
Fast, Light-weight, and Accurate Performance Evaluation using
Representative Datacenter Behaviors

Jaewon Lee∗
jaewon@meta.com

Meta
Menlo Park, CA, USA

Dongmoon Min
dongmoon.min@snu.ac.kr
Seoul National University

Seoul, Korea

Ilkwon Byun
ik.byun@snu.ac.kr

Seoul National University
Seoul, Korea

Hanhwi Jang†
hanhwi@ajou.ac.kr
Ajou University
Suwon, Korea

Jangwoo Kim
jangwoo@snu.ac.kr

Seoul National University
Seoul, Korea

ABSTRACT
Datacenters rapidly evolve by adopting new features such as new
hardware deployment and software patches. Adopting a new fea-
ture requires an accurate evaluation of its impact to minimize the
risk to the multi-million dollar computing infrastructure. However,
a comprehensive performance analysis of a datacenter is extremely
challenging due to its cost and multitenancy. Evaluating the perfor-
mance in a live datacenter is accurate but prohibitive to prevent any
damage to production services. Using conventional load-testing
benchmarks on small-scale testbeds is imprecise as they do not
consider the effect of other co-located jobs.

In this paper, we propose FLARE, a fast, lightweight, and accurate
performance evaluation method using representative datacenter
behaviors. The key idea is to extract a small set of representative
job colocation scenarios from all possible job colocations in a target
datacenter. FLARE systematically characterizes and groups job colo-
cations according to performance and resource metrics, providing
high-level insights into the datacenter’s behaviors. Then, it recon-
structs the colocations on a testbed and allows accurate feature
evaluation with load-testing benchmarks. We evaluate FLARE us-
ing an in-house datacenter and three features: cache sizing, DVFS,
and SMT configurations. FLARE accurately estimates the impact of
features with less than 1% errors by incurring 50× and 10× lower
evaluation costs compared to full datacenter and sampling-based
evaluation, respectively.

CCS CONCEPTS
• Computing methodologies → Simulation types and tech-
niques; • Computer systems organization → Architectures; •
Information systems→ Data centers.

∗This work was done before the author joined Meta.
†A corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Middleware ’23, December 11–15, 2023, Bologna, Italy
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0177-1/23/12. . . $15.00
https://doi.org/10.1145/3590140.3629117

Figure 1: The accuracy and overheads of the existing data-
center performance evaluation methodologies.

KEYWORDS
datacenters, performance modeling, sampling-based evaluation
ACM Reference Format:
Jaewon Lee, Dongmoon Min, Ilkwon Byun, Hanhwi Jang, and Jangwoo Kim.
2023. Fast, Light-weight, and Accurate Performance Evaluation using Repre-
sentative Datacenter Behaviors. In 24th International Middleware Conference
(Middleware ’23), December 11–15, 2023, Bologna, Italy. ACM, New York, NY,
USA, 14 pages. https://doi.org/10.1145/3590140.3629117

1 INTRODUCTION
Datacenters advance by continuously adopting new features such
as new hardware, software, and system configurations to improve
performance and efficiency. Performance evaluation is the most crit-
ical step in this evolutionary process because it affects deployment
decisions which can save or cost millions of dollars. For instance,
inaccurate performance estimation of new hardware might lead
to purchasing sub-optimal hardware in datacenter scale, causing
irrecoverable financial damage. Datacenter engineers, therefore, do
their best to accurately estimate the features’ impacts before the
adoption.

However, accurate and efficient performance evaluation of data-
centers is extremely challenging. Figure 1 illustrates the limitations
of previous datacenter evaluation methods. First, we convention-
ally use load-testing benchmarks on small-size testbeds to analyze
the performance of datacenter workloads. The previous datacen-
ter benchmarks [6, 28, 30, 77, 90, 96, 106] help to analyze and to
estimate the feature’s performance impact (e.g., tail latency) on a
single datacenter job. However, the benchmarks do not consider
the interference from other colocated jobs in a datacenter [15, 18],

220

https://orcid.org/0000-0001-7845-1336
https://orcid.org/0000-0002-4503-0823
https://orcid.org/0000-0003-3104-7437
https://orcid.org/0000-0003-3722-4131
https://orcid.org/0000-0003-2193-5748
https://doi.org/10.1145/3590140.3629117
https://doi.org/10.1145/3590140.3629117
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3590140.3629117&domain=pdf&date_stamp=2023-11-27

Middleware ’23, December 11–15, 2023, Bologna, Italy Jaewon Lee et al.

leading to inaccurate performance evaluation in a datacenter where
multiple jobs are co-scheduled.

Next, performance evaluation using live datacenters is accurate
but prohibitive due to its high costs and risks. The overheads come
from a datacenter’s large performance variance [50, 95, 104]. To
embrace such variance and obtain accurate results, a feature must
be evaluated using many datacenter machines and jobs despite high
deployment overheads and large-scale service disruption risks. A
recent study [58] proposes a statistical approach to construct a small
canary cluster and reduce live evaluation costs; however, it still
suffers from nontrivial overheads (tens to hundreds of machines)
and the possibility of damaging production jobs.

In this paper, we propose FLARE, a fast, lightweight, and accurate
performance evaluation method using representative datacenter be-
haviors. Themain idea is to reconstruct the job colocation behaviors
of a datacenter onto a small-size testbed, allowing accurate per-
formance evaluation with conventional load-testing benchmarks.
However, as there are an enormous number of job colocations from
tens of thousands of machines and jobs in a datacenter, it is not
affordable to naively reconstruct all job colocations.

To address this challenge, we introduce a systematic way to
characterize and extract representative datacenter job colocations
and a performance evaluation method using those representatives.
Our insight is that a datacenter’s machine behaviors and job co-
locations would have similarities and redundancies, and we should
be able to classify them into a small number of groups which well
represent the overall datacenter characteristics.

To effectively obtain the representative behaviors, we first collect
and analyze a large number of performance and resource metrics
(e.g., IPC, cache miss, CPU utilization) from datacenter jobs and
machines, and translate them into a smaller number of high-level
metrics (e.g., metric indicating CPU intensive + frontend bandwidth
bound + ALU-intensive behavior). This not only reduces the data di-
mension for easier grouping but also identifies the key constituents
of datacenter performance. In our environment, we translate 100+
raw performance/resource metrics into 18 high-level explanations.

Based on the lessons from these metrics, we then classify the
datacenter behaviors into a small number of groups and select
the representatives. By reproducing the job co-location scenarios
of these representatives (i.e., representative scenarios) with load-
testing benchmarks, we can 1) quickly and accurately estimate the
comprehensive performance impact of a feature on a datacenter
without reproducing the whole datacenter behaviors and 2) easily
reason about why a feature makes such an impact, thanks to our
high-level description of each representative scenario.

We emphasize that FLARE is a generic methodology which can
be applied to an arbitrary datacenter environment adopting an
arbitrary feature (e.g., SW/HW upgrades, configuration updates).
For our in-house datacenter consisting of 895 co-location scenarios,
FLARE accurately extracts 18 representatives and accurately evalu-
ates three different features – cache sizing [71], DVFS configuration,
and SMT configuration [94] – with 50× lower overheads and mini-
mal errors (∼1%). We also show that sampling-based evaluation and
conventional load-testing benchmarks suffer from high overheads
and errors.

In summary, the contributions of this paper are as follows:

• Problem identification. We demonstrate that the current
datacenter feature evaluation practices are either too expen-
sive or inaccurate. We also identify the fundamental reason
– the lack of efficient job co-location reproducing idea – to
develop our solution.

• Simple and effective solution. We propose a generic and
easy-to-apply solution to address the issue. FLARE can sum-
marize an arbitrary datacenter environment and deliver ac-
curate feature evaluation results and insights using repre-
sentative scenarios.

• Strong validation results. We successfully reduce the dat-
acenter evaluation overhead by 50× without losing the ac-
curacy. This is much more efficient than sampling-based
evaluation (∼10× overhead reduction), and much more ac-
curate compared to conventional load-testing benchmarks.

The rest of this paper is organized as follows. Section 2 intro-
duces the existing performance evaluation methodologies and their
limitations. Section 3 describes the challenges of fast and accurate
performance evaluation with a case study from our datacenter. We
discuss the details of FLARE in Section 4. Section 5 shows the effec-
tiveness of our method with evaluation results. We discuss related
work in Section 6 and conclude the paper in Section 7.

2 BACKGROUND AND MOTIVATION
In this section, we first introduce recent datacenter-improving stud-
ies and their performance evaluation methods to discuss the need
for FLARE.

Datacenters, or warehouse-scale computers [40, 75], have be-
come the standard platform for hosting modern internet services.
The distinguishing trait of this platform is that they host multi-
ple scale-out jobs on shared resource consisting of thousands of
machines [87, 95]. A large number of studies aim to improve the
performance and efficiency of such a complex computing environ-
ment.
Improvements from features. A group of studies improve data-
center performance by introducing features (i.e., new software, hard-
ware, configurations, or operation policies) to each machine. The
examples include better resource isolation capabilities [60, 92, 93,
99, 104], smarter power management policies [43, 44, 52, 66, 67, 76],
and novel architectural improvements [11, 12, 37]. In fact, any
generic architecture or system improvement (e.g., better prefetch-
ers, optimized libraries) can be considered a feature to improve
datacenters.
Feature evaluation challenges. Table 1 summarizes the evalu-
ation setups of the studies mentioned above. First, we notice that
some studies simply validate their idea with conventional load-
testing benchmarks with individual applications [6, 11, 28, 37, 38, 43,
44, 52, 59, 66, 76–78, 92, 108]. While this practice provides insights
regarding a feature’s impact on a specific job, we cannot naively
expect the same impact for much more complex job-colocation
scenarios of datacenters. In Section 3, we show examples where
load-testing benchmarks deliver highly inaccurate estimations.

Second, we notice that many other studies use either actual
datacenters or environments of similar scale for feature evaluation
[16, 19, 20, 22, 33, 49, 50, 58, 64, 65, 95, 99]. This approach incurs
prohibitively high costs, risks, and latencies, and eventually slows

221

Fast, Light-weight, and Accurate Performance Evaluation using Representative Datacenter Behaviors Middleware ’23, December 11–15, 2023, Bologna, Italy

Evaluation scale Performance evaluation methodology

Individual application Handcrafted co-location Scheduler-based co-location Datacenter-scale co-location

Single machine

Memory Blades [59]
Kanev et al. [52]

Smoothoperator [43]
Adrenaline [44]

Power Routing [76]
PowerNap [66]

DjiNN and Tonic [37]
CloudSuite [28]

Perfkit Benchmarker [6]
TPC benchmarks [77]

Prophet [11]
Dirigent [108]
Sirius [38]

Tang et al. [92]
Octopus-man [78]

Small evaluation cluster
(≈10∼100 machines)

BigDataBench [96]
SPECvirt [15]

DeathStarBench [30]
Heracles [60]
CPI2 [104]

Datacenter scale
(≈100∼1000 machines)

Bubble-Up [65]
Bubble-Flux [99]
HCloud [21]

Paragon [19]
Quasar [20]
Carbyne [32]
Graphene [33]
Morpheus [49]

Zhang et al. [107]
Baymax [12]
Tarcil [22]

Whare-map [64]

Resource Central [16]
Kambadur et al. [50]

Borg [95]
Tang et al. [93]
Kanev et al. [51]
Ren et al.[83]

Hazelwood et al. [39]
TPU [48]

Ayers et al. [3]
Delimitrou et al. [23]

WSMeter [58]
*Trace analysis and simulation approaches are classified as a single machine-individual application.

Table 1: Performance evaluation setups of state-of-the-art datacenter studies.

down assessing and deploying valuable new features which can
significantly boost datacenter performance and efficiency.

To enable fast evaluation and adoption of features, FLARE aims
to reduce the feature performance evaluation overheads by utilizing
representative datacenter behaviors.

We note that some features drastically change the machine’s
shape (e.g., core count, RAM capacity) and hence the datacenter’s
job co-location landscape. In this case, the representative scenarios
that we extract from the current datacenter would become less
valid after the feature deployment, as the new datacenter will have
quite different job co-location behaviors. Therefore, we limit our
scope to the features which do not change the datacenter machine’s
shape; Section 5.5 discusses how we may handle such cases. We
emphasize that the features without machine shape changes (e.g.,
software upgrades) are much more frequent and FLARE is crucial
for successful datacenter management.
Improvements from datacenter schedulers. Another group
of studies improve datacenter performance using new scheduling
algorithms. Specifically, they control job co-location scenarios and
global resource allocations [19–22, 64, 65, 78] to identify and avoid
undesirable scenarios such as high resource contention and resource
underutilization.
Scheduler evaluation challenges. Since realistic datacenter be-
haviors are necessary to measure the holistic impact of schedulers,
these studies tend to use large-scale job co-location setups which
incur high evaluation overheads. However, as these studies gain
benefits by altering job co-location scenarios, it is difficult to de-
fine and utilize a single set of representative behaviors (i.e., job
co-location scenarios) to reduce the performance evaluation over-
heads. Nonetheless, in Section 5.6, we discuss how FLARE can help

optimize the evaluation of datacenter schedulers. We also empha-
size that performance improvements from the features are much
more frequent (e.g., periodic software upgrades) and FLARE can
drastically improve the productivity of datacenter evolution pro-
cess.

3 CHALLENGES OF DATACENTER
PERFORMANCE EVALUATION

In this section, we demonstrate the challenges of accurate datacen-
ter performance evaluation with a case study from our in-house
environment. In this case study, we evaluate the effect of different
cache size on our datacenter and show that conventional load-
testing benchmarks fail to accurately estimate the feature’s perfor-
mance impact, which emphasizes the need for accurate datacenter
performance evaluation method.

3.1 Pitfalls of (co-location unaware)
conventional load-testing benchmarks

In this case study, we examine how the cache size affects our data-
center (Feature 1 in Table 4) and demonstrate that the performance
impact measured from load-testing benchmarks alone does not
necessarily translate into in-datacenter performance.
Datacenter setup.We design our datacenter following the prior
work [58]. Our datacenter consists of three racks of homogeneous
machines, and they host High Priority (HP) and Low Priority (LP)
jobs listed in Table 3. HP job performance is our primary concern,
and we ignore LP job performance as they run using free quota.
Each job is containerized to ease the deployment in a scale-out
manner. Please refer to Section 5.1 for more details.

222

Middleware ’23, December 11–15, 2023, Bologna, Italy Jaewon Lee et al.

0
5

10
15
20
25

GA WSV DA DS IA MS DC WCH

Load-testing Datacenter
M

IP
S

re
du

ct
io

n
(%

)

WSC

Figure 2: Evaluating the performance impact of cache sizes
(Feature 1) with conventional load-testing benchmarks; MIPS
reduction on the jobs in absolute value

Load-testing benchmark setup. We measure the feature’s im-
pact on each HP service with load-testing benchmark. Similar to
previous works [51, 58], we populate instances1 of each service on
a single machine and measure the feature’s impact on it.

Load-testing benchmarks fail to estimate the in-datacenter per-
formance impacts. Figure 2 shows the performance estimations
from the load-testing benchmarks and the actual impacts observed
from datacenter machines. We use Million Instructions per Second
(MIPS) as a performance metric of interest as our jobs are optimized
to spend time in spin locks minimally, exposing their throughput
as MIPS [58]. The datacenter results are the average of all instances
of each service; error bars denote the standard deviation. The es-
timation of the benchmarks deviates from the actual result in our
datacenter because the benchmarks do not take into account any
interference from other co-located jobs.

3.2 Challenges of realistically reproducing
datacenter behaviors

To improve from conventional load-testing benchmarks, we need
to reconstruct production datacenter behaviors or job colocations.
Then what are the fundamental challenges that prohibit researchers
from achieving this goal?

First, the most straightforward approach is to record every be-
havior of a datacenter and exactly reproduce it with benchmarks.
However, this is practically infeasible considering the scale and
diversity of the behaviors. Exact reproduction would require either
a large number of machines to finish fast or extreme tolerance to
the evaluation latency. Both are not viable options for datacenter
feature assessment because we cannot afford a large number of
machines for testing an experimental feature (especially if the fea-
ture requires purchasing new hardware), nor can we tolerate the
latency to reproduce thousands of job colocation behaviors using
few machines. Even if we use sampling [58] to reduce the number
of machines to consider, it still requires a large number of machines.

Second, we may extract and utilize representative datacenter
behaviors. However, datacenter environments are difficult to ana-
lyze due to their complexity (i.e., job colocation). Figure 3a shows
the machine occupancy characteristics of our datacenter. The dat-
acenter has 895 job colocation scenarios with a wide variety of
HP/LP job mixes and utilization, similar to the observations from
the other datacenters [81, 82, 97]. As a result, the scenarios have

1Instances of a job are identical processes/binaries which run in a distributed manner
to share the loads.

(a) Machine occupancy characteristics. The scenarios are sorted by total
machine occupancy. The occupancy shows step-like pattern as our jobs run
as containers of a fixed size.

0

5

0

20

40

1 101 201 301 401 501 601 701 801

Performance Impact HP job MPKI

M
IP

S
re

du
ct

io
n

(%
)

M
PK

I

Job co-location scenario #

MIPS reductionMIPS reduction ratio

(b) Performance impact (MIPS reduction) and the LLC MPKI of the HP jobs.
The scenarios are sorted by performance impact

Figure 3: Investigating the performance impact (absolute
MIPS) of Feature 1 on our datacenter environment

vastly different resource demands, and we can expect each scenario
to react differently to a feature.

Due to such complexity of job colocations, we cannot charac-
terize them with simple metrics. Figure 3b shows the performance
impacts of Feature 1 (i.e., cache sizing) on individual job colocation
scenarios, along with MPKI, a highly relevant metric to cache size
(Feature 1). Intuitively, Feature 1 should have a bigger impact on
the scenarios with higher MPKI as it is related to memory systems.
Under this assumption, we may heuristically select the scenarios
covering various MPKI ranges to evaluate the feature. Unfortu-
nately, the impact is not correlated to MPKI or any other single
memory system-related resource metrics, as many other factors
contribute to a job colocation scenario’s performance. As a result,
we cannot simply find representative datacenter behavior or job
colocations based on a few highly relevant metrics, indicating the
need for systematic way to analyze and extract representative data-
center behaviors.

4 FLARE: DATACENTER EVALUATIONWITH
REPRESENTATIVE SCENARIOS

In this section, we describe the details of FLARE. Figure 4 illustrates
our framework and key operations. FLARE consists of Profiler,
Analyzer, and Replayer, and performs the following four steps 1)
data collection and refinement, 2) high-level metric construction, 3)
clustering & representative behavior extraction, and 4) performance
estimation with representative behaviors.

The following sections describe each step and its implementation
in details.

4.1 Definition of datacenter behavior
Before introducing our methodology, we first present the precise
definition of datacenter behavior (or job co-location scenario; we use
these terms interchangeably throughout the paper) as it is our basic
unit for performance evaluation.

Figure 5 illustrates how we define the scenario. Our datacen-
ter consists of homogeneous machines, and each machine hosts
jobs with different durations and resource demands (Section 5.1).
As shown in the example, every new combination of jobs defines a

223

Fast, Light-weight, and Accurate Performance Evaluation using Representative Datacenter Behaviors Middleware ’23, December 11–15, 2023, Bologna, Italy

① Data collection and refinement
perf
/proc/
topdown

② High-level metric construction
Scenario MIPS MPKI … ALU stalls

#001 2300 0.3 10%
…

#999 800 8 5%

Scenario FE ineff. Mem+NW … CPU+Storage
#001 0.5 0.1 0.7

…
#999 0.2 0.8 0.0

Refine data with
correlation analysisPerformance & Resource data collection

Performance &
Resource database

100+ raw metrics ~20 high-level behaviors

③ Group system behaviors & Extract representatives

Job co-location scenarios Group using high-level metrics
Representative

scenarios

④ Estimate performance impacts with the representatives

Feature enabled
load-testing environment

∑
Perf +20%, Weight 50%
+10%, 10%
-20%, 20% +0%, 5%

+10%, 15% = +8.5%
Representative

scenarios

P
ro

fi
le

r
A
n
al

yz
er

R
ep

la
ye

r

Figure 4: Overview of FLARE framework

Figure 5: Definition of job co-location scenario

new scenario and we collect the scenarios from every datacenter
machine. For each job in each scenario, we log the average perfor-
mance and resource metrics to minimize the monitoring overheads.
Note that a user may log extra information to take temporal/phase
behaviors into account. For example, we currently log the average
IPC of 1.4 for Job 1 in Scenario 1, but one may include standard
deviations (e.g., IPC: 1.4±0.5) to enrich the temporal information.

4.2 Data collection and refinement
The first step of FLARE is to collect and refine performance and
resource metrics from a datacenter.
Collection. We gather various performance and resource metrics
from both software monitors (e.g., /proc/ filesystem) and hardware
performance counters (e.g., perf, Intel’s topdown [100]) by imple-
menting a deamon process, Profiler. It is deployed to all servers
and periodically gathers system and microarchitectural statistics by
using perf, stats, and /proc/ filesystem. The collected statistics
along with the commands and configurations of running jobs are
recorded in our relational database for further analysis.

Figure 6 shows a subset of the metrics that we collect. We collect
the metrics in two level – machine level (i.e., sum of the metrics
from all jobs) and individual job level. As we only manage the
performance of High Priority (HP) jobs and neglect Low Priority
(LP) jobs running on free quota, we eventually have two versions of
performance metric (e.g., LLC-APKI-Machine and LLC-APKI-HP).
This two-level collection allows us to accurately model co-location

Figure 6: The performance and resource metrics collected in
our datacenter environment.

behaviors; we monitor the jobs of interest (*-HP) as well as their
running environment (*-Machine).
Refinement. We notice that many of the metrics we collect are
in fact duplicates. For example, we find that memory bandwidth
reports from our monitoring tool is in fact a simple multiplication
of LLC miss count and the payload size. Eliminating such highly
correlated metrics allows us to reduce 100+ metrics to 85 metrics
with weaker correlations. We point to the other studies [51, 69,
87, 95, 101] for collecting the metrics embracing such noises of
datacenter environments.

4.3 High-level metric construction
As the second step, Analyzer constructs high-level metrics from
the collected statistics, which will be the new and more insightful
descriptors of the job co-location scenarios (Figure 4- 2).

To reduce the dimensionality of the data, we first normalize each
metric to have zero mean and unit variance, eliminating the biases
from the metrics’ inherent magnitudes. We then apply Principal
Component Analysis (PCA) to represent the information in a lower
dimensional space. We chose this method as it has proved effective
for many architectural studies [24, 25, 47, 74, 80] as well as provides
high-level metrics with better interpretability compared to the other
non-linear techniques [102, 103]. Specifically, PCA reduces the
dimension of the data using the linear combination of the original
dataset’s basic vectors. Therefore, it is easy to understand how
the raw metrics contribute to the construction of the Principal
Components (PC, i.e., high-level metrics). As each PC explains
certain amount of variance in the original dataset (by design), we
can also identify which PCs have more classification power. Lastly,
the PCs are orthogonal to each other; we do not have to worry
about one high-level metric moving along with the others when
analyzing the results. For our environment, we obtain 18 PCs as
illustrated in Figure 7.

While the general dimensionality reduction idea is quite similar
to existing studies, FLARE has few major differences. First, many
studies extract the PCs, identify the contribution of the original
metrics (e.g., LLC miss is the major contributor of the first PC), and
perform analysis in the original metric’s space instead of the PC’s
space. For our environment, we found it nearly impossible to do
so because there are too many original metrics of high importance.

224

Middleware ’23, December 11–15, 2023, Bologna, Italy Jaewon Lee et al.

Figure 7: Determining the optimal number of Principal Com-
ponents (PC). We select 18 PCs to explain 95% of the variance
of the original dataset.

Also, the analysis targets of previous studies require only few PCs
to describe their nature, allowing easy and straightforward analysis.
Our datacenter behaviors are far more complex and we cannot
simply investigate few PCs to get insights.

Therefore, we decide to interpret and label each PC to attribute
a higher-level meaning to it. Figure 8 shows the PCs extracted
from our datacenter along with their interpretations. We note that
both the machine and the HP job metrics play an important role in
forming the PCs.

Thanks to our two-level metric collection (Section 4.2), we ob-
serve some interesting traits unique to co-location environments.
For example, PC10 indicates memory bottleneck in HP jobs com-
bined with non backend-bound (hence non memory-bound) ma-
chine behavior. This implies that the HP jobs occupy a small portion
of the whole machine and thus have a low influence on the overall
machine behavior. The other metrics also depict very interesting
and surprisingly specific combination of HP job and machine char-
acteristics.

In summary, we successfully translate a large number of per-
formance and resource metrics into valuable high-level insights,
which are specialized to describe job co-location scenarios.

4.4 Representative behavior extraction
The third step is to group similar job co-location behaviors using
the high-level metrics, so that we can identify a small number of
representative scenarios; in Figure 4- 3 , similar shapes and colors
indicate similar scenarios. For simplicity, we implement the second
and third step in Analyzer together.

We first normalize all the selected PCs to have zero mean and
unit variance (i.e., perform whitening operation) to make each PC
retain the same amount of information. Next, we perform data-
driven clustering to group the scenarios. The major challenge of
our case is that there are no correct cluster labels for each scenario
(i.e., unsupervised clustering). It is therefore impossible to utilize
advanced techniques such as cross-validation to easily reduce the
bias. Instead, we utilize metrics such as Sum of Squared Errors (SSE)
[85] and Silhouette Score (SS) [86] to evaluate the quality of each
setup. SSE indicates the sum of the distance between each point
and its cluster centers, and SS scores each point by comparing how
similar it is to its cluster (vs. the others), and returns the average
score over all points. We select 18 clusters based on the data shown
in Figure 9. Note that we use K-means clustering to achieve good
results, but alternatives (e.g., hierarchical clustering of [74, 80]) can
also be applied.

As a result, we successfully group 895 different scenarios of
our datacenter into only 18 groups. For each group, we extract a

representative scenario by selecting the scenario nearest to the
group’s centroid (or average) behavior. In Section 5.2, we show that
each representative has distinct characteristics which allow us to
accurately estimate the overall performance.

4.5 Feature performance estimation using the
representative scenarios

The last step is to estimate a feature’s performance impact using
the representative scenarios with Replayer. We first apply the
target feature to our performance evaluation environment and
use Replayer to reproduce the representative scenarios with load-
testing benchmarks. It reconstructs the environment by executing
the jobs with the recorded commands and options.

Each scenario will report different performance results as they
have different resource and performance characteristics. To gen-
erate the single number summary of the impact, we weight the
impacts of the representatives by the group sizes and get the average
(Figure 4- 4). The reason behind this weighting is that we are more
likely to observe a scenario from a larger group. In Section 5.3, we
show that this summary accurately estimates the features’ holistic
impacts.

5 EVALUATION
We now provide the results showing the effectiveness of FLARE
and also share the insights from our experiments.

5.1 Experimental setup
Datacenter setup. We carefully reproduce the machine setups,
job characteristics, and user behaviors of a real-world datacenter
based on the design of our industry partner [58]. Our environment
consists of three racks of homogeneous machines. We show how
we handle heterogeneous machine configuration in Section 5.5. The
details of machine specifications are provided in Table 2. Each rack
has eight machines, and we dedicate one rack for reproducing the
datacenter behavior and two racks for modeling the clients. One
of the client machines acts as the job submission system which
launches the jobs using Docker containers [70]. We ensure that
the client and scheduler do not become the bottleneck of the job
execution.
Job submission system. The simulated users submit HP and LP
jobs to datacenter machines as containers. This reproduces the
resource isolation abilities of typical datacenters. To model the
scale-out nature of datacenter jobs, each container (i.e., job instance)
consumes only up to 4 vCPUs. The user requesting more computing
power must launch multiple instances (i.e., copies) of a job. This
accurately reflects the resource management policies of our target
datacenter.

Machine Setup

CPU Intel Xeon E5-2650 v4 (2 sockets, 24 vCPUs per socket)
DRAM 256GB DDR4 2400MHz, Four channels per socket
Disk Intel 730 Series SSD (SATA 6Gb/s)

Network Intel X710 10Gbps Ethernet

Table 2: Datacenter machine specifications.

225

Fast, Light-weight, and Accurate Performance Evaluation using Representative Datacenter Behaviors Middleware ’23, December 11–15, 2023, Bologna, Italy

Figure 8: High-level metrics (principal components) of our datacenter. The plus sign (+) indicates that a rawmetric has a positive
weight on a PC, and the minus sign (-) indicates that the metric has a negative weight. We omit the metrics with small weights.
For each PC, we highlight the major contributing raw metrics which guide us to interpret the meanings.

Figure 9: Investigating Sum of Squared Error (SSE) and Sil-
houette Score (SS) for various cluster counts. Lower SSE and
higher SS indicates better clustering quality. The general
guideline is to pick a point where the return (i.e., clustering
quality) starts to diminish. We choose 18 clusters to strike
the balance between the quality and cost.

The scheduler greedily runs a job in the datacenter machine with
the least resource utilization for load-balancing purposes. As we do
not overcommit the resources, saturation of the machines would
result in a denial of scheduling requests. The length of each job
is randomly determined at the submission time. Each job runs for
at least 30 minutes to produce stable behaviors; server jobs (e.g.,
memcached) handle multiple user requests during its uptime, and
the other jobs simply run the designated task (e.g., mapreduce [17])
for the given durations. The variation in the jobs’ length and the
users’ request rates produce diverse resource behaviors (e.g., un-
derutilization or saturation of machines).
Job characteristics.We use CloudSuite benchmarks [28] and SPEC
CPU2006 [14] to reproduce datacenter job behaviors. Table 3 shows

the details of the job configurations. Note that the metrics are the
allocations per an instance (i.e., a 4 vCPU container). For HP jobs,
we tune the working sets so that they match those of the our target
datacenter. For LP jobs, as we observe both compute- and memory-
intensive ones from the production environment, we select a subset
of benchmarks from SPEC CPU2006 to reproduce similar behaviors.

We note that the selection of benchmarks may change depending
on a datacenter’s characteristics. We emphasize that FLARE does

High Priority (HP) jobs
Data Analytics (DA) Apache Hadoop with Mahout

4 maps, 4 reduces, run TrainNB phase
1 vCPU & 4GB DRAM per mapper/meducer

Data Caching (DC) memcached
4 threads, 4GB working set, target QPS 100K

Data Serving (DS) Apache Cassandra
20 threads, 16GB DRAM

Graph Analytics (GA) Apache Spark
4 vCPU & 4GB DRAM for executor

In-memory Analytics (IA) Apache Spark
4 vCPU & 4GB DRAM for executor

Media Streaming (MS) Nginx
4 threads, 50 connections, dataset scaled

Web Search (WSC) Apache Solr
12GB DRAM. Tomcat manages # threads

Web Serving (WSV) MySQL, memcached, Nginx, PHP
Default mySQL, Nginx settings with 2GB memory
2 threads & 2GB DRAM for memcached
5 threads for PHP

Low Priority (LP) jobs
400.perlbench, 458.sjeng, 462.libquantum, 483.xalancbmk, 471.omnetpp, 429.mcf

Four copies run in a container to consume 4 vCPUs.

Table 3: Configurations of datacenter job instances.

226

Middleware ’23, December 11–15, 2023, Bologna, Italy Jaewon Lee et al.

Figure 10: Clustering the datacenter system behaviors into a small number of groups. The radar plots show each group center’s
18 PC values. The shaded regions indicate the ±1 standard deviation of the group. The dotted lines show ±1 standard deviation
of the whole dataset. For each cluster, we also provide the weight in %.

M
IP

S
re

du
ct

io
n

(%
)

Cluster ID

0

10

20

30

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Feature 1 Feature 2 Feature 3

Figure 11: Performance impact (MIPS reduction) estimation
from each representative scenario.

not limit benchmark or job types. Ideally, if we can thoroughly
characterize the performance and resource behaviors of every job
in the datacenter, we may utilize high-precision load generators
such as iBench [18] to accurately reproduce the job behaviors.
Defining the performance. First, when calculating the perfor-
mance, we only consider those of the HP jobs. LPBatch jobs run on
free quota and we do not manage their productivity.

Since we have multiple different HP jobs, we define a summa-
rizing performance metric to allow easier aggregation of per-job
performance. Specifically, we use an instruction throughput-based
performance metric similar to prior work [58], which is defined as
follows:

𝑃𝑒𝑟 𝑓 𝑜𝑟𝑚𝑎𝑛𝑐𝑒 = 𝐽𝑜𝑏 𝑀𝐼𝑃𝑆 / 𝐽𝑜𝑏′𝑠 𝐼𝑛ℎ𝑒𝑟𝑒𝑛𝑡 𝑀𝐼𝑃𝑆

A job’s inherent MIPS is the MIPS measured when the job runs
alone on an empty machine. This allows us to prevent the jobs with
inherently high MIPS from having higher importance. We chose
this parameter mainly because our industry partner uses a similar
metric, and many other studies show high correlation between

the application-level throughput and the instruction throughput
[57, 92, 104]. We emphasize that FLARE is not bound to any specific
performance metric. Many alternatives [27] can be utilized, and the
users with better definitions may use their own terminology.
Datacenter improving features. We consider three different fea-
tures to introduce performance changes. Table 4 shows the sum-
mary of the three features – cache sizing (Feature 1), DVFS policy
(Feature 2), and SMT (Feature 3) – along with the baseline setup. For
easier evaluation, we manipulate resource constraints via system
setups to emulate hardware changes (Feature 1) and/or utilize the
features which may reduce the machine’s capability (Feature 2 and
3). It is therefore natural to observer performance degradation upon
applying a feature.

5.2 Analysis on the representative behaviors
First, we show the characteristics of the groups generated from
FLARE to check if our approach delivers useful insights. Figure 10
is the radar plot showing the characteristics of the 18 representative
groups. We observe that the groups have distinct characteristics
described in the high-level metric (i.e., PC) space. Note that some
clusters look alike but actually have major differences in one or

Setup Descriptions
Baseline 30MB LLC/socket, 1.2 - 2.9GHz clock, Hyperthreading enabled
Feature 1 12MB LLC/socket, 1.2 - 2.9GHz clock, Hyperthreading enabled
Feature 2 30MB LLC/socket, 1.2 - 1.8GHz clock, Hyperthreading enabled
Feature 3 30MB LLC/socket, 1.2 - 2.9GHz clock, Hyperthreading disabled

Table 4: Summary of the datacenter-improving features.

227

Fast, Light-weight, and Accurate Performance Evaluation using Representative Datacenter Behaviors Middleware ’23, December 11–15, 2023, Bologna, Italy

Datacenter Sampling FLARE

Feature 3

24

22

20

18

16

Feature 2

24

22

20

18

16

Feature 1

12

10

8

6

4

2

0

M
IP

S
re

du
ct

io
n

(%
)

(a) Comprehensive performance impact (MIPS
reduction) on all HP jobs.

Feature 1

M
IP

S
re

du
ct

io
n

(%
)

0

5

10

15

G
A

W
SV D

A
D

S IA M
S

D
C

W
C

H

10

15

20

25

30

G
A

W
SV D

A
D

S IA M
S

D
C

W
C

H

5
10
15
20
25
30
35

G
A

W
SV D

A
D

S IA M
S

D
C

W
C

H

Feature 2 Feature 3

Datacenter Sampling FLARE

(b) Per-HP job performance impact (MIPS reduction).

Figure 12: Evaluating the performance estimation accuracy of FLARE.

more PCs. For example, Cluster 0 and Cluster 1 look similar but
have major differences in PCs 0, 3, 6, 7 and 16.

Interestingly, there exist many clusters with similar weights
around 10%. This indicates that our datacenter does not have a spe-
cific dominant characteristic. Instead, it is a collection of a wide
variety of behaviors having similar importance. This emphasizes
that a feature must be evaluated based on diverse datacenter be-
haviors for an accurate performance projection.

Figure 11 shows the performance impact of the three features
measured from each group’s representative scenarios. We note that
the groups respond differently to a same feature due to their unique
resource and performance characteristics.

Using the radar plots, we can also reason about why a specific
scenario has certain performance impacts. For example, Cluster
8 has the biggest impact from Feature 1, which is to reduce the
LLC capacity. Naturally, we can assume that Cluster 8 consists
of scenarios with high LLC pressures. We find out that the key
characteristics of Cluster 8 are high PC 12 value and low PC 7
value. According to our interpretation (Figure 8), PC 12 promotes
the tendency to have more LLC misses, and negative PC 7 also
promotes the LLC misses. Therefore, we can conclude that Cluster
8 is a group which would have greater sensitivity to LLC-related
features.

As such, our representative scenarios successfully cover the
diverse spectrum of datacenter behaviors and also allows us to per-
form deeper analysis without blindly reproducing a large number
of scenarios.

5.3 Feature evaluation accuracy
All-job impact. First, we investigate how well FLARE estimates
a feature’s overall performance impact on the HP jobs. Figure 12a
shows the performance impact measured from the whole datacenter
(i.e., the true impact), a random sampling method, and FLARE.
For the sampling, we randomly pick 18 job co-location scenarios
(i.e., the same evaluation overheads as FLARE) and estimate the
performance from them.We perform 1,000 sampling trials and show
the resulting distribution with violin plots and box plots.

While sampling is generally an effective technique to embrace
the variance, FLARE provides much more reliable estimations based
on carefully selected representative scenarios. Our estimation errors

are constantly low (<1% in absolute numbers) while sampling can
cause errors up to 4%.

Another major benefit of FLARE is that we can always utilize the
clusters’ characteristics to reason about how we achieve such per-
formance numbers (e.g., Section 5.2). In contrast, random sampling
cannot provide any insights regarding its estimations.
Per-job impact. Next, we check how FLARE estimates the per-
job performance impacts. Similar to the methodology introduced
in Section 4.5, we may use the individual job performance in the
representative scenarios to estimate a feature’s impact on a specific
job.

However, in this case, a representative scenario may not include
the job of interest while its group actually has numerous instances of
the job. In such a case, we check the next nearest (i.e., representative)
scenario to the cluster center until we find the target job. The rest of
the process is identical to the all-job performance estimation case,
except that we weight the impacts by the number of job instances
in that group (i.e., the likelihood to observe the job).

Figure 12b shows the performance estimation from the datacen-
ter, sampling, and FLARE. This time, we use the 95% confidence
interval for the sampling method. We do not provide the conven-
tional load testing results as they have poor accuracy for Feature 1
(Figure 2).

Unlike the previous case, Sampling shows quite good perfor-
mance for some selected workloads and features. We have two
explanations for this behavior. First, certain jobs are robust to the
resource contention and thus have inherently small variance. For
the previous all-job performance case, since we add up the job
performances for each scenario, the performance variances are
much larger. Sampling from small-variance populations allows it
to accurately estimate the impacts. Second, the per-job sampling
population sizes are much smaller than that of the all-job case. For
example, the sampling population size for the all-job impact estima-
tion case is 895 (assuming every scenario has at least one HP job),
whereas the population size for a per-job impact estimation case is
usually less than half of that (i.e., many scenarios do not have the
job of interest). Since the population size becomes smaller for the
per-job case, we are more likely to get better quality samples.

In addition, we observe that FLARE occasionally makes inaccu-
rate estimations. In fact, this is natural considering that we generate
the clusters based on the general job and machine characteristics,

228

Middleware ’23, December 11–15, 2023, Bologna, Italy Jaewon Lee et al.

Figure 13: Comparing the evaluation costs of FLARE and
random sampling.

not the per-job performance characteristics. We believe including
the per-job metrics in our method would greatly improve the esti-
mation accuracy for the job. However, excessively adding per-job
metrics would increase the dimension of the feature space and
may deteriorate the clustering quality. We therefore do not use
any per-job metrics in deriving the representative scenarios, and
recommend to include such metrics only when necessary.

5.4 Evaluation costs and accuracy
Lastly, we investigate the tradeoff between the evaluation costs
and performance estimation fidelity. For FLARE, the evaluation
cost is proportional to the number of representative scenarios (i.e.,
clusters). We observe that increasing the number of clusters does
not improve the estimation quality, unless the number becomes
very large. We therefore assume fixed cost and fidelity for FLARE.

In contrast, sampling can make better predictions as we spend
more evaluation costs. Figure 13 shows the expected max perfor-
mance estimation error for sampling (i.e., 95% confidence interval)
and FLARE. Surprisingly, even with 10× the evaluation costs of
FLARE, sampling cannot achieve similar quality results due to the
large performance variance inherent in datacenter job co-location
scenarios.

This shows that FLARE is a systematic and efficient approach
to evaluate datacenter environments. We successfully evaluate the
characteristics of 895 scenarios with only 18 representative behav-
iors, and achieve 50× reduction in the evaluation overheads.

5.5 How to handle heterogenous configurations
Throughout the paper, we use FLARE to evaluate a datacenter with
homogeneous machines, assuming that a feature would not change
the machine’s shape (e.g., core count and RAM capacity) and the
corresponding job co-location scenarios. However, many real-world
datacenters have heterogeneous machines and some features do
change the machine’s shape as well (e.g., new CPU). We therefore
discuss how FLARE should be utilized in such environments. Table 5
shows the two machine types that we consider. We have added the
Small type in addition to the default that we have used throughout
the paper.

First, we try using the representative scenarios derived from the
default machine for small machine evaluation. If the scenarios are

Resource Default Small
CPU Intel Xeon E5-2650 v4 Intel Xeon E5-2640 v3

(2 sockets, 24 vCPUs/socket) (2 sockets, 16 vCPUs/socket)
DRAM 256GB DDR4 2400MHz 128GB DDR4 2133MHz
Disk Intel 730 SSD Samsung 850 SSD

Network Intel X710 10Gb Intel 82599ES 10Gb

Table 5: Two Datacenter Configurations

(a) Job colocation change
in heterogeneous ma-
chines

0
10
20
30
40
50

GA WSV DA DS IA MS DC WSC

M
IP

S
re

du
ct

io
n

(%
)

Datacenter FLARE Load-testing

(b) Performance estimation results for the
new (small) machine shape. We show per-
job estimations for Feature 2.

Figure 14: Utilizing FLARE to handle a new machine shape.

truly representative and compatible, they should be able to tell the
performance difference across different machine shapes just as they
do for the other features.

However, we find that it is difficult to exactly reproduce a specific
job co-location scenario on different shapes of machines. Figure 14a
shows such an example. In this particular scenario, we have two 4
vCPU DA instances and one 4 vCPU DC, DS, GA, WSC, WSV, and
LP instances. While this translates to ∼70% utilization on the default
machine, it becomes a full saturation scenario for the small machine.
We may re-scale the job instance sizes (4 vCPU) to preserve the
scenario’s machine utilization, but this would alter the job’ nature.
In other words, it is impossible to reproduce the identical scenarios
on different shapes of machines.

Nonetheless, thanks to its systematic method and generic appli-
cability, we confirm that FLARE still provides a new set of represen-
tative scenarios if we apply it to the new machine shape. As shown
in Figure 14b, we successfully estimate a feature’s impact once the
new representatives are derived from the new shape datacenter.

We therefore recommend to generate and utilize the represen-
tative scenarios for each machine shape. When comparing the ma-
chines with different shapes, there would be no single representa-
tive set which works across heterogeneous machines. However, if
a user does not mind comparing the performance from different
execution scenarios (e.g., embrace that the workload co-locations
would differ by the machine shape and we have no control over it),
he/she may scale and utilize the representative scenarios from one
machine shape to evaluate other shapes, as discussed above.

We also emphasize that this per-machine type representative sce-
nario approach is a sensible solution with reasonable overheads. In
real datacenters, machine shape-changing features are infrequently
introduced (e.g., once every year) but the existing machines last a
few years until their retirements experiencing numerous feature
upgrades (e.g., software updates). In other words, it is worth in-
vesting some efforts to extract representative scenarios for each
machine shape as they will be utilized for 5-10 years.

5.6 How to handle scheduler changes
Changes in datacenter scheduler can make the representative sce-
narios from FLARE less valid as they tweak the job co-location
scenarios. However, unlike the case where the machine’s shape is
changing (Section 5.5), the new schedulers do not generate whole
new unseen scenarios. Instead, they promote more desirable scenar-
ios (e.g., high utilization with less resource contention) and prohibit
less desirable ones. Therefore, if we can get quick estimates of what

229

Fast, Light-weight, and Accurate Performance Evaluation using Representative Datacenter Behaviors Middleware ’23, December 11–15, 2023, Bologna, Italy

kind of job co-location scenarios would appear more (or less) for
a new scheduler, we can use that information to derive new rep-
resentative scenarios starting from Step 3 of Section 4 and 4. As
the major overhead of FLARE comes from Step 1 (i.e., collecting
enough job co-location scenarios), we can effectively handle new
datacenter schedulers with minimal overheads.

6 RELATEDWORK
Performance analysis and evaluation is a classic topic in the com-
puter systems and architecture field. Accordingly, significant efforts
have been put to reduce the analysis and evaluation overheads. We
discuss the relationship between previous work and FLARE
Leveraging similarity in observations. One simple and effective
optimization technique in performance evaluation is to skip the
evaluation of redundant or similar data points. The idea has been
extensively applied to reduce the simulation turnaround latency.
Initial proposals [88, 98] successfully handled single-threaded ap-
plications, and later studies [1, 2, 9, 10, 34, 36, 56, 57] have extracted
similarities from different scopes such as multithreaded applica-
tions, tasks and basic blocks, and pipeline behaviors.

FLARE also leverages the similarities in datacenter behaviors to
reduce performance evaluation overheads. Our main contribution
is to find the optimal representation of datacenter behaviors to
maximize the reduction opportunities while preserving the original
datacenter characteristics.
Acceleration by abstraction.Another group of studies gain evalu-
ation speedup by abstracting away unnecessary details and focusing
on the first-order performance constituents. Datacenter-scale simu-
lators [54, 68, 91, 105] usually adopt abstract models (e.g., queues)
to minimize the analysis loads. For FLARE, we abstract 100+ raw
performance/resource metrics into a few high-level performance
metrics to minimize analysis overheads. Also, our approach could
be applied to the proposed abstract model to further optimize their
evaluation overhead.
Characterizing applications. Application characterization stud-
ies have similar goals to the two categories discussed above. They
first select the key metrics describing application behaviors and
perform similarity analysis to eliminate redundancies. Many studies
[41, 42, 73, 74, 79, 80] successfully characterize popular benchmark
suites such as SPEC CPU [14] and MiBench [35] as well as find
redundancies in input datasets [25, 26]. Some studies acknowledge
the importance of co-locations [15, 18] but their major contribution
is to accurately generate interference effects not to extract and
reproduce production datacenter’s behaviors.

FLARE has similar goals to these studies but differs in terms of
the scope and the detailed methodology. Specifically, while previ-
ous studies focus on deduplicating particular benchmark suites,
FLARE proposes a generic methodology to systematically extract
the key metrics accurately describing job co-location scenarios of
an arbitrary datacenter. To the best of our knowledge, we are the
first to perform such an analysis on datacenters considering job
co-location scenarios and resource sharing behaviors. Compared to
the existing single application analyses, we also tackle a problem
with greater amount of complexity.

Applying machine learning techniques.Machine learning tech-
niques help reduce analysis and evaluation overheads by automat-
ically identifying the key performance constituents. First, some
studies [45, 46] predict performance using simple machine learning
models trained on a large number of system behaviors instead of
complex simulators. A state-of-the-art model further advances the
technique to automatically detect datacenter performance issues
[31]. Recent studies refine key performance-determining metrics
[101, 103] from a large number raw observations using non-linear
models. FLARE also adopts two well-validated [41, 80] and highly
effective machine learning techniques – Principal Component Anal-
ysis (PCA) and K-means clustering – to systematically extract high-
level performance metrics and group similar behaviors.
Datacenter analysis.Major industry players and researchers have
analyzed datacenter behaviors to guide the development of new
features [3, 5, 8, 23, 39, 48, 51, 55, 83]. Various techniques have been
proposed to inspect large-scale distributed systems at application,
library, and middleware levels [4, 29, 84, 89]. The analysis results
successfully triggered the development of novel features [13, 48,
53, 63]. However, these analysis studies focus only on delivering
lessons from large-scale environments, while FLARE provides an
efficient performance evaluation method for datacenters.
Datacenter benchmarks. Datacenter benchmarking studies [6,
15, 18, 28, 30, 65, 72, 77, 96] successfully characterize and reproduce
the nature of scale-out jobs running on datacenters and facilitate
feature evaluation using more realistic scenarios. They thoroughly
discuss the major differences from conventional jobs [7, 14] and
have triggered successful development of novel system architec-
tures which are highly optimized for datacenter jobs [61, 62].

While these studies provide valuable insights regarding individ-
ual datacenter jobs’ traits, we discover that they do not thoroughly
discuss how the jobs should be co-located to accurately estimate a
feature’s holistic impact on a datacenter. Some studies [15, 18, 30]
acknowledge the importance of job co-location and model resource
sharing behaviors in the benchmarks; however, their main contribu-
tion is to precisely generate the interferences or consider resource
sharing effects, rather than defining how the representative co-
location scenarios should be extracted from an arbitrary datacenter
(i.e., FLARE’s goal). In fact, we believe these benchmarks can help
FLARE to reproduce specific resource sharing behaviors once we
identify the representative job co-location scenarios. They are there-
fore orthogonal to our work.

7 CONCLUSION
This paper proposed FLARE, a Fast and Accurate Datacenter Evalu-
ation methodology using representative system behaviors. We first
characterized various datacenter system behaviors using systemat-
ically derived high-level metrics. We then extracted representative
system behaviors, which effectively summarize the whole traits of
the datacenter. We reproduced the selected behaviors with care-
fully designed load-testing benchmarks and accurately evaluated
the performance impact of new features with minimal overheads.
Our evaluation using an in-house datacenter and three different
features showed that FLARE is 50× and 10×+ more efficient com-
pared to full datacenter evaluation and sampling-based evaluation,
while providing high accuracy (∼1% errors).

230

Middleware ’23, December 11–15, 2023, Bologna, Italy Jaewon Lee et al.

ACKNOWLEDGMENTS
We thank Youngsok Kim in Yonsei University for helping us to
improve the paper. This work was partly supported by SNU-SK
Hynix Inc. Solution Research Center (S3RC), the National Research
Foundation of Korea (NRF) grant funded by the Korean government
(MSIT) (NRF-2021R1F1A1062902, NRF-2020M3H6A1085527), and
the MSIT (Ministry of Science and ICT), Korea, under the ITRC
(Information Technology Research Center) support program (IITP-
2021-0-02051) supervised by the IITP (Institute for Information &
Communications Technology Planning & Evaluation).

REFERENCES
[1] Ehsan KArdestani and Jose Renau. 2013. ESESC: A fastmulticore simulator using

time-based sampling. In High Performance Computer Architecture (HPCA2013),
2013 IEEE 19th International Symposium on. IEEE, 448–459.

[2] Eduardo Argollo, Ayose Falcón, Paolo Faraboschi, MatteoMonchiero, and Daniel
Ortega. 2009. COTSon: infrastructure for full system simulation. ACM SIGOPS
Operating Systems Review 43, 1 (2009), 52–61.

[3] Grant Ayers, Jung Ho Ahn, Christos Kozyrakis, and Parthasarathy Ranganathan.
2018. Memory Hierarchy for Web Search. In High Performance Computer Archi-
tecture (HPCA), 2018 IEEE International Symposium on. IEEE, 643–656.

[4] Paul Barham, Rebecca Isaacs, and Dushyanth Narayanan. 2003. Magpie: online
modelling and performance-aware systems. In 9th Workshop on Hot Topics in
Operating Systems (HotOS-IX). USENIX.

[5] Luiz André Barroso, Jeffrey Dean, and Urs Hölzle. 2003. Web Search for a Planet:
The Google Cluster Architecture. IEEE Micro 23, 2 (March 2003), 22–28.

[6] PerfKit Benchmarker. 2017. PerfKit Benchmarker. http://googlecloudplatform.
github.io/PerfKitBenchmarker/

[7] Christian Bienia. 2011. Benchmarking modern multiprocessors.
[8] Sergey Brin and Lawrence Page. 1998. The Anatomy of a Large-scale Hyper-

textual Web Search Engine. Comput. Netw. ISDN Syst. 30, 1-7 (April 1998),
107–117.

[9] T. E. Carlson, W. Heirman, and L. Eeckhout. 2013. Sampled simulation of multi-
threaded applications. In 2013 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS). 2–12.

[10] T. E. Carlson,W. Heirman, K. Van Craeynest, and L. Eeckhout. 2014. BarrierPoint:
Sampled simulation of multi-threaded applications. In 2014 IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS). 2–12.

[11] Quan Chen, Hailong Yang, Minyi Guo, Ram Srivatsa Kannan, Jason Mars, and
Lingjia Tang. 2017. Prophet: Precise QoS Prediction on Non-Preemptive Accel-
erators to Improve Utilization in Warehouse-Scale Computers. In Proceedings
of the Twenty-Second International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (Xi’an, China) (ASPLOS ’17). ACM,
New York, NY, USA, 17–32.

[12] Quan Chen, Hailong Yang, Jason Mars, and Lingjia Tang. 2016. Baymax: QoS
Awareness and Increased Utilization for Non-Preemptive Accelerators in Ware-
house Scale Computers. In Proceedings of the Twenty-First International Confer-
ence on Architectural Support for Programming Languages and Operating Systems
(Atlanta, Georgia, USA) (ASPLOS ’16). ACM, New York, NY, USA, 681–696.

[13] Eric S. Chung, John D. Davis, and Jaewon Lee. 2013. LINQits: Big Data on Little
Clients. In Proceedings of the 40th Annual International Symposium on Computer
Architecture (Tel-Aviv, Israel) (ISCA ’13). ACM, New York, NY, USA, 261–272.

[14] Standard Performance Evaluation Corporation. 2006. SPEC CPU2006. https:
//www.spec.org/cpu2006/

[15] Standard Performance Evaluation Corporation. 2013. SPEC virt_sc 2013. https:
//www.spec.org/virt_sc2013

[16] Eli Cortez, Anand Bonde, AlexandreMuzio, Mark Russinovich, Marcus Fontoura,
and Ricardo Bianchini. 2017. Resource Central: Understanding and Predicting
Workloads for Improved Resource Management in Large Cloud Platforms. In
Proceedings of the 26th Symposium on Operating Systems Principles (Shanghai,
China) (SOSP ’17). ACM, New York, NY, USA, 153–167.

[17] Jeffrey Dean and Sanjay Ghemawat. 2010. MapReduce: A Flexible Data Process-
ing Tool. Commun. ACM 53, 1 (Jan. 2010), 72–77.

[18] Christina Delimitrou and Christos Kozyrakis. 2013. iBench: Quantifying inter-
ference for datacenter applications. In 2013 IEEE International Symposium on
Workload Characterization (IISWC). 23–33.

[19] Christina Delimitrou and Christos Kozyrakis. 2013. Paragon: QoS-aware Sched-
uling for Heterogeneous Datacenters. In Proceedings of the Eighteenth Inter-
national Conference on Architectural Support for Programming Languages and
Operating Systems (Houston, Texas, USA) (ASPLOS ’13). ACM, New York, NY,
USA, 77–88.

[20] Christina Delimitrou and Christos Kozyrakis. 2014. Quasar: Resource-efficient
and QoS-aware Cluster Management. In Proceedings of the 19th International

Conference on Architectural Support for Programming Languages and Operating
Systems (Salt Lake City, Utah, USA) (ASPLOS ’14). ACM, New York, NY, USA,
127–144.

[21] Christina Delimitrou and Christos Kozyrakis. 2016. HCloud: Resource-Efficient
Provisioning in Shared Cloud Systems. In Proceedings of the Twenty-First Inter-
national Conference on Architectural Support for Programming Languages and
Operating Systems (Atlanta, Georgia, USA) (ASPLOS ’16). ACM, New York, NY,
USA, 473–488.

[22] Christina Delimitrou, Daniel Sanchez, and Christos Kozyrakis. 2015. Tarcil: Rec-
onciling Scheduling Speed and Quality in Large Shared Clusters. In Proceedings
of the Sixth ACM Symposium on Cloud Computing (Kohala Coast, Hawaii) (SoCC
’15). ACM, New York, NY, USA, 97–110.

[23] Christina Delimitrou, Sriram Sankar, Kushagra Vaid, and Christos Kozyrakis.
2011. Decoupling datacenter studies from access to large-scale applications: A
modeling approach for storage workloads. In 2011 IEEE International Symposium
on Workload Characterization (IISWC). 51–60.

[24] L. Eeckhout, J. Sampson, and B. Calder. 2005. Exploiting program microarchi-
tecture independent characteristics and phase behavior for reduced benchmark
suite simulation. In IEEE International. 2005 Proceedings of the IEEE Workload
Characterization Symposium, 2005. 2–12.

[25] Lieven Eeckhout, Hans Vandierendonck, and Koenraad De Bosschere. 2002.
Workload design: Selecting representative program-input pairs. In Parallel Ar-
chitectures and Compilation Techniques, 2002. Proceedings. 2002 International
Conference on. IEEE, 83–94.

[26] Lieven Eeckhout, Hans Vandierendonck, and Koen De Bosschere. 2003. Quanti-
fying the impact of input data sets on program behavior and its applications.
Journal of Instruction-Level Parallelism 5, 1 (2003), 1–33.

[27] Stijn Eyerman and Lieven Eeckhout. 2008. System-level performance metrics
for multiprogram workloads. IEEE micro 28, 3 (2008).

[28] Michael Ferdman, Almutaz Adileh, Onur Kocberber, Stavros Volos, Mohammad
Alisafaee, Djordje Jevdjic, Cansu Kaynak, Adrian Daniel Popescu, Anastasia
Ailamaki, and Babak Falsafi. 2012. Clearing the Clouds: A Study of Emerging
Scale-out Workloads on Modern Hardware. In Proceedings of the Seventeenth
International Conference on Architectural Support for Programming Languages
and Operating Systems (London, England, UK) (ASPLOS XVII). ACM, New York,
NY, USA, 37–48.

[29] Rodrigo Fonseca, George Porter, Randy H. Katz, Scott Shenker, and Ion Stoica.
2007. X-trace: A Pervasive Network Tracing Framework. In Proceedings of
the 4th USENIX Conference on Networked Systems Design & Implementation
(Cambridge, MA) (NSDI’07). USENIX Association, Berkeley, CA, USA. http:
//dl.acm.org/citation.cfm?id=1973430.1973450

[30] YuGan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi, Nayan Katarki,
Ariana Bruno, Justin Hu, Brian Ritchken, Brendon Jackson, Kelvin Hu, Meghna
Pancholi, Yuan He, Brett Clancy, Chris Colen, Fukang Wen, Catherine Leung,
Siyuan Wang, Leon Zaruvinsky, Mateo Espinosa, Rick Lin, Zhongling Liu, Jake
Padilla, and Christina Delimitrou. 2019. An Open-Source Benchmark Suite for
Microservices and Their Hardware-Software Implications for Cloud & Edge
Systems (ASPLOS ’19). Association for Computing Machinery, New York, NY,
USA, 3–18.

[31] Yu Gan, Yanqi Zhang, Kelvin Hu, Dailun Cheng, Yuan He, Meghna Pancholi,
and Christina Delimitrou. 2019. Seer: Leveraging Big Data to Navigate the
Complexity of Performance Debugging in Cloud Microservices. In Proceedings
of the Twenty-Fourth International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (Providence, RI, USA) (ASPLOS
’19). Association for Computing Machinery, New York, NY, USA, 19–33.

[32] Robert Grandl, Mosharaf Chowdhury, Aditya Akella, and Ganesh Anantha-
narayanan. 2016. Altruistic Scheduling inMulti-resource Clusters. In Proceedings
of the 12th USENIX Conference on Operating Systems Design and Implementation
(Savannah, GA, USA) (OSDI’16). USENIX Association, Berkeley, CA, USA, 65–80.
http://dl.acm.org/citation.cfm?id=3026877.3026884

[33] Robert Grandl, Srikanth Kandula, Sriram Rao, Aditya Akella, and Janard-
han Kulkarni. 2016. GRAPHENE: Packing and Dependency-Aware Schedul-
ing for Data-Parallel Clusters. In 12th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI 16). USENIX Association, Savannah,
GA, 81–97. https://www.usenix.org/conference/osdi16/technical-sessions/
presentation/grandl_graphene

[34] Thomas Grass, Alejandro Rico, Marc Casas, Miquel Moreto, and Eduard Ayguadé.
2016. Taskpoint: Sampled simulation of task-based programs. In Performance
Analysis of Systems and Software (ISPASS), 2016 IEEE International Symposium
on. IEEE, 296–306.

[35] Matthew R Guthaus, Jeffrey S Ringenberg, Dan Ernst, Todd M Austin, Trevor
Mudge, and Richard B Brown. 2001. MiBench: A free, commercially repre-
sentative embedded benchmark suite. In Proceedings of the fourth annual IEEE
international workshop on workload characterization. WWC-4 (Cat. No. 01EX538).
IEEE, 3–14.

[36] Jaewon Lee Jangwoo Kim Hanhwi Jang, Jae-eon Jo. 2018. RpStacks-MT: A High-
throughputMulti-core Processor Design EvaluationMethodology. In Proceedings
of the 51st Annual IEEE/ACM International Symposium on Microarchitecture

231

http://googlecloudplatform.github.io/PerfKitBenchmarker/
http://googlecloudplatform.github.io/PerfKitBenchmarker/
https://www.spec.org/cpu2006/
https://www.spec.org/cpu2006/
https://www.spec.org/virt_sc2013
https://www.spec.org/virt_sc2013
http://dl.acm.org/citation.cfm?id=1973430.1973450
http://dl.acm.org/citation.cfm?id=1973430.1973450
http://dl.acm.org/citation.cfm?id=3026877.3026884
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/grandl_graphene
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/grandl_graphene

Fast, Light-weight, and Accurate Performance Evaluation using Representative Datacenter Behaviors Middleware ’23, December 11–15, 2023, Bologna, Italy

(MICRO-51).
[37] Johann Hauswald, Yiping Kang, Michael A. Laurenzano, Quan Chen, Cheng

Li, Trevor Mudge, Ronald G. Dreslinski, Jason Mars, and Lingjia Tang. 2015.
DjiNN and Tonic: DNN As a Service and Its Implications for Future Warehouse
Scale Computers. In Proceedings of the 42Nd Annual International Symposium on
Computer Architecture (Portland, Oregon) (ISCA ’15). ACM, New York, NY, USA,
27–40.

[38] Johann Hauswald, Michael A. Laurenzano, Yunqi Zhang, Cheng Li, Austin
Rovinski, Arjun Khurana, Ron Dreslinski, Trevor Mudge, Vinicius Petrucci,
Lingjia Tang, and JasonMars. 2015. Sirius: AnOpen End-to-End Voice and Vision
Personal Assistant and Its Implications for Future Warehouse Scale Computers.
In Proceedings of the Twentieth International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS) (ASPLOS ’15).
ACM, New York, NY, USA, 13 pages.

[39] Kim Hazelwood, Sarah Bird, David Brooks, Soumith Chintala, Utku Diril,
Dmytro Dzhulgakov, Mohamed Fawzy, Bill Jia, Yangqing Jia, Aditya Kalro,
et al. 2018. Applied Machine Learning at Facebook: A Datacenter Infrastruc-
ture Perspective. In High Performance Computer Architecture (HPCA), 2018 IEEE
International Symposium on. IEEE, 620–629.

[40] John L. Hennessy and David A. Patterson. 2011. Computer Architecture, Fifth
Edition: A Quantitative Approach (5th ed.). Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA.

[41] Kenneth Hoste and Lieven Eeckhout. 2007. Microarchitecture-independent
workload characterization. IEEE micro 27, 3 (2007).

[42] Kenneth Hoste, Aashish Phansalkar, Lieven Eeckhout, Andy Georges, Lizy K
John, and Koen De Bosschere. 2006. Performance prediction based on inherent
program similarity. In Proceedings of the 15th international conference on Parallel
architectures and compilation techniques. ACM, 114–122.

[43] Chang-Hong Hsu, Qingyuan Deng, Jason Mars, and Lingjia Tang. 2018. Smooth-
Operator: Reducing Power Fragmentation and Improving Power Utilization
in Large-scale Datacenters. In Proceedings of the Twenty-Third International
Conference on Architectural Support for Programming Languages and Operating
Systems. ACM, 535–548.

[44] Chang-Hong Hsu, Yunqi Zhang, Michael A. Laurenzano, David Meisner,
Thomas F. Wenisch, Jason Mars, Lingjia Tang, and Ronald G. Dreslinski. 2015.
Adrenaline: Pinpointing and reining in tail queries with quick voltage boost-
ing. In 2015 IEEE 21st International Symposium on High Performance Computer
Architecture (HPCA). 271–282.

[45] Engin Ïpek, Sally A. McKee, Rich Caruana, Bronis R. de Supinski, and Martin
Schulz. 2006. Efficiently Exploring Architectural Design Spaces via Predictive
Modeling. In Proceedings of the 12th International Conference on Architectural
Support for Programming Languages and Operating Systems (San Jose, California,
USA) (ASPLOS XII). Association for Computing Machinery, New York, NY, USA,
195–206.

[46] PJ Joseph, Kapil Vaswani, and Matthew J Thazhuthaveetil. 2006. A predictive
performance model for superscalar processors. In Proceedings of the 39th An-
nual IEEE/ACM International Symposium on Microarchitecture. IEEE Computer
Society, 161–170.

[47] Ajay Joshi, Aashish Phansalkar, Lieven Eeckhout, and Lizy Kurian John. 2006.
Measuring Benchmark Similarity Using Inherent Program Characteristics. IEEE
Trans. Comput. 55, 6 (June 2006), 769–782.

[48] Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal,
Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, et al. 2017.
In-datacenter performance analysis of a tensor processing unit. In Computer
Architecture (ISCA), 2017 ACM/IEEE 44th Annual International Symposium on.
IEEE, 1–12.

[49] Sangeetha Abdu Jyothi, Carlo Curino, Ishai Menache, Shravan Matthur
Narayanamurthy, Alexey Tumanov, Jonathan Yaniv, Ruslan Mavlyutov, Inigo
Goiri, Subru Krishnan, Janardhan Kulkarni, and Sriram Rao. 2016. Morpheus:
Towards Automated SLOs for Enterprise Clusters. In 12th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 16). USENIX Association,
Savannah, GA, 117–134. https://www.usenix.org/conference/osdi16/technical-
sessions/presentation/jyothi

[50] Melanie Kambadur, Tipp Moseley, Rick Hank, and Martha A Kim. 2012. Mea-
suring interference between live datacenter applications. In Proceedings of the
International Conference on High Performance Computing, Networking, Storage
and Analysis. IEEE Computer Society Press, 51.

[51] Svilen Kanev, Juan Pablo Darago, Kim Hazelwood, Parthasarathy Ranganathan,
Tipp Moseley, Gu-Yeon Wei, and David Brooks. 2015. Profiling a Warehouse-
scale Computer. In Proceedings of the 42Nd Annual International Symposium on
Computer Architecture (Portland, Oregon) (ISCA ’15). ACM, New York, NY, USA,
158–169.

[52] Svilen Kanev, Kim Hazelwood, Gu-Yeon Wei, and David Brooks. 2014. Tradeoffs
between power management and tail latency in warehouse-scale applications.
In 2014 IEEE International Symposium on Workload Characterization (IISWC).
31–40.

[53] Svilen Kanev, Sam Likun Xi, Gu-Yeon Wei, and David Brooks. 2017. Mallacc: Ac-
celerating Memory Allocation. In Proceedings of the Twenty-Second International
Conference on Architectural Support for Programming Languages and Operating
Systems (Xi’an, China) (ASPLOS ’17). ACM, New York, NY, USA, 33–45.

[54] Sagar Karandikar, Howard Mao, Donggyu Kim, David Biancolin, Alon Amid,
Dayeol Lee, Nathan Pemberton, Emmanuel Amaro, Colin Schmidt, Aditya
Chopra, et al. 2018. Firesim: FPGA-accelerated cycle-exact scale-out system
simulation in the public cloud. In Proceedings of the 45th Annual International
Symposium on Computer Architecture. IEEE Press, 29–42.

[55] Christos Kozyrakis, Aman Kansal, Sriram Sankar, and Kushagra Vaid. 2010.
Server Engineering Insights for Large-Scale Online Services. IEEE Micro 30, 4
(July 2010), 8–19.

[56] Jaewon Lee, Hanhwi Jang, Jae-eon Jo, Gyu-hyeon Lee, and Jangwoo Kim. 2017.
StressRight: Finding the right stress for accurate in-development system eval-
uation. In Performance Analysis of Systems and Software (ISPASS), 2017 IEEE
International Symposium on. IEEE, 205–216.

[57] Jaewon Lee, Hanhwi Jang, and Jangwoo Kim. 2014. Rpstacks: Fast and accurate
processor design space exploration using representative stall-event stacks. In
Proceedings of the 47th Annual IEEE/ACM International Symposium on Microar-
chitecture. IEEE Computer Society, 255–267.

[58] Jaewon Lee, Changkyu Kim, Kun Lin, Liqun Cheng, RamaGovindaraju, and Jang-
woo Kim. 2018. WSMeter: A Performance Evaluation Methodology for Google’s
Production Warehouse-Scale Computers. In Proceedings of the Twenty-Third
International Conference on Architectural Support for Programming Languages
and Operating Systems. ACM, 549–563.

[59] Kevin Lim, Jichuan Chang, TrevorMudge, Parthasarathy Ranganathan, Steven K.
Reinhardt, and Thomas F. Wenisch. 2009. Disaggregated Memory for Expansion
and Sharing in Blade Servers. In Proceedings of the 36th Annual International
Symposium on Computer Architecture (Austin, TX, USA) (ISCA ’09). ACM, New
York, NY, USA, 267–278.

[60] David Lo, Liqun Cheng, Rama Govindaraju, Parthasarathy Ranganathan, and
Christos Kozyrakis. 2015. Heracles: Improving Resource Efficiency at Scale. In
Proceedings of the 42Nd Annual International Symposium on Computer Architec-
ture (Portland, Oregon) (ISCA ’15). ACM, New York, NY, USA, 450–462.

[61] Pejman Lotfi-Kamran, Boris Grot, and Babak Falsafi. 2012. NOC-Out: Microar-
chitecting a scale-out processor. In Proceedings of the 2012 45th Annual IEEE/ACM
International Symposium on Microarchitecture. IEEE Computer Society, 177–187.

[62] Pejman Lotfi-Kamran, Boris Grot, Michael Ferdman, Stavros Volos, Onur
Kocberber, Javier Picorel, Almutaz Adileh, Djordje Jevdjic, Sachin Idgunji,
Emre Ozer, and Babak Falsafi. 2012. Scale-out Processors. In Proceedings of
the 39th Annual International Symposium on Computer Architecture (Portland,
Oregon) (ISCA ’12). IEEE Computer Society, Washington, DC, USA, 500–511.
http://dl.acm.org/citation.cfm?id=2337159.2337217

[63] Martin Maas, Krste Asanović, and John Kubiatowicz. 2018. A hardware accelera-
tor for tracing garbage collection. In Proceedings of the 45th Annual International
Symposium on Computer Architecture. IEEE Press, 138–151.

[64] Jason Mars and Lingjia Tang. 2013. Whare-map: Heterogeneity in "Homoge-
neous" Warehouse-scale Computers. In Proceedings of the 40th Annual Interna-
tional Symposium on Computer Architecture (Tel-Aviv, Israel) (ISCA ’13). ACM,
New York, NY, USA, 619–630.

[65] Jason Mars, Lingjia Tang, Robert Hundt, Kevin Skadron, and Mary Lou Soffa.
2011. Bubble-Up: Increasing Utilization in Modern Warehouse Scale Computers
via Sensible Co-locations. In Proceedings of the 44th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture (Porto Alegre, Brazil) (MICRO-44). ACM,
New York, NY, USA, 248–259.

[66] David Meisner, Brian T. Gold, and Thomas F. Wenisch. 2009. PowerNap: Elim-
inating Server Idle Power. In Proceedings of the 14th International Conference
on Architectural Support for Programming Languages and Operating Systems
(Washington, DC, USA) (ASPLOS XIV). ACM, New York, NY, USA, 205–216.

[67] David Meisner, Christopher M. Sadler, Luiz André Barroso, Wolf-DietrichWeber,
and Thomas F. Wenisch. 2011. Power Management of Online Data-intensive
Services. In Proceedings of the 38th Annual International Symposium on Computer
Architecture (San Jose, California, USA) (ISCA ’11). ACM, New York, NY, USA,
319–330.

[68] David Meisner, Junjie Wu, and Thomas FWenisch. 2012. Bighouse: A simulation
infrastructure for data center systems. In 2012 IEEE International Symposium on
Performance Analysis of Systems & Software. IEEE, 35–45.

[69] Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey Romer, Shiva Shiv-
akumar, Matt Tolton, and Theo Vassilakis. 2010. Dremel: interactive analysis of
web-scale datasets. Proceedings of the VLDB Endowment 3, 1-2 (2010), 330–339.

[70] Dirk Merkel. 2014. Docker: lightweight linux containers for consistent develop-
ment and deployment. Linux Journal 2014, 239 (2014), 2.

[71] Khang T Nguyen. 2017. Introduction to Cache Allocation Technology in the
Intel Xeon Processor E5 v4 Family. https://software.intel.com/en-us/articles/
introduction-to-cache-allocation-technology

[72] Tapti Palit, Yongming Shen, and Michael Ferdman. 2016. Demystifying cloud
benchmarking. In Performance Analysis of Systems and Software (ISPASS), 2016
IEEE International Symposium on. IEEE, 122–132.

232

https://www.usenix.org/conference/osdi16/technical-sessions/presentation/jyothi
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/jyothi
http://dl.acm.org/citation.cfm?id=2337159.2337217
https://software.intel.com/en-us/articles/introduction-to-cache-allocation-technology
https://software.intel.com/en-us/articles/introduction-to-cache-allocation-technology

Middleware ’23, December 11–15, 2023, Bologna, Italy Jaewon Lee et al.

[73] Reena Panda and Lizy Kurian John. 2017. Proxy benchmarks for emerging
big-data workloads. In Parallel Architectures and Compilation Techniques (PACT),
2017 26th International Conference on. IEEE, 105–116.

[74] Reena Panda, Shuang Song, Joseph Dean, and Lizy K John. 2018. Wait of a
Decade: Did SPEC CPU 2017 Broaden the Performance Horizon?. In 2018 IEEE
International Symposium on High Performance Computer Architecture (HPCA).
IEEE, 271–282.

[75] David A. Patterson. 2008. Technical Perspective: The Data Center is the Com-
puter. Commun. ACM 51, 1 (Jan. 2008), 105–105.

[76] Steven Pelley, David Meisner, Pooya Zandevakili, Thomas F. Wenisch, and Jack
Underwood. 2010. Power Routing: Dynamic Power Provisioning in the Data
Center. In Proceedings of the Fifteenth Edition of ASPLOS on Architectural Support
for Programming Languages and Operating Systems (Pittsburgh, Pennsylvania,
USA) (ASPLOS XV). ACM, New York, NY, USA, 231–242.

[77] Transaction Processing performance Council. 2024. TPC-Homepage. http:
//www.tpc.org

[78] Vinicius Petrucci, Michael A. Laurenzano, John Doherty, Yunqi Zhang, Daniel
Mosse, Jason Mars, and Lingjia Tang. 2015. Octopus-Man: QoS-driven task man-
agement for heterogeneous multicores in warehouse-scale computers. In 2015
IEEE 21st International Symposium on High Performance Computer Architecture
(HPCA). 246–258.

[79] Aashish Phansalkar, Ajay Joshi, Lieven Eeckhout, and Lizy Kurian John. 2005.
Measuring program similarity: Experiments with SPEC CPU benchmark suites.
In Performance Analysis of Systems and Software, 2005. ISPASS 2005. IEEE Inter-
national Symposium on. IEEE, 10–20.

[80] Aashish Phansalkar, Ajay Joshi, and Lizy K. John. 2007. Analysis of Redundancy
and Application Balance in the SPEC CPU2006 Benchmark Suite. In Proceedings
of the 34th Annual International Symposium on Computer Architecture (San Diego,
California, USA) (ISCA ’07). ACM, New York, NY, USA, 412–423.

[81] Charles Reiss, Alexey Tumanov, Gregory R Ganger, RandyHKatz, andMichael A
Kozuch. 2012. Heterogeneity and dynamicity of clouds at scale: Google trace
analysis. In Proceedings of the Third ACM Symposium on Cloud Computing. ACM,
7.

[82] Charles Reiss, John Wilkes, and Joseph L. Hellerstein. 2011. Google cluster-usage
traces: format + schema. Technical Report. Google Inc., Mountain View, CA, USA.
Revised 2014-11-17 for version 2.1. Posted at https://github.com/google/cluster-
data.

[83] Gang Ren, Eric Tune, Tipp Moseley, Yixin Shi, Silvius Rus, and Robert Hundt.
2010. Google-Wide Profiling: A Continuous Profiling Infrastructure for Data
Centers. IEEE Micro 30, 4 (July 2010), 65–79.

[84] Patrick Reynolds, Charles Killian, Janet L. Wiener, Jeffrey C. Mogul, Mehul A.
Shah, and Amin Vahdat. 2006. Pip: Detecting the Unexpected in Distributed
Systems. In Proceedings of the 3rd Conference on Networked Systems Design
& Implementation - Volume 3 (San Jose, CA) (NSDI’06). USENIX Association,
Berkeley, CA, USA, 9–9. http://dl.acm.org/citation.cfm?id=1267680.1267689

[85] Lior Rokach and Oded Maimon. 2005. Clustering methods. In Data mining and
knowledge discovery handbook. Springer, 321–352.

[86] Peter J Rousseeuw. 1987. Silhouettes: a graphical aid to the interpretation and
validation of cluster analysis. Journal of computational and applied mathematics
20 (1987), 53–65.

[87] Malte Schwarzkopf, Andy Konwinski, Michael Abd-El-Malek, and John Wilkes.
2013. Omega: Flexible, Scalable Schedulers for Large Compute Clusters. In
Proceedings of the 8th ACM European Conference on Computer Systems (Prague,
Czech Republic) (EuroSys ’13). ACM, New York, NY, USA, 351–364.

[88] Timothy Sherwood, Erez Perelman, Greg Hamerly, and Brad Calder. 2002. Au-
tomatically Characterizing Large Scale Program Behavior. In Proceedings of the
10th International Conference on Architectural Support for Programming Lan-
guages and Operating Systems (San Jose, California) (ASPLOS X). ACM, New
York, NY, USA, 45–57.

[89] Benjamin H Sigelman, Luiz Andre Barroso, Mike Burrows, Pat Stephenson,
Manoj Plakal, Donald Beaver, Saul Jaspan, and Chandan Shanbhag. 2010. Dap-
per, a large-scale distributed systems tracing infrastructure. Technical Report.
Technical report, Google.

[90] Akshitha Sriraman and Thomas F Wenisch. 2018. 𝜇 Suite: A Benchmark Suite
for Microservices. In 2018 IEEE International Symposium on Workload Charac-
terization (IISWC). IEEE, 1–12.

[91] Zhangxi Tan, Zhenghao Qian, Xi Chen, Krste Asanovic, and David Patterson.
2015. DIABLO: A warehouse-scale computer network simulator using FPGAs.
In ACM SIGPLAN Notices, Vol. 50. ACM, 207–221.

[92] Lingjia Tang, Jason Mars, Neil Vachharajani, Robert Hundt, and Mary Lou
Soffa. 2011. The Impact of Memory Subsystem Resource Sharing on Datacenter
Applications. In Proceedings of the 38th Annual International Symposium on
Computer Architecture (San Jose, California, USA) (ISCA ’11). ACM, New York,
NY, USA, 283–294.

[93] Lingjia Tang, Jason Mars, Xiao Zhang, Robert Hagmann, Robert Hundt, and
Eric Tune. 2013. Optimizing Google’s warehouse scale computers: The NUMA
experience. In 2013 IEEE 19th International Symposium on High Performance
Computer Architecture (HPCA). 188–197.

[94] D. M. Tullsen, S. J. Eggers, and H. M. Levy. 1995. Simultaneous multithread-
ing: Maximizing on-chip parallelism. In Proceedings 22nd Annual International
Symposium on Computer Architecture. 392–403.

[95] Abhishek Verma, Luis Pedrosa, Madhukar Korupolu, David Oppenheimer, Eric
Tune, and John Wilkes. 2015. Large-scale Cluster Management at Google with
Borg. In Proceedings of the Tenth European Conference on Computer Systems
(Bordeaux, France) (EuroSys ’15). ACM, New York, NY, USA, Article 18, 17 pages.

[96] Lei Wang, Jianfeng Zhan, Chunjie Luo, Yuqing Zhu, Qiang Yang, Yongqiang He,
Wanling Gao, Zhen Jia, Yingjie Shi, Shujie Zhang, Chen Zheng, Gang Lu, Kent
Zhan, Xiaona Li, and Bizhu Qiu. 2014. BigDataBench: A big data benchmark
suite from internet services. In 2014 IEEE 20th International Symposium on High
Performance Computer Architecture (HPCA). 488–499.

[97] John Wilkes. 2011. More Google cluster data. Google research blog. Posted at
http://googleresearch.blogspot.com/2011/11/more-google-cluster-data.html..

[98] Roland E. Wunderlich, Thomas F. Wenisch, Babak Falsafi, and James C. Hoe.
2003. SMARTS: Accelerating Microarchitecture Simulation via Rigorous Statis-
tical Sampling. In Proceedings of the 30th Annual International Symposium on
Computer Architecture (San Diego, California) (ISCA ’03). ACM, New York, NY,
USA, 84–97.

[99] Hailong Yang, Alex Breslow, Jason Mars, and Lingjia Tang. 2013. Bubble-flux:
Precise Online QoS Management for Increased Utilization in Warehouse Scale
Computers. In Proceedings of the 40th Annual International Symposium on Com-
puter Architecture (Tel-Aviv, Israel) (ISCA ’13). ACM, New York, NY, USA, 607–
618.

[100] Ahmad Yasin. 2014. A top-down method for performance analysis and counters
architecture. In Performance Analysis of Systems and Software (ISPASS), 2014
IEEE International Symposium on. IEEE, 35–44.

[101] Qinyi Luo Zhibin Yu Xuehai Qian Yirong Lv, Bin Sun. 2018. CounterMiner:
Mining Big Performance Data fromHardware Counters. In Proceedings of the 51st
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-51).

[102] Z. Yu, J. Wang, L. Eeckhout, and C. Xu. 2018. QIG: Quantifying the Impor-
tance and Interaction of GPGPU Architecture Parameters. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems 37, 6 (June 2018),
1211–1224.

[103] Zhibin Yu, Wen Xiong, Lieven Eeckhout, Zhendong Bei, Avi Mendelson, and
Chengzhong Xu. 2018. Mia: Metric importance analysis for big data workload
characterization. IEEE Transactions on Parallel and Distributed Systems 29, 6
(2018), 1371–1384.

[104] Xiao Zhang, Eric Tune, Robert Hagmann, Rohit Jnagal, Vrigo Gokhale, and John
Wilkes. 2013. CPI2: CPU Performance Isolation for Shared Compute Clusters. In
Proceedings of the 8th ACM European Conference on Computer Systems (Prague,
Czech Republic) (EuroSys ’13). ACM, New York, NY, USA, 379–391.

[105] Yanqi Zhang, Yu Gan, and Christina Delimitrou. 2019. µqSim: Enabling Accurate
and Scalable Simulation for Interactive Microservices. In 2019 IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS). 212–222.

[106] Yunqi Zhang, David Meisner, Jason Mars, and Lingjia Tang. 2016. Treadmill:
Attributing the Source of Tail Latency Through Precise Load Testing and Statis-
tical Inference. In Proceedings of the 43rd International Symposium on Computer
Architecture (Seoul, Republic of Korea) (ISCA ’16). IEEE Press, Piscataway, NJ,
USA, 456–468.

[107] Yunqi Zhang, George Prekas, Giovanni Matteo Fumarola, Marcus Fontoura,
Inigo Goiri, and Ricardo Bianchini. 2016. History-Based Harvesting of Spare
Cycles and Storage in Large-Scale Datacenters. In 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 16). USENIX Association,
Savannah, GA, 755–770. https://www.usenix.org/conference/osdi16/technical-
sessions/presentation/zhang-yunqi

[108] Haishan Zhu and Mattan Erez. 2016. Dirigent: Enforcing QoS for Latency-
Critical Tasks on Shared Multicore Systems. In Proceedings of the Twenty-First
International Conference on Architectural Support for Programming Languages
and Operating Systems (Atlanta, Georgia, USA) (ASPLOS ’16). ACM, New York,
NY, USA, 33–47.

233

http://www.tpc.org
http://www.tpc.org
https://github.com/google/cluster-data
https://github.com/google/cluster-data
http://dl.acm.org/citation.cfm?id=1267680.1267689
http://googleresearch.blogspot.com/2011/11/more-google-cluster-data.html
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/zhang-yunqi
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/zhang-yunqi

	Abstract
	1 Introduction
	2 Background and Motivation
	3 Challenges of datacenter performance evaluation
	3.1 Pitfalls of (co-location unaware) conventional load-testing benchmarks
	3.2 Challenges of realistically reproducing datacenter behaviors

	4 FLARE: datacenter evaluation with representative scenarios
	4.1 Definition of datacenter behavior
	4.2 Data collection and refinement
	4.3 High-level metric construction
	4.4 Representative behavior extraction
	4.5 Feature performance estimation using the representative scenarios

	5 Evaluation
	5.1 Experimental setup
	5.2 Analysis on the representative behaviors
	5.3 Feature evaluation accuracy
	5.4 Evaluation costs and accuracy
	5.5 How to handle heterogenous configurations
	5.6 How to handle scheduler changes

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

