
Trustworthy confidential virtual machines for the masses
Anna Galanou∗

TU Dresden
Germany

anna.galanou@tu-dresden.de

Khushboo Bindlish
DFINITY Foundation

Switzerland
khushboo.bindlish@dfinity.org

Luca Preibsch
Friedrich-Alexander-Universität

Erlangen-Nürnberg
Germany

luca.preibsch@fau.de

Yvonne-Anne Pignolet
DFINITY Foundation

Switzerland
yvonneanne@dfinity.org

Christof Fetzer
TU Dresden

Germany
christof.fetzer@tu-dresden.de

Rüdiger Kapitza
DFINITY Foundation

Switzerland
Friedrich-Alexander-Universität

Erlangen-Nürnberg
Germany

ruediger.kapitza@fau.de

ABSTRACT
Confidential computing alleviates the concerns of distrust-
ful customers by removing the cloud provider from their
trusted computing base and resolves their disincentive to
migrate their workloads to the cloud. This is facilitated by
new hardware extensions, like AMD’s SEV Secure Nested
Paging (SEV-SNP), which can run a whole virtual machine
with confidentiality and integrity protection against a po-
tentially malicious hypervisor owned by an untrusted cloud
provider. However, the assurance of such protection to either
the service providers deploying sensitive workloads or the
end-users passing sensitive data to services requires sending
proof to the interested parties. Service providers can retrieve
such proof by performing remote attestation while end-users
have typically no means to acquire this proof or validate its
correctness and therefore have to rely on the trustworthiness
of the service providers.

In this paper, we present Revelio, an approach that fea-
tures two main contributions: i) it allows confidential virtual
machine (VM)-based workloads to be designed and deployed
in a way that disallows any tampering even by the service
providers and ii) it empowers users to easily validate their
integrity. In particular, we focus on web-facing workloads,
protect them leveraging SEV-SNP, and enable end-users to
remotely attest them seamlessly each time a new web ses-
sion is established. To highlight the benefits of Revelio, we
discuss how a standalone stateful VM that hosts an open-
source collaboration office suite can be secured and present
a replicated protocol proxy that enables commodity users
to securely access the Internet Computer, a decentralized
blockchain infrastructure.

CCS CONCEPTS
• Security and privacy → Virtualization and security; Dis-
tributed systems security; Web application security.

∗Research was conducted while working at DFINITY Foundation

KEYWORDS
Confidential Computing, TEEs, AMD SEV-SNP, Attestation,
TLS

1 INTRODUCTION
Responding to cloud customers’ concerns over the security
of their workloads, cloud providers are currently rolling out
offerings with novel security extensions enabled, facilitating
the use of hardware-isolated compartments, called trusted
execution environments (TEEs). By migrating their security-
sensitive workloads inside TEEs, customers are ensured that
their data remain shielded from any unauthorised access of
privileged system software layers, such as the hypervisor, and
the cloud-managing personnel. In recent years, VM-based
TEEs, where entire VMs can be isolated, have gained a lot
of traction from the industry because of their seamless de-
ployability, leveraging technologies like AMD’s SEV-SNP [2],
Intel’s Trust Domain Extensions (TDX) [23] and ARM’s
Confidential Compute Architecture (CCA) [5].

Although confidential computing is considered a big step
forward in terms of cloud security, its benefits cannot be
reaped to a maximum degree without additional effort. In
particular, end-users of VM-based TEEs are unaware if a
service they access is secured via trusted execution or served
by a commodity environment. They could be assured of these
guarantees via remote attestation, which essentially provides
proof for the authenticity of the underlying hardware as well
as for the integrity of the software loaded inside the TEE.
However, to our knowledge, there is currently no standardised,
widely established approach to provide remote attestation as
a service to end-users besides the option to expose directly
the hardware manufacturer-provided APIs that are typically
accessible only to the VM owner/service provider.

When it comes to verifying the integrity of the TEE state,
the end-users need to be aware of what constitutes an ac-
ceptable state rather than just depending on a Certificate
Authority (CA) to validate the TEE authenticity. The TEE
state is reflected on the attestation report, which includes
a cryptographic hash over the VM’s initial memory context

ar
X

iv
:2

40
2.

15
27

7v
1

 [
cs

.C
R

]
 2

3
Fe

b
20

24

https://orcid.org/0002-4148-7631
https://orcid.org/0009-0004-5718-1532
https://orcid.org/0009-0005-9755-3502
https://orcid.org/0000-0003-0837-7948
https://orcid.org/0000-0001-8240-5420
https://orcid.org/0000-0002-8116-7763

Anna Galanou, Khushboo Bindlish, Luca Preibsch, Yvonne-Anne Pignolet, Christof Fetzer, and Rüdiger Kapitza

right before its launch. This hash is usually compared against
a pre-computed expected value and upon a successful match,
the validating party can be reassured that the VM has been
initialised in a known good state. This is sufficient for service
owners who intend to verify that a VM runs within a TEE
as expected and they have full control and knowledge over
the provided VM’s image.

However, for end-users the situation is different and they
are largely in the dark regarding the implementation and
configuration of the services they access. Besides that, even
if they had access to the VM’s source code and therefore be
in the position to validate the hash of the VM’s initial state
against an expected value, they would inherently have to
trust the service provider not to tamper with the VM after
it has been measured, via management APIs (e.g., ssh) or
directly boot it with a malicious kernel for instance. The
latter scenario is a real threat since the VM’s initial state
typically only includes the virtual firmware used to boot
the machine and nothing more. Therefore, the measurement
included in the attestation report is not indicative of either
the operating system or the root filesystem’s state that the
VM booted with. Consequently, by solely having access to
a remote attestation report, which contains an initial VM
context, end-users cannot really verify if their data is securely
handled.

The implicit trust in the service provider cannot be avoided
even if end-to-end encryption is in place, as is in the case
of email services (e.g. ProtonMail), collaboration suites (e.g.
CryptPad), cloud storage services (e.g. Tresorit), search en-
gines (e.g. DuckDuckGo) etc. Even though this technique
provides a high level of protection for user data and their
privacy, such guarantees are ensured as long as the end-
points are not compromised. If the server-side software, for
instance, has vulnerabilities, an attacker can manage to ex-
ecute code remotely and retrieve login credentials, or any
other sensitive information. Therefore, verifying the state of
such applications and enlightening the end-users about them
is of significant value.

In this paper, we present Revelio; an approach that enables
end-users to easily, systematically, and deterministically val-
idate a VM and its hosted services, so that they no longer
need to entrust service providers with the integrity and con-
fidentiality of their data. Service providers manage the VM
and its services, but are averted from either tampering with
an attested VM or manipulating it during booting. In par-
ticular, we describe how to reduce their privileges to a level,
where they can only perform denial of service to the VM but
cannot access users’ data or tamper with it. The end-users on
the other hand are enabled to retrieve a complete fingerprint
of the VM’s initial state and attest it. Since only a small
fraction of the users will have the technical skills or the time
to determine if a VM and its offered services are properly
implemented and securely configured, we discuss how the
assessment can be delegated to a third party. This allows less
technically savvy users to benefit from knowledgeable users or
institutions that can perform the validation of the system on
their behalf. We detail the steps on how this can be achieved,

especially for web-based services, and show how commodity
users who are entirely unaware of trusted execution implicitly
profit from our system.

Revelio’s contributions can be summarised as follows:
∙ We present an approach that enables seamless and

automated remote attestation when accessing a Reve-
lio VM-hosted web-facing service via a web extension.
Depending on the user and the service provider, the
validation can be performed by a third party, such as
an auditing company, a community using a blockchain
infrastructure, or the end-users themselves.

∙ We introduce and implement a systematic way to dis-
allow service providers from accessing or even altering
users’ data. To achieve that, we securely configure the
VM network-wise, render its root filesystem, contain-
ing the services of interest, immutable and extend its
initial cryptographic fingerprint to cover the neces-
sary state so that end-users receive a representative
report of the attested VM.

∙ We highlight how Revelio can address a wide variety
of use cases, as well as elaborate on how it can protect
a stateful open-source collaboration office suite and
a protocol translation proxy that enables access to
the Internet Computer, a decentralised blockchain
infrastructure.

We implemented Revelio leveraging AMD’s SEV-SNP [2],
however, upcoming VM-based TEEs, such as TDX [23] and
ARM’s CCA [5] can also be alternatives for our approach.
Therefore, Revelio can be deployed in a hardware-agnostic
fashion, as long the TEE follows the VM model.

2 BACKGROUND
This section provides background information on the AMD
SEV-SNP technology, a boot method of the confidential VMs,
as well as the basic workflow of Secure Socket Layer (SSL)
certificate generation for web servers. While the first two
build the essential basis for Revelio, the latter part is needed
to be adapted so that the control of service providers over
the Revelio VMs can be reduced.

2.1 AMD Secure Encrypted Virtualization (SEV)
Technology

Revelio is relying on AMD SEV-SNP technology to guarantee
the confidentiality and integrity of VM’s memory and hence
of the services running on it. SEV uses a unique memory
encryption key for each VM and tags it with an address space
identifier, preventing cross-TEE attacks and unauthorised
usage inside the processor. The encryption keys are generated
by a firmware running on a dedicated processor called, AMD
Secure Processor (AMD-SP). The encryption is transparent
to the hypervisor, performed inside dedicated hardware in
the on-die memory controller that encrypts data when it is
written to DRAM and decrypts it when read.

2.1.1 Remote Attestation on SEV-SNP. Besides the VM pro-
tection, SEV-SNP provides proof to the user about the correct

Trustworthy confidential virtual machines for the masses

Figure 1: Direct boot (i) vs measured direct boot (ii).

VM deployment and the authenticity of the SEV hardware by
performing remote attestation. The provided proof is called
an attestation report and holds several pieces of information,
among which is the VM’s measurement; a cryptographic hash
of the components that form the initial VM’s state and is
being taken by the trusted firmware running on AMD-SP.
It also contains the unique identifier of the processor, called
Chip ID, as well as the TCB version, which refers to the
version number of the SNP firmware. To allow the authenti-
cation of an SEV platform and enable the remote attestation
protocol, SEV signs the attestation report with the Versioned
Chip Endorsement Key (VCEK), which is unique to the local
platform’s processor and takes into consideration the TCB
version. While the data contained in the attestation report
are fixed during VM’s lifetime, there is a protected path
between the AMD-SP and the VM so that arbitrary data
can be added to the AMD-SP-signed attestation report via
the field REPORT_DATA and be cryptographically linked to it.

2.1.2 Measured direct boot. After the VM has finished load-
ing, AMD-SP finalises its hash measurement, which typically
corresponds only to the first virtual firmware volume and
nothing else. To implement Revelio, an approach is required
that imprints the exact initial state including any persistent
state, used to bring up the VM, in the attestation report. This
is achieved by an approach called measured direct boot [30],
implemented as a series of patches to the hypervisor, QEMU,
and to the virtual firmware, OVMF. The modified OVMF
package creates space in the firmware binary (Fig. 1) so that
it can store a table with the hashes of the kernel, initial RAM
disk (initrd) and the kernel command line. When QEMU
boots a VM, it hashes each of these blobs and injects the
hashes into the special table. These components are passed
by the hypervisor as arguments via the fw_config interface.
OVMF measures each component upon reception and com-
pares the measurement to the ones placed into the designated

table. In case any of the measurements do not match, the
boot fails. The hypervisor is untrusted, but the firmware is
measured and reflected on the attestation report, hence the
hashes injected by the hypervisor can be verified by any-
one performing remote attestation and having access to all
sources of the VM.

2.1.3 Securely saving persistent data. Besides remote attesta-
tion, SEV-SNP provides the possibility to generate additional
key material for data sealing that can be derived from differ-
ent sources depending on their use case. In the most basic
case, a VM can request a sealing key derived from VM’s
measurement, which essentially makes it accessible only by a
VM with an identical cryptographic fingerprint. The sealing
key is exchanged via a trusted path between the AMD-SP
and the VM and stays protected from any component outside
of the TCB.

2.2 Certificate generation and Certificate
Authorities

One of Revelio’s key contributions is establishing trust to
web-facing services with which end-users interact. End-users
typically have no evidence to assess the security guarantees
services promise to offer. Nowadays, the vast majority of these
services use the hypertext transfer protocol secure (HTTPS);
a secure version of HTTP, the primary protocol used to send
data between a web browser and a website. HTTPS uses
an encryption protocol to encrypt communications, called
Transport Layer Security (TLS), the successor protocol of
Secure Socket Layer (SSL). Coupled with a Public Key In-
frastructure (PKI), SSL/TLS provides verifiable identities
via certificate chains and private communication. Revelio
leverages this to provide a binding between the web interface
of the service and its cryptographic fingerprint imprinted on
the attestation report.

When a browser connects to a SSL-secured site it will first
retrieve its SSL certificate and check that it has not expired,
it has been issued by a trusted CA and that it is being used
by the intended website. An SSL certificate is essentially a
signed attestation binding a subject to a public key and can
be issued by CAs, who in turn have their own certificates
terminating at a small set of self-signed root certificates. In
order to obtain and install a certificate, a server operator
is used to manually prove control of the domain name and
complete a payment transaction to a CA. Nowadays, CAs like
Let’s Encrypt [1], offer domain-validated certificates through
a standard protocol at no cost to server operators.

Let’s Encrypt is the first browser-trusted CA that es-
tablished a standard protocol, called Automatic Certificate
Management Environment (ACME), to automate identity
validation and certificate issuance via clients, like certbot [39],
without intervention from web server operators or CA staff.
To obtain a certificate for the domain, the user can pass
to the client a Certificate Signing Request (CSR) [21] and
ask Let’s Encrypt CA to issue a certificate with a specified
public key. The CSR includes a signature by the private key
corresponding to the public key in the CSR, among other

Anna Galanou, Khushboo Bindlish, Luca Preibsch, Yvonne-Anne Pignolet, Christof Fetzer, and Rüdiger Kapitza

information like the domain, organisation, country name etc.
After the Let’s Encrypt CA has received the request, it veri-
fies the signature and upon successful validation, it issues a
certificate for the requested domain with the public key from
the CSR and returns it to the client.

3 REVELIO’S DESIGN
In this section, we give more details about the scope of our
work, the motivation behind it, as well as the threat model
we adopt and the entities involved in it. Besides that, we
are going to describe Revelio’s design by outlining our key
requirements and elaborating more on the components of its
architecture.

3.1 Objective
TEEs provide hardware isolation that can either happen on a
process-level boundary or on a VM-level one. On the former
one, the operating system is treated as malicious which means
that any syscall interrupt coming from the isolated code will
immediately exit the TEE context. Consequently, that means
that all the applications need retrofitting to work inside the
TEEs which hinders the widespread adoption. To that end,
the industry is gradually moving towards VM-based TEEs,
such as SEV-SNP [2], where the kernel is part of the isolated
code/VM and therefore the applications can seamlessly work
without any modifications.

With confidential VMs making inroads to the public cloud,
we also opt for it as Revelio’s foundation, so that we can
render our system easily deployable by real-world web-facing
services. For these kinds of services, the protection of their
data-in-use leveraging hardware-based trusted execution is
being decided by the service providers and typically commu-
nicated to the end-users to alleviate their security concerns.
However, the end-users themselves are largely unaware of the
environment such provided services are running in and if the
security measures that have been promised are actually in
place. By virtue of this inherent lack of control, they have to
implicitly place their trust in the service provider for the in-
stalled software and the utilised cloud infrastructure without
receiving any evidence for it.

Assuming that such evidence, i.e. TEE attestation report,
was available to the end-users, they would have to be in
a position to verify that an authentic Hardware Root of
Trust (HRoT) generated it and that the integrity state of the
utilised service matches the expected one. The latter requires
the evidence to contain information that reflects the service’s
state and from the users to have knowledge about what to
accept as "correct" and "incorrect" state.

Considering that the whole foundation of the confidential
computing paradigm lies in verifying before establishing trust,
it is of utmost significance that the end-users have the power
to do so. However, currently, they can only take the security
assurances from the service providers at face value and have
no proof for those. In our work, we address this problem
of lack of proof as well as the challenges that come with
exposing it to the end-users. More specifically, Revelio

(1) exposes attestation evidence to the end-users in a
practical manner,

(2) imprints the cryptographic fingerprint of the utilised
service to this evidence,

(3) applies measures to preserve the integrity of the ser-
vice during runtime,

(4) and enables end-users to verify the provided evidence.

3.2 Threat model
Before describing how Revelio tackles these challenges and
fulfils our goals, it’s necessary to elaborate more on the threat
model we assume during each phase of the VM’s lifetime,
namely the provisioning, occupancy and decommissioning
phase. The main stakeholders involved in those are the:

∙ Cloud providers; they manage the cloud infrastruc-
ture in terms of hardware and the associated software
(host OS, hypervisor, firmware), offering VMs to cus-
tomers as Infrastructure as a Service (IaaS).

∙ Service providers; they take the role of a cloud cus-
tomer renting VMs to provide services to end-users.
They are in control of the VM’s virtual firmware, OS
and software.

∙ End-users; they use the services, as they please, and
are largely unaware of technical details of the services’
runtime system, like if it is cloud-based or what kind
of hardware and software is being used. They use a
web browser with Revelio’s web extension installed.

Provisioning phase. Before the confidential VM’s deploy-
ment, its image needs to be built, configured and customised
by the service provider so that it has the necessary software
packages installed, as well as the network settings and secu-
rity measures applied. However, the end-users assume that
the VM image may contain vulnerabilities to introduce back-
doors or other malicious code planted by the service provider
so that they can leak their data. Besides the VM image itself,
the host platform owned by the cloud provider has to be
provisioned as well, so that it has the necessary firmware,
kernel and hypervisor to support the TEE. The only com-
ponent that is considered trusted on the host platform by
the service provider and the end-users is the CPU hardware
along with the AMD Secure Processor implementation. The
virtual firmware, kernel, initrd are assumed to be provided
by the service provider to the cloud provider so that they can
deploy the confidential VM later with the TEE-enlightened
hypervisor. Neither of those are considered trusted by the
end-user since they can contain bugs either planted by the
cloud provider to enable a privilege escalation from the host
VMM or the service provider with the intention of retrieving
sensitive data from the service.

Occupancy phase. In line with the confidential computing
threat model, we assume that the cloud provider or a host
platform intruder has full control over everything except the
TEE itself. That basically includes the physical hardware as
well as the entire software stack on the host platform, i.e. the
OS and the hypervisor, which allows the adversary to perform

Trustworthy confidential virtual machines for the masses

a wide range of actions like modification of any file on the
system, and monitoring of system activity including network
traffic, system logs, user activity etc. We also consider man-in-
the-middle attacks where an attacker can intercept network
traffic between two parties, spoof or corrupt it, and redirect
traffic to a different destination. The cloud provider may
also migrate the VM to a different physical host without the
knowledge of the service provider exposing it in this way to
security risks. In our threat model, we do not target denial-
of-service attacks, so a cloud provider’s attempt to starve
the VM of resources, such as CPU or memory, in an effort to
disrupt its operation is out of scope. Ciphertext side-channel
attacks on the encrypted VM (by building a dictionary of
plaintext-ciphertext pairs) [28] are out of scope. The cloud
providers explicitly do not trust the service providers, as
they may attempt to get unrestricted access to the cloud
resources or tamper with the code and data of other tenants.
The end-users assume that the service provider may launch
a malicious service in order to retrieve their sensitive data,
or/and modify the environment to serve this purpose.

Decommissioning phase. Ensuring the confidentiality of
tenants and their secrets also after the node release is essential,
so we address any attacks that can be launched by subsequent
software running on the node aiming to retrieve any remaining
information from the persistent storage.

3.3 Requirements for Revelio
Our main objective is to remove the cloud provider from
the trust domain of the end-users that use confidential web-
facing services as well as reveal if those have potentially been
misconfigured by the service providers, narrowing the trust
computing base even further. On that account, Revelio offers
end-users cryptographic proof of the state of the utilised
service as well as of the confidential VM it is running on
top of. To achieve that goal, our system needs to fulfil the
following requirements pertaining to functionality (F1-6) as
well as deployability (D1-3).

F1: Evidence disclosure Before sending any sensitive in-
formation to the service, the end-users need to be able to
receive cryptographic evidence about the service’s state so
they can attest it and assess its trustworthiness.

F2: Trust only by measurement for TCB The evidence of-
fered to the end-users needs to reflect the VM’s volatile as
well as non-volatile memory (i.e. any block storage device
mounted at startup) so that they can have a representative
view of the whole TEE that was loaded and not implicitly
place their trust on its TCB. This evidence should be crypto-
graphically bound to the Hardware Root of Trust (HRoT).

F3: Confidential VM & service linkage End-users need to
make sure that the evidence they receive corresponds to the
confidential VM the service is actually running on. Therefore,
the confidential service’s identity should be cryptographically
linked to the hardware-based identity of the VM.

F4: Integrity during runtime Aiming to avert any miscon-
figuration of the service by a malicious intruder or malevolent
service provider, Revelio should render it infeasible for them

to modify the service as well as the runtime environment
after booting, namely the network settings, ssh connectivity,
approved ports etc.

F5: Reproducibility and deterministic verifiability Build ver-
ifiability is an important safety property for software releases
[36], as external attesters can audit and verify if software is
susceptible to various security problems introduced during
the build process (e.g., surveillance malware, compromised
cryptographic signatures, supply chain attacks, and untrusted
dependencies). By providing a reproducibly built image for
the VM, we intend to automatically accommodate a practical
and efficient attestation by the interested parties as well.

F6: Persistent state protection Considering that the ser-
vice’s persistent state may contain sensitive users’ data, Rev-
elio should aim to protect the storage devices used by the
confidential VM against any offline attacks performed by
anyone outside of the TEE’s context.

D1: Ease of use Revelio needs to enable end-users to per-
form remote attestation seamlessly as an integral part of
the service utilisation. An intuitive way of presenting the
attestation results and indicating possible security violations
should also be provided by the system.

D2: Flexibility over the verification By using Revelio, end-
users should be enabled to perform an extensive verification
of the received evidence. However, considering the complexity
of this task and the time investment it typically requires even
for the technically-skilled users, a flexible approach needs to
be provided so that they can either delegate the validation
to third parties or perform it themselves.

D3: Scalability Taking into account that Revelio’s use case
scenario concerns web-facing services that need to be available
at all times and serve a significant load of users’ requests,
Revelio should take measures to support scalability.

3.4 Revelio in a nutshell
To address the requirements set for our system, Revelio
has to be involved in the building/provisioning as well as
deployment phase of the confidential service which takes place
at the service and cloud provider’s premises respectively. In
the following sections, we present the core parts of our design
as well as the requirements each one of them aims to satisfy.

3.4.1 Reproducible build as a basis for practical and efficient
remote attestation. Typically, in dynamic systems the sys-
tem’s state frequently changes due to system-centric events
such as software package installations, dependencies in li-
braries, configuration of the build environments, timestamps,
file permissions etc. This means that there may be multiple
acceptable hashes for the VM depending on the building
environment, which makes the reconstruction of the expected
hash and consequently the VM’s attestation particularly cum-
bersome in the best case, and in the worst case completely
unreliable. By removing any non-determinism in the build
process, Revelio guarantees identical built binaries and im-
ages for every invocation of the build process, so that the user
can reproduce the expected measurement in a systematic
and practical way (F5).

Anna Galanou, Khushboo Bindlish, Luca Preibsch, Yvonne-Anne Pignolet, Christof Fetzer, and Rüdiger Kapitza

3.4.2 Robust configuration to ensure system’s integrity during
runtime. Considering that we do not assume any runtime
monitoring system running on the confidential VM, there is
no way to ensure that the VM will stay intact after booting.
One of Revelio’s requirements (F4) is to take the necessary
measures to guarantee integrity during runtime. We address
this problem in two ways; first by blocking any inward con-
nections to the confidential VM and second by enforcing a
read-only root filesystem and rendering it integrity protected.
The first ensures us that no outside attacker or authorised
personnel can access the VM after booting and therefore they
cannot spawn a malicious process or tamper with the existing
ones during runtime. The second one guarantees the integrity
of the volume containing the root filesystem (including kernel,
services etc.) against corruption by malware or persistent
rootkits that hold onto root privileges and compromise de-
vices. Both of those measures are being applied during build
time so that the generated VM image has already the correct
network configuration and the system integrity is protected.

3.4.3 Expanding coverage of the reported state. Based on the
current state of the upstream versions of the hypervisor and
virtual firmware that support the confidential VM loading,
only the initial state of the VM is subject to the measuring
performed by the trusted hardware, which essentially contains
only the firmware. To expand what is covered by the reported
state in the attestation evidence sent to the users (F2), we
deploy the method of measured direct boot (2.1.2). This
allows us to imprint in the VM’s final measurement, not
only the virtual firmware’s hash but the ones corresponding
to kernel, initrd and kernel’s command line respectively. To
extend the trust chain even further so that it includes the
cryptographic state of the root filesystem, we pass as kernel
command line argument the root hash of the block device’s
integrity metadata. This has already been generated during
build time, when the image of the rootfs is being constructed.
The code enforcing the integrity protection for the rootfs is
part of the initrd and the kernel, which are both measured
by the hardware in our system.

3.4.4 Enabling end-users to attest before use. End-users
should be able to attest the service before interacting with
it and passing their sensitive data, like account credentials,
financial details etc. Even if TLS is in place and assumed
to provide authentication, integrity and privacy for the
data transmitted across the untrusted channel, those are
no longer guaranteed if the server endpoint is subverted
by a potentially malicious service provider. Therefore, by
receiving actual proof that the server is in a good state
end-users can benefit from the minimised TCB guaranteed
by the confidential computing paradigm. To serve both of
the requirements F1 and D1, Revelio offers the attestation
evidence via a web extension, so that end-users can perform
the attestation using the same web browser interface.

3.4.5 Binding web-service’s identity to the TEE. An SSL cer-
tificate is essentially the digital identity of the web-facing
service end-users interact with. To verify this identity they

rely on the CAs that have provided the root and intermediate
certificates. This root of trust is independent of the HRoT
corresponding to the attestation evidence and therefore the
end-users cannot originate the received attestation evidence
from the confidential VM that generated them. Revelio ad-
dresses this problem (F3) by cryptographically binding the
TLS identity of the service to the TEE that it is running on,
thereby enabling the end-users to verify that the proof they
receive about the service is not only authentic but represents
the actual service they interact with.

3.4.6 TLS key sharing to serve scalability. Since our system
is meant to be deployed in decentralised secure services for
which scalability (D3) is crucial, rate limiting on the SSL
certificate creation is a critical problem that we need to
take into account. More specifically, certificate authorities
like Let’s Encrypt, consider a rate limit [24] on the SSL
certificates generated in a certain period to ensure fair usage
among the users. To address this problem, we assume that
all the Revelio-VMs that host instance of a service share
the same SSL certificate. The account credentials for the
certificate generation reside in a platform belonging to the
service provider’s infrastructure and they are isolated from
the public cloud. This machine will be the one performing the
DNS challenges for proving ownership of the service domain
and distribute the generated certificate among the nodes
after attesting them.

The SSL certificate will be generated based on a key pair
of one of the nodes picked by the service provider’s machine.
This key pair essentially will be the TLS identity correspond-
ing to the service that end-users are going to interact with
later on and will be created in the context of one of the
confidential VMs the service is running on. The private coun-
terpart of this pair will be later distributed among the rest
of the nodes, so that they can serve the user’s requests in a
secure connection. Before that, the TLS key owner will attest
them in a mutual attestation protocol (Section 5) and en-
crypt its private key with the public one of the other attested
node’s unique pair.

3.4.7 Tailoring verification of Revelio VMs. In order to make
Revelio more deployable in the context of web-facing confiden-
tial services that are being used by a wide range of end-users,
we have designed it so that the attestation process can be
tailored to fit users’ trust boundaries (D2). More specifically,
after Revelio delivers cryptographic proof to them about
the state of the service, they have to compare it against
the expected one(s). If they have some technical expertise,
they can reconstruct the state of the service on their own
premises fetching the corresponding open-source components,
compute the final cryptographic measurement and therefore
make their own deduction on what state is "good" or not.
In case end-users cannot follow this process due to a lack of
knowledge for instance, then they can retrieve the "golden"
values from a third-party source. This can come either from
an auditing company that has been delegated with the task to
check the software stack of the confidential VM for bugs and
vulnerabilities, or from an on-chain decentralised autonomous

Trustworthy confidential virtual machines for the masses

organisation (e.g. Internet Computer’s Network Nervous Sys-
tem [37]) where the community votes on the "good" values
of the software running on the respective TEEs.

3.4.8 Protecting persistent state. To satisfy requirement F6
and protect any sensitive persistent data between shutdowns
of the confidential VM, Revelio leverages the feature of
sealing and encrypts the external volumes with the VM’s
measurement-derived key. In this way, no other VM that
has not been in the expected state can decrypt the disk and
retrieve any sensitive data belonging to the service, like the
private TLS key.

4 USE CASES OF REVELIO
While arbitrary services can be protected by trusted execu-
tion, the use of Revelio imposes an additional requirement
for transparency. At a high level, a service provider has to
make all code and relevant operational configuration data of
their built image available to external parties. For VM-based
TEEs this goes beyond the actual service code and includes
the execution environment itself, like the OS. In the scenario
where the end-users’ trust boundaries are very narrow, it
would be them who will retrieve and verify all of the com-
ponents comprising the trusted execution context; in a less
restricted setting an external authorised party can be given
access and perform validation on their behalf.

Although providing access to all of the service’s source
code and operational configuration data to the public is not
a common practice for commodity offerings up until recently,
we argue that the shift towards the confidential computing
paradigm might render it necessary. In particular, end-users
can find Revelio significantly useful in scenarios, where they
share sensitive data, such as medical records [10], and in the
context of private social exchange. There are also numerous
other scenarios where the demand for the service’s integrity
might be of key interest, like in auction sites, lotteries and any
form of e-commerce service. When it comes to the execution
environment of the services, like the OS, the firmware etc.,
the ever-growing trend of open source software [6, 11, 38]
already fulfils Revelio’s requirement for code availability.

In this section, we discuss two use cases:
∙ The first example describes Revelio’s use to secure a

cloud end-to-end encrypted collaboration suite, where
data confidentiality is of key interest.

∙ The second one refers to the need for confidentiality
and integrity of the end-user-provided data, shows a
greater level of complexity and represents a deployed
instance of a protocol translation proxy.

4.1 End-to-end user-encrypted cloud
collaboration suite with hardware-based trust

Over the recent years end-to-end encryption has significantly
grown in demand as an effective means to prevent the compro-
mise of an agent’s private information and is currently used
by many messaging protocols, like Matrix [17], where users
are ensured that messages can’t be spoofed and that only

Figure 2: Revelio-protected Boundary Node.

the senders and receivers of them can read the contents. Re-
cent research has shown though that a malicious homeserver
can modify the execution environment [3], i.e. deliberately
add users to end-to-end encrypted rooms to decrypt future
messages sent in the room or add a device in the room they
wish to eavesdrop, both of which essentially invalidate the
confidentiality guarantees promised by Matrix’ threat model.

Collaborative editing platforms, like CryptPad, also use
end-to-end encryption and enable users to enforce access
control to their data by themselves and not depend on a
central authority for that, which usually coincides with the
server hosting the content and is a single point of failure.
Despite the strong security guarantees that CryptPad offers,
it still adopts a more relaxed threat model of an honest
but curious cloud server [29] where one still must trust the
validity of the Javascript hosted on it or sent to the end-
users’ browser [13, 14], which can potentially leak sensitive
information. We argue that Revelio can be used on that type
of applications to fill this security gap and provide the users
with the means to verify the trustworthiness of the software
installed on the servers as well as preserve their data privacy
and integrity.

4.2 Protocol translation proxy: a use case for
elevated security

The Internet Computer (IC)1 [37] is a decentralised platform
for the execution of general-purpose decentralized applica-
tions in the form of so-called smart contracts. A smart con-
tract is a computer program that executes a certain program
logic in a decentralized manner. Smart contracts on the IC
are called canisters; all canisters are hosted on dedicated
node machines running the IC protocol. The protocol uses
a threshold-signature-based agreement protocol to provide
Byzantine fault tolerance. To achieve high scalability the
nodes are partitioned in subnets. To securely interact with a
canister the IC protocol has to be used, which enables the
exchange of threshold-signed messages with the end-user. As
expected of a modern Web3 infrastructure, end-users typi-
cally access canisters delivering feature-rich web applications
via a browser.

While the IC provides the basis for digital democracy and
Byzantine fault-tolerance, as well as fits into the conventional
Web on a functional level, client-side software and browsers
1https://internetcomputer.org/

https://internetcomputer.org/

Anna Galanou, Khushboo Bindlish, Luca Preibsch, Yvonne-Anne Pignolet, Christof Fetzer, and Rüdiger Kapitza

have yet to fully adopt the IC protocol. The IC overcomes
this issue by utilising the Boundary Nodes that take the
role of protocol translation proxies. A Boundary Node is
capable of translating an ordinary HTTP request to an IC
protocol-compatible message exchange. This can happen ei-
ther directly by simply receiving the HTTP request of an
end-user, transforming it to an IC message and forwarding
it to the right canisters or as optionally via a JavaScript-
based service worker. This service worker is returned by a
Boundary Node on the first request of a user to the IC. Once
activated on the browser side, ordinary requests are directly
transformed to IC messages inside the browser by the service
worker and forwarded to a Boundary Node which in turn
delivers them to the IC.

The outlined approach gives any user immediate access to
the IC via commodity browsers, however, it also represents a
security risk as a malicious Boundary Node could manipulate
user requests either directly inside the VM or indirectly by
providing a modified service worker. The consequences of
such a malicious node could be significant as it compromises
the Byzantine fault-tolerance of the IC. Letting Boundary
Nodes run inside encrypted VMs facilitates higher security
guarantees. By leveraging Revelio, end-users can verify in a
practical manner those guarantees, check if the services of
the Boundary Node actually run in a hardware-based TEE
and more importantly validate the exact software stack as
well the configuration used on the node (Fig. 2).

5 IMPLEMENTATION DETAILS OF REVELIO
In this section we will provide implementation details for
the main components that Revelio is comprised of, as de-
scribed in Section 3, and we structure them by the phases of
a Revelio VM’s lifetime, namely the provisioning of its image,
its bootstrapping during the first deployment and its nor-
mal operation. For our prototype, we leverage the SEV-SNP
hardware for the seamless encryption of the VMs, however,
our approach can be based on any VM-based TEE, including
Intel’s TDX [23] or ARM’s Realms [5].

5.1 Image provisioning
Before the VM’s deployment in the cloud provider’s infras-
tructure, the service provider needs to build and configure
its image accordingly so that it complies with our require-
ments. This step lays the groundwork for the trust chain
establishment and Revelio’s bootstrapping later on.

5.1.1 Reproducible build. The Revelio VM’s image is essen-
tially an on-disk combination of an SEV-SNP-aware Linux
kernel binary, an initrd which contains a root filesystem
with all the user-land programs that have been produced
in the service provider’s CI/CD pipeline as well as their
corresponding software dependencies and libraries. Since we
assume that the VM is being launched with the method of
direct boot, a bootloader is not necessary to exist in the
image. To achieve reproducibility, we deploy a deterministic
build process which generates repeatedly equivalent images
given the same set of source code files, build scripts, and

Figure 3: Revelio VM’s build and deployment.

build environment leveraging bazel [35] and its hermeticity.
Furthermore, the build scripts are modified in order to re-
mediate sources of non-determinism (e.g., timestamps, build
paths, file ordering and permissions) by clearing all files that
may lead to in-deterministic build (e.g. /var/lib/apt/lists/*,
/var/lib/dbus/machine-id/ etc.), squashing all timestamps
and specifying a uuid for each partition we create. Besides
that, we create two docker images; the first one is meant to
pull the needed packages and build the software dependencies
while the second is meant to hold the actual binaries that
we need which we copy from the former one. In that way, we
don’t actually pollute the final image with non-deterministic
elements.

Besides the non-determinism sources related to the filesys-
tem building, application packages can be another source of
such problems since the package versions can change on every
invocation of apt-get, dnf etc., thereby leading to different
builds. To tackle this problem instead of installing the pack-
ages from scratch during every build, we pull a published
image instead (i.e., docker image). This image needs to be
updated regularly and be publicly available so that it can
be retrieved in every build. We also need to ensure that it is
trusted and integrity protected, so every time the software
dependencies change, the new image is built in a protected
environment (i.e. Gitlab runner) and then pushed to the
registry. Finally, it should be noted that our system uses as
a starting point an official Ubuntu 20.04 LTS Docker image,
which is maintained by Canonical and therefore we trust the
latter to a certain extent. However the sources and the build
processes of such images are public, so they can be subjected
to an audit and a review from the community.

5.1.2 Extending the measured envelope. Leveraging direct
measured boot2 [30] allows us to extend the measured en-
velope from the virtual firmware up to the kernel, initrd
and boot arguments. In order to extend this even further

2https://www.mail-archive.com/qemu-devel@nongnu.org/
msg945567.html

https://www.mail-archive.com/qemu-devel@nongnu.org/msg945567.html
https://www.mail-archive.com/qemu-devel@nongnu.org/msg945567.html

Trustworthy confidential virtual machines for the masses

and establish a trust chain up to the system’s rootfs, we
include the root value of the rootfs’ integrity metadata to
the kernel’s command line. The root value along with the
rest of metadata of the underlying block device is generated
during the build process (Fig. 3), when the rootfs is being
constructed, leveraging the dm-verity utility of the Linux
kernel. Dm-verity [8] essentially uses a Merkle tree of sha256
hashes computed for the device’s blocks and verifies them
every time they are being read, ensuring that files have not
changed between reboots or during runtime. When dm-verity
is being setup for the hardware storage device on which
rootfs has been stored, the latter is being remapped through
a target driver to produce a new, transparent, virtual storage
device. We modify VM’s init process so that it mounts the
read-only and integrity-protected new virtual storage device
corresponding to the rootfs, retrieving the root hash from the
kernel command line and the rest of the integrity metadata
from the designated partition of our choosing. Since initrd
is measured as well in our method, we ensure that if any
of those measures are not being applied, it is going to be
reflected on the attestation evidence of the VM.

5.1.3 Blocking unauthorized inward connections. During the
build phase, we configure the network services accordingly so
that no unauthorised connections are allowed to come through
the VM. The network configuration is part of the rootfs and
the relevant services are contained in initrd, therefore their
integrity is guaranteed with the dm-verity utility and the
measurements will be reflected on the attestation report via
the direct measured boot.

5.2 Bootstrapping
During the first boot of the Revelio VM, there are certain
services that are being triggered pertaining to the encryption
and integrity protection of the disk as well as the TLS identity
creation.

5.2.1 Disk encryption and integrity protection. Complying
with our threat model necessitates the encryption of the
secure-sensitive partitions of our disk and the integrity pro-
tection of the ones that do not contain confidential data.
Regarding encryption, we leverage the sealing capability of
the SEV-SNP hardware and derive a key based on the VM’s
cryptographic measurement. We choose that policy to en-
sure that only untampered VMs on the same platform can
successfully decrypt the disks and access the data. This is
particularly useful if we need to persist data after a shutdown
or because of an unplanned power outage. During the first
boot, this key is derived on the fly and encrypts the chosen
volume (Fig. 3) leveraging Linux kernel’s feature, dm-crypt,
and cryptsetup [9] to set it up. Regarding integrity protec-
tion, as previously mentioned, we modified initramfs to setup
dm-verity for the rootfs and boot with the virtual device as
the root partition instead of the ordinary one. Before mount-
ing, we leverage veritysetup [9] to verify the integrity of the
block device, passing the root hash from the kernel command
line and the rest of the integrity metadata that have been

planted on another partition during the build phase. If the
verification is successful we can proceed with the booting,
otherwise, the VM’s launching is terminated.

5.2.2 Unique VM identity creation. During the first boot, a
service is triggered that creates a key pair unique to each
VM. This will either be the TLS identity that will correspond
to the SSL certificate identifying the web-facing service, or
it can be used for secure data exchange between VMs after
a mutual attestation has taken place. After the key pair
creation, a set of attestation reports are being created. The
first one includes as REPORT_DATA the hash of the public
counterpart of the VM’s identity. The second report is related
to the SSL certificate issuing, for which a Certificate Signing
Request (CSR) is created first for the VM’s key pair based
on the configuration details on the service’s domain. The
REPORT_DATA contains the hash of the CSR in this case.

5.3 Normal operation
After Revelio’s bootstrapping, the VMs on which the web-
facing service will run, need to acquire the SSL certificate
and the corresponding private key, since they all have to
share them to satisfy our scalability requirement. In our
implementation, we assume that there is an isolated node
running on the service provider’s premises that holds the
DNS API credentials and is responsible for the SSL certificate
issuing, distribution and node attestation. We will refer to
this node as SP node in the following sections. For the HTTP
server we use nginx and to process the HTTP GET and POST
requests as well as trigger the Revelio relevant processes, we
use CGI scripts that interact with the server via the FastCGI
protocol [7]. To validate the certificate chain while performing
remote attestation, we contact AMD Key Distribution Server
(KDS) 3 and retrieve the root certificates (for AMD Root
Key (ARK) and AMD SEV Key (ASK)) as well as the VCEK
certificate after we have specified the Chip ID and TCB
version. To validate the measurements of the reports, we
compare them against some hard-coded values that have
been planted on the VMs at the build time. However, this
can be changed and each node can contact a remote Trusted
Registry that is maintained on a blockchain infrastructure
for instance [37], where the community votes on what is a
"good" state or not.

5.3.1 Certificate management. In order for the SP node to
generate an SSL certificate, it needs to acquire first the
CSRs from the nodes and pick one as the "leader". Before
entrusting one with this role, SP attests the whole set of
the nodes by retrieving their report-CSR bundles (Fig. 4)
and verifying two things; first that the measurements are as
expected and second that the CSR’s hash matches the one
imprinted on the REPORT_DATA of the report. Besides that,
during the attestation the node’s Chip ID (imprinted in the
report) and IP are being checked against a set of approved
ones, to avert an impersonator from obtaining the private
key of the SSL certificate, even if it presents an authentic
3Hosted at https://kdsintf.amd.com/

https://kdsintf.amd.com/

Anna Galanou, Khushboo Bindlish, Luca Preibsch, Yvonne-Anne Pignolet, Christof Fetzer, and Rüdiger Kapitza

Figure 4: SSL certificate and TLS private key distribution.

and valid attestation report. After the round of attestations
has been completed and the certificate has been generated
for the leader’s CSR, the SP node sends the certificate in a
round of HTTP POST requests along with the leader’s IP
to notify the nodes, who they should contact later to acquire
the private key.

For the secure exchange of private key (Fig. 4), each of
the service provider’s nodes contacts the chosen leader and
performs an HTTP POST request with their report-public
key bundle, containing a report with the hash of their public
key, along with the public key itself. The leader validates the
report in a similar fashion as the SP node and then encrypts
its private key with each node’s public key. Then it begins a
round of POST requests sending its own attestation report
bundle, containing the encrypted private key. The nodes
attest the leader in the same way and after verifying that
the SSL certificate corresponds to the received private key,
they install both of them in a temporary folder. An incron
job [16] is triggered after that, installs the private key in the
server-designated folder and restarts the HTTP server which
is subsequently ready to serve requests. It is worth noting
that the private key is stored in an encrypted partition, so it
cannot be leaked at rest.

5.3.2 Remote attestation by end-users. To enable seamless
remote attestation of a Revelio VM for end-users, the former
must be integrated into the browser. This can be achieved
in two ways, either by extending the browser itself or by a

less intrusive way of a web-extension. The former approach
would require from major browser vendors to provide the
necessary support for remote attestation. For this reason, we
designed a web extension that will automatically perform
remote attestation for registered sites and enable it to learn
about new sites offering Revelio attestation while browsing
the web. Therefore, we assume that the validated HTTP
server provides an attestation report under a well-known
URL (e.g., as in the case of robots.txt [27]) and runs in a
Revelio VM.

Register Revelio-conformed websites. We assume two basic
approaches of how a website and the associated Revelio
VMs can be registered via the Revelio web extension. The
first approach requires the end-user to manually register a
website that should be validated via a configuration dialogue
of the web extension. In the basic case, the end-user needs
to provide the domain name of the website and the expected
measurement. The measurement has either been computed
by the user itself or it has been received via an out-of-band
channel. Here, more sophisticated schemes can be assumed
but are out of the scope of this work. The second approach
is simply to opportunistically learn about the Revelio VMs
while browsing the web. To do this, the web extension will
detect if a website is hosted by a Revelio VM by checking the
well-known URL for the attestation report. If an attestation
report can be fetched, the web extension alerts the user who
subsequently needs to validate the measurement. The first
approach is more secure and should be employed for security-
sensitive sites since it does not require an initial untampered
contact.

Intercepting requests and performing remote attestation.
Assuming a domain has been registered with the web exten-
sion for remote attestation, the first access to it for a new
browser context is always intercepted by the web extension
and the attestation report is fetched from the VM. Next,
the report is validated to verify that it originates from a
SEV-SNP secured context. After querying AMD KDS for the
VCEK key, providing the corresponding Chip ID and TCB
version extracted from the attestation report, the web exten-
sion validates the certificate chain of VCEK (checking the
ASK and ARK certificates) and that the report’s signature
matches VCEK’s public key. Following this, it validates the
report’s measurement against the locally stored one. If that
succeeds, it is confirmed that the Revelio VM is considered
trustworthy. As a last step, it has to be validated that the
browser has established a secure connection that terminates
inside the VM. This is done via querying the browser regard-
ing the public key of the current TLS connection used to
connect to the remote site. If the value matches the public
key that is part of the attestation report, it is ensured that
the endpoint terminates securely in the VM. Should any of
the checks fail, this is flagged to the user and they have to
make a decision to proceed with or abort the access to the
website. After this point, it has to be constantly monitored
that the TLS connection is not reset and redirected to a dif-
ferent location. This is possible as the browser only validates

Trustworthy confidential virtual machines for the masses

if a connection request is established with a certificate that it
trusts. A malicious service provider can, for example, create a
new certificate as they control access to DNS and use this new
certificate to redirect users away from the secure VM. The
web extension prevents this by intercepting all requests to the
domain and validates that for each request the connection
is based on the public key that was part of the attestation
report.

At a technical level, it has to be noted that currently only
Mozilla Firefox provides the necessary APIs to run the web
extension. The use of the service worker API (Section 4.2)
should be avoided for now since the (re-)loading of it can
only be partially controlled. In this case, a small extension
of the browser-provided APIs could lift this restriction.

6 EVALUATION
In this section, we present a security analysis of Revelio to
demonstrate its robustness against attacks assumed in our
threat model. Next, we assess the overhead that some of our
Revelio-enforced techniques impose in VM’s booting, runtime
as well as in the interaction with the web-facing service.

6.1 Security Analysis
In order to ascertain the protection of Revelio, we provide
a security analysis addressing potential attacks that can be
launched by any of the stakeholders assumed in our model.

6.1.1 Loading a modified kernel or initrd. Since the hypervisor
used to launch the VMs is under the cloud provider’s control
in the host platform, it can be instructed to load a malicious
guest kernel or a modified initrd which does not enable the
integrity protection for the root file system or edit the kernel
command-line arguments to pass a different root hash. These
attacks can also be performed by the service provider and
are averted due to the measured direct boot deployed in our
system. If the host uses the wrong kernel, initrd, or command-
line, the measurements constructed by the QEMU and then
verified by OVMF will not match and the booting will not be
successful. If the host replaces the OVMF with a malicious
version that does not verify the hashes, then this will be
reflected on the measurements taken by the AMD-SP and
hence on the attestation report. If the host fills the expected
hashes in the table constructed by the QEMU, but passes
the wrong kernel/initrd/command-line, then the OVMF will
detect that when it measures the individual components and
checks them against the stored measurements so the booting
will not be successful either.

6.1.2 Tampering with rootfs. If the cloud/service provider
modifies the rootfs image (with a malicious service for in-
stance), then the root hash included in the kernel command
line arguments will not correspond to it, so the mounting
will be unsuccessful since we verify at this stage its integrity.
If they try to modify the root hash as well, then this will
be measured and reflected on the attestation report, so the
attestation of the VM will fail.

Table 1: Revelio imposed delays on first boot
Latency (ms) Overhead (%)
BN CP BN CP

dm-crypt setup 611 481 2.76 4.94
dm-verity setup 219 194 0.97 1.94
dm-verity verify 4680 3340 25.94 48.61
Identity creation 123 132 0.54 1.31

6.1.3 Modifying the system during runtime. An external at-
tacker may attempt to modify the system during runtime
since any changes after boot will not be reflected on the attes-
tation report. In order to do that they would have to remotely
access the system which is not possible with our imposed
system configuration, or modify the rootfs (see Section 6.1.2).
Even if those measures fail, since dm-verity protects the disk
at a binary level, even a single bit change anywhere in the
disk will cause dm-verity to raise errors, including mounting
the disk read-write since that will cause small changes in
metadata that get written to disk.

6.1.4 Rollback attacks on the VM image. An ill-intended ser-
vice provider may launch a VM with an obsolete software
stack so that they can exploit an existing bug. The certificate
chain, Chip ID and IP validation would succeed, but the ver-
ification of the VM’s measurement will fail, since we assume
that the obsolete cryptographic hashes are being revoked
every time there is a newer image rollout to prevent rollback
attacks.

6.2 System performance
In this section, we evaluate how much delay Revelio’s tech-
niques introduce to the VM’s booting during bootstrapping
as well as during runtime. Our measurements were taken
on a machine equipped with an AMD EPYC 7313 16-core
processor and 112 GB RAM. We run Ubuntu 20.04.6 with
Linux kernel 5.19.0-rc6 with the SEV-SNP patches installed
on the host, and the VM is running Ubuntu 20.04.5, a Linux
kernel 5.17.0-rc6 with the SEV-SNP patches installed.

6.3 Booting latency
The services that are relevant to Revelio’s implementation,
which we evaluate are (see Table 1):

∙ the encryption service, which retrieves the VM’s seal-
ing key derived from its measurement, and then en-
crypts the chosen volume with cryptsetup,

∙ the device-mapper service, which manages the in-
tegrity protected and readonly virtual volume created
with veritysetup,

∙ the rootfs verification service, which verifies its under-
lying volume with the provided integrity metadata
and root hash,

∙ and the VM identity creation service, which creates
the VM’s key pair, CSR, and a pair of reports holding
this data.

Anna Galanou, Khushboo Bindlish, Luca Preibsch, Yvonne-Anne Pignolet, Christof Fetzer, and Rüdiger Kapitza

Figure 5: Dm-crypt I/O latency.

The encryption service latency is size dependent and the
volume it was performed on had a size of 84 MB which was
sufficient for both of our use cases. The same applies to the
verification of the dm-verity protected rootfs, which in our
case is 4 GB. The encryption of the volume along with the
VM’s identity creation happens only on the first boot. The
performance overheads, presented in Table 1, have been cal-
culated against the total time it took for a Revelio-protected
Boundary Node (BN) and Revelio-protected Cryptpad Server
(CP) to boot and initialise all the system services, which were
22.725 s and 10.211 s respectively. The difference in the boot-
ing time stems from the fact that the Boundary Node has
a lot more services that are starting up during boot in com-
parison with the Cryptpad Server that has only the server
instance and the Revelio system-related services.

6.3.1 I/O request latency. To further evaluate the overhead
that dm-crypt and dm-verity introduce during runtime, we
simulate read and write requests in an encrypted volume of
10 GB size and read the files under the read-only integrity
protected rootfs of 4 GB respectively. We have configured
dm-crypt to use aes-xts-plain64 for the cipher and pbkdf2
with 1000 iterations for its derivation. For dm-verity, the
chosen hash algorithm is sha256 with a data and hash block
size of 4 kB.

The write and read requests are performed via the dd utility
with a block size of 4 kB and a total size of up to 256 MB,
because for both of our use cases, namely the Boundary
Node and the Cryptpad Server, the average file being read
or written does not surpass this size. For read requests the
minimum overhead introduced by dm-crypt (Fig. 5) is 1.99%
and the average is 26.32%, while for write requests those are
0.35% and 12.03% respectively. Considering the evaluation
of the integrity-protected volume (Fig. 6), we read the files
under the BN’s rootfs where the biggest file has a size of
94.8 MB and the read latency presents on average a 9.35×
slowdown.

Figure 6: Dm-verity read latency.

Table 2: SSL certificate generation and distribution
Latency (ms)

Attestation evidence retrieval 17
Attestation evidence validation 13
SSL certificate generation 2996
SSL certificate distribution 15

6.3.2 SSL certificate operations latency. Regarding the im-
pact of the SSL certificate generation and distribution (see
Table 2), we measured the time that takes the AMD-SP
to retrieve the attestation evidence from one node – which
comprises of the CSR reflecting its key and the attestation
report containing the hash of the CSR–, validate the report’s
signature, certificate chain, measurement and hash, as well
as the time to create the SSL certificate with certbot and
distribute it to the node. This happens typically once every
90 days when the SSL certificate needs to be renewed and
redistributed, so it doesn’t affect the runtime performance.

6.4 Client side impact
To determine the impact of performing remote attestation
and constantly securing the connection of a web browser we
evaluate a mobile user scenario. The client-side consisted of
a notebook (Apple M2, 16 GB RAM, macOS Ventura 13.3.1)
connected via wireless to the Revelio-protected Boundary
Node. An instance of Firefox (13.0.2) equipped with and
without our web extension repeatedly accessed a minimal
web page (see Table 3) using Selenium (4.12). The base net-
work latency accounted for 5.2 ms and the plain access of
the web page with 100.9 ms. In a fresh web session, remotely
attesting a Revelio VM takes (including accessing the web
page) 778.9 ms on average. Thereby contacting the AMD key
server for the VCEK consumes most of the time (427.3 ms).
Since the VCEK is the same until the SEV-SNP firmware is
updated, it can be cached, and this speeds up the access of

Trustworthy confidential virtual machines for the masses

Table 3: Browser-based remote attestation and validation
Latency (ms)

Network latency 5.2
Plain HTTP GET 100.9
HTTP GET and remote attestation 778.9
HTTP GET and conn. validation 115.0

websites that are frequently visited. Once the remote attesta-
tion succeeds, it has to be monitored that the connection is
not reset and replaced with a new certificate. This requires
for each request to query the browser from the web extension
for the connection context. Accessing the test web page while
a remote attestation has already been performed requires
on average 115.0 ms. If the browser itself would be modi-
fied this overhead could be eliminated, as a re-establishment
of a connection could simply trigger a re-validation in this
situation.

7 RELATED WORK
There has been extensive research regarding remote attes-
tation of TEEs [4, 12, 15, 19, 20, 31, 33, 41] and how it
can be used to establish trust in software components and
security architectures. Ryoan [22] and TrustJS [18] feature a
two-way sandbox, protected inside SGX enclaves, enabling
end-users to run their workloads on untrusted systems and
attest the execution environment. Due to the construction
of the double-sided sandbox, the execution results are only
exposed to the end-user. So the data of users stay confiden-
tial to the service provider. Revelio presents a more flexible
approach for VM-based TEEs giving the means to end-users
to validate a utilised service including its configuration to the
extent of interest without depending on the cloud or service
providers.

Remote attestation via TLS [26] and RATLS [40] aim to
seamlessly combine remote attestation with the TLS protocol.
Both approaches could be integrated with Revelio. Narayanan
et al. [32] showcase an implementation of a vTPM based on
which they perform remote attestation of SEV-SNP VMs.
This approach could also be applied to Revelio’s architecture
and enable us to have a runtime monitoring system leveraging
the vTPM. Johnson et al. [25] guarantee the confidential
execution of containerized workloads by introducing and
attesting execution policies which are essentially proof over
all the future states of the containers, while Pontes et al. [34]
implement a SPIRE plugin to provision verifiable identities
to SEV-SNP VMs. Revelio, on the other hand, enables end-
users to seamlessly attest a web-facing service, before passing
any sensitive data to it, via a web extension that verifies its
cryptographic measurement over its loading-time state.

8 CONCLUSION
In this work, we introduced Revelio, a novel security archi-
tecture that enables end-users to attest web-based services
that run on hardware-protected VM-based TEEs from their

browsers and to shield their sensitive data from a malevolent
cloud or service provider. With a small performance cost, our
system can be applied in a wide range of use case scenar-
ios, enhancing the security guarantees offered by confidential
computing and allowing end-users to reap the benefits.

ACKNOWLEDGMENTS
We thank the anonymous reviewers and our shepherd Redha
Gouicem for their valuable feedback and Ines Messadi for
providing comments on a draft of the paper. This work
was supported in part by Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) as part of the Cluster
of Excellence Centre for Tactile Internet with Human-in-the-
Loop (CeTI) – Project ID 390696704, the CRC/Transregio
96 Thermo-energetic design of machine tools – Project ID
174223256, and the CRC/Transregio 248 Foundations of Per-
spicuous Software Systems (CPEC) – Project ID 389792660.
The authors also acknowledge the financial support by the
Federal Ministry of Education and Research of Germany in
the programm of "Souverän. Digital. Vernetzt.", the joint
project 6G-life – Project ID 16KISK001K, and the European
Union Horizon Europe research and innovation programm
under grant agreements 101016577 (AI-SPRINT), 101092644
(NEARDATA) and 101092646 (CLOUDSKIN).

REFERENCES
[1] Josh Aas, Richard Barnes, Benton Case, Zakir Durumeric, Pe-

ter Eckersley, Alan Flores-López, J. Alex Halderman, Jacob
Hoffman-Andrews, James Kasten, Eric Rescorla, Seth Schoen,
and Brad Warren. 2019. Let’s Encrypt: An Automated Certifi-
cate Authority to Encrypt the Entire Web. In Proceedings of the
2019 ACM SIGSAC Conference on Computer and Communica-
tions Security (London, United Kingdom) (CCS ’19). Associa-
tion for Computing Machinery, New York, NY, USA, 2473–2487.
https://doi.org/10.1145/3319535.3363192

[2] Advanced Micro Devices, Inc. 2020. AMD SEV-SNP: Strength-
ening VM Isolation with Integrity Protection and More.
https://www.amd.com/system/files/TechDocs/SEV-SNP-
strengthening-vm-isolation-with-integrity-protection-and-
more.pdf.

[3] M. R. Albrecht, S. Celi, B. Dowling, and D. Jones. 2023.
Practically-exploitable Cryptographic Vulnerabilities in Matrix.
In 2023 2023 IEEE Symposium on Security and Privacy (SP)
(SP). IEEE Computer Society, Los Alamitos, CA, USA, 1419–
1436. https://doi.org/10.1109/SP46215.2023.00081

[4] Pedro Antonino, Ante Derek, and Wojciech Aleksander Woloszyn.
2023. Flexible remote attestation of pre-SNP SEV VMs using
SGX enclaves. arXiv:2305.09351 [cs.CR]

[5] Arm Ltd. 2023. Introducing Arm Confidential Compute Archi-
tecture (Version 1). https://developer.arm.com/documentation/
den0125/0100.

[6] Knut Blind, Sivan Pätsch, Sachiko Muto, Mirko Böhm, Torben
Schubert, Paula Grzegorzewska, and Andrew Katz. 2021. The
impact of Open Source Software and Hardware on technological
independence, competitiveness and innovation in the EU economy.
https://doi.org/10.2759/430161

[7] Mark R. Brown. 1996. FastCGI: A high-performance gateway
interface. In Fifth International World Wide Web Conference,
Vol. 6.

[8] Milan Broz. 2022. DMVerity. https://gitlab.com/cryptsetup/
cryptsetup/-/wikis/DMVerity

[9] Milan Broz. 2023. Cryptsetup and LUKS - open-source disk
encryption. https://gitlab.com/cryptsetup/cryptsetup

[10] Bundesamt für Sicherheit in der Informationstechnik
2020. Security requirements for eHealth applications.
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/
Publications/TechGuidelines/TR03161/TR-03161.pdf

https://doi.org/10.1145/3319535.3363192
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://doi.org/10.1109/SP46215.2023.00081
https://arxiv.org/abs/2305.09351
https://developer.arm.com/documentation/den0125/0100
https://developer.arm.com/documentation/den0125/0100
https://doi.org/10.2759/430161
https://gitlab.com/cryptsetup/cryptsetup/-/wikis/DMVerity
https://gitlab.com/cryptsetup/cryptsetup/-/wikis/DMVerity
https://gitlab.com/cryptsetup/cryptsetup
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TR03161/TR-03161.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TR03161/TR-03161.pdf

Anna Galanou, Khushboo Bindlish, Luca Preibsch, Yvonne-Anne Pignolet, Christof Fetzer, and Rüdiger Kapitza

[11] TODO Group (European Chapter). 2020. Why open
source software matters to your enterprise. https:
//project.linuxfoundation.org/hubfs/Reports/Why-open-source-
software-matters-to-your-enterprise_090820.pdf?hsLang=en

[12] Guoxing Chen, Yinqian Zhang, and Ten-Hwang Lai. 2019.
OPERA: Open Remote Attestation for Intel’s Secure Enclaves. In
Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security (London, United Kingdom) (CCS
’19). Association for Computing Machinery, New York, NY, USA,
2317–2331. https://doi.org/10.1145/3319535.3354220

[13] CVE-2017-1000051 2017. Cross-site scripting (XSS) vulnerability
in pad export in XWiki labs CryptPad before 1.1.1 allows remote
attackers to inject arbitrary web script or HTML via the pad
content. National Vulnerability Database. https://nvd.nist.gov/
vuln/detail/CVE-2017-1000051

[14] Caleb James Delisle. 2017. Cryptpad Blog:Security growing pains.
https://blog.cryptpad.org/2017/03/06/Security-growing-pains/

[15] Karim Eldefrawy, Norrathep Rattanavipanon, and Gene Tsudik.
2017. HYDRA: Hybrid Design for Remote Attestation (Using a
Formally Verified Microkernel). In WiSec ’17: Proceedings of the
10th ACM Conference on Security and Privacy in Wireless and
Mobile Networks (Boston, Massachusetts) (WiSec ’17). Associ-
ation for Computing Machinery, New York, NY, USA, 99–110.
https://doi.org/10.1145/3098243.3098261

[16] Charles Fisher. 2017. Linux filesystem events with inotify. Linux
Journal 2017, 280 (2017), 2.

[17] The Matrix.org Foundation. 2023. Matrix Specification. https:
//spec.matrix.org/latest/

[18] David Goltzsche, Colin Wulf, Divya Muthukumaran, Konrad
Rieck, Peter Pietzuch, and Rüdiger Kapitza. 2017. TrustJS:
Trusted Client-Side Execution of JavaScript. In Proceedings of
the 10th European Workshop on Systems Security (Belgrade,
Serbia) (EuroSec’17). Association for Computing Machinery, New
York, NY, USA, Article 7, 6 pages. https://doi.org/10.1145/
3065913.3065917

[19] F. Gregor, W. Ozga, S. Vaucher, R. Pires, D. Le Quoc, S. Ar-
nautov, A. Martin, V. Schiavoni, P. Felber, and C. Fetzer. 2020.
Trust Management as a Service: Enabling Trusted Execution
in the Face of Byzantine Stakeholders. In 2020 50th Annual
IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN). IEEE Computer Society, Los Alamitos, CA,
USA, 502–514. https://doi.org/10.1109/DSN48063.2020.00063

[20] Sarah C. Helble, Ian D. Kretz, Peter A. Loscocco, John D. Rams-
dell, Paul D. Rowe, and Perry Alexander. 2021. Flexible Mecha-
nisms for Remote Attestation. ACM Trans. Priv. Secur. 24, 4,
Article 29 (sep 2021), 23 pages. https://doi.org/10.1145/3470535

[21] Lawrence E. Hughes. 2022. PKCS #10 Certificate-Signing Re-
quest (CSR). Apress, Berkeley, CA, 75–91. https://doi.org/10.
1007/978-1-4842-7486-6_6

[22] Tyler Hunt, Zhiting Zhu, Yuanzhong Xu, Simon Peter, and
Emmett Witchel. 2016. Ryoan: A Distributed Sandbox for
Untrusted Computation on Secret Data. In 12th USENIX
Symposium on Operating Systems Design and Implementa-
tion (OSDI 16). USENIX Association, Savannah, GA, 533–
549. https://www.usenix.org/conference/osdi16/technical-
sessions/presentation/hunt

[23] Intel Corp. 2021. Intel Trust Domain Extensions. Technical Re-
port 1.0. Intel Corp. https://cdrdv2.intel.com/v1/dl/getContent/
690419.

[24] Internet Security Research Group (ISRG). 2021. Rate Limits.
https://letsencrypt.org/docs/rate-limits

[25] Matthew A. Johnson, Stavros Volos, Ken Gordon, Sean T. Allen,
Christoph M. Wintersteiger, Sylvan Clebsch, John Starks, and
Manuel Costa. 2023. Parma: Confidential Containers via Attested
Execution Policies. arXiv:2302.03976 [cs.CR]

[26] Thomas Knauth, Michael Steiner, Somnath Chakrabarti, Li Lei,
Cedric Xing, and Mona Vij. 2018. Integrating Remote Attestation
with Transport Layer Security. https://doi.org/10.48550/ARXIV.
1801.05863

[27] Martijn Koster, Gary Illyes, Henner Zeller, and Lizzi Sassman.
2022. Robots Exclusion Protocol. RFC 9309. https://doi.org/
10.17487/RFC9309

[28] Mengyuan Li, Yinqian Zhang, Huibo Wang, Kang Li, and Yue-
qiang Cheng. 2021. CIPHERLEAKS: Breaking Constant-time
Cryptography on AMD SEV via the Ciphertext Side Chan-
nel. In 30th USENIX Security Symposium (USENIX Security
21). USENIX Association, 717–732. https://www.usenix.org/
conference/usenixsecurity21/presentation/li-mengyuan

[29] Aaron MacSween, Caleb James Delisle, Paul Libbrecht, and Yann
Flory. 2018. Private Document Editing with Some Trust. In
Proceedings of the ACM Symposium on Document Engineer-
ing 2018 (Halifax, NS, Canada) (DocEng ’18). Association for
Computing Machinery, New York, NY, USA, Article 29, 10 pages.
https://doi.org/10.1145/3209280.3209535

[30] Dov Murik and Hubertus Franke. 2021. Securing Linux
VM boot with AMD SEV measurement. https:
//static.sched.com/hosted_files/kvmforum2021/ed/securing-
linux-vm-boot-with-amd-sev-measurement.pdf.

[31] Jämes Ménétrey, Marcelo Pasin, Pascal Felber, and Valerio Schi-
avoni. 2022. WaTZ: A Trusted WebAssembly Runtime Environ-
ment with Remote Attestation for TrustZone. In 2022 IEEE 42nd
International Conference on Distributed Computing Systems
(ICDCS). 1177–1189. https://doi.org/10.1109/ICDCS54860.2022.
00116

[32] Vikram Narayanan, Claudio Carvalho, Angelo Ruocco, Gheorghe
Almási, James Bottomley, Mengmei Ye, Tobin Feldman-Fitzthum,
Daniele Buono, Hubertus Franke, and Anton Burtsev. 2023. Re-
mote attestation of SEV-SNP confidential VMs using e-vTPMs.
arXiv:2303.16463 [cs.CR]

[33] Simon Ott, Monika Kamhuber, Joana Pecholt, and Sascha Wessel.
2023. Universal Remote Attestation for Cloud and Edge Plat-
forms. In Proceedings of the 18th International Conference on
Availability, Reliability and Security (Benevento, Italy) (ARES
’23). Association for Computing Machinery, New York, NY, USA,
Article 12, 11 pages. https://doi.org/10.1145/3600160.3600171

[34] Davi Pontes, Fernando Silva, Eduardo Falcão, and Andrey Brito.
2023. Attesting AMD SEV-SNP Virtual Machines with SPIRE.
In Proceedings of the 12th Latin-American Symposium on De-
pendable and Secure Computing (La Paz, Bolivia) (LADC ’23).
Association for Computing Machinery, New York, NY, USA, 1–10.
https://doi.org/10.1145/3615366.3615419

[35] Bazel Project. 2023. Hermeticity. https://bazel.build/basics/
hermeticity

[36] Yong Shi, Mingzhi Wen, Filipe R. Cogo, Boyuan Chen, and
Zhen Ming Jiang. 2022. An Experience Report on Producing
Verifiable Builds for Large-Scale Commercial Systems. IEEE
Transactions on Software Engineering 48, 9 (2022), 3361–3377.
https://doi.org/10.1109/TSE.2021.3092692

[37] DFINITY Team. 2022. The Internet Computer for Geeks. https:
//internetcomputer.org/whitepaper.pdf

[38] Linux Foundation Research Team. 2022. Addressing Cy-
bersecurity Challenges in open source Software. https:
//8112310.fs1.hubspotusercontent-na1.net/hubfs/8112310/LF%
20Research/Addressing%20Cybersecurity%20Challenges%20in%
20Open%20Source%20Software%20-%20Report.pdf

[39] Christian Tiefenau, Emanuel von Zezschwitz, Maximilian Häring,
Katharina Krombholz, and Matthew Smith. 2019. A Usability
Evaluation of Let’s Encrypt and Certbot: Usable Security Done
Right. In Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security (London, United
Kingdom) (CCS ’19). Association for Computing Machinery, New
York, NY, USA, 1971–1988. https://doi.org/10.1145/3319535.
3363220

[40] Robert Walther, Carsten Weinhold, and Michael Roitzsch. 2022.
RATLS: Integrating Transport Layer Security With Remote
Attestation. In Applied Cryptography and Network Security
Workshops: ACNS 2022 Satellite Workshops, AIBlock, AIHWS,
AIoTS, CIMSS, Cloud S&P, SCI, SecMT, SiMLA, Rome, Italy,
June 20–23, 2022, Proceedings (Rome, Italy). Springer-Verlag,
Berlin, Heidelberg, 361–379. https://doi.org/10.1007/978-3-031-
16815-4_20

[41] Sachiko Yoshihama, Tim Ebringer, Megumi Nakamura, Seiji
Munetoh, and Hiroshi Maruyama. 2005. WS-Attestation: Efficient
and Fine-Grained Remote Attestation on Web Services. In Pro-
ceedings of the IEEE International Conference on Web Services
(ICWS ’05). 743–750. https://doi.org/10.1109/ICWS.2005.136

https://project.linuxfoundation.org/hubfs/Reports/Why-open-source-software-matters-to-your-enterprise_090820.pdf?hsLang=en
https://project.linuxfoundation.org/hubfs/Reports/Why-open-source-software-matters-to-your-enterprise_090820.pdf?hsLang=en
https://project.linuxfoundation.org/hubfs/Reports/Why-open-source-software-matters-to-your-enterprise_090820.pdf?hsLang=en
https://doi.org/10.1145/3319535.3354220
https://nvd.nist.gov/vuln/detail/CVE-2017-1000051
https://nvd.nist.gov/vuln/detail/CVE-2017-1000051
https://blog.cryptpad.org/2017/03/06/Security-growing-pains/
https://doi.org/10.1145/3098243.3098261
https://spec.matrix.org/latest/
https://spec.matrix.org/latest/
https://doi.org/10.1145/3065913.3065917
https://doi.org/10.1145/3065913.3065917
https://doi.org/10.1109/DSN48063.2020.00063
https://doi.org/10.1145/3470535
https://doi.org/10.1007/978-1-4842-7486-6_6
https://doi.org/10.1007/978-1-4842-7486-6_6
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/hunt
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/hunt
https://cdrdv2.intel.com/v1/dl/getContent/690419
https://cdrdv2.intel.com/v1/dl/getContent/690419
https://letsencrypt.org/docs/rate-limits
https://arxiv.org/abs/2302.03976
https://doi.org/10.48550/ARXIV.1801.05863
https://doi.org/10.48550/ARXIV.1801.05863
https://doi.org/10.17487/RFC9309
https://doi.org/10.17487/RFC9309
https://www.usenix.org/conference/usenixsecurity21/presentation/li-mengyuan
https://www.usenix.org/conference/usenixsecurity21/presentation/li-mengyuan
https://doi.org/10.1145/3209280.3209535
https://static.sched.com/hosted_files/kvmforum2021/ed/securing-linux-vm-boot-with-amd-sev-measurement.pdf
https://static.sched.com/hosted_files/kvmforum2021/ed/securing-linux-vm-boot-with-amd-sev-measurement.pdf
https://static.sched.com/hosted_files/kvmforum2021/ed/securing-linux-vm-boot-with-amd-sev-measurement.pdf
https://doi.org/10.1109/ICDCS54860.2022.00116
https://doi.org/10.1109/ICDCS54860.2022.00116
https://arxiv.org/abs/2303.16463
https://doi.org/10.1145/3600160.3600171
https://doi.org/10.1145/3615366.3615419
https://bazel.build/basics/hermeticity
https://bazel.build/basics/hermeticity
https://doi.org/10.1109/TSE.2021.3092692
https://internetcomputer.org/whitepaper.pdf
https://internetcomputer.org/whitepaper.pdf
https://8112310.fs1.hubspotusercontent-na1.net/hubfs/8112310/LF%20Research/Addressing%20Cybersecurity%20Challenges%20in%20Open%20Source%20Software%20-%20Report.pdf
https://8112310.fs1.hubspotusercontent-na1.net/hubfs/8112310/LF%20Research/Addressing%20Cybersecurity%20Challenges%20in%20Open%20Source%20Software%20-%20Report.pdf
https://8112310.fs1.hubspotusercontent-na1.net/hubfs/8112310/LF%20Research/Addressing%20Cybersecurity%20Challenges%20in%20Open%20Source%20Software%20-%20Report.pdf
https://8112310.fs1.hubspotusercontent-na1.net/hubfs/8112310/LF%20Research/Addressing%20Cybersecurity%20Challenges%20in%20Open%20Source%20Software%20-%20Report.pdf
https://doi.org/10.1145/3319535.3363220
https://doi.org/10.1145/3319535.3363220
https://doi.org/10.1007/978-3-031-16815-4_20
https://doi.org/10.1007/978-3-031-16815-4_20
https://doi.org/10.1109/ICWS.2005.136

	Abstract
	1 Introduction
	2 Background
	2.1 AMD SEV Technology
	2.2 Certificate generation and Certificate Authorities

	3 Revelio's Design
	3.1 Objective
	3.2 Threat model
	3.3 Requirements for Revelio
	3.4 Revelio in a nutshell

	4 Use cases of Revelio
	4.1 End-to-end user-encrypted cloud collaboration suite with hardware-based trust
	4.2 Protocol translation proxy: a use case for elevated security

	5 Implementation details of Revelio
	5.1 Image provisioning
	5.2 Bootstrapping
	5.3 Normal operation

	6 Evaluation
	6.1 Security Analysis
	6.2 System performance
	6.3 Booting latency
	6.4 Client side impact

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

