\

SecV: Secure code partitioning via multi-language secure
values
Peterson Yuhala, Pascal Felber, Hugo Guiroux, Jean-Pierre Lozi, Alain

Tchana, Valerio Schiavoni, Gaél Thomas

» To cite this version:

Peterson Yuhala, Pascal Felber, Hugo Guiroux, Jean-Pierre Lozi, Alain Tchana, et al.. SecV: Secure
code partitioning via multi-language secure values. Middleware ’23: 24th International Middleware
Conference, Dec 2023, Bologna, Italy. pp.207-219, 10.1145/3590140.3629116 . hal-04355247

HAL Id: hal-04355247
https://inria.hal.science/hal-04355247
Submitted on 20 Dec 2023

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

https://inria.hal.science/hal-04355247
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

SecV: Secure Code Partitioning via Multi-Language
Secure Values

Peterson Yuhala
University of Neuchatel
Neuchétel, Switzerland

peterson.yuhala@unine.ch

Jean-Pierre Lozi

Paris, France
jean-pierre.lozi@inria.fr

Pascal Felber
University of Neuchétel
Neuchatel, Switzerland
pascal.felber@unine.ch

Alain Tchana

Inria Grenoble INP
Grenoble, France

alain.tchana@grenoble-inp.fr

Hugo Guiroux
Oracle Labs
Zurich, Switzerland
hugo.guiroux@oracle.com

Valerio Schiavoni
University of Neuchétel
Neuchatel, Switzerland

valerio.schiavoni@unine.ch

Gaél Thomas
Télécom SudParis
Institut Polytechnique de Paris
France
gael.thomas@telecom-sudparis.eu

Abstract

Trusted execution environments like Intel SGX provide en-
claves, which offer strong security guarantees for applica-
tions. Running entire applications inside enclaves is possi-
ble, but this approach leads to a large trusted computing
base (TCB). As such, various tools have been developed to
partition programs written in languages such as C or Java
into trusted and untrusted parts, which are run in and out
of enclaves respectively. However, those tools depend on
language-specific taint-analysis and partitioning techniques.
They cannot be reused for other languages and there is thus
a need for tools that transcend this language barrier.

We address this challenge by proposing a multi-language
technique to specify sensitive code or data, as well as a multi-
language tool to analyse and partition the resulting pro-
grams for trusted execution environments like Intel SGX.
We leverage GraalVM’s TRUFFLE framework, which provides
a language-agnostic abstract syntax tree (AST) represen-
tation for programs, to provide special AST nodes called
secure nodes that encapsulate sensitive program information.
Secure nodes can easily be embedded into the ASTs of a
wide range of languages via TRUFFLE’s polyglot APL Our
technique includes a multi-language dynamic taint track-
ing tool to analyse and partition applications based on our
generic secure nodes. Our extensive evaluation with micro-
and macro-benchmarks shows that we can use our tech-
nique for two languages (Javascript and Python), and that
partitioned programs can obtain up to 14.5% performance
improvement as compared to unpartitioned versions.

CCS Concepts: « Security and privacy — Trusted com-
puting; « Software and its engineering — Object ori-
ented frameworks.

Keywords: Trusted Execution Environments, Intel SGX, Man-
aged Execution Environments, Java, Truffle, GraalvVM

1 Introduction

Trusted execution environments (TEE) use hardware cryp-
tography to enforce confidentiality, authenticity and integrity
of a memory zone called an enclave. TEEs are at the basis of
confidential computing, and major CPU vendors have intro-
duced them in their processors, e.g., Intel’s SGX [13], AMD’s
SME [19], and ARM’s TrustZone [3, 48], to provide security
guarantees for cloud-based applications.

Minimising the trusted computing base (TCB) of a TEE-
enabled program is crucial for improving security. Achiev-
ing this goal is especially difficult for managed languages
because they come with a runtime that contains large sys-
tem libraries (e.g., Java, Python, R, etc.). As such, leveraging
tools such as SCONE [4], SGX-LKL [49], or Graphene-SGX
[56] that fully embed the language runtime inside the TEE
is not satisfactory. For example, the Java library shipped
with Open]JDK18 contains 47,146 Java classes for a total of
5,224,426 lines of Java code. Adding such a large code base
inside a TEE increases the size and the attack surface of the
TCB to an unacceptable degree.

To minimise the TCB size of applications written in man-
aged languages, the code and the data of the application
and the runtime must be partitioned into trusted parts and
untrusted parts, which run inside and outside of the enclave,
respectively. Since manually partitioning a large code base is
complex and error-prone, several middleware technologies
have been developed which permit developers to automati-
cally partition their code prior to deployment in the cloud.

©2023 ACM. Personal use of this material is permitted. Permission from ACM must be obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works. This is the author’s version of the work. The final version is published in the proceedings of the 24th International Middleware Conference.

DOI: 10.1145/3590140.3629116

https://doi.org/10.1145/3590140.3629116

Unfortunately, partitioning tools only exist for a few lan-
guages: Java with Civet [57], Montsalvat [66] and Uranus
[18], Go with GOTEE [14], and C with Glamdring [23]. These
tools depend heavily on the language semantics and cannot
be reused for other languages. To support the next program-
ming language (e.g., Python, R, JavaScript, Ruby, etc.), one
must entirely re-implement a new automatic partitioning
tool, which is time consuming and error-prone.

In this paper, we propose to decouple the partitioning tool
from the language semantics, and to implement the former
once and for all languages. To that end, we leverage TRUFFLE
[61], a Java library for building high-performance language
interpreters. It provides a generic abstract syntax tree (AST)
composed of nodes that represent various syntactic elements
of a program: i.e., expressions (e.g., function calls or arith-
metic operations), program values (e.g., literals or variables),
control flow (e.g., if-else or for loops), etc. TRUFFLE provides
support for popular programming languages like Python,
JavaScript, R, Ruby, C/C++, amongst many others. To imple-
ment the partitioning tool once and for all, we first intro-
duce a new multi-language AST node type, called a secure
node. This node contains a secure value corresponding to a
sensitive value that has to be secured in the enclave. Then,
we leverage the polyglot interoperability protocol provided
by TrRuFrLE [15], which allows the declaration of a secure
value from any language with an expression as simple as
x=polyglot.eval("secV", "sInt(42)"). Finally, we develop
a generic dynamic taint tracking tool, POLYTAINT, which in-
struments TRUFFLE ASTs to track the data flow of sensitive
values from secure nodes so as to determine the portions
of a program (e.g., functions) to be shielded inside the en-
clave. POLYTAINT then partitions the program into two parts,
trusted and untrusted, to be executed respectively inside or
outside the enclave.

In summary, we propose the following contributions:

1. Generic AST secure nodes to specify sensitive data in
any TRUFFLE language.

2. PoLYTAINT, a TRUFFLE instrumentation tool which
performs dynamic taint tracking on generic polyglot
programs and partitions the programs based on the
use of secure values.

3. An extensive experimental evaluation demonstrating
the effectiveness of our approach via micro-benchmarks
in JavaScript and Python, as well as real-world appli-
cations: PageRank [2] and linear regression [64]. Our
analysis of partitioned programs shows we can reduce
the size of the TCB (i.e., improved security) and im-
prove performance (up to 14.5%) at the same time.

The rest of the paper is organised as follows. §2 provides
background concepts. We present our threat model in §3. §4
describes the architecture and workflow of SEcV, followed
in §5 by an extensive experimental evaluation. We discuss
the limitations of SECV in §6, and provide ideas for further

use cases in §7. Related work is discussed in §8, while we
conclude and hint at future work in §9.

2 Background
2.1 Intel software guard extensions (SGX)

Intel SGX [13, 63] is a set of hardware instructions to cre-
ate secure memory regions called enclaves. Enclaves pro-
vide strong confidentiality and integrity guarantees for code
and data processed on a malicious node whose privileged
software (e.g., kernel, hypervisor, etc.) is potentially com-
promised. Enclave data is stored in an encrypted portion of
DRAM, the enclave page cache (EPC). EPC pages are transpar-
ently decrypted by a memory encryption engine (MEE) only
when loaded into a CPU cache line. Enclaves typically have
limited memory resources: 128 MB or 256 MB per socket in
the more popular first generation SGX-enabled CPUs. The
SGX Linux kernel driver supports paging from EPC memory
to regular DRAM to accommodate enclaves larger than the
EPC, but this comes at a performance cost [59].

Software that leverages Intel SGX is usually split in two
parts: a trusted part which executes in enclave mode, and
an untrusted part which executes in non-enclave mode. The
Intel SGX SDK permits interaction between both parts via
ecalls (from untrusted to trusted code), and ocalls (from
trusted to untrusted). Intel SGX enclaves operate only in
user mode and OS services (i.e., system calls) cannot be ex-
ecuted directly within the enclaves [4, 56]. They must in-
stead be relayed to the untrusted part via ocalls. Both ecalls
and ocalls trigger expensive context switches in the CPU
[59] (accounting for up to 13,500 CPU cycles). Reducing the
number of ecalls and ocalls is therefore key in designing
efficient enclave software.

To facilitate the deployment of code in enclaves, several
tools [4, 49, 53, 56] make it possible to run unmodified ap-
plications inside SGX enclaves. While this approach is rel-
atively straightforward to use for developers, it increases
the chance of introducing security vulnerabilities into the
enclave (due to the large TCB). Some language-specific al-
ternatives [18, 23, 57, 66] have been proposed recently to
partition programs and keep only sensitive code and data
within enclaves.

2.2 GraalVM

GraalVM is a high-performance JDK distribution that can
execute programs implemented in a wide range of high-level
languages, e.g., JavaScript, Python, Java, Kotlin, etc. [6, 66]. At
the heart of GraalVM is the Graal compiler [47], a dynamic
just-in-time (JIT) compiler that produces highly optimised
machine code.

GraalVM native images. GraalVM provides a tool that can
compile ahead-of-time (AOT) programs implemented in JVM-
based languages (e.g., Java, Scala, etc.) to native executables,
called native images. This tool leverages static analysis [60]

Base Truffle

node class ot

node

o _| Execute:
return(left.value + right.value)

Left /73N, /2 Right
chiid-node\ 2, X3 i chia-node
Figure 1. Integer addition node executed in the AST to
produce the sum of the values of left and right child.

to determine which program elements (classes, methods,
fields) are reachable at run time. These reachable elements,
together with runtime components (i.e., the garbage collector,
support for thread scheduling and synchronisation, etc.) are
AOT-compiled into the final native image. This significantly
lowers the memory footprint when compared to programs
interpreted in a regular JVM, making native images very
suitable for TEEs. In addition, GraalVM native images can
run initialisation code at build time instead of at run time
[60], which leads to faster start-up times in native images
compared to other runtime environments.

TRUFFLE. Itisaframework provided by the GraalVM ecosys-
tem to build tools and programming language implemen-

tations as self-modifying Abstract Syntax Tree (AST) inter-

preters [15, 43]. At low level, TRUFFLE provides a base Node

class that is leveraged by language implementers to build

other AST nodes representing the semantic constructs of

their programming language, e.g., an addition operation, a

variable write, etc. Essentially, every node in a TRUFFLE AST

is executed (via an execute method) at runtime to produce a

result.

In Fig. 1 for example, the integer addition node will be exe-
cuted at runtime to produce the sum of the left and child node
values, which are computed by calling the execute methods
of the left and right nodes respectively (depth-first traversal).

The key advantage of TRUFFLE is that all programs im-
plemented in a supported language are parsed to a common
AST representation (i.e., the TRUFFLE AST), which is then
manipulated in a language-agnostic fashion. TRUFFLE lan-
guages include JavaScript (JS) [32], Ruby [46], R [30], Python
[31], LLVM-based languages [42], and more.

Polyglot API. TrurrLE allows developers to build polyglot
applications that combine code written in different languages.
This interoperability is provided by the polyglot interoper-
ability protocol, a set of standardised messages (polyglot API)
implemented in every TRUFFLE language [15, 39]. This API
allows to transfer objects from one language scope to another
as TRUFFLE values, i.e., an instance of Value class.

1 import org.graalvm.polyglot.x;

2 class PolyglotTest {

3 public static void main(String[] args) {

4 Context polyglot = Context.create();

5 Value array = polyglot.eval("js", "[1, 2, 3, 441");
6 int result = array.getArrayElement(3).asInt();

7 System.out.println(result); // prints 44

8 %}

Event
on-enter

j ST
Var ash;) ———p
N rewriting

on-return-value

Figure 2. Instrumenting a variable write with a wrapper
node. The event node’s onReturnvalue method could be
used to register the name of the variable being written, as
well as the corresponding value.

9%

Listing 1. Java application accessing an object from a JS
language scope via the polyglot APL

Listing 1 shows the transfer of an array object created in a
JS language scope into the Java language scope via the poly-
glot API (line 6). The first parameter to the polyglot.eval
call is the truffle language id, a unique string identifier for
TRUFFLE guest languages, while the second parameter is the
guest source code to execute. Such cross-language object ex-
change is possible in all TRUFFLE languages, which simplifies
the implementation of multi-language applications.

In this paper, the language accessing the objects generated
by another interpreter will be referred to as the host language
(Java in Listing 1), and the language used to generate the
objects accessed by the host language is called the guest
language (JS in Listing 1). Objects of the host language will
be referred to as regular objects while those of the guest
language will be referred to as foreign objects.

TRUFFLE instrumentation agents. The TRUFFLE frame-
work provides an API to dynamically intercept the execu-
tion of nodes in the AST [15, 58, 62]. This API was used to
implement a program profiler [27], a debugger [33], and a
taint-tracking tool [21]. In PoLYTAINT, we leverage this API
to implement our partitioning tool.

To intercept the execution of nodes, the developer has
to implement an instrumentation agent [58]. The agent in-
tercepts the execution of nodes by leveraging syntactic tags
associated to the AST nodes. These tags give the semantics
of the nodes (e.g., call tag, variable write tag etc.).

Fig. 2 illustrates how an instrumentation agent works.
When the agent is loaded, it associates an event node to a
tag [29]. In our example, the agent attaches the event node
E to any AST node with the variable write tag. At execution,
when TRUFFLE visits an AST node with the instrumented tag
for the first time, it replaces the node by a wrapper node [44]
connected to the event node. In our example, when TRUFFLE
visits the node N for the first time, it wraps N in W and
connects W with E.

A wrapper node implements a special execute function.
Upon a call, it first calls onEnter on the associated event node,
then execute on the wrapped node, and finally
onReturnValue on the associated event node. These functions

Analysis of

results
PolyTaint |—>| Partitioner

Dynamic taint ‘Build Java native

Polyglot
program

3 | analysis image applications
c c
.19: -% i ; Native image

| nerator
R o N JZEs
< o!1Untrusted : N
Z&iipan @i
L lIzooooooooi

Figure 3. Overview of SECV’s workflow.

can collect metrics, modify the wrapped node, and even
replace the wrapped node by another node.

3 Threat model

We consider a powerful adversary with full control over the
software stack, including privileged software (i.e., host OS,
hypervisor) with access to the physical hardware (i.e., DRAM,
secondary storage, etc.). The adversary’s goal is to disclose
sensitive data or damage its integrity.

The SEcV workflow assumes enclave program develop-
ment, taint tracking and program partitioning, as well as final
enclave code building and signing are all done in a trusted en-
vironment, to prevent malicious code tampering disclosing
sensitive information at runtime. The integrity of the trusted
partition can be ensured via remote attestation [9, 13].

The adversary cannot open the CPU package to extract
decrypted enclave secrets. The final enclave code does not in-
tentionally leak sensitive information (e.g., encryption keys).
We do not consider denial-of-service (DoS) and side-channel
attacks [7, 52], for which mitigations exist [16, 26].

4 Design and workflow of SECV

SECV is a framework that analyses applications and parti-
tions them into trusted and untrusted parts for architectures
with TEE support. It supports applications written in any
Truffle language, and introduces secure values to specify sen-
sitive data. Fig. 3 presents an overview of SEcV’s workflow,
which comprises 4 phases: (1) identification of sensitive vari-
ables that contain secure values (see §4.1), (2) dynamic taint
tracking with POLYTAINT (see §4.2 and §4.3), (3) program
partitioning with the partitioner (see §4.4), and (4) native im-
age building with the image generator and final application
creation (see §4.5).

We illustrate our system’s workflow by considering a sim-
ple linear regression program written in Python (see List-
ing 2). We consider a security scenario where we wish to keep
the learned model (i.e., m and c) confidential [17, 25, 50, 65].
In the following, we will show how one can use SECV to
enforce this scenario.

4.1 Identifying and specifying sensitive data

We propose a multi-language approach to specify sensitive
data via the use of newly-introduced secure nodes in a TRUF-
FLE AST. All values associated with these secure nodes are

1 import polyglot 18 def trainModel(numIterations):

2 m=20.0 19 X = readXData(N)

3 ¢c=0.90 20 Y = readYData(N)

4 L = 0.0001 21 for i in range(numIterations):

5 N = 10000 22 Y_pred =m * X + ¢

6 numlter = 100 23 D_m = (-2/N) * arraySum(X * (Y-Y_pred))

7 def reaqXData.(n): ;1 zi " E E/T)DimarraySum(Y Y-pred)
logic (omitted) 2% c=c-L*Dc

9 return xData
27 trainModel(numIter)

10 def readYData(n): 28

11 # logic (omitted)
12 return yData

13 def arraySum(A):

14 SumA = @

15 for a in A:
16 SUmA += a
17 return sumA

Listing 2. Illustrative example: simple linear regression
program written in Python.

var y = Polyglot.eval("secV", "sInt(4)"); Polyglot program
JS)

// othen instauctions: 0 (host =

TruffledS

sInt(L)

AST
| Secure node generator | generators

\
\
A

T 17
x s
© (=) " Tuffle AST
vV 4
0 O,

Instrumentation APl } |) shared runtime:
Graal I Interpreter I GC I GraalvM
HotSpot

Language-agnostic
representation

Truffle framework

Figure 4. The TRUFFLE framework can be leveraged to
provide an AST generator that produces secure nodes
which can be injected in any TRUFFLE AST via the polyglot
APL

referred to as secure values and they will represent sensitive
information which must be kept inside the enclave. To make
this possible, we leverage the TRUFFLE framework to build
a secure node generator which injects secure nodes into any
TRUFFLE AST via the polyglot API. This secure node gen-
erator is implemented like a regular TRUFFLE language but
provides primarily special AST nodes which comprise se-
cure information. Our preliminary prototype provides secure
node types: sInt, sDouble, sBoolean, and sArray to contain
secure int values, secure double values, secure boolean val-
ues, and secure array object values respectively. For example,
Listing 3 shows how a JavaScript program can inject a secure
integer value into its AST.

1 var myInt = 2;

2 var secInt = Polyglot.eval("secV", "sInt(4)");

3 myInt = secInt + 2;
4 console.log(myInt); // prints 6

Listing 3. Injecting a secure integer node with value 4
into a JavaScript program via the polyglot API.

Going back to our illustrative example, since our goal is to
secure our ML model (represented by m and c), we can specify
m and c as secure values using the TRUFFLE polyglot API for
Python. To do this, we change the variable assignments for
m and c to the code shown in Listing 4 (lines 2 and 3).

2m
3cC

Listing 4. Specifying m and c as secure values using SECV.

polyglot.eval(language="secV", string="sDouble(0.0)")
polyglot.eval(language="secV", string="sDouble(0.0)")

Atrun time, the TRUFFLE AST corresponding to the Python
program will have SecV nodes associated with m and ¢ once
the polyglot.eval call is executed. SECV then analyses the
program’s AST to determine which portions of the program
access the secure values m and c.

Support for other secure node types. Implementing more
secure types, e.g., lists, maps, etc. in SECV is straightforward.
It involves: defining a new TRUFFLE node for the type, imple-
menting its internal representation, defining type operations
and conversions, and integrating the new type node into
SeEcV’s language grammar. To simplify the development of
complex types, TRUFFLE’s design allows the use of existing
Java types, e.g., arrays, sets, etc. as building blocks when
defining the new node.

4.2 Taint tracking

SECV includes PoLYTAINT, a TRUFFLE code instrumentation
tool that supports applications written in any TRUFFLE lan-
guage. POLYTAINT is designed as a taint tracking tool. It
monitors the creation of secure nodes in a polyglot applica-
tion and marks a node that uses a value from a secure node
(i.e., secure value) as secure itself.

Assumptions. Our preliminary implementation of SEcV
assumes a procedural program structure where the application
to be partitioned is organized as a group of n functions: fi, f3,
.+ fn. Most programming languages support this paradigm.
The goal of SECV is thus to determine the set of program
functions to be put inside the enclave, and those to be kept
out of the enclave, and partition the program into two parts
based on this information. We assume that the inputs used
in dynamic analysis are sufficiently exhaustive to cover all
legitimate production configurations; this mitigates leakage
of sensitive data at runtime due to incomplete code coverage
during analysis.

4.2.1 Taint propagation. In the context of our work, taint
propagation defines how secure values flow from the secure
nodes into subsequent parts of the program. POLYTAINT per-
forms taint propagation via explicit information flow [11].
That is, an untainted variable y becomes tainted if an already
tainted variable x is directly involved in the computation of
y’s value. In other words, there is a direct data-flow depen-
dency between x and y. For example, the statement y=x+2
marks y as tainted if x is tainted, as shown in Fig. 5. Pory-
TaINT extends this idea to functions by marking them as
tainted if tainted variables are manipulated in their bodies.

y becomes tainted due to
data-flow dependency with
@ secure value X @

Secure
value x

Figure 5. Taint propagation due to explicit data-flow de-
pendencies with secure values.

PoryTAINT implements taint propagation via AST instru-
mentation. This is done by wrapping variable reads/writes,
function calls (see §4.3), etc. and testing for nodes that ac-
cess secure values. For example, in our illustrative example
(Listing 4), the variable assignments at lines 2 and 3 will be
wrapped and evaluated by POLYTAINT to obtain the corre-
sponding variables (i.e., m and c) that receive secure values
(foreign objects in TRUFFLE terminology) from secure nodes.
We refer to such variables as taint sources.

Program function classification. The primary goal of taint
propagation in PoLYTAINT is to determine which program
functions access secure values (directly or indirectly from
the taint sources) at run time, and which functions do not.
As such, PoLYTAINT classifies functions into three categories:
trusted, untrusted and neutral.

Trusted functions. These are functions that manipulate se-
cure variables explicitly within their bodies i.e., instantiate
secure variables (i.e., taint sources) or modify the values of
secure variables. We define a secure variable as a program
variable which explicitly receives its value from a SECV node
via the polyglot API (e.g., m and c in Listing 4) or a program
variable which gets tainted following PoLYTAINT’s taint prop-
agation rules. As such, function trainModel in Listing 2 will
be tagged as a trusted function by virtue of the variable write:
Y_pred=m=x X +c which uses secure variables m and c inside
trainModel’s body.

Trusted functions are included fully inside the trusted/en-
clave part of the partitioned application. These functions
have proxy functions in the untrusted part. We define the
proxy function of a program function f as a function which
has the same signature as f but whose body is stripped and re-
placed with an enclave transition (i.e., ecall or ocall) which
transfers execution control to f. Following this logic, the
proxies of trusted functions perform ecall transitions. The
primary rationale for this design choice is security: that is,
secure variables that contain sensitive information cannot
be accessed in the untrusted side.

Neutral functions. These are functions which access secure
variables only through their input parameters and do not
explicitly access already tainted (i.e., not considering the
tainted inputs) secure variables within their bodies. In other
words, a neutral function does not access a tainted value
when none of its arguments is tainted, and may access tainted
values if at least one of its arguments is tainted. In Listing 2

for example, arraySum is considered a neutral function by
virtue of the tainted inputs Y-Y_pred and X (Y -Y_pred).
Moreover, untrusted code could also perform array sums
without sensitive inputs.

Neutral functions are included fully in both the trusted
and untrusted partitions; there are no proxy functions in-
volved. The rationale behind this design choice is twofold:
the approach allows for good security and performance. That
is, enclave code can access the functionality of the neutral
function without leaking sensitive information, via input
parameters, to the outside (security), and the code out of
the enclave does not need to perform an expensive ecall
transition to access the functionality of the neutral function
(performance). Utility functions such as those that calculate
generic sums, products, etc. are examples of neutral func-
tions.

Untrusted functions. These are functions which do not have
any access to secure variables during the lifetime of the pro-
gram. Untrusted functions are included fully only in the un-
trusted partition. However, they have proxies in the trusted
side which perform ocall transitions to access the function-
ality in the untrusted side of the partitioned application. The
rationale for this design choice is TCB size reduction, and
thus security, i.e., code which is not sensitive need not be in
the enclave following the principle of least privilege [51].

4.3 AST instrumentation

To identify the trusted (T), neutral (N) and untrusted (U)
functions, PoLYTAINT uses a dynamic analysis technique. It
executes the program once during the development phase.
During this execution, it identifies the secure values, and then
deduces the state of the functions, i.e., trusted, untrusted, and
neutral. During the in-vitro execution, POLYTAINT performs
taint propagation by leveraging the TRUFFLE instrumenta-
tion framework, which makes it possible to intercept the
execution of AST nodes. To instrument the TRUFFLE AST,
PoLYTAINT intercepts the executions of these node types:
variable read/write, object field read/write, array element read-
/write and function call nodes (see §2.2). POLYTAINT provides
an event node class for each of the node types to be wrapped,
as well as a base event node class PolyTaintNode which all
the event node classes inherit from. PolyTaintNode imple-
ments common functionality which is used by the event
node classes.

PorYTAINT maintains a map data structure called the taint
map which tracks program symbols (e.g., variables, functions,
etc.) that access secure values. A unique string identifier is
associated to each program symbol such as e.g., a variable or
function. The taint map associates string identifiers to taint
labels. We have 3 taint labels: 1 for tainted/trusted nodes, 2 for
neutral nodes, and 0 for untrusted nodes (i.e., representing
untrusted functions).

Algorithm 1 — Pseudo-code to check for tainted nodes in
AST
1: procedure TRAVERSEAST(node)
2 if ISTAINTED(node) then
3 return true
4 end if
5: for Node child in node. GETCHILDREN() do
6
7
8
9

if TRAVERSEAST(child) then
return true
end if
end for
10: return false
11: end procedure

12: procedure ISTAINTED(node)

13: String id < GETIDENTIFIER(node)

14: if taintMap.CoNTAINS(id) then

15: return taintMap.GET(id) = 1

16: else

17: boolean polygotEvalTest < node is polyglot.EVAL call

18: boolean secVLiteralTest «— node has "secV" literal node
as input

19: return polyglotEvalTest A secVLiteralTest

20: end if

21: end procedure

During instrumentation, POLYTAINT leverages the
onReturnValue callback of event nodes to test for tainted
program symbols in a node’s AST. This is done by recursively
traversing the node’s child nodes and checking if the child
nodes are associated with tainted symbols. As illustrated in
Algorithm 1, POLYTAINT considers that a child node is tainted
if (i) the child node corresponds to a call to the polyglot API
with the SecV language identifier (i.e., "secV") or (ii) the child
node is a value that was tainted before. In the remainder
of this section, we outline how PoLYTAINT performs taint
tracking for the different intercepted nodes.

Variable write: This is a statement that assigns a value to a
program variable. For example the JS statement:

var x=y +Polyglot.eval("secV", "sInt(4)") inside a func-
tion’s scope is considered a local variable assignment. Simi-
larly, in our illustrative example, statements like
m=polyglot.eval (language="secV", string="sDouble(0.0)"),
c=polyglot.eval(language="secV", string="sDouble(0.0)"),
and

Y_pred=mx X + ¢ are variable assignments.

The TRUFFLE instrumentation API provides a generic stan-
dard tag operation StandardTags.WriteVariableTag [41] to
identify nodes corresponding to variable write statements
in all TRUFFLE languages. At run time, POLYTAINT wraps
every variable write node and creates a corresponding vari-
able write event node. The TRUFFLE API makes it possible
to obtain a node object descriptor [37] which provides the
unique name of the program variable being written to, as
well as the corresponding AST node. In the onReturnvalue

callback of the variable write event node, POLYTAINT lever-
ages node object descriptors to obtain the exact names of the
target program variables being written to. For example, for
the 3 aforementioned variable write statements, the variable
names are respectively m, c and Y_pred.

PorYTAINT uses the variable names to construct the unique
String identifiers for these variables. Still in the onReturnValue
callback, PoLYTAINT checks the taint map for the presence
of m, ¢ and Y_pred. If they are present, the onReturnvalue
callback returns. Otherwise, POLYTAINT leverages the TRUF-
FLE API to obtain the right-hand side (rhs) expression node
associated with the variable write statements. Algorithm 1
traverses the child nodes of the rhs expressions to check for
the presence of any tainted nodes.

As explained previously, the presence of child nodes cor-
responding to the polyglot.eval call as well as the "secV"
string literal as one of its input arguments tests positive for
a taint source. This will mark variables m and c as tainted in
the taint map, i.e., taint labels of 1 for their identifiers. Simi-
larly, Y_pred will be marked as tainted due to the presence
of tainted variables m and c in the rhs expression involved
in the assignment of Y_pred. If a tainted variable is written
in a function, this function is also tagged as tainted in the
taint map. For example, the variable write node correspond-
ing to the statement Y_pred=mx X + ¢ is tainted as a result of
the presence of tainted variables m and c in the statement,
therefore the enclosing function trainModel is marked as
tainted in the taint map. POLYTAINT calls getName on the root
node object [45] to obtain the unique name of the enclosing
function/method for any instrumented node.

Variable read: This is a statement that reads the value of a
program variable. Variable read operations could occur in an
if/else statement, a for loop, a function call via parameters,
etc. The TRUFFLE instrumentation API provides a generic
standard tag

StandardTags.ReadVariableTag [41] to identify nodes that
correspond to variable read statements in all TRUFFLE lan-
guages.

At run time, POLYTAINT wraps every variable read node
and creates a corresponding variable read event node. The
event node’s onReturnValue callback is used to obtain the
unique name of the variable being read from the node object
descriptor, and the taint map is checked for the presence
of the variable’s identifier. If a tainted variable is read in
a function (e.g., while(i <tainted_variable)), this function
is also tagged as tainted in the taint map. If a tainted func-
tion argument is read (e.g., reading the value of Y_pred in
arraysum(Y - Y_pred) on line 24), the function node is tracked
as a neutral function in the taint map (i.e., taint label = 2) if it
has not been tagged as tainted. In other words, a taint label
of 1 for tainted/secure function is preferred for the function
node over a taint value of 2 for neutral. As such, arraySum is
tagged as a neutral function in the taint map .

Object field write: This operation assigns a value to an ob-
ject’s field or property. At the time of this writing, the TRUF-
FLE API does not provide standard tags to identify generic
object field write nodes but TRUFFLE languages typically
provide language-specific tags to identify such nodes. For
example, TRUFFLE-]S provides the WritePropertyTag [36] to
identify object property writes. In some languages like JS, the
global scope is an object and global variables are properties
of this object. As such, global variable writes in JS are in-
strumented via the WritePropertyTag. Object field writes are
instrumented with object field write event nodes in a similar
fashion to variable writes.

Object field read: This operation reads an object’s field or
property. Similarly to object field writes, since there are no
generic standard tags yet in the TRUFFLE API to identify
object field read nodes, TRUFFLE languages typically provide
language-specific tags like ReadPropertyTag [36] in TRUFFLE-
JS to identify an object field read node. Object field reads are
instrumented with object field read event nodes in a similar
fashion to variable reads.

Array element write (resp. read): This is an operation
that writes (resp. reads) a value to an array object,
e.g.,array[0]=4 (resp. if (array[31<0)). Array element writes
(resp. reads) are instrumented in a similar fashion to object
field writes (resp. reads), with array element write (resp. read)
event nodes.

Function call: This is an expression that passes control (and
possible arguments) to a function or method in a program.
The TRUFFLE instrumentation API provides a generic stan-
dard tag

StandardTags.CallTag [41] to identify language nodes that
correspond to guest language functions and methods in all
TRUFFLE languages. At run time, POLYTAINT wraps every
function call node and creates a corresponding call event
node. The call event node’s onReturnvalue callback is used
to test first for tainted arguments.

TRUFFLE languages usually provide methods to obtain ar-
gument nodes during instrumentation, e.g., getArgumentNodes
provided by TRUFFLE-JS (JSFunctionCallNode [35]) and TRUF-
FLE-Python
(PythonCallNode [40]). If an argument node for a function
corresponds to a tainted symbol, e.g., a tainted variable, this
function is tagged as neutral in the taint map if it has not been
tagged as tainted. For example, arraySum is tagged as neutral
by virtue of the presence of the tainted variable Y_pred in
the argument expression.

PoLYTAINT maintains a list (seen list) that comprises all
functions/methods that have been visited during execution
at run time. Every function/method in the list is identi-
fied as a PolyTaintFunction object, which is an instance of
PolyTaintFunction class. This class defines attributes repre-
senting the actual function node (i.e., Node object), a list rep-
resenting the different argument types passed to the function

(e.g., int for trainModel, Object for arraySum, etc.), a String
representing the return type (e.g., double for arraySum, void
for trainModel, etc.) of the function, and an integer value
representing the function’s taint label. The onReturnvalue
callback of every event node contains a VirtualFrame [34] pa-
rameter comprising the actual argument values passed to the
instrumented node, e.g., a function call node, and an Object
parameter representing the actual result received after the
node is executed. POLYTAINT leverages these two parameters
to obtain the corresponding argument types passed (if they
exist) to every function call node and return types, respec-
tively. The input and return types are used later on during
program partitioning (§4.4).

At the end of program instrumentation with PoLyTaInT,
all application functions which have been executed at run
time (in the seen list), but have not been tagged as trust-
ed/tainted or neutral in the taint map are considered un-
trusted functions. As such, for our illustrative example, after
instrumentation, we should have set T: trainModel, set N:
arraySum, and set U: readXData and readYData. This informa-
tion is then passed to the program partitioner which builds
two programs representing the trusted and untrusted parti-
tions of the instrumented program.

4.4 Program partitioning

The aim of the partitioning stage is to separate the original
program into two parts: a trusted part which executes inside
the enclave and comprises functions T U N, and an untrusted
part which executes outside the enclave and comprises UUN.
By removing the U functions from the enclave, we reduce the
size of the TCB. Furthermore, eliminating U functions also
eliminates any functions of the language runtime’s system
libraries invoked by U, which are often very large (as stated
in the introduction).

In order to interpret the ASTs of the N and T functions
inside the enclave at runtime, we have to also embed the
corresponding TRUFFLE language interpreter in the enclave.
However, TRUFFLE is written in Java, which means that we
need a Java runtime inside the enclave to execute the TRUF-
FLE interpreter. Since embedding a full JVM with its system
library inside the enclave would increase the size and the
attack surface of the TCB to an unacceptable degree, we
choose to base the design of our partitioning tool on native
images (§2.2). GRAALVM’s Native Image technology makes
it possible to include only reachable program elements (i.e.,
methods, classes, and objects) into the resulting native image,
making it suitable for restricted environments like Intel SGX
enclaves. Any unused classes in the TRUFFLE interpreters
or GRAALVM’s runtime components (e.g., garbage collector)
are pruned out of the native images. The remainder of this
section describes our partitioning approach.

4.4.1 Generated functions. GRAALVM AoT only supports
compiling Java applications to create native images (i.e., no

JS, Python, etc.), therefore, we need to find a way to run

the partitioned guest application code (e.g., JS, Python, etc.)

via native images. To achieve this, the partitioner leverages
TRUFFLE’s polyglot API to embed the guest code inside two
Java programs: Trusted. java for the trusted partition and

Untrusted. java for the untrusted partition. This is done by
creating static Java methods that correspond to each of the
methods seen during taint analysis (i.e., T, N, and U). These
static methods simply execute the corresponding ASTs of
the guest functions they represent.

For instance, Listing 5 illustrates how the AST of a JS func-

tion multi can be executed from within a Java application,
and how a Java method hello can be executed from within
a JS program.

1 import org.graalvm.polyglot.x;
2 public class Example {

3

public static void main(String[] args) {

4 Context ctx = Context.newBuilder().allowAllAccess(true).build();
5 Value jsMulti = ctx.eval("js", "(function multi(a, b){return a*b;})");
6 Value res = jsMulti.execute(6, 7);
7 System.out.println(res); // prints 42 in Java scope
8 Value jaHello =
9 ctx.asValue(Polyglot.class).getMember("static").getMember("hello");
10 String jsStringFunc = "function jsHello(jaHello){jaHello();}jsHello;"
11 Value jsFunction = ctx.eval("js", jsStringFunc);
12 jsFunction.execute(jaHello); // prints "Hello Java" in js scope
13 3}
14 public static void hello() {
15 System.out.println("Hello Java");
16 3
17 }
Listing 5. Java host and guest]S interaction via polyglot
APL

Using the same idea outlined in Listing 5, Trusted. java

therefore comprises static Java methods for
trainModel, arraySum, readXData and readYData. The static

Java methods for trainModel and arraySum execute the cor-

responding AST code, i.e., the actual guest source code for
those functions, while the static Java methods for readXData
and readYData (proxy methods) perform ocall transitions
to execute the real methods in the untrusted partition (see

below). The actual source code of a function is obtained via

the getSourceSection method [45] of the TRUFFLE Node class.

This is illustrated by Listing 6.

1 public class Trusted {

2 Context ctx = Context.newBuilder().allowAllAccess(true).build();
3 public static void trainModel(int iter){

4 Value arraySumVal = ctx.asValue(Trusted.class).

5 getMember ("static").getMember("arraySum");

6 ctx.eval("python", "//trainModel code").

7 execute(iter, arraySumval, ...);

8 3

9 public static double arraySum(Object array){

10 double ret = ctx.eval("python", "// arraySum code here").
11 execute(array) .asDouble();

12 return ret;

13 3

14 public static Object readXData(int n){

15 ocall_readXData(n);

16}

17 ...

18 }

Listing 6. Trusted.java after partitioning

Similarly, Untrusted. java comprises static Java methods
for trainModel, arraySum, readXData and readYData. The static
Java methods for readXData, readYData and arraySum execute
the corresponding AST code for those functions while the
static Java method for trainModel performs an ecall transi-
tion to execute the method in the trusted partition. Listing 7
exemplifies this.

1 public class Untrusted {

2 Context ctx = Context.newBuilder().allowAllAccess(true).build();
3 public static Object readXData(int n) {

4 return ctx.eval("python","// readXData code here").execute(n);
5)

6 public static void trainModel(int n) {

7 ecall_trainModel(n);

8 3

9 ...

10 }

Listing 7. Untrusted.java after partitioning

4.4.2 Transition between the partitions. With our pro-
gram partitioned, we must allow communication between
the two partitions. That is, how does a Java method in
Trusted. java (i.e, the trusted partition) invoke another Java
method in Untrusted. java (i.e., the untrusted partition)?

To achieve this, we leverage GRAALVM C entry points
[28, 66]. These are special Java methods in a native image
program which are callable from a regular C/C++ program
or another native image. As such, C entry point methods can
act as relays between the trusted and untrusted partitions.
That is, a proxy function in partition-x can invoke the corre-
sponding real static method (m) in the opposite partition-y if
there is a C entry point method for m in partition-y.

For the trusted partition (i.e., Trusted. java), the program
partitioner generates C entry point methods correspond-
ing to all the trusted functions. These entry point methods
are the target of ecalls from the untrusted code calling a
trusted function in the final SGX application. Similarly, for
the untrusted partition (i.e., Untrusted. java), C entry point
methods are generated for the untrusted functions. These
entry point methods are the target of ocalls from the trusted
partition calling an untrusted function.

4.4.3 Serialisation. Because objects cannot be sent across
an enclave boundary [12, 66], any static methods that have
non-primitive input or return types (e.g., arrays, strings, etc.)
to be transferred across the enclave serialise the input or
return values into a byte array. The byte array is then mar-
shalled across the enclave boundary in the corresponding
ecall or ocall, and deserialised on the opposite side into
a Java Object. Serialisation and deserialisation are done us-
ing Java’s ObjectOutputStream and ObjectInputStream [38]
classes, respectively.

4.4.4 Execution of a function. Thanks to native image,
the trusted and the untrusted partitions execute the (binary)
compiled version of the corresponding TRUFFLE guest lan-
guage interpreter at runtime. At runtime, the guest language

interpreter parses the string that represents the guest code,
builds the AST, and executes it. When the AST of a function
f contains a call to another function g, the symbol table of
the interpreter may not contain the symbol g. In that case,
the TRUFFLE API leverages Java reflection to find a static
Java method that corresponds to the symbol g and executes
it. As an example, in Listing 5, Java reflection is used to ex-
pose the Java function javaHello (or the JS function multi)
to TRUFFLE interpreter when executing jsHello.

4.5 Building native images and the SGX program

The aim of ImageGenerator is to AoT compile Trusted. java
and Untrusted. java into relocatable object files (trusted.o
and untrusted. o respectively). When building a native im-
age, GRAALVM makes it possible to provide which guest
language implementations (i.e., the TRUFFLE interpreters)
should be made available in the resulting native image. In
the case of SecV, all guest languages involved in the parti-
tioned program are provided as inputs to the native image
generator. This tool performs static analysis (see §2.2) [60]
to determine the reachable Java elements, i.e., the classes,
methods, and objects from the Java program that is being
compiled and the TRUFFLE language implementations that
are required to run the corresponding Java programs. These
reachable components are then AoT compiled into native
images: trusted.o and untrusted.o.

It is worth noting that the native image builder does not
AoT compile guest language code (e.g.,JS, Python, etc.) that is
embedded in the Java programs. Indeed, the guest language
code will be interpreted or JIT compiled by GRAALVM at
run time. The ecall and ocall definitions are compiled into
object files and linked with trusted.o and untrusted.o, as
well as SGX C/C++ library code, to create the final Intel
SGX application. A small shim library is included inside the
enclave which seamlessly relays unsupported system calls
(e.g., read, write, etc.) to the untrusted runtime via ocalls,
which perform the real system calls and return the results
back to the enclave.

5 Evaluation

The experimental evaluation of SECV seeks to answer the

following research questions:

RQ1: What is the implementation effort for a multi-
language tool (i.e., SECV) as compared to language-
specific tools? (§5.1.1)

RQ2: What is the cost of injecting SECV nodes into a pro-
gram AST? (§5.1.2)

RQ3: What is the cost of taint tracking with PoLyTAINT?
(§5.1.3)

RQ4: How does partitioning affect application perfor-
mance? (§5.1.4)

Partitioning tool Supported languages Frameworks used + LoC Tool’s LoC

Civet Java SOOT + Phosphor (~ 421K LoC) 6,870
Montsalvat Java Javassist (= 38K LoC) 3,500
Glamdring C Frama-C + Program slicer (= 90K LoC) 5,000

SECV JS, Python, R, etc. Truffle (= 276K LoC) 4,880

Table 1. Total lines of code for existing partitioning tools
and their underlying frameworks.

(a) JavaScript
sint -e- sDouble -B-

(b) Python
Int -v- Double -4

6 — T

Avg. runtime(s)

o
3

o - N w A~ O

0 P R R S N
1k 2k 3k 4k 5k 6k 7k 8k 9k 10k
Num. of variable definitions

P S S R SR R
1k 2k 3k 4k 5k 6k 7k 8k 9k 10k
Num. of variable definitions

Figure 6. Cost of using secure values in JS and Python
programs.

5.1 Experimental setup

Our evaluation is conducted on a server equipped with a
quad-core Intel Xeon E3-1270 CPU clocked at 3.80 GHz, and
64 GB of DRAM. The processor has 32 KB L1 instruction and
data caches, a 256 KB L2 cache, and a 8 MB L3 cache. The
server runs Ubuntu 18.04.1 LTS 64 bit and Linux 4.15.0-142.
We run the Intel SGX platform software with version 2.16
of the SDK and and version 2.14 of the driver. The EPC
size on this server is 128 MB, of which 93.5 MB is usable by
enclaves. The enclaves have maximum heap sizes of 8 GB
and stack sizes of 8 MB. All native images are built with
a maximum heap size of 4 GB. We use GRAALVM version
22.1.0. All reported measurements are averaged over 5 runs.

5.1.1 Implementation efforts (RQ1). What is the imple-
mentation effort for a multi-language tool as compared to
language-specific tools? Table 1 reports the total lines of
code (LoC) of various enclave code partitioning tools, as well
as the LoC for the underlying frameworks used by these tools.
We observe that SECV’s code base is ~# 1.41X and ~ 1.02X
smaller as compared to the full code bases of Civet and Glam-
dring, respectively. We argue that the SECV approach is better
in terms of code simplicity (leverages a single self-contained
framework) and efficiency (achieves the desired functional-
ity with fewer lines of code). Furthermore, SECV provides a
single extensible multi-language system in relatively fewer
LoC, contrary to the other tools which are language specific.

5.1.2 Overhead of SecV nodes (RQ2). What is the cost
of injecting SECV nodes into a program’s AST?

The goal of this experiment is to measure the overhead
caused by the use of secure nodes in a polyglot program.
In this regard, we generate synthetic programs in JS and
Python that comprise functions with varying numbers of
variables that receive secure values (e.g., secure int, double

10

Avg. runtime(s)

n
a

n
o

o

o

o

(a) JavaScript

no-taint-tracking -e-

with—

(b) Python
taint-tracking -8

25

20

I-2de
P

20

PR S R R
30 40 50 60 70 80 90 100
Num. of functions

0 P S S R R
10 20 30 40 50 60 70 80

Num. of functions

L
90

Figure 7. Cost of taint tracking with PorLyTaINT for]S
and Python.

values) via the polyglot API. We compare the run time of
the functions with a similar setup where the functions de-
fine regular values, i.e., no injection of SECV nodes via the
polyglot APL Fig. 6 shows the results obtained for different
value types used.

Observation. For JS programs, using sInt variables is ~ 1.05X
slower on average as compared to using regular integer vari-
ables without the polyglot API. Moreover, using sDouble
variables is = 1.04X slower on average as compared to using
regular double type variables without the polyglot API For
Python programs, using sInt variables is = 1.14X slower
on average as compared to using regular int type variables
without the polyglot APL Furthermore, using sDouble vari-
ables in Python is & 1.11X slower on average as compared
to using regular double type variables.

Discussion. For both JS and Python, using SECV nodes in-
volves calls to the TRUFFLE polyglot API, as opposed to
defining regular program variables for which there is no
intermediate API involved. This explains the additional cost
when introducing secure values in the program. In practice,
programs will typically define few secure variables leading
to a small overhead relative to the total runtime cost of the
full program

Take-away 1: The cost of injecting secure nodes into a pro-
gram’s AST is small.

5.1.3 Overhead of taint tracking (RQ3). What is the
cost of taint tracking with POLYTAINT?

In this experiment, we aim to measure the performance
of taint tracking with PoLYTAINT. To that end, we generate
synthetic polyglot programs in JS and Python. The synthetic
programs consist of a varying number of functions that all
perform a bubble sort on a SEcV array of 1,000 randomly
generated numbers. We chose a bubble sort algorithm here
because it performs many variable read/write operations,
which trigger the creation of taint tracking instrumentation
nodes in POLYTAINT. The programs run on GRAALVM using
their corresponding TRUFFLE interpreters, with or without
PoLYTAINT taint tracking enabled. Fig. 7 shows the compara-
tive performance of both setups.

(a) Avg. runtime

% Untrusted functions

P S R
10 20 30 40 50 60 70 80 90 100

(b) Avg. number of ocalls

1 1 1 1 1 1 1 1 %
10 20 30 40 50 60 70 80 90 100

runtime -e- num-ocalls -E+
1 T T T T T 600 ——T—T——T—T—T—
‘~
_ 08 euig ” 500 :
3 e T a00| Prm
2 oo . g
15 e, E 300 po
2 04 * = Y
< 2 200 5
B,
< 02 100 %
0 0

% Untrusted functions

Figure 8. Effect of program partitioning on a generic syn-
thetic program.

Observation. The experimental results show that the JS pro-
gram running with PoLYTAINT taint tracking enabled is
~ 1.56X slower when compared to the JS program running
without taint tracking enabled. Similarly, for the Python pro-
gram running with PoLyTAINT taint tracking enabled, it is
~ 1.31x slower on average when compared to the variant
without taint tracking enabled.

Discussion. For both JS and Python programs, POLYTAINT
introduces more nodes (i.e., wrappers and execution event
nodes) to their ASTs during instrumentation. As seen in §4.3,
those nodes perform operations to track tainted variables,
which explains the performance decrease (i.e., longer run-
time) when taint tracking is enabled, as compared to the
variants where the programs run without any taint tracking.

Take-away 2: Taint tracking via AST instrumentation in-
troduces overhead at run time. This overhead is due to the
additional operations performed by instrumentation nodes
introduced in the program’s AST.

5.1.4 Effect of partitioning on performance (RQ4).
How does partitioning affect application performance?

To study the performance impact of partitioning on ap-
plication performance with SEcV, we first use a synthetic
polyglot benchmark written in JS. We then partition two real-
world applications that implement the PageRank algorithm
[2] and the linear regression ML algorithm [64].

Synthetic benchmark. Our synthetic benchmark is a JS
program that comprises 100 functions that each perform a
bubble sort on a local array variable of size 100. We leverage
secure values (secure array or regular array) in a varying
percentage of the functions, analyse the polyglot programs
with PoLYTAINT and partition these programs for enclaves.
The purpose of our synthetic benchmark is to highlight the
effect of partitioning on a generic program. Fig. 8 shows the
results.

We observe that as more functions are partitioned out
of the enclave, the overall performance of the program im-
proves. This is explained firstly by the reduced number of
libc-related ocalls performed by the embedded GRAALVM
runtime components (language interpreters, GC, etc.), and

11

(a) PageRank run time for varying graph sizes

(b) Model training time: 100 iterations

= native = part = no-part
18 T T T T 4 T T T T
16 - 35
14 3
= 12 225
g E 2f
g 8 E 15
g 6 g
4 r
2 05
0 0
1k 2k 3k 4k 5k 10k 15k 20k
Num. of vertices Dataset size

Figure 9. Results for partitioning the PageRank and Linear
Regression programs.

secondly by the fact that we have less overhead due to en-
clave data encryption-decryption operations to and from the
EPC by the MEE [66].

Take-away 3 : Enclave performance improves as more com-
putations are delegated to the untrusted side. This is due to
less expensive enclave context switches, e.g., via ocalls, as well
as less expensive enclave-related cryptographic operations.

We have observed the effect of partitioning on a generic
synthetic program. We now leverage SECV to partition real-
world applications. For these applications, we evaluate 3
modes for running the programs: entirely inside the enclave
(no-part), as a normal polyglot native image without SGX
(native), and as a partitioned native image using SECV (part).
The partitioning scheme adopted for each application is not
necessarily realistic, but aims to highlight and explain the
performance improvement obtained after partitioning.

PageRank. PageRank [2] is a popular algorithm that is used
in graph processing frameworks [22] to weigh the relative
importance of nodes (i.e., node ranks) in a directed graph.
One could envision a scenario where the node ranks are
to be secured within an enclave. We leverage SECV to par-
tition a PageRank program with the node rank data struc-
ture (a secure array) tagged as a secure variable. The PageR-
ank program comprises a function to generate a directed
graph and obtain the corresponding adjacency list (graph
pre-processing), and other functions which use the adjacency
list to perform the PageRank algorithm. The graphs are gen-
erated using the RMAT algorithm [8], and all graphs with
n vertices have 2 - n edges. Fig. 9 (a) shows the results ob-
tained when running partitioned and unpartitioned versions
of PageRank with varying graph sizes.

Observation. The partitioned version of the PageRank pro-
gram is ~ 1.12x faster on average (i.e., about 10.8% per-
formance improvement) as compared to the unpartitioned
version. Furthermore, we have on average ~ 2.53X fewer
ocalls in the partitioned program as compared to the unpar-
titioned one. The native version of the program (i.e., no SGX)
is ~ 6.85% and 6.17x faster on average as compared to the
unpartitioned and partitioned versions, respectively.

Discussion. After partitioning the program, the functions
responsible for graph generation and pre-processing are
moved to the untrusted partition, while those that perform
the PageRank algorithm to obtain node ranks remain in the
trusted partition. At runtime, the pre-processed graph (in
the form of an adjacency list) is serialised in the untrusted
partition and marshalled into the enclave (see §4.4.3) via an
ocall. It is then deserialised to recreate the adjacency list
object which is used by the in-enclave PageRank algorithm
to compute the final page ranks. The computations outside
the enclave runtime do not incur expensive context switches
via ocalls, or SGX-related cryptographic operations. That ex-
plains the performance improvement as well as the reduced
number of ocalls in the partitioned version as compared to
running the full program inside the enclave. This also ex-
plains why the native application is fastest: no SGX-related
cryptographic operations, no enclave context switches, and
less memory restrictions (the enclave has only about 93MB
of memory). However, it is the least secure of all.

Linear regression. Securing ML models with TEEs is com-
mon [25, 65]. We aim to partition a linear regression pro-
gram for an enclave runtime. Similar to PageRank, a linear
regression program typically consists of functions to read
and pre-process (i.e., normalisation and standardisation) the
input datasets to be used, and other functions which use the
dataset to train the ML model. We leverage SECV to spec-
ify secure variables (i.e., m and c in Listing 2), analyse and
partition the linear regression program. Fig. 9 (b) shows the
results when the linear regression model is trained for 100
training iterations for partitioned and unpartitioned versions
of the program.

Observation. The partitioned version of the linear regression
program is & 1.17x faster on average (i.e., about 14.5% per-
formance improvement) as compared to the unpartitioned
version. Moreover, we have on average = 1.36X fewer ocalls
in the partitioned program when compared to the unparti-
tioned one. The native version of the program is ~ 4.73X and
4.04X faster on average when compared to the unpartitioned
and partitioned versions, respectively.

Discussion. After program partitioning, the functions for data
generation and pre-processing (which do not access m and c)
are partitioned out of the enclave, while the trusted functions
that train the model (and hence access the secure values m
and c) are part of the enclave partition. At runtime, dataset
pre-processing is done in the untrusted partition; this entails
standardising both the X and Y datasets. The standardised
datasets (arrays) are then serialised and marshalled into the
enclave runtime via ocalls, deserialised inside the enclave,
and used to train the linear regression model. By offloading
the data generation and pre-processing phases to the un-
trusted runtime, the enclave is relieved of expensive compu-
tations, which leads to an overall improvement in application
performance when compared to running the full program

12

inside the enclave. Similar to PageRank, partitioning intro-
duces overhead for data serialisation and deserialisation, but
this overhead is offset by the performance gain from perform-
ing some computations outside (i.e., no expensive ocalls),
rather than inside the enclave.

Take-away4: The TCB size of programs can be decreased
without degrading performance. As a matter of fact, the pe-
formance analysis of both PageRank and linear regression
shows that decreasing the TCB size via partitioning can lead
to better performance: security and performance are improved
at the same time.

6 Limitations of our design

Limited code coverage. The present design of SECV is based
on a purely dynamic program analysis approach, where pro-
grams are run once during the development phase to deduce
the set of trusted (T), neutral (N), and untrusted (U) func-
tions, which are then used to create the trusted and untrusted
partitions. However, this design provides limited code cov-
erage, potentially leaving security-sensitive code out of the
enclave; limited code coverage is a fundamental limitation
of most dynamic analysis tools [20]. To address this problem,
static analysis can be applied, but it has major drawbacks.
Firstly, it performs an over-approximation of the code to
be tainted (due to polymorphism), which leads to a larger
TCB. Secondly, Truffle ASTs exist only at runtime, making
static analysis infeasible. Ultimately, a mixture of both static
and dynamic taint analysis techniques could be a reasonable
compromise. We leave this as future work.

Application termination. During analysis, different pro-
gram runs (with varying inputs) could result in different
execution paths being taken at runtime. This could in turn
result in different (and possibly conflicting) sets for T, N,
and U. From a security perspective, such a scenario may
lead to secure values being leaked to the untrusted partition
at runtime. In our prototype implementation, we avoid this
problem by checking if a value is secure just before serial-
izing it in in-enclave proxies. Thanks to this check, in the
worst case, the application will terminate with an error, but
will not let a secure value escape the enclave. Running mul-
tiple tests or using symbolic execution could decrease the
probability of terminating the program. Similarly, we leave
this implementation as future work.

7 Leveraging SEcV for other use cases

SECV’s design can be extended to encompass more generic
compartmentalization of applications to not only enhance
security, but also promote modularity and maintainability.
In terms of security, the current design can be extended to
support Intel’s new TEE technology: trust domain extensions
(TDX) [10]. This entails running the trusted and untrusted
partitions in separate VMs, or “trust domains”.

In a context unrelated to security, SECV can also be ex-
tended to partition applications into smaller loosely coupled
microservices that run in dedicated VMs, hence promoting
flexibility and maintainability.

8 Related work

We classify related work into 3 categories: (i) tools that run
full, unmodified applications inside enclaves, (ii) taint track-
ing tools, and (iii) code partitioning tools.

Running full applications inside enclaves. Various
tools like SCONE [4], Graphene-SGX [56], TWINE [24], and
SGX-LKL [49] propose solutions to run entire legacy applica-
tions inside enclaves. Their approach severely increases the
size of the TCB, at the risk of added security vulnerabilities.
SECV provides a generic solution to partition applications for
enclaves while trying to keep the TCB as small as possible.

Taint tracking tools. Several tools exist for taint tracking.
Phosphor [5] is a dynamic taint tracking tool for Java pro-
grams, while Dytan [11] performs taint tracking in x86 bina-
ries. TAJ [55] provides efficient static taint analysis for Java
applications. [54] provide a tool to extract taint specifications
for JavaScript libraries. However, these tools are language-
specific (i.e., only for Java, only for x86 assembly code, JS, etc.)
and cannot be readily leveraged to analyse code in different
languages. SECV bridges this gap with a language-agnostic
taint tracking approach. TruffleTaint [21] leverages the TRUF-
FLE framework to provide a language-agnostic platform to
build dynamic taint analysis applications. While we leverage
very similar instrumentation techniques, we provide a novel
way to specify sensitive values through the introduction of
secure AST nodes, and leverage these to partition code for
the enclave runtime in a language-agnostic fashion.

Language specific partitioning tools. Several tools have
been proposed to partition code written in specific languages
for enclaves. Glamdring [23] provides a technique to auto-
matically partition C applications, while Montsalvat [66],
Civet [57], and Uranus [18] propose solutions to partition
Java applications for Intel SGX enclaves. Among those parti-
tioning systems, none provide a language-independent way
to partition enclave programs. SECV solves this problem by in-
troducing a multi-language technique to partition programs
for enclaves.

9 Conclusion and Future Work

In this paper, we presented SECV, a multi-language approach
to analyse and partition programs for Intel SGX enclaves.
SECV provides generic secure nodes that encapsulate sensitive
program data, and that can be injected into the ASTs of
programs written in a wide range of programming languages.
SECV provides a dynamic taint tracking tool, POLYTAINT,
which tracks the flow of sensitive data from secure nodes
in a program at run time, and partitions the program into
trusted and untrusted parts which are executed in and out

13

of the secure enclave, respectively. Our evaluation of SEcV
shows it can reduce the program’s TCB size without any
performance degradation.

Future work. We plan to extend SEcV along two directions:

More data types. This entails extending SECV’s secure node
generator to cover more data types and data structures, e.g.,
maps, lists, etc., as described in §4.1.

Support for more languages. POLYTAINT can be extended to
fully cover more TRUFFLE languages like TruffleRuby, FastR,
etc. Regarding LLVM-based languages like C/C++, the Truffle
framework provides an LLVM interpreter, Sulong [42]. This
interpreter can also be extended to run programs in Go, by
leveraging tools like GoOLLVM [1]. Alternatively, Truffle’s We-
bAssembly (Wasm) implementation can be leveraged to pro-
vide a common compilation target for supported languages:
Rust, Go, Kotlin, etc. Adding support for these languages in
SECV mainly involves incorporating wrapper nodes to han-
dle language-specific semantic constructs and AST nodes in
the new language. There is in-depth documentation online
to facilitate these extensions.

Acknowledgments

This work has been supported in part by Oracle donation
CR 3801 and project 200021_178822 of the Swiss National
Science Foundation (FNS). We are grateful to the anonymous
reviewers and our shepherd, Alexios Voulimeneas, for their

valuable feedback.

References

[1] GoLLVM. https://go.googlesource.com/gollvm/, 2023. Accessed: Sept.
19, 2023.

[2] Alon Altman and Moshe Tennenholtz. Ranking systems: the PageR-
ank axioms. In Proceedings of the 6th ACM conference on Electronic
Commerce (EC 05), Vancouver, BC, Canada, 2005.

[3] Julien Amacher and Valerio Schiavoni. On the performance of ARM

TrustZone. In IFIP International Conference on Distributed Applications

and Interoperable Systems, pages 133-151. Springer, 2019.

Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth, Andre

Martin, Christian Priebe, Joshua Lind, Divya Muthukumaran, Dan

O’Keeffe, Mark L. Stillwell, David Goltzsche, Dave Eyers, Rudiger

Kapitza, Peter Pietzuch, and Christof Fetzer. SCONE: Secure Linux

containers with intel SGX. In 12th USENIX Symposium on Operating

Systems Design and Implementation (OSDI 16), Savannah, GA, USA,

2016.

[5] Jonathan Bell and Gail Kaiser. Dynamic taint tracking for java with

phosphor (demo). In Proceedings of the 2015 International Symposium

on Software Testing and Analysis, ISSTA 2015, page 409-413, New York,

NY, USA, 2015. Association for Computing Machinery.

Daniele Bonetta. GraalVM: metaprogramming inside a polyglot system

(invited talk). In Proceedings of the 3rd ACM SIGPLAN International

Workshop on Meta-Programming Techniques and Reflection (SPLASH

18), Boston, MA, USA, 2018.

[7] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci,
Frank Piessens, Mark Silberstein, Thomas F. Wenisch, Yuval Yarom,
and Raoul Strackx. Foreshadow: Extracting the keys to the Intel
SGX kingdom with transient out-of-order execution. In 27th USENIX
Security Symposium (USENIX Security 18), Baltimore, MD, USA, 2018.

[4

flaa)

G

—

https://go.googlesource.com/gollvm/

(8]

(10]

(11]

(12]

(13]

(14

[l

(15]

(16]

(17]

(18]

[19

—

[20

=

[21]

[22]

Deepayan Chakrabarti, Yiping Zhan, and Christos Faloutsos. R-MAT:
A recursive model for graph mining. In Proceedings of the 2004 SIAM
International Conference on Data Mining (SDM 04), Lake Buena Vista,
FL, USA, 2004.

Guoxing Chen, Yinqian Zhang, and Ten-Hwang Lai. OPERA: Open
remote attestation for Intel’s secure enclaves. In Proceedings of the 2019
ACM SIGSAC Conference on Computer and Communications Security
(CCS 19), London, United Kingdom, 2019.

Pau-Chen Cheng, Wojciech Ozga, Enriquillo Valdez, Salman Ahmed,
Zhongshu Gu, Hani Jamjoom, Hubertus Franke, and James Bottom-
ley. Intel tdx demystified: A top-down approach. arXiv preprint
arXiv:2303.15540, 2023.

James Clause, Wanchun Li, and Alessandro Orso. Dytan: A generic dy-
namic taint analysis framework. In Proceedings of the 2007 International
Symposium on Software Testing and Analysis, ISSTA *07, page 196—206,
New York, NY, USA, 2007. Association for Computing Machinery.
Intel Corporation. Intel SGX Developer Ref. for Linux.
https://download.01.org/intel-sgx/sgx-linux/2.15/docs/Intel_SGX_
Developer_Reference_Linux_2.15_Open_Source.pdf. Accessed: Oct
23, 2022.

Victor Costan and Srinivas Devadas. Intel SGX explained. IACR
Cryptology ePrint Archive, 2016(86):1-186, 2016.

Adrien Ghosn, James R Larus, and Edouard Bugnion. Secured routines:
Language-based construction of trusted execution environments. In
2019 USENIX Annual Technical Conference (USENLX ATC 19), pages
571-586, 2019.

Matthias Grimmer, Chris Seaton, Roland Schatz, Thomas Wiirthinger,
and Hanspeter Mossenbock. High-performance cross-language inter-
operability in a multi-language runtime. SIGPLAN Not., 51(2):78-90,
oct 2015.

Daniel Gruss, Julian Lettner, Felix Schuster, Olga Ohrimenko, Istvan
Haller, and Manuel Costa. Strong and efficient cache side-channel
protection using hardware transactional memory. In 26th USENIX
Security Symposium, (USENIX Security 2017), Vancouver, BC, Canada,
2017.

Intel. Reference Architecture for Privacy Preserving Ma-
chine Learning with Intel® SGX and TensorFlow* Serving.
https://www.intel.com/content/www/us/en/developer/articles/
technical/privacy-preserving-ml-with-sgx-and-tensorflow.html, 2022.
Accessed: Oct 28, 2022.

Jianyu Jiang, Xusheng Chen, TszOn Li, Cheng Wang, Tianxiang
Shen, Shixiong Zhao, Heming Cui, Cho-Li Wang, and Fengwei Zhang.
Uranus: Simple, efficient SGX programming and its applications. In
Proceedings of the 15th ACM Asia Conference on Computer and Com-
munications Security (ASIACCS 2020), Taipei, Taiwan, 2020.

David Kaplan, Jeremy Powell, and Tom Woller. AMD memory encryp-
tion. White paper, 2016.

Paul Kirth, Mitchel Dickerson, Stephen Crane, Per Larsen, Adrian
Dabrowski, David Gens, Yeoul Na, Stijn Volckaert, and Michael Franz.
Pkru-safe: Automatically locking down the heap between safe and un-
safe languages. In Proceedings of the Seventeenth European Conference
on Computer Systems, EuroSys ’22, page 132-148, New York, NY, USA,
2022. Association for Computing Machinery.

Jacob Kreindl, Daniele Bonetta, Lukas Stadler, David Leopoldseder,
and Hanspeter Mossenbdck. Multi-language dynamic taint analysis
in a polyglot virtual machine. In Proceedings of the 17th International
Conference on Managed Programming Languages and Runtimes, MPLR
2020, page 15-29, New York, NY, USA, 2020. Association for Computing
Machinery.

Aapo Kyrola, Guy Blelloch, and Carlos Guestrin. Graphchi: Large-
scale graph computation on just a PC. In 10th USENLX Symposium on
Operating Systems Design and Implementation (OSDI 12), Boston, MA,
USA, 2012.

14

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]
[31]
[32]
[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

Joshua Lind, Christian Priebe, Divya Muthukumaran, Dan O’Keeffe,
Pierre-Louis Aublin, Florian Kelbert, Tobias Reiher, David Goltzsche,
David Eyers, Ridiger Kapitza, Christof Fetzer, and Peter Pietzuch.
Glamdring: Automatic application partitioning for Intel SGX. In 2017
USENIX Annual Technical Conference (USENLX ATC 17), Santa Clara,
CA, USA, 2017.

James Ménétrey, Marcelo Pasin, Pascal Felber, and Valerio Schiavoni.
Twine: An embedded trusted runtime for webassembly. In 37th IEEE In-
ternational Conference on Data Engineering, ICDE 2021, Chania, Greece,
April 19-22, 2021, pages 205-216. IEEE, 2021.

Payman Mohassel and Yupeng Zhang. Secureml: A system for scalable
privacy-preserving machine learning. In 2017 IEEE Symposium on
Security and Privacy (SP), pages 19-38, 2017.

Oleksii Oleksenko, Bohdan Trach, Robert Krahn, Mark Silberstein,
and Christof Fetzer. Varys: Protecting SGX enclaves from practical
side-channel attacks. In 2018 USENIX Annual Technical Conference
(USENIX ATC 2018), Boston, MA, USA, 2018.

Oracle. GraalVM Profiling Command Line Tools. https://www.graalvm.
org/22.2/tools/profiling/.

Oracle. GraalVM SDK Java API Reference - CEntryPoint.
https://www.graalvm.org/sdk/javadoc/org/graalvm/nativeimage/c/
function/CEntryPoint.html, 2021. Accessed: April 29, 2021.

Oracle. Execution Event Node. https://www.graalvm.
org/truffle/javadoc/com/oracle/truffle/api/instrumentation/
ExecutionEventNode.html, 2022. Accessed: Oct 11, 2022.

Oracle. Fast R. https://github.com/oracle/fastr, 2022. Accessed: Oct
11, 2022.

Oracle. Graal Python. https://github.com/oracle/graalpython, 2022.
Accessed: Oct 11, 2022.

Oracle. GraalJS. https://github.com/oracle/graaljs, 2022. Accessed:
Oct 11, 2022.

Oracle. GraalVM Chrome Debugger. https://www.graalvm.org/22.2/
tools/chrome-debugger/, 2022. Accessed: Oct 11, 2022.

Oracle. Interface Frame. https://www.graalvm.org/truffle/javadoc/
com/oracle/truffle/api/frame/Frame.html, 2022. Accessed: Oct 15,
2022.

Oracle. JSFunctionCallNode. https://github.com/oracle/graaljs/blob/
master/graal-js/src/com.oracle.truffle.js/src/com/oracle/truffle/js/
nodes/function/JSFunctionCallNode.java, 2022. Accessed: Oct 15,
2022.

Oracle. JSTags. https://github.com/oracle/graaljs/blob/master/graal-
js/src/com.oracle.truffle.js/src/com/oracle/truffle/js/nodes/
instrumentation/JSTags.java, 2022. Accessed: Oct 15, 2022.

Oracle. NodeObjectDescriptor. https://github.com/oracle/
graalpython/blob/master/graalpython/com.oracle.graal.
python/src/com/oracle/graal/python/nodes/instrumentation/
NodeObjectDescriptor.java, 2022. Accessed: Oct 15, 2022.

Oracle. Object Streams. https://docs.oracle.com/javase/tutorial/
essential/io/objectstreams.html, 2022. Accessed: Oct 20, 2022.
Oracle. Polyglot Programming. https://www.graalvm.org/22.0/
reference-manual/polyglot-programming/, 2022. Accessed: Feb 18,
2022.

Oracle. PythonCallNode. https://github.com/oracle/graalpython/blob/
master/graalpython/com.oracle.graal.python/src/com/oracle/graal/
python/nodes/call/PythonCallNode.java, 2022. Accessed: March 1,
2022.

Oracle. Standard Tags. https://www.graalvm.org/truffle/javadoc/
com/oracle/truffle/api/instrumentation/StandardTags.html, 2022. Ac-
cessed: Oct 11, 2022.

Oracle. Sulong. https://github.com/oracle/graal/tree/master/sulong,
2022. Accessed: Oct 11, 2022.

Oracle. Truffle Language Implementation Framework.
https://www.graalvm.org/22.0/graalvm-as-a-platform/language-
implementation-framework/, 2022. Accessed: Feb 18, 2022.

https://download.01.org/intel-sgx/sgx-linux/2.15/docs/Intel_SGX_Developer_Reference_Linux_2.15_Open_Source.pdf
https://download.01.org/intel-sgx/sgx-linux/2.15/docs/Intel_SGX_Developer_Reference_Linux_2.15_Open_Source.pdf
https://www.intel.com/content/www/us/en/developer/articles/technical/privacy-preserving-ml-with-sgx-and-tensorflow.html
https://www.intel.com/content/www/us/en/developer/articles/technical/privacy-preserving-ml-with-sgx-and-tensorflow.html
https://www.graalvm.org/22.2/tools/profiling/
https://www.graalvm.org/22.2/tools/profiling/
https://www.graalvm.org/sdk/javadoc/org/graalvm/nativeimage/c/function/CEntryPoint.html
https://www.graalvm.org/sdk/javadoc/org/graalvm/nativeimage/c/function/CEntryPoint.html
https://www.graalvm.org/truffle/javadoc/com/oracle/truffle/api/instrumentation/ExecutionEventNode.html
https://www.graalvm.org/truffle/javadoc/com/oracle/truffle/api/instrumentation/ExecutionEventNode.html
https://www.graalvm.org/truffle/javadoc/com/oracle/truffle/api/instrumentation/ExecutionEventNode.html
https://github.com/oracle/fastr
https://github.com/oracle/graalpython
https://github.com/oracle/graaljs
https://www.graalvm.org/22.2/tools/chrome-debugger/
https://www.graalvm.org/22.2/tools/chrome-debugger/
https://www.graalvm.org/truffle/javadoc/com/oracle/truffle/api/frame/Frame.html
https://www.graalvm.org/truffle/javadoc/com/oracle/truffle/api/frame/Frame.html
https://github.com/oracle/graaljs/blob/master/graal-js/src/com.oracle.truffle.js/src/com/oracle/truffle/js/nodes/function/JSFunctionCallNode.java
https://github.com/oracle/graaljs/blob/master/graal-js/src/com.oracle.truffle.js/src/com/oracle/truffle/js/nodes/function/JSFunctionCallNode.java
https://github.com/oracle/graaljs/blob/master/graal-js/src/com.oracle.truffle.js/src/com/oracle/truffle/js/nodes/function/JSFunctionCallNode.java
https://github.com/oracle/graaljs/blob/master/graal-js/src/com.oracle.truffle.js/src/com/oracle/truffle/js/nodes/instrumentation/JSTags.java
https://github.com/oracle/graaljs/blob/master/graal-js/src/com.oracle.truffle.js/src/com/oracle/truffle/js/nodes/instrumentation/JSTags.java
https://github.com/oracle/graaljs/blob/master/graal-js/src/com.oracle.truffle.js/src/com/oracle/truffle/js/nodes/instrumentation/JSTags.java
 https://github.com/oracle/graalpython/blob/master/graalpython/com.oracle.graal.python/src/com/oracle/graal/python/nodes/instrumentation/NodeObjectDescriptor.java
 https://github.com/oracle/graalpython/blob/master/graalpython/com.oracle.graal.python/src/com/oracle/graal/python/nodes/instrumentation/NodeObjectDescriptor.java
 https://github.com/oracle/graalpython/blob/master/graalpython/com.oracle.graal.python/src/com/oracle/graal/python/nodes/instrumentation/NodeObjectDescriptor.java
 https://github.com/oracle/graalpython/blob/master/graalpython/com.oracle.graal.python/src/com/oracle/graal/python/nodes/instrumentation/NodeObjectDescriptor.java
https://docs.oracle.com/javase/tutorial/essential/io/objectstreams.html
https://docs.oracle.com/javase/tutorial/essential/io/objectstreams.html
https://www.graalvm.org/22.0/reference-manual/polyglot-programming/
https://www.graalvm.org/22.0/reference-manual/polyglot-programming/
https://github.com/oracle/graalpython/blob/master/graalpython/com.oracle.graal.python/src/com/oracle/graal/python/nodes/call/PythonCallNode.java
https://github.com/oracle/graalpython/blob/master/graalpython/com.oracle.graal.python/src/com/oracle/graal/python/nodes/call/PythonCallNode.java
https://github.com/oracle/graalpython/blob/master/graalpython/com.oracle.graal.python/src/com/oracle/graal/python/nodes/call/PythonCallNode.java
https://www.graalvm.org/truffle/javadoc/com/oracle/truffle/api/instrumentation/StandardTags.html
https://www.graalvm.org/truffle/javadoc/com/oracle/truffle/api/instrumentation/StandardTags.html
https://github.com/oracle/graal/tree/master/sulong
https://www.graalvm.org/22.0/graalvm-as-a-platform/language-implementation-framework/
https://www.graalvm.org/22.0/graalvm-as-a-platform/language-implementation-framework/

[44]

(45]
[46]
(47]
(48]

[49

—

(50]

[51

—

52

—

(53]

(54

[l

(55]

[56]

(57

—

(58]

(59]

Oracle. Truffle Language Implementation Framework.
https://www.graalvm.org/truffle/javadoc/com/oracle/truffle/
api/instrumentation/InstrumentableNode.WrapperNode.html, 2022.
Accessed: Oct 3, 2022.

Oracle. Truffle Node. https://www.graalvm.org/truffle/javadoc/com/
oracle/truffle/api/nodes/Node.html, 2022. Accessed: Oct 15, 2022.
Oracle. Truffle Ruby. https://github.com/oracle/truffleruby, 2022.
Accessed: Oct 11, 2022.

Oracle. Graal Compiler. https://www.graalvm.org/22.2/reference-
manual/java/compiler/, 2023.

Sandro Pinto and Nuno Santos. Demystifying Arm TrustZone: A
Comprehensive Survey. ACM Comput. Surv., 51(6), jan 2019.
Christian Priebe, Divya Muthukumaran, Joshua Lind, Huanzhou Zhu,
Shujie Cui, Vasily A Sartakov, and Peter Pietzuch. SGX-LKL: Se-
curing the host OS interface for trusted execution. arXiv preprint
arXiv:1908.11143, 2019.

Do Le Quoc, Franz Gregor, Sergei Arnautov, Roland Kunkel, Pramod
Bhatotia, and Christof Fetzer. SecureTF: A secure TensorFlow frame-
work. In Proceedings of the 21st International Middleware Conference
(Middleware 20), New York, NY, USA, 2020.

Jerome H Saltzer and Michael D Schroeder. The protection of infor-
mation in computer systems. Proceedings of the IEEE, 63(9):1278-1308,
September 1975.

Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Maurice,
and Stefan Mangard. Malware guard extension: Using SGX to conceal
cache attacks. In International Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment (DIMVA 17), Bonn, Germany,
2017.

Youren Shen, Hongliang Tian, Yu Chen, Kang Chen, Runji Wang, Yi Xu,
Yubin Xia, and Shoumeng Yan. Occlum: Secure and efficient multi-
tasking inside a single enclave of intel SGX. In James R. Larus, Luis
Ceze, and Karin Strauss, editors, ASPLOS °20: Architectural Support for
Programming Languages and Operating Systems, Lausanne, Switzerland,
March 16-20, 2020, pages 955-970. ACM, 2020.

Cristian-Alexandru Staicu, Martin Toldam Torp, Max Schéfer, An-
ders Mgller, and Michael Pradel. Extracting taint specifications for
javascript libraries. In Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering, ICSE °20, page 198-209, New York,
NY, USA, 2020. Association for Computing Machinery.

Omer Tripp, Marco Pistoia, Stephen J. Fink, Manu Sridharan, and
Omri Weisman. Taj: Effective taint analysis of web applications. In
Proceedings of the 30th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’09, page 87-97, New York,
NY, USA, 2009. Association for Computing Machinery.

Chia-Che Tsai, Donald E. Porter, and Mona Vij. Graphene-SGX: A
practical library OS for unmodified applications on SGX. In 2017
USENIX Annual Technical Conference (USENLX ATC 2017), Santa Clara,
CA, USA, 2017.

Chia-Che Tsai, Jeongseok Son, Bhushan Jain, John McAvey, Raluca Ada
Popa, and Donald E. Porter. Civet: An efficient Java partitioning
framework for hardware enclaves. In 29th USENIX Security Symposium
(USENIX Security 20), Online, 2020.

Michael L Van de Vanter, Chris Seaton, Michael Haupt, Christian
Humer, and Thomas Wiirthinger. Fast, flexible, polyglot instrumen-
tation support for debuggers and other tools. Art Sci. Eng. Program.,
2(3):14, 2018.

Nico Weichbrodt, Pierre-Louis Aublin, and Riidiger Kapitza. sgx-perf: A
performance analysis tool for intel SGX enclaves. In Paulo Ferreira and
Liuba Shrira, editors, Proceedings of the 19th International Middleware
Conference (Middleware 2018), Rennes, France, 2018.

15

[60]

[61]

[62]

[63]

[64]

[65]

[66]

Christian Wimmer, Codrut Stancu, Peter Hofer, Vojin Jovanovic, Paul
Wagerer, Peter B Kessler, Oleg Pliss, and Thomas Wiirthinger. Initialize
once, start fast: application initialization at build time. In 2019 ACM
SIGPLAN International Conference on Object-Oriented Programming,
Systems, Languages and Applications (OOPSLA 19). Athens, Greece,
2019.

Thomas Wiirthinger, Christian Wimmer, Andreas W68, Lukas Stadler,
Gilles Duboscq, Christian Humer, Gregor Richards, Doug Simon, and
Mario Wolczko. One vm to rule them all. Onward! 2013, page 187-204,
New York, NY, USA, 2013. Association for Computing Machinery.
Thomas Wiirthinger, Andreas W68, Lukas Stadler, Gilles Duboscq,
Doug Simon, and Christian Wimmer. Self-optimizing ast interpreters.
SIGPLAN Not., 48(2):73-82, oct 2012.

Bin Cedric Xing, Mark Shanahan, and Rebekah Leslie-Hurd. Intel®
software guard extensions (intel® sgx) software support for dynamic
memory allocation inside an enclave. In Proceedings of the Hardware
and Architectural Support for Security and Privacy 2016, HASP 2016,
New York, NY, USA, 2016. Association for Computing Machinery.
Wenju Xu, Baocang Wang, Jiasen Liu, Yange Chen, Pu Duan, and
Zhiyong Hong. Toward practical privacy-preserving linear regression.
Inf. Sci., 596(C):119-136, jun 2022.

Peterson Yuhala, Pascal Felber, Valerio Schiavoni, and Alain Tchana.
Plinius: Secure and persistent machine learning model training. In 2021
51st Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN), pages 52-62, 2021.

Peterson Yuhala, Jimes Ménétrey, Pascal Felber, Valerio Schiavoni,
Alain Tchana, Gaél Thomas, Hugo Guiroux, and Jean-Pierre Lozi.
Montsalvat: Intel SGX Shielding for GraalVM Native Images. In Pro-
ceedings of the 22nd International Middleware Conference, Middleware
’21, page 352-364, New York, NY, USA, 2021. Association for Comput-
ing Machinery.

https://www.graalvm.org/truffle/javadoc/com/oracle/truffle/api/instrumentation/InstrumentableNode.WrapperNode.html
https://www.graalvm.org/truffle/javadoc/com/oracle/truffle/api/instrumentation/InstrumentableNode.WrapperNode.html
https://www.graalvm.org/truffle/javadoc/com/oracle/truffle/api/nodes/Node.html
https://www.graalvm.org/truffle/javadoc/com/oracle/truffle/api/nodes/Node.html
https://github.com/oracle/truffleruby
https://www.graalvm.org/22.2/reference-manual/java/compiler/
https://www.graalvm.org/22.2/reference-manual/java/compiler/

	Abstract
	1 Introduction
	2 Background
	2.1 Intel software guard extensions (SGX)
	2.2 GraalVM

	3 Threat model
	4 Design and workflow of SecV
	4.1 Identifying and specifying sensitive data
	4.2 Taint tracking
	4.3 AST instrumentation
	4.4 Program partitioning
	4.5 Building native images and the SGX program

	5 Evaluation
	5.1 Experimental setup

	6 Limitations of our design
	7 Leveraging SecV for other use cases
	8 Related work
	9 Conclusion and Future Work
	Acknowledgments
	References

