. This applies in particular to the SendPayment func-
tion. SendPayment sends a payment from accountn to accountn+1.
This should result in overwriting transactions being included in
a block, or consuming the same states in the case of Corda. The
SendPayment function should disclose whether the data in blocks
can influence or overwrite each other and therefore impact the

performance. In the case of Corda a notary might reject already
spent transaction output.

We consider the benchmarks to be sufficient to compare the
performance of the chosen systems, as they represent the basic
functionality of all the blockchains we have studied. Although
the benchmarks are simple, they do give an indication of the raw
performance, the performance of read and write operations, and
the serialisability issues that can be encountered.

All benchmarks form units. This means that a performed
KeyValue-Set benchmark is followed by a KeyValue-Get bench-
mark. The same applies to the BankingApp benchmark. The se-
quence is as follows: BankingApp-CreateAccount, BankingApp-
SendPayment, BankingApp-Balance.

The execution of the benchmarks is designed so that the system
including the interface execution layer is re-provisioned after the
benchmark units have been executed and consequently a freshly
deployed system is present. This is for example necessary if the
system ceased operation during the previously run benchmark unit.
The clients are re-provisioned each time a benchmark is run.

4.2 Server and network configuration
To ensure a controlled and consistent environment for evaluation,
our methodology involved the use of six dedicated servers, all of
which are located within our provider‘s data center in Helsinki, Fin-
land. The decision to confine our evaluation to a single geographical
region was deliberate, rooted in our objective to maintain controlled
experimental settings, such as the emulated settings. This ensures
that result variations arise only from the experimental parameters,
free from influences of external geographical disparities.

The servers we employed for our tests possess the following con-
figuration: Processor: AMD Ryzen™7 3700X, Memory: 64 GB DDR4
ECC, Storage: 2 x 1 TB NVMe SoftRAID, Uplink: 1 Gbit/s, Operating
System: Ubuntu 18.04. To create a reproducible environment, the
servers have sufficient power to ensure proper operation of the
blockchain systems. We use Docker to offer an isolated environ-
ment for our benchmarking setting. Two of the servers exclusively
start instances of the COCONUT client. The remaining four servers
provide nodes of the system and the associated components. Ta-
ble 4 lists the network configuration of the systems. This setting
represents a small-scale deployment where only few organizations
collaborate using a shared blockchain. However, as our findings will
show, many blockchain systems already face performance issues
at such a small deployment. Separate scalability experiments for
selected systems are performed in Section 5.8.2.

4.3 Workload configuration
The COCONUT client starts four concurrent client threads within
Docker containers, of which each client thread starts four concur-
rent workload threads. Each server starts two COCONUT clients.
All COCONUT client applications wait for the preparation of each
other before executing the workloads in order to create a load dis-
tribution that is as uniform as possible. Each of the four COCONUT
client applications sends transactions to a different server.

The workload-threads of each COCONUT client application send
transactions sequentially, but without waiting for a finalization con-
firmation, for a period of 300 seconds. We chose this time to allow

An End-to-End Performance Comparison of Seven Permissioned Blockchain Systems Middleware ’23, December 11–15, 2023, Bologna, Italy

Table 4: Blockchain Systems network configuration.

System # Nodes (n) Additional components

Corda OS &
Enterprise

4 4 notaries (one per server)

BitShares 4 3 witnesses (n - 1)

Fabric 4 3 orderers (servers 1-3)

Quorum 4 None

Sawtooth 4 None

Diem 4 None

the benchmarks to run long enough to produce reliable results. The
COCONUT client terminates listening on events after 330 seconds.
These 30 seconds of additional run-on time, after the sending pro-
cess, ensure the receipt of delayed finalization confirmations. After
420 seconds, the COCONUT clients finally terminate themselves.
We set this time to be long enough to ensure a correct termination
of the clients.

These times are guidelines and cannot be completely adhered to
in every scenario in the context of each individual benchmark. An
example of non-compliance with the specified times are transac-
tions sent that cannot yet be processed on the client or server side.
This problem is seen, for example, in systems that cannot process
the applied load in a timely manner and temporarily or perma-
nently stop service. To assess this non-trivial problem, we include
the duration of the benchmarks in our evaluations. The duration
of the benchmark provides information on whether a system can
actually process the workload within the 300 seconds in which the
clients transmit transactions.

After terminating the COCONUT clients, the collected data is
persisted, and the benchmark is considered complete.

4.4 System parameter settings
In our work, we focus on the evaluation of two parameters. The
first parameter is the maximum number of payloads, wrapped into
transactions and batches, to be sent by each COCONUT client per
second, which is called the rate limiter (RL) and is equal to the load.
The second parameter is the block size or the time after which a
block is finalized. We prefer the block size over the time of final-
ization, provided that the chosen system supports both parameters.
Although we prioritize these two parameters, we have evaluated
several others. Additional parameters evaluated include the number
of batches for Sawtooth, the number of operations for BitShares
and the number of accounts needed for Diem. COCONUT offers a
vast array of adjustable parameters for further benchmarks.

Fabric and Diem allow for the modification of the block finaliza-
tion size, as shown in Table 5. BitShares, Quorum and Sawtooth
allow for the modification of the block finalization time as shown
in Table 6. Some configuration options which could limit or in-
terrupt the execution of our benchmarks are documented in our
configuration files.1 We adjust these configuration options based

1https://www.coconut.sh

on our evaluations, but also make sure that they do not affect our
benchmarks. An example for such a configuration option is the
maximum transaction size in BitShares. A too small setting would
prevent large transactions from being processed.

All four COCONUT clients use the following rate limiters: 50, 100,
200 and 400 for the systems BitShares, Fabric,Quorum, Sawtooth
and Diem. The minimum rate limiter value of 50 per COCONUT
client is an empirical value resulting from experiments with the
systems Sawtooth and Diem. The maximum rate limiter value of
400 per COCONUT client is based on our experience in dealing
with the system Fabric, which in our scenarios, where a single op-
eration/action is used in a transaction, can handle the highest load.
For both Corda versions, we apply one tenth of the rate limiters,
which corresponds to the values 5, 10, 20 and 40, as both versions
cannot handle a higher load.

We use lower values formax_block_size than the default value of
3,000 as most of our evaluations resulted in the blocks already not
getting fully saturated at our maximum max_block_size of 2,000.

We run our BitShares benchmarks with 1, 50 and 100 opera-
tions in a transaction. The transaction structures of BitShares and
Sawtooth influenced by the used settings are explained in Table 2.
Additionally, we run our Sawtooth benchmarks with 1, 50 and 100
transactions within a batch. Corda has no specific parameters in

Table 5: Block finalization size configuration.

System Parameter Default Used

Fabric MaxMessageCount [32]
(MM)

500 100, 500,
1,000, 2,000

Diem max_block_size [31] (BS) 3,000 100, 500,
1,000, 2,000

Table 6: Block finalization time configuration.

System Parameter Default Used

BitShares block_interval [30] (BI) 5 s {1, 2, 5, 10} s

Quorum istanbul.blockperiod [33,
34] (BP)

1 s {1, 2, 5, 10} s

Sawtooth sawtooth.consensus.pbft.
block_publishing_delay[35]
(PD)

1 s {1, 2, 5, 10} s

the context of the block size or the time after which a block is final-
ized in both versions due to the lack of a block structure. For Corda,
we use the same configuration for both the open-source version
and the enterprise version for reasons of direct comparability.

Some of the systems require a certain time after starting in order
to stabilize before they can actually process workloads. We set this
time to 180 seconds for BitShares and Quorum, and 60 seconds for
Sawtooth, respectively. For the other systems, COCONUT starts
with serving the workloads immediately after start up.

https://www.coconut.sh

Middleware ’23, December 11–15, 2023, Bologna, Italy Frank Christian Geyer, Hans-Arno Jacobsen, Ruben Mayer, and Peter Mandl

4.5 Evaluation metrics
In most comprehensive blockchain benchmarking papers ([45], [25,
38], [51]), the performance evaluation is based on the block gener-
ation time in the blockchain. Whether the blockchain application
receives confirmation of transaction execution is not further in-
vestigated. Whilst data may be persisted in the blockchain, the
application sending the data may never be updated about the sta-
tus of the transaction. After sending a transaction request to the
Blockchain, an application usually must wait for a confirmation to
complete the processing.

Therefore, we measure the end-to-end transaction time, also
known as finalization latency in seconds (FLS), which is important
for real-world applications. FLS is calculated from the difference
between confirmation time and request time, which are measured
exclusively in the COCONUT client simulating a blockchain appli-
cation executing transactions on a blockchain. As shown in Figure 2,
timestamps are obtained just before a transaction request is sent
(starttime) and just after the transaction confirmation arrives (end-
time). T1 is the time at which the blockchain receives a request. T2
is the time at which a transaction is distributed to all nodes and
committed, triggering an event notification. These times include
e.g. the transaction processing, IEL processing, block formation,
validation, consensus and block distribution. These values can be
influenced by scaling the network or additional network latency
as analyzed in Section 5.8.1. The round trip time (RTT) is the time
between the submission of the request and the arrival of the com-
mit. T0 and T3 are the important times we use in our end-to-end
scenario for metric calculation. It is important to note that in our

...

T0

T1

T3

T2
RTT

Client
Workload-Thread Blockchain-Node 1 Blockchain-Node 2 Blockchain-Node n

TCP-Communica�on

Request

Commit

Event

Figure 2: Visualization of the relevant times for the metric
calculation.

measurements, a transaction is not considered complete until the
transaction has been persisted in all participating blockchain nodes,
i.e., a block containing the transaction has been distributed to and
persisted in all nodes. After receiving a confirmation message, the
COCONUT client, i.e., the blockchain application, can be sure that
the transaction has been fully executed and persisted and continue
the ongoing processing.

For comparison purposes, we calculate the average finalization
latency, which we refer to as MFLS, over all executed transactions
using Formula (1). Besides the MFLS, we calculate the throughput
measured in transactions per second to assess the performance
of the chosen systems. We use Formula (2) to calculate the mean

transactions per second (MTPS).

𝑀𝐹𝐿𝑆 =
1
𝑟

𝑟∑︁
𝑖=1

(∑𝑡
𝑗=1

(
endtime𝑗 − starttime𝑗

)
𝑡

)
𝑖

(1)

Here, r corresponds to the number of repetitions of the benchmarks,
t reflects the number of transactions, endtimej is the time at which a
client receives confirmation of a finalized transaction and starttimej
is the time shortly before the transaction is sent.

𝑀𝑇𝑃𝑆 =
1
𝑟

𝑟∑︁
𝑖=1

(
𝑡

𝑡lrtx − 𝑡fstx

)
𝑖

(2)

Here, 𝑡lrtx is the reception time of the last transaction received
across all COCONUT clients, 𝑡fstx corresponds to the time just
before the first transaction is sent, across all COCONUT clients.

𝑡fstx is measured from the client that sends the first and 𝑡lrtx from
the client that receives the last transaction across all clients. Addi-
tionally, clients only receive the confirmation when the transaction
is finalized on all blockchain nodes.

Also, we include the duration of the benchmark in our evalua-
tion. This value is important to be able to evaluate if the system
stops processing transactions at an earlier time than the originally
expected end of the benchmark or violates the liveness criteria by
ceasing operation.

Duration (D) = 𝑡lrtx − 𝑡fstx (3)

In addition to the duration of the benchmark, we also analyse
the number of expected, received and not received transactions
(NoT). All values are calculated as an average across all clients.

BitShares is an exception in the context of the MTPS calcu-
lation due to the scenarios with multiple operations within one
transaction. We treat each operation the clients receive as a single
transaction.

5 RESULTS
This section discusses our key findings. Our results are compre-
hensive, spanning seven different systems. The modification and
evaluation of various parameter settings, such as the number of
transactions per block, further validate the depth of our analysis.
Figure 3 underpins the best throughput and corresponding final-
ization latency values per benchmark and system in the form of a
heat map, which allows a direct performance comparison across
the seven analyzed systems. When discussing specific anomalies of
the evaluated systems, we additionally present tables that include
the standard deviation (SD), the standard error of the mean (SEM),
and the 95% confidence interval (95% CI). Finally, we discuss the
performance of all benchmarks in the context of the different sys-
tems. This facilitates a performance comparison among the systems.
We make all necessary configurations to reproduce the performed
benchmarks as well as all results themselves available online.2

5.1 Corda OS
Corda OS proves to be the weakest system in terms of performance
in our benchmarks. We list the results of the KeyValue-Set bench-
mark in Table 7 and Table 8. The KeyValue-Set benchmark is to be
compared with the KeyValue-Get benchmark, as both iteratively
2https://www.coconut.sh

https://www.coconut.sh

An End-to-End Performance Comparison of Seven Permissioned Blockchain Systems Middleware ’23, December 11–15, 2023, Bologna, Italy

MTPS=7.18
RL=20

MFLS=112.64s
D=348.00s

MTPS=4.65
RL=40

MFLS=214.60s
D=361.33s

MTPS=0.00
RL=0

MFLS=0.00s
D=0.00s

MTPS=6.87
RL=20

MFLS=117.42s
D=352.67s

MTPS=0.00
RL=0

MFLS=0.00s
D=0.00s

MTPS=0.27
RL=80

MFLS=132.41s
D=404.33s

MTPS=64.64
RL=80

MFLS=3.83s
D=303.00s

MTPS=13.51
RL=160

MFLS=31.59s
D=338.33s

MTPS=3.52
RL=20

MFLS=111.50s
D=354.00s

MTPS=61.95
RL=80

MFLS=4.37s
D=303.33s

MTPS=0.13
RL=20

MFLS=306.35s
D=350.00s

MTPS=1.12
RL=20

MFLS=131.00s
D=375.33s

MTPS=1599.89
RL=1600
BI=1

MFLS=1.09s
D=305.00s
Actions=100
MTPS=1582.79

RL=1600
BI=5

MFLS=5.94s
D=306.00s
Actions=50

MTPS=1581.38
RL=1600
BI=5

MFLS=5.45s
D=306.00s
Actions=50

MTPS=1588.95
RL=1600
BI=2

MFLS=3.00s
D=304.67s
Actions=50
MTPS=125.99

RL=1600
BI=2

MFLS=15.63s
D=79.67s

Actions=100
MTPS=164.07

RL=1600
BI=2

MFLS=11.16s
D=59.67s

Actions=100

MTPS=1461.05
RL=1600
MM=1000

MFLS=13.92s
D=318.67s

MTPS=1337.86
RL=1600
MM=100

MFLS=2.71s
D=311.00s

MTPS=1416.94
RL=1600
MM=100

MFLS=1.49s
D=310.00s

MTPS=1367.06
RL=1600
MM=1000

MFLS=23.62s
D=326.67s

MTPS=1285.29
RL=1600
MM=100

MFLS=6.66s
D=318.00s

MTPS=1305.32
RL=1600
MM=1000

MFLS=20.78s
D=321.33s

MTPS=773.60
RL=800
BP=1

MFLS=10.32s
D=311.33s

MTPS=340.55
RL=400
BP=1

MFLS=9.79s
D=79.67s

MTPS=362.96
RL=400
BP=5

MFLS=13.81s
D=182.33s

MTPS=345.13
RL=400
BP=1

MFLS=9.74s
D=101.67s

MTPS=235.13
RL=1600
BP=5

MFLS=16.10s
D=302.00s

MTPS=365.85
RL=400
BP=5

MFLS=12.34s
D=190.00s

MTPS=103.47
RL=200
PD=2

MFLS=22.17s
D=96.67s

Actions=100
MTPS=90.28

RL=200
PD=10

MFLS=19.68s
D=349.67s
Actions=100
MTPS=92.91

RL=200
PD=1

MFLS=10.75s
D=47.00s

Actions=100
MTPS=67.57

RL=200
PD=10

MFLS=25.84s
D=344.33s
Actions=100
MTPS=16.32

RL=200
PD=5

MFLS=25.39s
D=353.33s
Actions=100
MTPS=73.25

RL=400
PD=10

MFLS=15.13s
D=37.33s

Actions=100

MTPS=96.40
RL=200
BS=1000

MFLS=93.10s
D=324.67s

MTPS=68.80
RL=200
BS=1000

MFLS=111.26s
D=324.67s

MTPS=64.22
RL=200
BS=2000

MFLS=107.78s
D=261.33s

MTPS=77.02
RL=200
BS=2000

MFLS=130.43s
D=401.33s

MTPS=56.57
RL=200
BS=2000

MFLS=139.21s
D=412.33s

MTPS=50.14
RL=200
BS=2000

MFLS=144.93s
D=384.67s

BankingApp
Balance

BankingApp
SendPayment

BankingApp
CreateAccount

KeyValue
Get

KeyValue
Set

DoNothing

Corda OS Corda Enterprise BitShares Fabric Quorum Sawtooth Diem

Blockchain System

Be
nc

hm
ar

k

0
50
100
150
200
250
300
350
400
450
500
550
600
650
700
750
800
850
900
950
1000
1050
1100
1150
1200
1250
1300
1350
1400
1450
1500
1550
1600

MTPS

Figure 3: Best MTPS values with corresponding MFLS and Duration for the shown configurations.

RL MTPS SD SEM 95% CI MFLS SD SEM 95% CI

20 4.08 0.01 0.01 ±0.03 151.93 0.70 0.40 ±1.75
160 1.04 0.16 0.09 ±0.41 227.39 7.29 4.21 ±18.1
Table 7: MTPS and MFLS for Corda OS - KeyValue-Set

RL Received NoT Expected NoT SD SEM 95% CI

20 1439.00 6000.00 7.94 4.58 ±19.72
160 374.33 48000.00 62.94 36.34 ±156.35

Table 8: # of Transaction values for Corda OS - KeyValue-Set

check whether a KeyValue pair exists. For the KeyValue-Get bench-
mark, all transactions fail and are not received by the clients for all
loads (RL = 20 to RL = 160) without exception for the reasons listed
below. The reasons for the low performance include the following:

(1) We only use the functions offered by Corda for the imple-
mentation of the interface execution layer. These functions
require, for example in the case of a read operation, iterating
over each KeyValue pair to find a specific one. This greatly
slows down the processing of transactions. An alternative
to using these functions would be to use native queries tar-
geting the underlying database system of Corda OS, the
H2 in-memory database [2]. The implementation of native
queries is a potential workaround that is not part of Corda
itself. In this respect, we are not pursuing this approach any
further.

(2) In our scenarios, each of the four nodes must sign the sub-
mitted transaction. The node that receives the transaction
first forwards the transaction to the other three nodes in the
network. Corda OS does this serially.

CordaOS has MTPS values ranging from 0.27 to 7.18. The latency of
finalization increases with increasing load. In addition, the number
of failed transactions increases.

5.2 Corda Enterprise
In contrast to Corda OS, Corda Enterprise achieves better results
in all scenarios. For the comparison between Corda Enterprise and
Corda OS, we choose to depict the results of the KeyValue-Set
benchmark in Table 9 and Table 10. The displayed values in the

RL MTPS SD SEM 95% CI MFLS SD SEM 95% CI

20 12.84 0.15 0.09 ±0.38 22.81 1.89 1.09 ±4.7
160 13.51 0.16 0.09 ±0.4 31.59 2.83 1.64 ±7.05

Table 9: MTPS and MFLS for Corda Enterprise - KeyValue-Set

RL Received NoT Expected NoT SD SEM 95% CI

20 4249.67 6000.00 34.49 19.91 ±85.67
160 4571.00 48000.00 68.61 39.61 ±170.43

Table 10: # of Transaction values for Corda Enterprise -
KeyValue-Set

range of RL = 20 to RL = 160 show hardly any differences. It can also
be seen that the best results are achieved with the BankingApp-
CreateAccount and DoNothing benchmarks which do not read
any data. The fact that benchmarks that do not read data perform
better than those that do read data is already explained by the enu-
meration for Corda above. Benchmarks that only write data show
higher throughput, a lower finalization latency and a lower number
of lost transactions. In the scenarios involving read operations, a
decrease in performance can be seen with an associated reduction
in throughput, a drop in received transactions and an increase in

Middleware ’23, December 11–15, 2023, Bologna, Italy Frank Christian Geyer, Hans-Arno Jacobsen, Ruben Mayer, and Peter Mandl

finalization latency. The use of multithreading and parallel signing
of transactions by the nodes in the network improve performance
as compared to Corda OS [48]. No benchmark fails completely, but
the range from 0.13 to 64.64 MTPS is hardly comparable to the
results achieved by the other systems.

5.3 BitShares
BitShares delivers different results depending on the benchmark
and parameter settings. The results of the DoNothing benchmark
displayed in Table 11 and Table 12 show that at a load of RL = 1,600,
the throughput is higher than with Fabric, and the COCONUT
clients receive all transactions correctly. The finalization latency

RL BI MTPS SD SEM 95% CI MFLS SD SEM 95% CI

1600 1s 1599.89 0.19 0.11 ±0.47 1.09 0.09 0.05 ±0.22
Table 11: MTPS and MFLS for BitShares - DoNothing. (BI =
block_interval)

RL BI Received NoT Expected NoT SD SEM 95% CI

1600 1s 487966.67 480000.00 57.74 33.33 ±143.42
Table 12: # of Transaction values for BitShares - DoNothing.
(BI = block_interval)

is close to the specified block_interval, indicating that the process-
ing of transactions is timed to match the block_interval. In the
BankingApp-SendPayment benchmark, which is intended to show
whether there are problems with the serial processing of transac-
tions, and the consecutive BankingApp-Balance benchmark, we
record almost exclusively lost transactions. Due to the atomicity of
transactions, if an operation fails, the whole transaction is discarded.
This suggests that BitShares does not include interacting operations
or transactions in a block, resulting in reduced throughput and in-
creased finalization latency, which increases as the load increases.
In addition, when operations interfere with each other during ex-
ecution, the experiment duration is shorter than the 300 seconds
of the transaction sending process. This indicates that either the
system is no longer sending out finalized transactions, which con-
sequently violates the liveness criterion, or the processing takes
longer than the execution of our benchmark. The concept of an op-
eration is defined in Table 2 and is comparable with the concept of
batches with Sawtooth. The throughput varies between 125.99 and
1,599.89 MTPS according to our measurements. The block statistics
show in scenarios where the finalization latency does not match
the block_interval, whether the witnesses still generate the blocks
correctly. With only one operation per transaction, the minimum
MTPS value of 59.01 is obtained for the BankingApp-SendPayment
benchmark. For the DoNothing benchmark, the maximum MTPS
values of up to 589.58 can be observed when using one operation
per transaction.

5.4 Fabric
Fabric shows consistent performance across all benchmarks. We
discuss the behaviour of the BankingApp-SendPayment benchmark
shown in Table 13 and Table 14 , as it differs from the other systems.
Fabric appends every processed transaction to the blockchain, even

RL MM MTPS SD SEM 95% CI MFLS SD SEM95% CI

800 100 801.36 1.53 0.88 ±3.8 0.22 0.01 0.01 ±0.03
1600 100 1285.29 64.39 37.18 ±159.96 6.66 4.74 2.74 ±11.78

Table 13: MTPS and MFLS for Fabric - BankingApp-
SendPayment. (MM = MaxMessageCount)

RL MM Received
NoT

Expected
NoT

SD SEM 95% CI

800 100 240140.67 240000.00 9.81 5.67 ±24.38
1600 100 408749.00 480000.00 23837.96 13762.85 ±59216.78

Table 14: # of Transaction values for Fabric - BankingApp-
SendPayment. (MM = MaxMessageCount)

those transactions not carried over to the world state, for example,
due to serializability issues. The world state provides a consistent
view of the data and represents a subset of the blockchain data.
We include every transaction appended to the blockchain in our
results. The blocks can be saturated up to the maximum setting
MaxMessageCount (MM) = 2,000. The throughput reaches a max-
imum of 1,285.29 to 1,461.05 MTPS, whereby the modification of
the MaxMessageCount value does not reveal a high impact here.
Furthermore, at the maximum load (RL = 1,600), not all expected
transactions can be received, so that some are lost. This behaviour
can be observed across all scenarios.We only observe this behaviour
with the choice of the consensus algorithm Raft, but not when us-
ing Apache Kafka [17]. Apache Kafka produces overhead due to its
architecture, which leads to slower processing of the transactions,
but is much more mature than Raft in its development. We attribute
the failing transactions and malfunctioning orderers to this cir-
cumstance. Overall, Fabric has no other special features and shows
superior MTPS-related results compared to the other systems in
most scenarios. Clients constantly receive a block-related event
every second, which corresponds to the expected runtime. This
implies that Fabric can handle the applied load without negative
influences, like severe processing delays or lost transactions from
the client perspective.

5.5 Quorum
For Quorum, we highlight the results of the BankingApp-Balance
benchmark in Table 15 and Table 16. We select this benchmark as

RL BP MTPS SD SEM 95% CI MFLS SD SEM 95% CI

400 2s 0.00 0.00 0.00 ±0 0.00 0.00 0.00 ±0
400 5s 365.85 10.63 6.14 ±26.42 12.34 0.67 0.38 ±1.66

Table 15:MTPS andMFLS for Quorum - BankingApp-Balance.
(BP = istanbul.blockperiod)

RL BP Received NoT Expected NoT SD SEM 95% CI

400 2s 0.00 120000.00 0.00 0.00 ±0
400 5s 69476.33 120000.00 456.37 263.49 ±1133.69

Table 16: # of Transaction values for Quorum - BankingApp-
Balance. (BP = istanbul.blockperiod)

Quorum, unlike BitShares, does not show significant performance

An End-to-End Performance Comparison of Seven Permissioned Blockchain Systems Middleware ’23, December 11–15, 2023, Bologna, Italy

degradation on the BankingAppSendPayment benchmark and the
consecutive BankingApp-Balance benchmark. Quorum shows a
comparable performance with BitShares using the BankingApp-
Balance benchmark, when using only single operations per trans-
action. We attribute this to the better prevention of forks with
the used consensus algorithm and Ethereum’s order-execute para-
digm [26]; sinceQuorum is an extension of Ethereum, it implements
the same paradigm. For an istanbul.blockperiod ≤ 2,Quorum shows
a significant problem. We can see that all transactions fail, and
the Quorum nodes generate empty blocks. We notice that when
istanbul.blockperiod is low, combined with a high rate limiter value,
Quorum adds transactions to a queue, but the queue is no longer
processed. We also observe this behaviour when using the Raft con-
sensus algorithm. This suggests a strong violation of the liveness
criterion. To avoid the problem, we recommend either an increase
of the istanbul.blockperiod value or a decrease of transaction rate.
With istanbul.blockperiod (BP) = 5 and RL = 400, 365.85 MTPS are
reached with a MFLS of 12.34 s. Besides the DoNothing benchmark,
which shows MTPS of 773.60 and an associated MFLS of 10.32 s, the
other benchmarks show MTPS values from 235.13 to 365.85 with
associated MFLS values from 9.74 s to 16.10 s.

5.6 Sawtooth
The results of the BankingApp-CreateAccount benchmark shown
in Table 17 and Table 18 are particularly striking in Sawtooth. The

RL PD MTPS SD SEM 95% CI MFLS SD SEM 95% CI

200 1s 66.70 0.34 0.20 ±0.84 26.40 0.02 0.01 ±0.05
1600 1s 14.27 3.23 1.86 ±8.02 238.45 21.12 12.19 ±52.45
200 10s 67.57 1.32 0.76 ±3.28 25.84 0.72 0.41 ±1.78
1600 10s 15.65 0.52 0.30 ±1.31 225.73 3.45 1.99 ±8.57

Table 17: MTPS and MFLS for Sawtooth - BankingApp-
CreateAccount. (PD = block_publishing_delay)

RL PD Received NoT Expected NoT SD SEM 95% CI

200 1s 23033.33 60000.00 57.74 33.33 ±143.43
1600 1s 4666.67 480000.00 1101.51 635.96 ±2736.31
200 10s 23266.67 60000.00 378.59 218.58 ±940.48
1600 10s 5133.33 480000.00 115.47 66.67 ±286.85

Table 18: # of Transaction values for Sawtooth - BankingApp-
CreateAccount. (PD = block_publishing_delay)

results show a pattern that we also observe with the DoNothing
benchmark and the KeyValue-Set benchmark. As the load in-
creases, there is a decrease in throughput with an increase in final-
ization latency. This is accompanied by an increase in the number
of lost transactions. With Sawtooth, one factor is especially de-
cisive for the non-reception of expected transactions. This factor
is the management of a queue that rejects new incoming transac-
tions if the occupancy of the queue is too high. In this case, it is
required to re-send the rejected transaction or the atomic batch.
The concept of a batch is comparable with the concept of oper-
ations with Bitshares as multiple transactions can be added to a
single atomic batch. The high number of lost transactions is ev-
ident across all benchmarks performed and is mainly due to the

queue being too busy. Furthermore, we can observe that adjusting
the sawtooth.consensus.pbft.block_publishing_delay value does not
reveal any significant difference. The blocks cannot be saturated
in any scenario. In each scenario, we achieve optimal values in the
range of 16.32 MTPS for the BankingApp-SendPayment benchmark
and up to 103.47 MTPS for the DoNothing benchmark. The corre-
sponding MFLS values for all benchmarks range from 10.75 s to
25.84 s. Moreover, the high number of failed transactions in the case
of the BankingApp-SendPayment benchmark is due to the atomic
treatment of batches. All MTPS-related optimal values are achieved
with 100 transactions per batch, which explains the lower number
of received transactions and consequently the lower throughput
compared to the other benchmarks shown in Figure 3 for Sawtooth.
This can be explained by the rejection of batches when the queue
is full and the atomic structure of batches. If a transaction fails
within a batch, the entire batch of 100 transactions is completely
discarded. Using one transaction per batch, the best MTPS values
range from 26.14 to 35.13 with an associated MFLS in the range
of 9.37 s to 13.72 s. The KeyValue-Get, BankingApp-SendPayment
and BankingApp-Balance benchmarks fail in every case when us-
ing a single transaction per batch.

5.7 Diem
To characterize the performance of Diem, we select the KeyValue-Get
benchmark displayed in Table 19 and Table 20. We set the lower

RL BS MTPS SD SEM 95% CI MFLS SD SEM 95% CI

200 100 38.32 10.55 6.09 ±26.22 67.97 4.65 2.69 ±11.56
1600 100 11.83 1.45 0.84 ±3.59 81.30 1.67 0.97 ±4.15
200 2000 64.22 2.57 1.48 ±6.39 107.78 2.75 1.59 ±6.83
1600 2000 36.65 5.26 3.04 ±13.07 150.35 13.67 7.89 ±33.97

Table 19: MTPS andMFLS with statistics for Diem - KeyValue-
Get. (BS = max_block_size)

RL BS Received NoT Expected NoT SD SEM 95% CI

200 100 7365.33 60000.00 603.00 348.14 ±1497.93
1600 100 3887.67 480000.00 470.47 271.62 ±1168.7
200 2000 16752.67 60000.00 699.99 404.14 ±1738.88
1600 2000 11172.67 480000.00 1238.53 715.06 ±3076.67

Table 20: # of Transaction values with statistics for Diem -
KeyValue-Get. (BS = max_block_size)

limit of max_block_size to 100 and the upper limit to 2,000. The
tables show that there are differences between the minimum and
maximum limits, but these have only a minor impact on the overall
performance. Much like Sawtooth, a significant number of trans-
actions fail, adversely affecting the overall performance. As rate
limiter values increase, throughput decreases, whereas finalization
latency increases. The MTPS values range from 50.14 to 96.40 with
the corresponding MFLS values ranging from 93.10 s to 144.93 s.
The best MTPS-related values are obtained with RL = 200 and
max_block_size (BS) ≥ 1,000. Although the specifiedmax_block_size
can be approximately saturated in most scenarios, we can see that
not all transactions are processed. Balster [40] describes various
performance problems, including the "spiking" behaviour of Diem,

Middleware ’23, December 11–15, 2023, Bologna, Italy Frank Christian Geyer, Hans-Arno Jacobsen, Ruben Mayer, and Peter Mandl

in which validators temporarily stop validating further transactions.
We can observe similar behaviour during the execution of the Diem
benchmarks which leads to the blocks not getting fully saturated.

5.8 Impact of network latency and scalability
analysis

In this section, we analyse the impact of network latency and scal-
ability scenarios, with 8, 16 and 32 nodes.

5.8.1 Impact of network latency. We emulate the network latency
in a scenario where the servers are equidistant to analyse their
impact on the performance of each system. To emulate the latency,
we use netem [9] with normal distribution parameters 𝜇 = 12 ms, 𝜎2
= 2 ms. The 𝜇-value is derived based on European servers provided
by WonderNetwork [54]. As highlighted in Section 4.2, one of our
primary objectives was to achieve consistent and repeatable results.
In the context of network latency, this consistency was ensured
using netem, which provides a robust mechanism to introduce and
control latency systematically. By doing so, we aimed to negate
the effects of external fluctuations and influences, which are often
associated with unpredictable network conditions. Such uncontrol-
lable fluctuations could potentially compromise the repeatability
and consistency of our experiments.

The heat map in Figure 4 shows the effect of the latency and
allows a direct comparison of the achieved performance. These
values are based on the parameters used to obtain the best MTPS
values shown in Figure 3. They include throughput, finalization
latency and the duration of the benchmark.

Corda OS hardly reacts to the network latency. Corda Enter-
prise also shows little response except for two benchmarks. The
BankingApp-SendPayment benchmark is the only benchmark that
requires communication with the notary to check whether states
have already been consumed. As a result, the BankingApp-
SendPayment benchmark is more affected by the emulated latency
due to the additional communicationwith the notary. The BankingApp-
SendPayment and the subsequent BankingApp-Balance benchmarks
fail completely with emulated latency due to this reason in our sce-
nario.

BitShares shows a diffuse picture with hardly changed results
in the DoNothing benchmark and strong performance drops in the
KeyValue-Set, KeyValue-Get and the BankingApp-
CreateAccount benchmarks. Here, MTPS values in the range of
579.45 to 1,046.87 are achieved compared to MTPS values in the
range of 1,581.38 to 1,588.95 without emulated latency.

The BankingApp-SendPayment and BankingApp-Balance bench-
marks show MTPS values in the range of 6.62 to 9.96, which cor-
responds to a fraction of the results of 125.99 to 164.07 achieved
without emulated latency. We can explain this behaviour using
the durations of 356.00 s and 369.33 s of the experiments. We use
these durations to calculate the MTPS values. Having long run-
time durations with low throughput results in lower MTPS values.
While the DoNothing benchmark achieves to received the number
of expected transaction confirmations, this is not the case for the
other benchmarks explaining the values shown.

Fabric consistently shows results in the range of 866.30 to 898.78
MTPS, which is a loss of 33% to 40% compared to the results with-
out emulated latency. Fabric is thus sensitive to network latency.

The main reason for this loss is the overhead that arises from the
additional communication with the orderers who are responsible
for reaching consensus.

Quorum achieves similar results in terms of throughput and
finalization latency, both with and without emulated latency. Al-
though the DoNothing benchmark achieves lower MTPS-related
values with emulated latency of 605.04 MTPS, the values of the
other benchmarks in the range of 243.13 to 362.50 MTPS are like the
values without emulated latency, which are in the range of 235.13
to 365.85 MTPS.

Sawtooth hardly reacts to the emulated latency. Only the
BankingApp-Balance benchmark shows aweaker result. The value
without emulated latency is 73.25 MTPS compared to 30.24 MTPS
with emulated latency. As with BitShares, this is due to the longer
execution time of the benchmark.

Similar to Sawtooth, Diem reacts very indifferently to the emu-
lated latency in our scenarios comparable to the MTPS- and MFLS
values without emulated latency.

Summary: Corda OS,Quorum, Sawtooth and Diem hardly re-
act to the emulated latency in our experiments. Corda Enterprise,
BitShares and Fabric sometimes show performance drops. Using
emulated latency, BitShares shows different performance patterns
across all benchmarks. While Corda Enterprise has several opti-
misations compared to Corda OS, the performance degradation of
Corda Enterprise and Fabric is due to the increased communication
overhead with the additional network components.

5.8.2 Scalability. We scale the nodes in the network to analyse
their impact on the performance of the selected systems. Figure 5
shows the results of the MTPS values obtained. The peer numbers,
grouped by the individual blockchain systems are mapped on the
x-axis. The y-axis represents the MTPS values according to a loga-
rithmic scale. The figure shows the results for 8, 16 and 32 nodes.
As a basis, we use the same settings as in Section 5.8.1. Instead of
six servers, we use ten servers whose configuration corresponds to
the description from Section 4.2. We distribute 8, 16 and 32 nodes of
the system successively to eight instead of four servers according
to a round-robin procedure. Each server starts a maximum of four
nodes. We discuss the DoNothing benchmark, which provides the
best MTPS in all scenarios.

With an increase in the size of the network, Corda OS shows the
MTPS values to fall. With 32 nodes, all DoNothing benchmarks fail.
The main reason for this is the serial processing of transactions
beside the additional communication with the other nodes.

Corda Enterprise can process transactions in all scaling scenarios.
However, a similar trend to Corda OS with decreasing MTPS is
emerging here when increasing the size of the network. The main
reason here is the additional communication with the other nodes.

BitShares shows only marginal fluctuations in all scenarios and
achieves similar MTPS values as with four nodes.

While the results differ only slightly for Fabric with four and
eight nodes, it is noticeable that all benchmarks fail in the scenarios
with 16 and 32 nodes. After analysing the two failing scenarios, we
see that the nodes and the orderers successfully process and finalise
the transactions, but the clients do not receive any confirmation.
Using an end-to-end approach like measuring the metric data on
the blockchain nodes would circumvent this problem, but would

An End-to-End Performance Comparison of Seven Permissioned Blockchain Systems Middleware ’23, December 11–15, 2023, Bologna, Italy

MTPS=7.22

MFLS=114.23s

D=348.67s

MTPS=4.34

MFLS=214.59s

D=369.33s

MTPS=0.00

MFLS=0.00s

D=0.00s

MTPS=6.89

MFLS=117.16s

D=349.67s

MTPS=0.00

MFLS=0.00s

D=0.00s

MTPS=0.28

MFLS=138.34s

D=400.67s

MTPS=64.76

MFLS=3.36s

D=303.00s

MTPS=13.49

MFLS=31.12s

D=337.67s

MTPS=3.09

MFLS=120.59s

D=357.33s

MTPS=61.92

MFLS=3.56s

D=302.67s

MTPS=0.00

MFLS=0.00s

D=0.00s

MTPS=0.00

MFLS=0.00s

D=0.00s

MTPS=1589.30

MFLS=1.53s

D=389.33s

MTPS=654.12

MFLS=8.23s

D=393.33s

MTPS=579.45

MFLS=7.64s

D=389.00s

MTPS=1046.87

MFLS=3.81s

D=388.67s

MTPS=6.62

MFLS=173.50s

D=356.00s

MTPS=9.96

MFLS=148.48s

D=369.33s

MTPS=898.78

MFLS=2.06s

D=310.33s

MTPS=866.64

MFLS=0.48s

D=310.33s

MTPS=885.24

MFLS=0.44s

D=310.00s

MTPS=872.52

MFLS=2.48s

D=311.00s

MTPS=866.30

MFLS=2.70s

D=308.33s

MTPS=883.65

MFLS=2.48s

D=307.00s

MTPS=605.04

MFLS=10.43s

D=313.00s

MTPS=243.13

MFLS=14.06s

D=315.00s

MTPS=338.46

MFLS=13.27s

D=209.00s

MTPS=258.05

MFLS=13.93s

D=315.67s

MTPS=320.10

MFLS=13.40s

D=254.33s

MTPS=362.50

MFLS=12.83s

D=224.67s

MTPS=102.74

MFLS=21.73s

D=97.33s

MTPS=88.55

MFLS=17.94s

D=343.33s

MTPS=76.86

MFLS=11.38s

D=55.00s

MTPS=64.83

MFLS=27.39s

D=346.00s

MTPS=15.02

MFLS=26.04s

D=338.33s

MTPS=30.24

MFLS=15.84s

D=121.00s

MTPS=94.12

MFLS=95.91s

D=330.00s

MTPS=70.50

MFLS=103.67s

D=322.00s

MTPS=67.99

MFLS=112.26s

D=316.00s

MTPS=74.27

MFLS=93.13s

D=324.33s

MTPS=56.82

MFLS=128.95s

D=319.00s

MTPS=46.16

MFLS=148.83s

D=307.00s

BankingApp
Balance

BankingApp
SendPayment

BankingApp
CreateAccount

KeyValue
Get

KeyValue
Set

DoNothing

Corda OS Corda Enterprise BitShares Fabric orum Sawtooth Diem

Blockchain System

Be
nc

hm
ar

k

0
100
200
300
400
500
600
700
800
900
1000
1100
1200
1300
1400
1500
1600

MTPS

Figure 4: The best MTPS values displayed are achieved with the configuration values displayed in Figure 3 and the applied
emulated latency. Beside the best MTPS values, the corresponding MFLS and Duration are shown.

Failed

σ=0.03

σ=0.00

σ=0.04

σ=0.14

σ=0.13

σ=0.07

σ=0.15

σ=5.26 σ=4.89 σ=2.83σ=0.19

Failed Failed

σ=102.56σ=61.20

σ=9.93

σ=42.05

σ=5.94

σ=12.13

Failed Failed

σ=0.56σ=1.64
σ=1.64

σ=1.26

σ=0.57

σ=2.11

Corda OS Corda Enterprise BitShares Fabric Quorum Sawtooth Diem

4 8 16 32 4 8 16 32 4 8 16 32 4 8 16 32 4 8 16 32 4 8 16 32 4 8 16 32

0.06
0.10

1.00

10.00

50.00

100.00

200.00

400.00

800.00

1 600.00

Peers grouped by blockchain systems

MT
PS

Figure 5: The influence of network scalability with 8, 16 and 32 nodes on MTPS values based on the DoNothing benchmark.

also undermine the role of the clients as the ultimate recipient. This
clearly shows the difference to other measurements obtained from
papers comparing multiple blockchain systems [25, 39, 45].

Like Corda Enterprise, Quorum shows a downward trend in
MTPS values from eight nodes onwards due to the communication
overhead of the nodes and the consensus algorithm.

Sawtooth behaves similarly with four nodes and eight nodes. In
the scenarios with 16 and 32 nodes, the DoNothing benchmarks
fail, as with Fabric. In contrast to Fabric, we locate the problem on
the side of the nodes since all transactions remain in the pending
state without being finalized.

Diem shows a downward trend in MTPS values from 8 nodes
onwards. We observe similar behaviour with Corda Enterprise and
Quorum. The problem is the communication overhead of the nodes
and the consensus algorithm.

Summary: Beside BitShares, all other systems show a down-
ward trend in MTPS when we add nodes to the network. This
behaviour can also be seen with the vast majority of the other

benchmarks. For Diem, Sawtooth and Quorum, the BFT implemen-
tation is a reason for the performance drop. With Corda, we let
all nodes sign a transaction, which explains the performance drop.
For BitShares, the DPoS implementation with shifting witnesses
finalizing blocks is a reason for the constant performance.

6 LESSONS LEARNED
Here, we summarise the lessons learned based on the observed
results.

Parameter impact: While the adaptation of the parameters
we examined only plays a rather minor role in the systems Fabric,
Sawtooth and Diem, BitShares and especially Quorum show ad-
vantages of adapting block finalization parameters. However, the
respective results are only meaningful in their entirety together
which includes the parameters and the interface execution layer
used. Our work combines analyzing various blockchain systems,
the respective parameters and interface execution layers.

Middleware ’23, December 11–15, 2023, Bologna, Italy Frank Christian Geyer, Hans-Arno Jacobsen, Ruben Mayer, and Peter Mandl

User Considerations: For users, one of the crucial takeaways
from our study is understanding the transaction, latency, and er-
ror rates of each system. Utilizing an end-to-end scenario in our
analysis offers a comprehensive view that directly benefits users.
Moreover, our analysis indicates that the user perspective reveals
different performance results as opposed to measuring directly on
the nodes. This knowledge is paramount when selecting a technol-
ogy, as it can directly impact the efficiency and reliability of the
desired application or platform.

Network latency: Whilst we did not observe a major impact
of network latency with some systems, some showed weaknesses
when it comes to communication with other network components.

Scalability:We observed that many systems show performance
degradation with increasing number of nodes, which is mostly due
to their consensus mechanisms. As with the impact of network
latency, further research on scalable consensus for blockchains is
necessary. In a network that consists of many peers, where only a
small subset of nodes need to sign a transaction at a time, Corda
could achieve higher performance than Fabric.

Summary: In summary, each of the systems studied has its
own weaknesses when it comes to factors such as liveness, latency
impact, scalability, performance, implementation features, and doc-
umentation. Some weaknesses, like liveness, scalability, and per-
formance, can be traced back to specific system components, such
as the consensus mechanism used. Nevertheless, certain concepts,
like bundling multiple state changes into a single transaction or the
externalization of the consensus component, emerge as promising
strategies for future improvements.

7 RELATEDWORK
Our work is not the only research on performance analysis of
blockchain systems. Dinh et al. [25] present BlockBench, one of the
first tools for performance evaluation of blockchain systems. Due
to the differences between the systems they used: Ethereum, Parity
and Fabric v0.6.0-preview, our results are not very comparable.
For example, Fabric v0.6.0-preview implements the order-execute
paradigm [26], while Fabric 2.2.1 follows the execute-order-validate
paradigm [16]. In contrast to Dinh et al., we evaluate seven systems
with multiple parameter settings, but we adapt some of their ideas
to implement custom interface execution layers.

Nasrulin et al. [45] present Gromit, a performance evaluation
framework which they use to analyse seven different systems. Like
us, they analyse Fabric version 1.4.9, Diem and BitShares, among
others. While the obtained evaluation results of BitShares and
Fabric are comparable to our results, our evaluations of Diem differ
strongly. Nasrulin et al. achieve a throughput in the range of 1,000
TPS, whereas we achieve a maximum of just below 100 TPS in our
end-to-end scenario.

Gramoli et al. [39] introduce Diablo, a performance evaluation
suite they use to benchmark seven different systems. Gramoli et
al. take the approach of implementing and evaluating five work-
loads based on real-world scenarios. This workloads include stock
trading as well as requests to websites at peak times. The conclu-
sion of the work is that no blockchain system can process the load
created. While Diablo is comprehensive, no end-to-end scenarios
are considered, and no parameter settings investigated; all systems

are run with default settings. Also, the metrics are extracted from
the logs of the respective systems. This way of recording metrics
means that transactions could be completed on the blockchain but
not captured by the recipients expecting a confirmation, the clients.
Confirmations on the client side can be lost, for example, in case of
synchronisation problems of the nodes.

The following two papers go deeper into BitShares-like and Fab-
ric-based systems, while our study is broader. Xu et al. [19] analyse
the performance of EOS [27] based on a variety of parameters. The
parameters analysed include the transaction size, the number of
transactions a client sends, an underlying round-trip time latency,
packet loss in the network, the number of clients and the number
of block producers. EOS is a system whose database structure is
based on BitShares. Here, a maximum result of 250 TPS is achieved
in an artificial evaluation environment. In an environment with a
round-trip time latency of 50 ms, the number of TPS drops to 50.

Chacko et al. [21] use and analyse various Fabric-based deriva-
tives and Fabric v1.4 to explore why transactions fail and how
transaction failures can be mitigated. It becomes clear that block
size is a key determinant of transaction failures.

Balster [40] uses a simulation to analyse Diem’s core statement,
which implies that 1,000 payment transactions can be processed
per second on 100 validator nodes. The outcome of Balster’s study
shows that the results of the simulation at the time of writing do
not come close to the value listed above, published by Diem.

Our research uniquely positions itself within the broader land-
scape of related works. While we introduce a custom framework
and evaluate multiple blockchain systems as seen in references
like [25, 39, 45], our study stands out due to its concentrated focus
on end-to-end scenarios. Though we recognize and appreciate the
contributions of prior studies, our analysis suggests that most have
not centrally emphasized this aspect. This distinctive approach not
only enriches the existing body of research but also sets our work
apart. Given our specialized emphasis and methodology, our find-
ings and conclusions might diverge significantly, rendering direct
comparisons with other papers somewhat challenging. In light of
this, we believe it’s crucial to underscore this differentiation within
the context of existing literature.

8 CONCLUSIONS
The results of our experiments provide an overview of the per-
formance and associated limitations of seven blockchain systems.
The analysis of different blockchains in connection with specific
interface execution layers, combined with the focus on comparable
parameter settings, especially related to block finalisation, is a key
feature of our work. Contrary to our initial expectation, parameter
adjustments did not significantly impact our measurement results
— a key finding of our study. Our end-to-end approach to met-
ric measurement distinguishes our work from other comparable
studies.

We will use the results of this work as a guide in our further
research to mitigate the weak points and the resulting performance
decay.

REFERENCES
[1] 05.11.2022. Hyperledger Indy – Hyperledger Foundation.

https://www.hyperledger.org/use/hyperledger-indy

https://www.hyperledger.org/use/hyperledger-indy

An End-to-End Performance Comparison of Seven Permissioned Blockchain Systems Middleware ’23, December 11–15, 2023, Bologna, Italy

[2] 14.06.2022. H2 Database Engine. https://www.h2database.com/html/main.html
[3] 14.09.2022. BitShares Technology. https://bitshares.org/
[4] 14.09.2022. Blockchain Infrastructure for the Decentralised Web | Parity

Technologies. https://www.parity.io/
[5] 14.09.2022. Home Page | Diem Association. https://www.diem.com/en-us/
[6] 14.09.2022. Hyperledger Fabric – Hyperledger Foundation.

https://www.hyperledger.org/use/fabric
[7] 14.09.2022. Hyperledger Sawtooth – Hyperledger Foundation.

https://www.hyperledger.org/use/sawtooth
[8] 14.09.2022. Measuring Performance - Throughput and Latency - BitShares.

https://web.archive.org/web/20170605211716/https:
//bitshares.org/blog/2015/06/08/measuring-performance/

[9] 14.09.2022. networking:netem [Wiki].
https://wiki.linuxfoundation.org/networking/netem

[10] 16.02.2023. Redbelly | Democratised Economic Infrastructure for Regulated
Assets. https://www.redbelly.network/

[11] 2017. FISCO BCOS Whitepaper(EN). (2017).
https://raw.githubusercontent.com/FISCO-
BCOS/whitepaper/master/FISCO%20BCOS%20Whitepaper(EN).pdf

[12] 2018. Quorum Whitepaper. https://developers.diem.com/papers/diem-
consensus-state-machine-replication-in-the-diem-blockchain/2021-08-17.pdf

[13] 26.05.2020. DiemBFT v4: State Machine Replication in the Diem Blockchain.
https://developers.diem.com/papers/diem-consensus-state-machine-
replication-in-the-diem-blockchain/2020-05-26.pdf

[14] Mohammad Alomari, Michael Cahill, Alan Fekete, and Uwe Rohm. 2008. The
Cost of Serializability on Platforms That Use Snapshot Isolation. In 2008 IEEE
24th International Conference on Data Engineering. IEEE, 576–585.
https://doi.org/10.1109/ICDE.2008.4497466

[15] Anatoly Yakovenko. 2021. Solana: A new architecture for a high performance
blockchain. (2021). https://solana.com/solana-whitepaper.pdf

[16] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstantinos
Christidis, Angelo de Caro, David Enyeart, Christopher Ferris, Gennady
Laventman, Yacov Manevich, Srinivasan Muralidharan, Chet Murthy, Binh
Nguyen, Manish Sethi, Gari Singh, Keith Smith, Alessandro Sorniotti, Chrysoula
Stathakopoulou, Marko Vukolić, Sharon Weed Cocco, and Jason Yellick. 2018.
Hyperledger fabric. In Proceedings of the Thirteenth EuroSys Conference, Rui
Oliveira, Pascal Felber, and Y. Charlie Hu (Eds.). ACM, New York, NY, USA, 1–15.
https://doi.org/10.1145/3190508.3190538

[17] Apache Kafka. 14.09.2022. Apache Kafka. https://kafka.apache.org/
[18] Bitshares. 05.05.2018. Industrial Performance and Scalability.

https://bitshareshub.io/industrial-performance-and-scalability/
[19] Brent Xu, Dhruv Luthra, Zak Cole, Nate Blakely. 2018. EOS: An Architectural,

Performance, and Economic Analysis.
https://blog.bitmex.com/wp-content/uploads/2018/11/eos-test-report.pdf

[20] Miguel Castro and Barbara Liskov. 1999. Practical Byzantine Fault Tolerance. In
Proceedings of the Third Symposium on Operating Systems Design and
Implementation (OSDI ’99). USENIX Association, USA, 173–186.

[21] Jeeta Ann Chacko, Ruben Mayer, and Hans-Arno Jacobsen. 2021. Why Do My
Blockchain Transactions Fail?. In Proceedings of the 2021 International Conference
on Management of Data, Guoliang Li, Zhanhuai Li, Stratos Idreos, and Divesh
Srivastava (Eds.). ACM, New York, NY, USA, 221–234.
https://doi.org/10.1145/3448016.3452823

[22] ConsenSys. 14.09.2022. ConsenSys Quorum | ConsenSys.
https://consensys.net/quorum/

[23] Corda. 14.09.2022. Corda | Leading DLT Platform for Regulated Industries.
https://www.corda.net/

[24] Diablo Blockchain Benchmark Suite. 12.10.2022. Diablo Blockchain Benchmark
Suite. https://diablobench.github.io/

[25] Tien Tuan Anh Dinh, Ji Wang, Gang Chen, Rui Liu, Beng Chin Ooi, and Kian-Lee
Tan. 2017. BLOCKBENCH: A Framework for Analyzing Private Blockchains. In
Proceedings of the 2017 ACM International Conference on Management of Data
(Chicago, Illinois, USA) (SIGMOD ’17). Association for Computing Machinery,
New York, NY, USA, 1085–1100. https://doi.org/10.1145/3035918.3064033

[26] Dr. Gavin Wood. 24.10.2022. Ethereum Yellow Paper: a formal specification of
Ethereum, a programmable blockchain.
https://ethereum.github.io/yellowpaper/paper.pdf

[27] EOSIO. 10.01.2022. Home – EOSIO Blockchain Software & Services.
https://eos.io/

[28] Daniel Larimer Fabian Schuh. 04.04.2017. BitShares 2.0: General Overview.
https://cryptorating.eu/whitepapers/BitShares/bitshares-general.pdf

[29] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai
Zeldovich. 2017. Algorand: Scaling Byzantine Agreements for Cryptocurrencies.
In Proceedings of the 26th Symposium on Operating Systems Principles (Shanghai,
China) (SOSP ’17). Association for Computing Machinery, New York, NY, USA,
51–68. https://doi.org/10.1145/3132747.3132757

[30] GitHub. 01.10.2022. bitshares-core/chain_parameters.hpp at
195881c32f5626c623250f1ae6127bac8f9a0cbb · bitshares/bitshares-core.

[31] GitHub. 01.10.2022. diem/proposal_generator.rs at
94a8bca0fabbd18a54d50ec11ac56affa7ba2a09 · diem/diem. https://github.com/
diem/diem/blob/94a8bca0fa/consensus/src/liveness/proposal_generator.rs

[32] GitHub. 01.10.2022. fabric/configtx.yaml at
f7e4999a1cf4ff7f12432c25a298b50d569b3e90 · hyperledger/fabric.
https://github.com/hyperledger/fabric/blob/
f7e4999a1cf4ff7f12432c25a298b50d569b3e90/sampleconfig/configtx.yaml#L307

[33] GitHub. 01.10.2022. quorum/config.go at
d967b695df94d5b2b8a76f669da429d3d1b84bd2 · ConsenSys/quorum.
https://github.com/ConsenSys/quorum/blob/d967b695df/consensus/istanbul/
config.go#L30

[34] GitHub. 01.10.2022. quorum/ibft-parameters.md at
97395bd87e8999d9a9fff0d9af4878f16ff911ae · ConsenSys/quorum.
https://github.com/ConsenSys/quorum/blob/
97395bd87e8999d9a9fff0d9af4878f16ff911ae/docs/Consensus/ibft/ibft-
parameters.md#block-period

[35] GitHub. 01.10.2022. sawtooth-pbft/architecture.rst at
09855135aa89e8b3c3e2e8167c14d14091939bb2 · hyperledger/sawtooth-pbft.
https://github.com/hyperledger/sawtooth-pbft/blob/
09855135aa89e8b3c3e2e8167c14d14091939bb2/docs/source/architecture.rst

[36] GitHub. 14.09.2022. GitHub - cryptonomex/graphene.
https://github.com/cryptonomex/graphene

[37] GitHub. 14.09.2022. GitHub - grimadas/gromit: Decentralized Systems
Benchmarking and Experiment Runner Framework.
https://github.com/grimadas/gromit

[38] GitHub. 14.09.2022. GitHub - ooibc88/blockbench: BLOCKBENCH: A
Framework for Analyzing Private Blockchains. Blockbench contains workloads
for measuring the data processing performance, and workloads for
understanding the performance of different layers of Blockchain systems.
https://github.com/ooibc88/blockbench

[39] Vincent Gramoli, Rachid Guerraoui, Andrei Lebedev, Chris Natoli, and Gauthier
Voron. 2023. Diablo: A Benchmark Suite for Blockchains. In Proceedings of the
Eighteenth European Conference on Computer Systems (Rome, Italy) (EuroSys ’23).
Association for Computing Machinery, New York, NY, USA, 540–556.
https://doi.org/10.1145/3552326.3567482

[40] Jeanpierre Balster. 01.03.2021. Investigating the scalability of the Diem blockchain
A simulation approach. Ph. D. Dissertation. Eidhoven University Of Technology.
https://pure.tue.nl/ws/portalfiles/portal/175405097/Balster_M..pdf

[41] Kelly Olson, Mic Bowman, James Mitchell, Shawn. 2018. Sawtooth: An
Introduction. https://www.hyperledger.org/wp-
content/uploads/2018/01/Hyperledger_Sawtooth_WhitePaper.pdf

[42] Marta Lokhava, Giuliano Losa, David Mazières, Graydon Hoare, Nicolas Barry,
Eli Gafni, Jonathan Jove, Rafał Malinowsky, and Jed McCaleb. 2019. Fast and
secure global payments with Stellar. Proceedings of the 27th ACM Symposium on
Operating Systems Principles (2019).

[43] Mike Hearn, Richard Gendal Brown. 2019. Corda: A distributed ledger.
https://www.r3.com/wp-content/uploads/2019/08/corda-technical-whitepaper-
August-29-2019.pdf

[44] Henrique Moniz. 19.05.2020. The Istanbul BFT Consensus Algorithm.
https://doi.org/10.48550/arXiv.2002.03613

[45] Bulat Nasrulin, Martijn De Vos, Georgy Ishmaev, and Johan Pouwelse. 2022.
Gromit: Benchmarking the Performance and Scalability of Blockchain Systems.
In 2022 IEEE International Conference on Decentralized Applications and
Infrastructures (DAPPS). 56–63. https://doi.org/10.1109/DAPPS55202.2022.00015

[46] Diego Ongaro and John Ousterhout. 2014. In Search of an Understandable
Consensus Algorithm. In Proceedings of the 2014 USENIX Conference on USENIX
Annual Technical Conference (USENIX ATC’14). USENIX Association, USA,
305–320.

[47] Haochen Pan, Xuheng Duan, Yingjian Wu, Lewis Tseng, Moayad Aloqaily, and
Azzedine Boukerche. 2020. BBB: A Lightweight Approach to Evaluate Private
Blockchains in Clouds. In GLOBECOM 2020 - 2020 IEEE Global Communications
Conference. 1–6. https://doi.org/10.1109/GLOBECOM42002.2020.9322354

[48] R3 Documentation. 2020. Performance benchmarking results.
https://docs.r3.com/en/platform/corda/4.5/enterprise/performance-
testing/performance-results.html

[49] Dimitri Saingre, Thomas Ledoux, and Jean-Marc Menaud. 2020. BCTMark: a
Framework for Benchmarking Blockchain Technologies. In 2020 IEEE/ACS 17th
International Conference on Computer Systems and Applications (AICCSA). IEEE,
1–8. https://doi.org/10.1109/AICCSA50499.2020.9316536

[50] Satoshi Nakamoto. 2008. Bitcoin: A Peer-to-Peer Electronic Cash System.
https://bitcoin.org/bitcoin.pdf

[51] Johannes Sedlmeir, Philipp Ross, André Luckow, Jannik Lockl, Daniel Miehle,
and Gilbert Fridgen. 2021. The DLPS: A New Framework for Benchmarking
Blockchains. In Proceedings of the 54th Hawaii International Conference on System
Sciences (Proceedings of the Annual Hawaii International Conference on System
Sciences), Tung Bui (Ed.). Hawaii International Conference on System Sciences.
https://doi.org/10.24251/HICSS.2021.822

https://www.h2database.com/html/main.html
https://bitshares.org/
https://www.parity.io/
https://www.diem.com/en-us/
https://www.hyperledger.org/use/fabric
https://www.hyperledger.org/use/sawtooth
https://web.archive.org/web/20170605211716/https://bitshares.org/blog/2015/06/08/measuring-performance/
https://web.archive.org/web/20170605211716/https://bitshares.org/blog/2015/06/08/measuring-performance/
https://wiki.linuxfoundation.org/networking/netem
https://www.redbelly.network/
https://raw.githubusercontent.com/FISCO-BCOS/whitepaper/master/FISCO%20BCOS%20Whitepaper(EN).pdf
https://raw.githubusercontent.com/FISCO-BCOS/whitepaper/master/FISCO%20BCOS%20Whitepaper(EN).pdf
https://developers.diem.com/papers/diem-consensus-state-machine-replication-in-the-diem-blockchain/2021-08-17.pdf
https://developers.diem.com/papers/diem-consensus-state-machine-replication-in-the-diem-blockchain/2021-08-17.pdf
https://developers.diem.com/papers/diem-consensus-state-machine-replication-in-the-diem-blockchain/2020-05-26.pdf
https://developers.diem.com/papers/diem-consensus-state-machine-replication-in-the-diem-blockchain/2020-05-26.pdf
https://doi.org/10.1109/ICDE.2008.4497466
https://solana.com/solana-whitepaper.pdf
https://doi.org/10.1145/3190508.3190538
https://kafka.apache.org/
https://bitshareshub.io/industrial-performance-and-scalability/
https://blog.bitmex.com/wp-content/uploads/2018/11/eos-test-report.pdf
https://doi.org/10.1145/3448016.3452823
https://consensys.net/quorum/
https://www.corda.net/
https://diablobench.github.io/
https://doi.org/10.1145/3035918.3064033
https://ethereum.github.io/yellowpaper/paper.pdf
https://eos.io/
https://cryptorating.eu/whitepapers/BitShares/bitshares-general.pdf
https://doi.org/10.1145/3132747.3132757
https://github.com/diem/diem/blob/94a8bca0fa/consensus/src/liveness/proposal_generator.rs
https://github.com/diem/diem/blob/94a8bca0fa/consensus/src/liveness/proposal_generator.rs
https://github.com/hyperledger/fabric/blob/f7e4999a1cf4ff7f12432c25a298b50d569b3e90/sampleconfig/configtx.yaml#L307
https://github.com/hyperledger/fabric/blob/f7e4999a1cf4ff7f12432c25a298b50d569b3e90/sampleconfig/configtx.yaml#L307
https://github.com/ConsenSys/quorum/blob/d967b695df/consensus/istanbul/config.go#L30
https://github.com/ConsenSys/quorum/blob/d967b695df/consensus/istanbul/config.go#L30
https://github.com/ConsenSys/quorum/blob/97395bd87e8999d9a9fff0d9af4878f16ff911ae/docs/Consensus/ibft/ibft-parameters.md#block-period
https://github.com/ConsenSys/quorum/blob/97395bd87e8999d9a9fff0d9af4878f16ff911ae/docs/Consensus/ibft/ibft-parameters.md#block-period
https://github.com/ConsenSys/quorum/blob/97395bd87e8999d9a9fff0d9af4878f16ff911ae/docs/Consensus/ibft/ibft-parameters.md#block-period
https://github.com/hyperledger/sawtooth-pbft/blob/09855135aa89e8b3c3e2e8167c14d14091939bb2/docs/source/architecture.rst
https://github.com/hyperledger/sawtooth-pbft/blob/09855135aa89e8b3c3e2e8167c14d14091939bb2/docs/source/architecture.rst
https://github.com/cryptonomex/graphene
https://github.com/grimadas/gromit
https://github.com/ooibc88/blockbench
https://doi.org/10.1145/3552326.3567482
https://pure.tue.nl/ws/portalfiles/portal/175405097/Balster_M..pdf
https://www.hyperledger.org/wp-content/uploads/2018/01/Hyperledger_Sawtooth_WhitePaper.pdf
https://www.hyperledger.org/wp-content/uploads/2018/01/Hyperledger_Sawtooth_WhitePaper.pdf
https://www.r3.com/wp-content/uploads/2019/08/corda-technical-whitepaper-August-29-2019.pdf
https://www.r3.com/wp-content/uploads/2019/08/corda-technical-whitepaper-August-29-2019.pdf
https://doi.org/10.48550/arXiv.2002.03613
https://doi.org/10.1109/DAPPS55202.2022.00015
https://doi.org/10.1109/GLOBECOM42002.2020.9322354
https://docs.r3.com/en/platform/corda/4.5/enterprise/performance-testing/performance-results.html
https://docs.r3.com/en/platform/corda/4.5/enterprise/performance-testing/performance-results.html
https://doi.org/10.1109/AICCSA50499.2020.9316536
https://bitcoin.org/bitcoin.pdf
https://doi.org/10.24251/HICSS.2021.822

Middleware ’23, December 11–15, 2023, Bologna, Italy Frank Christian Geyer, Hans-Arno Jacobsen, Ruben Mayer, and Peter Mandl

[52] Team Rocket. 2018. Snowflake to Avalanche: A Novel Metastable Consensus
Protocol Family for Cryptocurrencies. (2018). https:
//ipfs.io/ipfs/QmUy4jh5mGNZvLkjies1RWM4YuvJh5o2FYopNPVYwrRVGV

[53] Rui Wang, Kejiang Ye, Yang Wang, and Cheng-Zhong Xu. 2021. xBCBench: A
Benchmarking Tool for Analyzing the Performance of Blockchain Systems. In
Blockchain and Trustworthy Systems, Hong-Ning Dai, Xuanzhe Liu, Daniel Xiapu
Luo, Jiang Xiao, and Xiangping Chen (Eds.). Communications in Computer and
Information Science, Vol. 1490. Springer Singapore, Singapore, 101–114.
https://doi.org/10.1007/978-981-16-7993-3{_}8

[54] WonderNetwork. 14.09.2022. Global Ping Statistics - WonderNetwork.
https://wondernetwork.com/pings/

[55] Zachary Amsden, Ramnik Arora, Shehar Bano, Mathieu Baudet, Sam Blackshear,
Abhay Bothra, George Cabrera, Christian Catalini, Konstantinos Chalkias, Evan
Cheng, Avery Ching, Andrey Chursin, George Danezis, Gerardo Di Giacomo,
David L. Dill, Hui Ding, Nick Doudchenko, Victor Gao, Zhenhuan Gao, François
Garillot, Michael Gorven, Philip Hayes, J. Mark Hou, Yuxuan Hu, Kevin Hurley,
Kevin Lewi, Chunqi Li, Zekun Li, Dahlia Malkhi, Sonia Margulis, Ben Maurer,
Payman Mohassel, Ladi de Naurois, Valeria Nikolaenko, Todd Nowacki,
Oleksandr Orlov, Dmitri Perelman, Alistair Pott, Brett Proctor, Shaz Qadeer,
Rain, Dario Russi, Bryan Schwab, Stephane Sezer, Alberto Sonnino, Herman
Venter, Lei Wei, Nils Wernerfelt, Brandon Williams, Qinfan Wu, Xifan Yan, Tim
Zakian, Runtian Zhou. 2020. The Libra Blockchain. https://diem-developers-
components.netlify.app/papers/the-diem-blockchain/2020-05-26.pdf

https://ipfs.io/ipfs/QmUy4jh5mGNZvLkjies1RWM4YuvJh5o2FYopNPVYwrRVGV
https://ipfs.io/ipfs/QmUy4jh5mGNZvLkjies1RWM4YuvJh5o2FYopNPVYwrRVGV
https://doi.org/10.1007/978-981-16-7993-3 {_}8
https://wondernetwork.com/pings/
https://diem-developers-components.netlify.app/papers/the-diem-blockchain/2020-05-26.pdf
https://diem-developers-components.netlify.app/papers/the-diem-blockchain/2020-05-26.pdf

	Abstract
	1 Introduction
	2 Blockchain Systems
	3 COCONUT Benchmarking Framework
	4 Experimental Settings
	4.1 Interface Execution Layers
	4.2 Server and network configuration
	4.3 Workload configuration
	4.4 System parameter settings
	4.5 Evaluation metrics

	5 Results
	5.1 Corda OS
	5.2 Corda Enterprise
	5.3 BitShares
	5.4 Fabric
	5.5 Quorum
	5.6 Sawtooth
	5.7 Diem
	5.8 Impact of network latency and scalability analysis

	6 Lessons Learned
	7 Related Work
	8 Conclusions
	References

