
1. Introduction

Systems Modeling and H.D. Schwetman
Performance Evaluation Editor

Analysis of Locking
Policies in Database
Management Systems
D. Pot ie r a n d Ph. L e b l a n c
I N R I A , F r a n c e

Consistency control has to be enforced in database
management systems (DBMS) where several
transactions may concurrently access the database.
This control is usually achieved by dividing the
database into locking units or granules, and by
specifying a locking policy which ensures integrity of
the information. However, a drawback of integrity
enforcement through locking policies is the degradation
of the global system performance. This is mainly due to
the restriction imposed by the locking policies to the
access of transactions to the database, and to the
overheads involved with the management of locks. A
framework for the quantitative analysis of the impact of
these factors on the performance of DBMS is
presented in this paper. In a first step, the main factors
which determine the behavior of these systems are
pointed out and analyzed independently. The results
hereby obtained are aggregated in a second step to
yield a global performance evaluation. Throughout this
hierarchical modeling approach various analytical
techniques are used and the results are illustrated by
numerical examples. The paper concludes by pointing
out the final results' sensitivity to some basic
assumptions concerning transaction behavior and the
need for more experimental studies in this area.

Key Words and Phrases: consistency, concurrency,
database management, performance modeling, queueing
models, queueing networks

CR Categories: 3.50, 4.33, 8.1

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

Authors' present address: D. Potier and Ph. Leblanc, INRIA,
Domaine de Voluceau, Roquencourt, B.P. 105, 78150 Chesnay, France.
© 1980 ACM 0001-0782/80/1000-0584 $00.75.

584

Quantitative analysis of locking mechanisms and of
their impact on the performance of transaction systems
have received relatively little attention [2, 9, 10|. Al-
though numerous concurrency mechanisms have been
proposed and implemented, there is an obvious lack of
experimental as well as analytical studies of their behav-
ior and their influence on system performance. The
present state of the art in this area can be compared to
the situation in the late '60s when the first virtual memory
systems were being implemented: At that time the now
classical concepts of program behavior (locality of ref-
erences, working-sets, memory management policy, etc.)
were only emerging and it took several years to fully
understand and master them.

In order to perform a quantitative analysis of trans-
action systems of the performance, it is essential to point
out the factors that determine the behavior of these
systems. Three main factors may be identified:

1. Transaction Behavior. It may be described by the
pattern of references of the transactions to the subsets
(logical or physical) of the database and by the way the
central processing unit (CPU) and input/output (I/O)
resources of the system are used by the transactions.
Given a locking mechanism, the reference pattern is
obviously a determining factor: Depending on the way
references are distributed over the database, the locking
mechanisms will have a more or less drastic effect.

However, as noted above, little experimental evi-
dence on reference patterns of transactions is available.
In particular, the existence of properties of sequentiality
or locality in the access pattern is still a controversial
issue [11, 12, 13, 15]. Faced with this situation, any
analysis relies upon rather strong assumptions. For in-
stance, in the analysis of locking granularity presented
in [9], Ries and Stonebraker characterize the behavior of
a transaction by the number of entities referenced, and
assume that the number of granules locked by a trans-
action is proportional to the number of entities refer-
enced.

In our analysis, we shall use a somewhat more so-
phisticated probabilistic model of transaction behavior
although it also makes a strong assumption on the dis-
tribution of references over the database.

2. Locking Scheme. Locking schemes may be physi-
cal or logical depending on whether the units of locking
are physical or logical subsets of the databases. We
restrict our attention in this paper to physical locking. A
physical locking mechanism is characterized by three
main factors:

(a) The Lock Acquisition Policy (LAP) which spec-
ifies at which instant of the transaction lifetime locks are
requested. LAPs are basically split into two categories:
static LAPs (SLAP) and dynamic LAPs (DLAP). Under
SLAP all the locks needed for executing a transaction
are requested at the initiation of the transaction. The

Communications October 1980
of Volume 23
the ACM Number 10

http://crossmark.crossref.org/dialog/?doi=10.1145%2F359015.359021&domain=pdf&date_stamp=1980-10-01

transaction is executed only if all its requested locks are
granted; otherwise it is blocked. Under a DLAP, locks
are requested by a transaction on demand, whenever a
transaction references a granule that is not already
locked.

(b) The Lock Release Policy (LRP) which specifies
when the locks acquired by a transaction are released. In
order to maintain the consistency of the database a static
LRP (SLRP) has to be used, i.e., a LRP where a trans-
action releases its locks only when its execution has been
completed.

Following [9], the analysis presented in this paper is
carried out by assuming that the locking policies used
are SLAP and SLRP. The main advantages of this com-
bination of LAP and LRP is that deadlocks are avoided
and that, from the point of view of the analyst, its study
is easier. However, it should be kept in mind that locks'
mean lifetimes are longer under a SLAP than under a
DLAP, and hence that a SLAP restricts the transaction's
accesses to the database more severely than a DLAP.

(c) The size of the physical locking units or granules
(assuming that all locking units have the same size).
Given a LAP and a LRP, the remaining design param-
eter is the granule size. Obviously, in theory, the smaller
the granules, the smaller the constraints imposed by the
locking mechanism. However, at this point, secondary
factors such as locking overheads have to be taken into
account, since their influence may become important
when the number of granules is large.

3. The Multiprogramming Environment. The multi-
programming environment describes the resources
(CPU, I/O) that the transaction system uses for the
actual processing of transactions. These resources, their
characteristics and organization, have an important im-
pact on the global performance. Of the three factors we
have identified, the latter is also presently the best un-
derstood and mastered. Within the past ten years much
experimental and analytical effort has been devoted to
this area [4, 6], and the appropriate methods and tools
for the analysis of the multiprogramming environment
do exist.

Once these factors have been identified, we must
select an approach to analyze them and quantify their
influence. In [7, 9] simulation models are used. Although
this technique has the advantage of imposing no restric-
tion on the complexity of the analyzed mechanisms, it
cannot always provide clear insight into and an under-
standing of the system performance and the role of key
assumptions.

Our approach in this paper is based on hierarchical
analytical modeling [3]. The basic idea underlying this
approach is that in a first step each critical factor should
be analyzed independently, clearly stating assumptions
and their consequences; the results hereby obtained are
aggregated in a second step to yield a global performance
evaluation and final conclusions.

A broad presentation of this approach is given in
Section 2. Section 3 is devoted to the model of transaction

Fig. 1.

3

Fig. 2.
TERMINALS

0
I

I

arrival]

b

locks
denied

l o cks o ran ted

i I
I i _ ,,o

I.

L . ~ . TRANSACTION SYSteM

i
I
I

Ii
m . ~ , a

behavior and the analysis of the locking mechanism. The
multiprogramming environment is studied in Section 4.
Final results on the global performance are presented
and discussed in Section 5. Conclusions are given in
Section 6.

2. Presentation of the Approach

The transaction system is analyzed using a hierarchi-
cal modeling approach. Three levels of modeling are
considered, as represented in Figure 1.

At level 1, the different stages transactions go through
during their lifetimes are described. The model used at
this level is represented in Figure 2. Transactions are

Communications October 1980
of Volume 23
the ACM Number 10

issued from a set of interactive terminals. Upon arrival
of a new transaction in the system, all the locks needed
for the complete execution of the transaction are re-
quested. Lock requests are processed by the CPU and
I /O resources of the system. During the "locks request"
phase the transaction is in the state REQUEST. Upon
completion of this phase, locks requested are either
granted or denied. I f locks are granted, the transaction
enters the state ACTIVE and it is executed by the CPU
and I /O resources of the system until completion. It then
returns to the terminal that has issued it. If locks are
denied, the transaction is sent into the BLOCKED queue
and enters the state BLOCKED.

BLOCKED transactions are removed from the
BLOCKED queue in order to enter a new "locks re-
quest" phase when an ACTIVE transaction leaves the
system and releases its locks. The maximum number of
BLOCKED transactions removed from the BLOCKED
queue at each departure is a control parameter of the
transactions' scheduling policy.

The organization and operations of the CPU and
I /O resources of the system are described and analyzed
at level 2. These resources are used by the transactions
when they are either requesting locks (state REQUEST)
or being executed (state ACTIVE). The analysis of level
2 will be conducted to derive the processing rates of
ACTIVE transactions and REQUEST transactions de-
pending on the number of these transactions sharing the
CPU and I /O resources.

The behavior of transactions during their locks re-
quest phase will be analyzed at modeling level 3. Given
a simple model of the transaction references to the
entities of the database and the number of granules in
the database, we will derive the probability distribution
of the number of blocked granules depending on the
number of ACTIVE transactions. These results will be
used to obtain the probability that locks are granted to
a transaction at the end of its locks request phase de-
pending on the number of ACTIVE transactions.

The three levels of modeling will be presented and
analyzed in the following order: level 3, level 2, and
level 1.

3. Analysis of Transaction Behavior and Locking
Mechanisms

3.1 The Physical Database
The physical database consists of cells that represent

the elementary physical unit of storage (this will be, for
example, a disk sector) and it is divided into m granules,
where the granule is the locking unit.

3.2 Transaction Behavior
The behavior of a transaction consists of a sequence

of accesses to the cells of the database. This sequence is
defined by the following assumptions:

(1) a transaction makes n accesses during its execution;
(2) accesses are uniformly distributed over the cells of

the database;
(3) accesses are independent.

Given these assumptions we shall derive the proba-
bility Pk(l), 1 = 1 m, that l granules are locked when
k transactions are simultaneously active, and the proba-
bility qk that a new transaction enters the set of active
transactions when k transactions are already active.
These results will then be illustrated by numerical ex-
amples.

3.3 Derivation of Pk(1) and qk
Let x (p) , p = 1 m be the probability that the

number of distinct granules accessed by a transaction is
p, given that the transaction makes n accesses. The
derivation of x(p) is similar to a standard combinatoric
problem: given n like objects and rn unlike buckets, what
is the probability of leaving p buckets nonempty after
having uniformly distributed the objects into the m
buckets? Applying standard results of combinatorics (see
for instance [8, pp. 103]), we then have

x (p) = (p) (; - l l) / (m + n - 1) (1)

and, obviously,

P l (t) = x (t) , t = 1 m . (2)

In order to derive Pk(l), we write the following
recurrence formula between Pk(l) and Pk-l(l),

1 , , - 1 X i (l - i)
ek(1) --,,-1 X ek-l(i)" ,,-i (3)

ek-l(j) i : 1 X Xi(j)
j = l j = l

where

Xi(p) = x (p) (m ; i) / (p) (4)

= (m ; i) (n p - l) / (m + n n - 1).

In eq. (4), Xi(p) is defined as the probability that a
transaction is grantedp granules given that i granules are
already locked. The terms in the denominator of eq. (3)
are normalization factors: Since the kth transaction can
become active only if there are less than m granules
locked by the (k - 1)st transactions, the probabilities
pk-l(i), i = 1 m - 1 are normalized by the sum
~'_-Slpk_l(j); in the same fashion, given i, the maximum
number of new granules locked by the kth transaction is
m - i, so that the probabilities Xi(p) in eq. (3) are

X j=l X~(j). weighted by ,,-i
From Pk(l), we can derive the mean number ~ of

granules locked when k transactions are active
m

= Y, i.Pk(i) (5)
1=1

and we straightforwardly obtain the probability qk that

586 Communications October 1980
of Volume 23
the ACM Number 10

Table I. q,.

n m

2 2
4 2
8 2

16 2
32 2

2 4
4 4
8 4

16 4
32 4

2 8
4 8
8 8

16 8
32 8

2 16
4 16
8 16

16 16
32 16

2 32
4 32
8 32

16 32
32 32

2 64
4 64
8 64

16 64
32 64

2 128
4 128
8 128

16 128
32 128

2 256
4 256
8 256

16 256
32 256

k = l k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8

.222 .000 .000

.080 .000 .000

.025 .000 .000

.007 .000 .000

.002 .000 .000

.000 .000 .000 .000 .000

.000 .000 .000 .000 .000

.000 .000 .000 .000 .000

.000 .000 .000 .000 .000

.000 .000 .000 .000 .000

.420 .120 .017
• 132 .011 .001
.024 .001 .000
.003 .000 .000
.000 .000 .000

.000 .000 .000 .000 .000

.000 .000 .000 .000 .000

.000 .009 .000 .000 .000

.000 .000 .000 .000 .000

.000 .000 .000 .000 .000

.627 .349 .162

.243 .042 .005

.033 .001 .000

.001 .000 .000

.000 .000 .000

.056 .013 .003 .001 .000

.001 .000 .000 .000 .000

.000 .000 .000 .000 .000

.000 .000 .000 .000 .000

.000 .000 .000 .000 .000

.785 .598 .437

.429 .156 .045

.076 .004 .000

.002 .000 .000

.000 .000 .000

.304 .197 .115 .058 .023

.010 .002 .000 .000 .000

.000 .000 .000 .000 .000

.000 .000 .000 .000 .000

.000 .000 .000 .000 .000

.884 .776 .675

.631 .377 .211

.200 .030 .003

.007 .000 .000

.000 .000 .000

• 581 .494 .415 .343 .278
.109 .050 .020 .007 .002
.000 .000 .000 .000 .000
.000 .000 .000 .000 .000
.000 .000 .000 .000 .000

.940 .882 .825

.786 .610 .465

.407 .150 .049

.043 .001 .000

.000 .000 .000

.771 .718 •668 •619 .572

.348 •255 .182 •127 .085

.014 .003 .001 .000 .000

.000 .000 .000 .000 .000

.000 .000 .000 .000 .000

.969 .939 .909

.885 •780 .684

.622 .376 .220
• ! 69 .024 .003
.002 .000 .000

.880 .852 .823 .796 .768

.598 .520 .451 •388 .332

.125 .068 .035 .017 .008

.000 .000 .000 .000 .000

.000 .000 .000 .000 .000

.985 .969 .954

.940 •883 .828

.784 •610 .471

.389 .143 .050

.029 .001 .000

• 939 .924 .909 .894 .880
.776 .727 .680 .635 .592
• 360 .273 .205 .153 .112
.016 .005 .001 .000 .000
.000 .000 .000 .000 .000

a new transaction is granted the locks requested when k
transactions are already active:

m - 1 m - i

qk = ~ P,(i) ~. Xi(p). (6)
i = l p ~ l

3.4 Discussions and Numerical Examples
The results obtained in the previous section may help

us gain a first insight into the effect of locking on the
operation of the transaction system. The mean number

of locked granules and the probability qk give clear
indications of the maximum possible number of simul-
taneously active transactions, and of the chance that a
new transaction has its locks granted.

These indications will have to be analyzed and inter-
preted with respect to the model of transaction behavior
that has been used. Recall that the model assumes that,
for a given transaction, its accesses to the cells of the
database are uniformly distributed over the whole set of
cells: In other words, we assume that transaction refer-
ences exhibit no locality. We may thus expect with this

587

model of transactions behavior the effect of locking to
be severe.

Those observations are illustrated by the numerical
results presented in Tables I and II. These results have
been obtained for n = 2 i, i = 1, 5, m = 2J, j = 1, 8 and
k ranging from 1 to 8. Table I and Table II, respectively,
give ~ and qk. Figures 3(a) and 3(b) depict the variation
of ~ as a function of m with n = 4 and n = 16.

The importance of the no-locality assumption is re-
vealed by the influence of the number n of accesses made
by a transaction on the mean number of blocked granules
[k. Transactions with a large number of accesses to the
database very rapidly tend to lock most of the granules
and to prevent activation of new transactions. On the
other hand, this effect is partly alleviated by an increase
in the number of granules. However, as we shall see in
the following sections, the increase in the number of
granules causes an increase of the CPU and I /O activity
devoted to locks requests, which is detrimental to the
processing rate of active transactions.

Communications October 1980
of Volume 23
the ACM Number 10

Table II. /k.

n m k = l k f f i2 k = 3 k f f i 4 k = 5 k = 6 k = 7 k - - 8

2 2 1.333
4 2 1.600
8 2 1.778

16 2 1.882
32 2 1.939

2 4 1.600 3.000 3.833
4 4 2.286 3.671 3.969
8 4 2.909 3.910 3.995

16 4 3.368 3.977 3.999
32 4 3.657 3.994 4.000

2 8 1.778 3.500 5.132
4 8 2.909 5.413 7.194
8 8 4.267 7.003 7.885

16 8 5.565 7.740 7.985
32 8 6.564 7.943 7.998

2 16 1.882 3.750 5.599
4 16 3.368 6.599 9.626
8 16 5.565 10.341 13.864

16 16 8.258 13.664 15.727
32 16 10.894 15.370 15.976

6.596 7.597 7.899 7.977 8.000
7.850 7.969 7.993 7.999 8.000
7.986 7.998 8.000 8.000 8.000
7.999 8.000 8.000 8.000 8.000
8.000 8.000 8.000 8.000 8.000

7.423 9.213 10.954 12.616 14.138
12.327 14.462 15.586 15.892 15.966
15.589 15.939 15.988 15.997 15.999
15.979 15.998 16.000 16.000 16.000
15.999 16.000 16.000 16.000 16.000

2 32 1.939 3.875 5.806 7.733
4 32 3.657 7.274 10.841 14.344
8 32 6.564 12.836 18.690 23.914

16 32 10.894 20.235 27.220 30.982
32 32 16.254 26.994 31.368 31.971

2 64 1.969 3.937 5.905 7.871
4 64 3.821 7.631 11.429 15.213
8 64 7.211 14.333 21.345 28.216

16 64 12.962 25.326 36.848 47.137
32 64 21.558 40.039 53.944 61.685

2 128 1.984 3.969 5.953 7.936
4 128 3.908 7.814 11.717 15.616
8 128 7.585 15.146 22.678 30.180

16 128 14.322 28.456 42.361 55.975
32 128 25.761 50.314 73.180 93.603

2 256 1.992 3.984 5.976 7.969
4 256 3.954 7.907 11.859 15.810
8 256 7.787 15.568 23.341 31.108

16 256 15.114 30.176 45.180 60.117
32 256 28.544 56.705 84.397 111.500

9.654 11.568 13.474 15.372
17.761 21.061 24.192 27.060
28.149 30.852 31.787 31.957
31.900 31.989 31.998 32.000
31.998 32.000 32.000 32.000

9.836 l l .800 13.762 15.723
18.981 22.731 26.460 30.164
34.905 41.349 47.452 53.053
55.556 61.209 63.562 63.950
63.824 63.990 63.999 64.000

9.920 11.903 13.886 15.869
19.512 23.404 27.293 31.177
37.645 45.070 52.447 59.768
69.215 81.958 94.017 105.097

110.387 121.878 127.027 127.939

9.960 11.952 13.944 15.936
19.761 23.711 27.660 31.608
38.866 46.616 54.357 62.089
74.979 89.754 104.430 118.989

137.845 163.190 187.168 209.211

4. Organization and Operations of the CPU and I/O
Resources

At a given instant, the transactions in states RE-
QUEST or ACTIVE share the CPU and I/O resources
of the system. We shall assume that there is no priority
scheme set between ACTIVE and REQUEST transac-
tions, and that the CPU processes these transactions on
a processing-sharing (PS) fashion and I/O units process
them according to a FIFO policy. The system consists of
one central processing unit (CPU) and a set of B identical
independent disk units (DU). The I/O operations of a
transaction are uniformly distributed over the B DUs.

We shall now describe the different CPU and I/O
operations performed by REQUEST and ACTIVE
transactions.

4.1 Operations Performed by REQUEST Transaction
Let v(m) be the mean number of distinct granules

requested by a transaction. A transaction in the state
REQUEST will thus perform on the average v(m) ele-

588

mentary lock request operations. An elementary lock
request operation consists of:

- -a CPU service time with mean tR;
- -a DU service time with mean SR.

An expression of v(m) is simply obtained from the
results presented in the previous section. We have

v(m) = ~ p . x (p)

and, from eq. (1),

mn
v(m) - (7)

m + n - 1

It should be noted here that we have assumed that
the elementary operations involved in a lock request, i.e.,
the CPU and DU services, do not depend on m. This is
certainly an optimistic assumption since management of
locks tables may become more costly as m increases, and,
for instance, several disk accesses may be needed per
lock request for a large value of m. Therefore, results

Communications October 1980
of Volume 23
the ACM Number l0

Fig. 3(a). /k function of m, n = 4.

~k

40

30

20

10

n=4
k=8

k=5

k=3
k=2
k=1

2~6 m

followed by a CPU processing time. The activity of an
ACTIVE transaction will thus consist of n elementary
operations comprising:

- - a CPU service time with mean ta;
- - a DU service time with mean SA.

We assume that the CPU and DU service times are
independent random variables, and that DU service
times have a negative exponential distribution.

Fig. 3(b). ~ function o f m, n = 16.

~k k=8

100

n=16

• k=5

50 k=3

k=2

Fig. 4.

I

I

new transactions
j

I
I
l
i
i

term~nati ng
transactions

k ACTIVE Transaction

p REQUEST Transaction

Multiprogramming system

obtained for fixed values of tn and sn will have to be
interpreted with respect to this assumption.

4.2 Operations Performed by Active Transactions
A transaction in the ACTIVE state performs n ac-

cesses to the entities of the database, each access being

4.3 Processing Rates of ACTIVE and REQUEST
Transactions

Let k a n d p be, respectively, the number of ACTIVE
and REQUEST transactions processed by the resources
at a given instant of time. Due to the fact that ACTIVE
and REQUEST transactions have different behaviors,
their processing rates depend on k and p through func-
tions of the form #A(k, p) and i~R(k, p).

In order to derive #A(k, p) and #n(k, p), we follow
the standard approach used for the throughput analysis
.of multiprogramming systems [4]. As represented in
Figure 4, fixed numbers k and p of ACTIVE and RE-
QUEST transactions are maintained in the system, and
the sharing of the CPU and DU resources by the two
types of transactions is analyzed using a closed queueing
network model with different classes of customers [1].

An analysis of this model will yield for instance the
throughput rate XA(k, p) and XR(k, p) of ACTIVE and
REQUEST transactions through station CPU. Since
ACTIVE and REQUEST transactions require on the
average, respectively, n and v(m) CPU service times, we
have

~A(k, p) = XA(k, p)/n,
#n(k, p) = Xn(k, p)/v(m).

The functions #a(k, p) and #n(k, p) aggregate the
different effects of resource sharing by ACTIVE and
REQUEST transactions. Using the equivalent server
approach [3], they will be used at modeling level 1 to
analyze the global performance of the transaction system.

It should be noted that #A(k, p) and ttR(k, p) depend
on the granularity m through the function v(m). Increas-
ing the number of granules will increase the number of
elementary lock requests performed by a transaction in
the state REQUEST, and limit the availability of the
CPU and DU resources to ACTIVE transaction. As a
consequence, the processing rate of ACTIVE transac-
tions will be degraded.

In order to illustrate this effect, we have plotted in
Figure 5 #a(k, p) as a function o f p for m ranging from
2 to 28 with n = 4 and k = 2. The results have been
derived with the following values of the parameters:

ta = 50 msec.
tR = 10 msec.
SA = SR = 50 msec.
B = 3 (3 identical DUs).

589 Communica t ions October 1980
o f Volume 23
the A C M N u m b e r 10

Fig. 5. #R(k, p) funct ion o f p .

UR(k, F

20

IO

k=2

m=2

m=S

m=32

m=128 r

I 2 3 4 S p

They have been obtained by using the solution pack-
age QNAP [6, 16] developed by CII-Honeywell Bull and
INRIA. The listing of the QNAP program used for this
computation and examples of its output are given in
Table III. Note that the value of 1/I.ta(k, p) and 1/llR(k,
p) are stored in an array after each resolution so as to be
used later on when global performance is analyzed.

It can be observed from Figure 5 that, due to the
specific behavior of the function v(m), the effect of
granularity on the locking overheads is particularly im-
portant as m increases from 2 to 2 5.

5. Analysis of Global Performance

Having analyzed modeling levels 2 and 3, we now
dispose of the aggregate results that are needed for the
analysis of the global performance. The interactions
between the different factors which have already been
investigated are summarized in Figure 6. Analysis will
be conducted at modeling level 1 by using a multiclass
queueing network model as presented in Figure 7. The
set of K terminals is modeled by an infinite servers
station TERMINAL with mean thinking time T, and the
set of CPU-I/O resources is replaced by two exponential
FIFO stations RESREQ and RESACT, with processing
dependent rates/~A(k, p), (/xR(k, p)) when k ACTIVE
transactions and p REQUEST transactions are, respec-
tively, present in these stations.

When a REQUEST transaction has completed its
lock requests, its locks are granted with probability qk,
if k transactions are active, and it then enters the set of
ACTIVE transactions; with probability 1 - qk, its locks
are denied and the transaction proceeds to the
BLOCKED queue.

Transactions are removed from the BLOCKED
queue when ACTIVE transactions terminate and release
their locks. Thus, the removal of transactions from the
BLOCKED queue is triggered by departures from the

station RESACT. Let r be the maximum number of
transactions removed from queue BLOCKED. If i is the
current number of transactions in queue BLOCKED,
the actual number of transactions removed from queue
BLOCKED at each departure is min(i, r).

Due to the strong dependence between queues
BLOCKED, RESACT, and RESREQ, standard results
on multiclass queueing network models are no longer
applicable. Given the assumptions of the model, the only

Tab l e III .

/DECLAR/QUEUE CPU,DU1,DU2,DU3;
CLASS ACTIVE,REQUEST;
REAL XA,XRfY,NAtNR,TA(IOO),TR(IOO)~M.N;

INTEGER K ~ R t l A , I R , I ;

/STATIONINAHE=CPU;
SCHED=PS;
SERVICE(ACTIVE)=EXP(XA);
SERVICE(REOUEST)=EXP(XR);
TRANS=DUI,t,DU2,1,DU3tl;
INIT(ACTIVE)=IA;
INIT(REOUEST)=IR;

&

/STATION/NAfiE=DU1;
SERVICE=EXP(Y);

TRANS=CPU;

/SIATION/NANE=PU2;COPY=BUI;

/STATION/NAHE=DU3;COPY=VU1;
S
&

/PARAH/CLASS=CPU;
/EXEC/BEGIN

XA:=D.OS;
XR:=O.D1;

g:=4;
N : = l ;

NA:=4;
NR:=H*H/(H+N°I) ;

Y:=O.05;
KTR:=5;

I A : = O ;
UHILE IA<:K;R DO DEGIN

IR:=D;
UNILE IR<=KTR DO DEGIN
ANALYTIC;
I : = (KTR+I) * IA÷ IR+ I ;
TA(1):=NA/NTHRUPUT(CPU,ACTIVE);
TR(I):=NR/NTHRUPUT(CPU,REOUEST);
PRINT(I,IA,IR,TA(1),TR(1));

IR := IR÷I ;
END;

IA:= IA41;
ENd;

END;

* *~ • ANALYTIC RESOLUTION * * * *

****SUDCHA1N 110TAL NUHBER OF CUSTONERS= 3
****SUBCHAIN 2 TOTAL NUNBER OF CUSTONERS= S

• NANE * SERVICE * BUSY PCT * CUST NB * RESPONSE * THRUPUT *

* CPU * . 2 0 2 7 E - 0 1 . . 9 5 3 5 * 2.637
• (ACTI) * .5000E-OI* .5404 * 1.528
• (REOU) * . 1000E-01 . .3131 * 1.110

* PU1 * .5000E-01• .7020 * 1.788

* DU2 * .5000E-01• .7020 * 1.788

* DU3 * .5000E-01~ .7020 * 1.786

* .6262E-01. 42.12
• , 1 4 1 3 * 1 0 . 8 1 *
• .3545E-01. 31.31 *

* .1273 * 14.04 *
• $ $

* .1273 * 14.04

* .1273 * 14.04 •

SPACE USED : 3/100
* * * * ENII OF ANALYTIC RESOLUTION ~ • * •

590 C o m m u n i c a t i o n s Oc tober 1980
o f V o l u m e 23
the A C M N u m b e r 10

Fig. 6.

Physical
database

n

Transaction
behavior

n ItA, SA
/

multiprog.
environment

B, t R s R

modeling
level

3

v(m) \ modeling
level

2

qk

~'k

modeling
level

1

PA(k,P)

PR(k,P)

Global \
Performance >

/

Fig. 7.

K TERMINALS

i

J
~ BLOCKED < ll_q k

~ I~~~ REsREQ

a

!
!

4~
i
!
i
I
!

.J

> REQUEST transactions

. ACTIVE transactions

- - - - - @ R e m o v a l of transact ion

591

exact solution technique available is through Markovian
analysis [14]. This is done by again using the solution
package QNAP. The text of the QNAP program is given
in Table IV. Transfers from the BLOCKED queue to
the RESREQ queue are specified by the primitive
MOVE. Since QNAP uses only linear arrays, a macroin-
struction IND(I) is used to access the element of the
arrays TA and TR where 1/txA(k, p) and 1/lln(k, p) are
stored.

The results are presented in Figures 8 and 9. They
have been obtained with the following values of the
parameters of the model:

n = 4,
m = 20 to 28,
ta = 50 msec.,
tR = 10 msec.,
SA = SR = 50 msec.,
B = 3 ,
r ~- l ,

T = 1.5 sec.

Figure 8 displays the mean number of ACTIVE,
REQUEST, and BLOCKED transactions in the system
as a function of m. The main observation is that as m
increases, the mean number of BLOCKED transactions
decreases rapidly, while the mean number of ACTIVE
transactions steadily increases.

Table IV.

/DECLAR/QUEUE TERHINAL~RESREQ,RESACT,BLOCK;INTE6ER
K1,K2;REAL TREF,TREQUEST,TACTIVE,QG;
REAL g(10)=l.O,O.?4,0.B83,0.B28,O.776,0.727,0.68,O.635

,0.592,0.332;

$ MACRO IND(1)
IA:=CUSTMB(RESACT);
IRt=CUSTNB(RESREO);
I:=(KTR+I)*IA+IR+I;

$ END

/STATION/NAME=TERMINAL;
TYPE=DELAY;
SERVICE=EXP(TREF);
TRANS=RESREQ(REOUEST);
INIT(ACTIVE)=KTR;

ISTATIONINAME=RESREQ;
SERVICE=BEOIN

I:=CUSTNB(RESACT);
QQ:=Q(I+I);
$1ND(1)
EXP(TR(1));

END;
TRANSIT=RESACT(ACTIVE),QQ,BLOCR;

/STATION/NAME=RESACT;
SERVICE=BEGIN

Rl:=l ;
$1ND(1)
EXP(TA(1));

END;
TRANSIT=TERMINAL;

IPARAMIOPTION=REBULT;TESI=BEGIN
IF Rl=l THEN BEDIM KI:=O;MOVE(BLOCK,RESREQ);END;
END;

/EXEC/DEGIN
NETUORK(IERMIMAL,RESREQ~RESACT,BLOCR);

KI:=O;
TREFI=I.5;
MARROV;
PRINT(MCUSTNB(BLOCR),MTHRUPUT(BLOCK),MRESPONBE(BLOCK));
END;

Communications October 1980
of Volume 23
the ACM Number 10

Fig. 8. Mean number of transactions in queues,

ACTIVE+REQUEST

REQUEST

ACTIVE

~ B L O C K E D m
I I i I i I ' I I

2 4 8 16 32 64 128 256

The mean number of REQUEST transactions
reached a maximum for m = 32 and slowly decreases
afterward. It is thus to be expected that the global
throughput will increase with m for large values of m.

This is illustrated in Figure 9 where the throughput
D(m) of the system is plotted, for n ranging from 2 to 25,
expressed in terms of the mean number of transactions
processed per unit of time. It is observed that D(m)
decreases through a minimum and then increases with
m.

This observation, which contradicts the results pre-
sented in [9] where D(m) exhibited a maximum, is to be
interpreted with respect to the set of assumptions that
have been used throughout the analysis. As it appears
from the results of modeling levels 2 and 3, since qk
increases with m, the ratio of the number of ACTIVE
transactions to the number of REQUEST transactions
tends to increase; on the other hand, since the mean
number of locks v(m) tested by REQUEST transactions
increases with m, REQUEST transactions tend to need
more processing as m increases. However, as indicated
by the behavior of the throughput function D(m), this
behavior is determined by the increase of qk rather than
by the increase of v(m). This points out again the key
role played by locking overheads, here quantified by the
function v(m). In order to explain the discrepancies
observed between our results and those presented in [9],
it should be recalled that the function v(m) used in this
study is of the form v(m) = am. In general, assumptions
on transaction behavior used in those two studies are
basically different: Ries and Stonebraker use a "linear"
model of transaction behavior; we use a "nonlinear"
model.

6. Conclusions

We have presented in this paper an analytical frame-
work for the performance analysis of locking mecha-
nisms in transaction systems, and we have illustrated this
approach by a detailed analysis based on a simple prob-
abilistic model of transaction behavior.

This analysis provides a clear understanding of the
various factors that determine global performance. It
also raises many new issues that can only be solved by
further extensive experimental and analytical studies.
Two particular topics deserve special attention: the
modeling of transaction behavior and the modeling of
locking overheads. As noted above, the model of trans-
action behavior we have used makes a strong assumption
on the distribution of references over the database: This
model has to be validated by comparing its results to
those of more complex models, involving, for instance,
localities or sequentialities in the reference pattern. We
have also pointed out in Section 5 the key role played by
locking overheads. Here again a more ref'med analysis is
needed, in relation to the modeling of transaction behav-
ior. We are currently working along those directions and
we hope that this paper will initiate parallel investiga-
tions.

Acknowledgments. The authors would like to thank
J.L. Colomer of the Facultad de Informatica, Universi-
dad de Barcelona, Spain; R. Baiter of the Centre Scien-
tifique CII-Honeywell Bull in Grenoble, France; and M.
Scholl of INRIA for their helpful contributions.

Received 2/80; accepted 4/80; revised 6/80

Fig. 9.

D(m)

2.5-

2.0"

J n = 2

f ~
n = 4

1.0 n 8

0.5

n = 16

n = 32

4' ' 16' ' 64' 256 ' 1024 m I

592 Communications October 1980
of Volume 23
the ACM Number 10

R e f e r e n c e s

1. Baskett, F., Chandy, K.M., Muntz, R.R., and Palacios, J. Open,
closed and mixed networks with different classes o f customers. J.
A C M 22, 2 (April 1975), 248-260.
2. Blasgen, M., Gray, J., Mitoma, M., and Price, T. The convoy
phenomena. Operating Syst. Rev. 3, 2 (April 1979), 20-25.
3. Chandy, K.M., and Sauer, C.H. Approximate methods for
analyzing queueing network models of computing systems. Comping.
Surveys 10, 3 (Sept. 1978), 281-317.
4. Denning, P.J., Kahn, K.C., Leroudier, J., Potier, D., and Suri, R.
Optimal mult iprogramming. Acta Inform. 7, 2 (1976), 197-216.
5. Gilbert, D.C. Modelling spin locks with queueing networks.
Operating Syst. Rev. 2, 1 (Jan. 78), 29-42.
6. Merle, D., Potier, D., and Veran, M. A tool for computer system
performance analysis. Proc. Internat. Conf. on Performance o f
Comptr. Installations 1978, North-Holland Pub. Co., Amsterdam,
1978, pp. 195-214.
7. Muntz, R.R., and Krenz, G.K. Concurrency in database
sys tems--s imula t ion study. Proc. AC M S IGM OD Internat. Conf. on
Management o f Data, Toronto, Ontario, Canada, August
1977.

8. Riordan, J. An Introduction to Combinatorial Analysis. John
Wiley and Sons, N.Y., 1958.
9. Ries, D.R., and Stonebraker, M.R. Effects o f locking granularity
in a database management system. Trans. Database Systs. 2, 3 (Sept.
1977), 233-246.
10. Ries, D.R., and Stonebraker, M.R., Locking granule revisited.
Trans. Database Systs. 4, 2 (June 1979), 210-227.
I1. Rodriguez-Rosell, J. Empirical data reference behaviour in
database systems. Computer 9, 11 (Nov. 1976), 9-13.
12. Rodriguez-Rosell, J., and Hildebrand, D. A framework for
evaluation o f database management system. Proc. Internat. Comptng.
Symp. 1975, E. Gelenbe and D. Potier, Eds., North-Holland Pub.
Co., Amsterdam, 1975.
13. Smith, A.J. Sequentiality and prefetching in database systems.
Trans. Database Systs. 3, 3 (Sept. 1978), 223-247.
14. Stewart, W.J. A comparison of numerical techniques in Markov
modelling. Comm. A C M 21, 2 (Feb. 1978), 144-151.
15. Tuel, W.G., and Rodriguez-Rosell, J. A methodology for
evaluation of database systems. Res. Rep. RJ 1688, IBM Thomas J.
Watson Res. Ctr., Yorktown Heights, N.Y., 1976.
16. Veran, M. QNAP description language. Res. Rep., Antenne
Scientifique CII-Honeywell-Bull, Grenoble, France, 1979.

Professional Activities
Calendar of Events
ACM's calendar policy is to list open computer
science meetings that are held on a not-for-profit
basis. Not included in the calendar are educational
seminars, institutes, and courses. Submittals should
be substantiated with name of the sponsoring orga-
nization, fee schedule, and chairman's name and full
address.
One telephone number contact for those interested
in attending a meeting will be given when a number
is specified for this purpose.
All requests for ACM sponsorship or cooperation
should be addressed to Louis Flora, Conference Co-
ordinator, ACM Headquarters, 1133 Avenue of the
Americas, New York, NY 10036; 212 265-6300. For
European events, a copy of the request should also
be sent to the European Representative. Technical
Meeting Request Forms for this purpose can be
obtained from ACM Headquarters. Lead time
should include 2 months (3 months if for Europe)
for processing of the request, plus the necessary
months (minimum 3) for any publicity to appear in
Communications.
• This symbol indicates that the Conferences and
Symposia Committee has given its approval for
ACM sponsorship or cooperation. Chairman of the
Conferences and Symposia Committee is Seymour
J. Wolfson, 643 MacKenzie Hall, Wayne State Uni-
versity, Detroit, MI 48202.

New Listings are shown first; they will appear next
month as Previous Listings.

NEW LISTINGS
6-8 November 1980
SIAM Fall 1980 Meeting, Houston, Tex. Spon-

sor: Society for Industrial and Applied Mathematics.
Contact: H.B. Hair, 33 South 17th Street, Philadel-
phia, PA 19103; 215 564-2929.

26-28 February 1981
8th Annual Conference of Mid-South Associa-

tion for Educational Data Systems, Memphis, Tenn.
Sponsor: Mid-South AEDS. Prog. chm: Lloyd D.
Brooks, Office Administration, Memphis State Uni-
versity, Memphis, TN 38152; 901 454-2453.

25-27 March 1981
Conference on Information Sciences and Sys-

tems, Baltimore, Md. Sponsor: Johns Hopkins Uni-
versity. Prog. Dirs: Gerard G. L. Meyer and Wilson
J. Rugh, EE Dept., Johns Hopkins University, Bal-
timore, MD 21218; 301 338-7003.

19-25 April 1981
Formalization of Programming Concepts, Pen-

iscola, Spain. Sponsor: European Association for
Theoretical Computer Science. Contact: ICFPC, Fa-
cultat d'Inform~tlca, Universitat Polit6cnica de Bar-
celona, Jordi Girona Salgado 31, Barcelona 34,
Spain.

11-13 May 1981
• Thirteenth Annual ACM Symposium on Theory
of Computing, Milwaukee, Wis. Sponsors: ACM
SIGACT, University of Wisconsin, Milwaukee. Con-

593

tact: George Davida. Dept. of EECS, University of
Wisconsin, Milwaukee, WI 53201.

11-15 May 1981
International Symposium COMNET 8h Net-

works from the Users' Point of View, Budapest,
Hungary. Sponsors: IFIP, UNESCO. Contact:
COMNET 81 Secretariat, John V. Neumann, Society
for Computer Sciences, P.O.B. 240, H-1368 Buda-
pest, Hungary.

17-20 May 1981
• Fifth International Conference on Computers and
the Humanities. Ann Arbor, Mich. Sponsor: Assoc.
for Computers and the Humanities, Assoc. for Lit-
erary andLinguistic Computing, University of Mich-
igan in cooperation with ACMSIGLASH. Contact:
Richard W. Bailey, Dept. of English, University of
Michigan, Ann Arbor, MI 48104.

18-22 May 1981
Workshop on Recursion Theoretic Aspects of

Computer Science, W. Lafayette, Ind. Sponsor: Na-
tional Science Foundation. Contact: Carl Smith,
Dept. of Computer Sciences, Purdue University, W.
Lafayette, IN 47907; 317 749-6301.

20-22 May 1981
• Third Conference on Databases in the Humani-
ties and Social Sciences. Ann Arbor, Mich. S~onsor:
Assoc. for Computers and the Humanities, univer-
sity of Michigan. Contact: Gregory A. Marks, Insti-
tute for Social Research, University of Michigan,
Ann Arbor, MI 48104.

31 May-2 June 1981
• Fourth Annual International SIGIR Conference,
Berkeley, Calif. Sponsor: ACM S1GIR in coopera-
tion with ASIS. Conf. chm: William S. Cooper,
School of Library and Information Studies, Univer-
sity of California, Berkeley, CA 94720; 415 642-4697
or 1464.

29 June-I July 1981
• 18th Design Automation Conference, Nashville,
Tenn. Sponsor: ACM SIGDA, IEEE-CS. Conf.
chm: Robert J. Smith 11, V-R Information Systems
Inc., 5758 Balcones Drive, Suite 205, Aust,n, TX
78731; 512 458-8131.

29-31 July 1981
• The Computing Environment for Mathematical
Software, Pasadena, Calif. Sponsors: JPL, ACM
SIGNUM. Conf. chm: Fred T. Krogh, 125/128, Jet
Propulsion Laboratory, 4800 Oak Grove Drive, Pas-
adena, CA 91103; 213354-6127.

31 August~ September 1981
10th International Symposium on Mathematical

Foundations of Computer Science, Strbsk6 Pleso,
Czechoslovakia. Sponsor: Computing Research
Centre, Bratislava. Symp. chm: Jozef Gruska, Com-
puter Research Centre, Dtibravsk~i 3, 885 31 Bratis-
lava, Czechoslovakia.

7-9 September 1981
• International Conference on Computer Hard-
ware Description Languages and Their Applications,
Kaiserslautern, Fed. Rep. of Germany. Sponsors:
IFIP Tech. Comm. TC 10 and its Working Group
WG 10.2 in cooperation with ACM S1GARCH and
SIGDA, IEEE-CS, G1, NTG. Conf. chin: Reiner
Hartenstein, Universit/it Kaiserslautern, Fachbereich
lnformatik, Postfach 3049, D-6750 Kaisenslautern,
F.R. Germany.

Communicat ions
of
the ACM

PREVIOUS LISTINGS
15-17 October 1980
V ICCRE, Fifth International Conference on

Computers in Chemical Research and Education,
Toyohashi, Japan (a post congress symposium of
Seventh International CODATA Conference,
Kyoto, Oct. 8-11). Contact: S. Sasaki, School of
Materials Science, Toyohashi University of Tech-
nology, Tempaku, Toyohashi, Japan 440.

15-18 October 1980
Symposium on Optimization Methods--Applied

Aspects, Varna, Bulgaria. Sponsors: IFAC, IFORS.
Contact: National Centre for Cybernetics & Com-
puter Techniques, Committee for Science, 8 Slav-
yanska St., Sofia, Bulgaria.

17 October 1980
Conference on Computer Graphics and Micro-

computers, Cambridge, Mass. Sponsor: New Eng-
land Regional Computing Program. Contact: Rita
Donahue, NERComP, 385 Elliot St., Newton Upper
Falls, MA 02164.

20 October 1980
National Information Systems: Getting Ready

for 1984, Washington, D.C. Sponsor: Computer Law
Association. Contact: Michael Yourshaw, 1776 K St.,
N.W., Washington, DC 20006; 202 857-5029.

20-22 October 1980
CPEUG 80, 16th Meeting of the Computer

Performance Evaluation Users Group, Orlando, Fla.
Sponsor: NBS. Contact: Theodore F. Gonter, U.S.
General Accounting Office, 441 G. St., N.W., Room
6118, Washington, DC 20548; 202 275-5410.

20-22 October 1980
Texas Association for Educational Data Sys-

tems 1960 Annual Convention, Austin, Tex. Sponsor:
TAEDS. Contact: Phil Gensler, Dept. of CIS, West
Texas State University, Canyon, TX 79016.

20-24 October 1980
International Seminar on Software Engineering

Appfications, Capri (Napoli), Italy. Sponsors: ACM
ltafian Chapter, AICA, ENIDATA and others. Con-
tact: Marilena Vendramin, Direzione Tecnica, Sys-
tems and Management, Via Medici, 2, 20123 Milan,
Italy.

21-23 October 1980
1980 Biennial Display Research Conference,

Cherry Hill, N.J. Sponsors: IEEE Electron Devices
Society, SID, Advisory Group on Electronic Devices.
Contact: Thomas Henion, Palisades Institute, 201
Varick Street, New York, NY 10014.

21-24 October 1980
SEARCC 80, Jakarta, Indonesia. Sponsor:

South East Asia Regional Computer Confederation.
Contact: SEARCC 80 Conference Implementation
Committee, P.O. Box 4487, Jakarta, Indonesia.

26-29 October 1980
DPMA International Conference, Philadelphia,

Pa. Sponsor: Data Processing Management Associ-
ation. Contact: Bill Zalud, DPMA, 505 Busse High-
way, Park Ridge, 1L 60068.

27-29 October 1980
• ACM 80, Nashville, Tenn. Sponsor: ACM. Gen.
chm: Charles Bradshaw, Computer Center, Box

(Calendar continued on p. 596)

October 1980
Volume 23
Number 10

