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Consistency control has to be enforced in database 
management systems (DBMS) where several 
transactions may concurrently access the database. 
This control is usually achieved by dividing the 
database into locking units or granules, and by 
specifying a locking policy which ensures integrity of 
the information. However, a drawback of integrity 
enforcement through locking policies is the degradation 
of the global system performance. This is mainly due to 
the restriction imposed by the locking policies to the 
access of transactions to the database, and to the 
overheads involved with the management of locks. A 
framework for the quantitative analysis of the impact of 
these factors on the performance of DBMS is 
presented in this paper. In a first step, the main factors 
which determine the behavior of these systems are 
pointed out and analyzed independently. The results 
hereby obtained are aggregated in a second step to 
yield a global performance evaluation. Throughout this 
hierarchical modeling approach various analytical 
techniques are used and the results are illustrated by 
numerical examples. The paper concludes by pointing 
out the final results' sensitivity to some basic 
assumptions concerning transaction behavior and the 
need for more experimental studies in this area. 
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Quantitative analysis of locking mechanisms and of 
their impact on the performance of transaction systems 
have received relatively little attention [2, 9, 10|. Al- 
though numerous concurrency mechanisms have been 
proposed and implemented, there is an obvious lack of 
experimental as well as analytical studies of their behav- 
ior and their influence on system performance. The 
present state of the art in this area can be compared to 
the situation in the late '60s when the first virtual memory 
systems were being implemented: At that time the now 
classical concepts of program behavior (locality of ref- 
erences, working-sets, memory management policy, etc.) 
were only emerging and it took several years to fully 
understand and master them. 

In order to perform a quantitative analysis of trans- 
action systems of the performance, it is essential to point 
out the factors that determine the behavior of these 
systems. Three main factors may be identified: 

1. Transaction Behavior. It may be described by the 
pattern of references of the transactions to the subsets 
(logical or physical) of the database and by the way the 
central processing unit (CPU) and input/output (I/O) 
resources of the system are used by the transactions. 
Given a locking mechanism, the reference pattern is 
obviously a determining factor: Depending on the way 
references are distributed over the database, the locking 
mechanisms will have a more or less drastic effect. 

However, as noted above, little experimental evi- 
dence on reference patterns of transactions is available. 
In particular, the existence of properties of sequentiality 
or locality in the access pattern is still a controversial 
issue [11, 12, 13, 15]. Faced with this situation, any 
analysis relies upon rather strong assumptions. For in- 
stance, in the analysis of locking granularity presented 
in [9], Ries and Stonebraker characterize the behavior of 
a transaction by the number of entities referenced, and 
assume that the number of granules locked by a trans- 
action is proportional to the number of entities refer- 
enced. 

In our analysis, we shall use a somewhat more so- 
phisticated probabilistic model of transaction behavior 
although it also makes a strong assumption on the dis- 
tribution of references over the database. 

2. Locking Scheme. Locking schemes may be physi- 
cal or logical depending on whether the units of locking 
are physical or logical subsets of the databases. We 
restrict our attention in this paper to physical locking. A 
physical locking mechanism is characterized by three 
main factors: 

(a) The Lock Acquisition Policy (LAP) which spec- 
ifies at which instant of the transaction lifetime locks are 
requested. LAPs are basically split into two categories: 
static LAPs (SLAP) and dynamic LAPs (DLAP). Under 
SLAP all the locks needed for executing a transaction 
are requested at the initiation of the transaction. The 
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transaction is executed only if all its requested locks are 
granted; otherwise it is blocked. Under a DLAP, locks 
are requested by a transaction on demand, whenever a 
transaction references a granule that is not already 
locked. 

(b) The Lock Release Policy (LRP) which specifies 
when the locks acquired by a transaction are released. In 
order to maintain the consistency of the database a static 
LRP (SLRP) has to be used, i.e., a LRP where a trans- 
action releases its locks only when its execution has been 
completed. 

Following [9], the analysis presented in this paper is 
carried out by assuming that the locking policies used 
are SLAP and SLRP. The main advantages of this com- 
bination of LAP and LRP is that deadlocks are avoided 
and that, from the point of view of the analyst, its study 
is easier. However, it should be kept in mind that locks' 
mean lifetimes are longer under a SLAP than under a 
DLAP, and hence that a SLAP restricts the transaction's 
accesses to the database more severely than a DLAP. 

(c) The size of the physical locking units or granules 
(assuming that all locking units have the same size). 
Given a LAP and a LRP, the remaining design param- 
eter is the granule size. Obviously, in theory, the smaller 
the granules, the smaller the constraints imposed by the 
locking mechanism. However, at this point, secondary 
factors such as locking overheads have to be taken into 
account, since their influence may become important 
when the number of granules is large. 

3. The Multiprogramming Environment. The multi- 
programming environment describes the resources 
(CPU, I/O) that the transaction system uses for the 
actual processing of transactions. These resources, their 
characteristics and organization, have an important im- 
pact on the global performance. Of the three factors we 
have identified, the latter is also presently the best un- 
derstood and mastered. Within the past ten years much 
experimental and analytical effort has been devoted to 
this area [4, 6], and the appropriate methods and tools 
for the analysis of the multiprogramming environment 
do exist. 

Once these factors have been identified, we must 
select an approach to analyze them and quantify their 
influence. In [7, 9] simulation models are used. Although 
this technique has the advantage of imposing no restric- 
tion on the complexity of the analyzed mechanisms, it 
cannot always provide clear insight into and an under- 
standing of the system performance and the role of key 
assumptions. 

Our approach in this paper is based on hierarchical 
analytical modeling [3]. The basic idea underlying this 
approach is that in a first step each critical factor should 
be analyzed independently, clearly stating assumptions 
and their consequences; the results hereby obtained are 
aggregated in a second step to yield a global performance 
evaluation and final conclusions. 

A broad presentation of this approach is given in 
Section 2. Section 3 is devoted to the model of transaction 
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behavior and the analysis of the locking mechanism. The 
multiprogramming environment is studied in Section 4. 
Final results on the global performance are presented 
and discussed in Section 5. Conclusions are given in 
Section 6. 

2. Presentation of  the Approach 

The transaction system is analyzed using a hierarchi- 
cal modeling approach. Three levels of modeling are 
considered, as represented in Figure 1. 

At level 1, the different stages transactions go through 
during their lifetimes are described. The model used at 
this level is represented in Figure 2. Transactions are 
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issued from a set of  interactive terminals. Upon arrival 
of a new transaction in the system, all the locks needed 
for the complete execution of  the transaction are re- 
quested. Lock requests are processed by the CPU and 
I /O  resources of  the system. During the "locks request" 
phase the transaction is in the state REQUEST.  Upon 
completion of  this phase, locks requested are either 
granted or denied. I f  locks are granted, the transaction 
enters the state ACTIVE and it is executed by the CPU 
and I /O  resources of  the system until completion. It then 
returns to the terminal that has issued it. If  locks are 
denied, the transaction is sent into the BLOCKED queue 
and enters the state BLOCKED. 

BLOCKED transactions are removed from the 
BLOCKED queue in order to enter a new "locks re- 
quest" phase when an ACTIVE transaction leaves the 
system and releases its locks. The maximum number of  
BLOCKED transactions removed from the BLOCKED 
queue at each departure is a control parameter of  the 
transactions' scheduling policy. 

The organization and operations of  the CPU and 
I /O  resources of  the system are described and analyzed 
at level 2. These resources are used by the transactions 
when they are either requesting locks (state REQUEST)  
or being executed (state ACTIVE). The analysis of  level 
2 will be conducted to derive the processing rates of  
ACTIVE transactions and REQUEST transactions de- 
pending on the number of  these transactions sharing the 
CPU and I /O  resources. 

The behavior of  transactions during their locks re- 
quest phase will be analyzed at modeling level 3. Given 
a simple model of  the transaction references to the 
entities of  the database and the number of  granules in 
the database, we will derive the probability distribution 
of  the number of  blocked granules depending on the 
number of  ACTIVE transactions. These results will be 
used to obtain the probability that locks are granted to 
a transaction at the end of  its locks request phase de- 
pending on the number of  ACTIVE transactions. 

The three levels of  modeling will be presented and 
analyzed in the following order: level 3, level 2, and 
level 1. 

3. Analysis of Transaction Behavior and Locking 
Mechanisms 

3.1 The Physical Database 
The physical database consists of  cells that represent 

the elementary physical unit of  storage (this will be, for 
example, a disk sector) and it is divided into m granules, 
where the granule is the locking unit. 

3.2 Transaction Behavior 
The behavior of  a transaction consists of  a sequence 

of  accesses to the cells of  the database. This sequence is 
defined by the following assumptions: 

(1) a transaction makes n accesses during its execution; 
(2) accesses are uniformly distributed over the cells of  

the database; 
(3) accesses are independent. 

Given these assumptions we shall derive the proba- 
bility Pk(l), 1 = 1 . . . . .  m, that l granules are locked when 
k transactions are simultaneously active, and the proba- 
bility qk that a new transaction enters the set of active 
transactions when k transactions are already active. 
These results will then be illustrated by numerical ex- 
amples. 

3.3 Derivation of Pk(1) and qk 
Let x (p) ,  p = 1 . . . . .  m be the probability that the 

number of  distinct granules accessed by a transaction is 
p, given that the transaction makes n accesses. The 
derivation of  x(p) is similar to a standard combinatoric 
problem: given n like objects and rn unlike buckets, what 
is the probability of  leaving p buckets nonempty after 
having uniformly distributed the objects into the m 
buckets? Applying standard results of  combinatorics (see 
for instance [8, pp. 103]), we then have 

x ( p ) = ( p ) ( ; - l l ) / ( m + n - 1 )  (1) 

and, obviously, 

P l ( t )  = x ( t ) ,  t = 1 . . . . .  m .  (2) 

In order to derive Pk(l), we write the following 
recurrence formula between Pk(l) and Pk-l(l),  

1 , , - 1  X i ( l  - i )  
ek(1) --,,-1 X ek-l(i)" ,,-i ( 3 )  

ek-l(j) i : 1  X Xi(j) 
j = l  j = l  

where 

Xi(p) = x ( p ) ( m ;  i ) / ( p )  (4) 

= ( m ; i ) ( n p - l ) / ( m + n n - 1  ). 

In eq. (4), Xi(p) is defined as the probability that a 
transaction is grantedp granules given that i granules are 
already locked. The terms in the denominator of  eq. (3) 
are normalization factors: Since the kth transaction can 
become active only if there are less than m granules 
locked by the (k - 1)st transactions, the probabilities 
pk-l(i), i = 1 . . . . .  m - 1 are normalized by the sum 
~'_-Slpk_l(j); in the same fashion, given i, the maximum 
number of  new granules locked by the kth transaction is 
m - i, so that the probabilities Xi(p) in eq. (3) are 

X j=l X~(j). weighted by ,,-i 
From Pk(l), we can derive the mean number ~ of  

granules locked when k transactions are active 
m 

= Y, i.Pk(i) (5) 
1=1 

and we straightforwardly obtain the probability qk that 
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Table I. q,. 

n m 

2 2 
4 2 
8 2 

16 2 
32 2 

2 4 
4 4 
8 4 

16 4 
32 4 

2 8 
4 8 
8 8 

16 8 
32 8 

2 16 
4 16 
8 16 

16 16 
32 16 

2 32 
4 32 
8 32 

16 32 
32 32 

2 64 
4 64 
8 64 

16 64 
32 64 

2 128 
4 128 
8 128 

16 128 
32 128 

2 256 
4 256 
8 256 

16 256 
32 256 

k = l  k = 2  k = 3  k = 4  k = 5  k = 6  k = 7  k = 8  

.222 .000 .000 

.080 .000 .000 

.025 .000 .000 

.007 .000 .000 

.002 .000 .000 

.000 .000 .000 .000 .000 

.000 .000 .000 .000 .000 

.000 .000 .000 .000 .000 

.000 .000 .000 .000 .000 

.000 .000 .000 .000 .000 

.420 .120 .017 
• 132 .011 .001 
.024 .001 .000 
.003 .000 .000 
.000 .000 .000 

.000 .000 .000 .000 .000 

.000 .000 .000 .000 .000 

.000 .009 .000 .000 .000 

.000 .000 .000 .000 .000 

.000 .000 .000 .000 .000 

.627 .349 .162 

.243 .042 .005 

.033 .001 .000 

.001 .000 .000 

.000 .000 .000 

.056 .013 .003 .001 .000 

.001 .000 .000 .000 .000 

.000 .000 .000 .000 .000 

.000 .000 .000 .000 .000 

.000 .000 .000 .000 .000 

.785 .598 .437 

.429 .156 .045 

.076 .004 .000 

.002 .000 .000 

.000 .000 .000 

.304 .197 .115 .058 .023 

.010 .002 .000 .000 .000 

.000 .000 .000 .000 .000 

.000 .000 .000 .000 .000 

.000 .000 .000 .000 .000 

.884 .776 .675 

.631 .377 .211 

.200 .030 .003 

.007 .000 .000 

.000 .000 .000 

• 581 .494 .415 .343 .278 
.109 .050 .020 .007 .002 
.000 .000 .000 .000 .000 
.000 .000 .000 .000 .000 
.000 .000 .000 .000 .000 

.940 .882 .825 

.786 .610 .465 

.407 .150 .049 

.043 .001 .000 

.000 .000 .000 

.771 .718 •668 •619 .572 

.348 •255 .182 •127 .085 

.014 .003 .001 .000 .000 

.000 .000 .000 .000 .000 

.000 .000 .000 .000 .000 

.969 .939 .909 

.885 •780 .684 

.622 .376 .220 
• ! 69 .024 .003 
.002 .000 .000 

.880 .852 .823 .796 .768 

.598 .520 .451 •388 .332 

.125 .068 .035 .017 .008 

.000 .000 .000 .000 .000 

.000 .000 .000 .000 .000 

.985 .969 .954 

.940 •883 .828 

.784 •610 .471 

.389 .143 .050 

.029 .001 .000 

• 939 .924 .909 .894 .880 
.776 .727 .680 .635 .592 
• 360 .273 .205 .153 .112 
.016 .005 .001 .000 .000 
.000 .000 .000 .000 .000 

a new transaction is granted the locks requested when k 
transactions are already active: 

m - 1  m - i  

qk = ~ P,(i) ~. Xi(p). (6) 
i = l  p ~ l  

3.4 Discussions and Numerical Examples 
The results obtained in the previous section may help 

us gain a first insight into the effect of  locking on the 
operation of  the transaction system. The mean number 

of  locked granules and the probability qk give clear 
indications of  the maximum possible number of  simul- 
taneously active transactions, and of  the chance that a 
new transaction has its locks granted. 

These indications will have to be analyzed and inter- 
preted with respect to the model of  transaction behavior 
that has been used. Recall that the model assumes that, 
for a given transaction, its accesses to the cells of  the 
database are uniformly distributed over the whole set of  
cells: In other words, we assume that transaction refer- 
ences exhibit no locality. We may thus expect with this 
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model of  transactions behavior the effect of  locking to 
be severe. 

Those observations are illustrated by the numerical 
results presented in Tables I and II. These results have 
been obtained for n = 2 i, i = 1, 5, m = 2J, j = 1, 8 and 
k ranging from 1 to 8. Table I and Table II, respectively, 
give ~ and qk. Figures 3(a) and 3(b) depict the variation 
of  ~ as a function of  m with n = 4 and n = 16. 

The importance of  the no-locality assumption is re- 
vealed by the influence of  the number n of  accesses made 
by a transaction on the mean number of  blocked granules 
[k. Transactions with a large number of  accesses to the 
database very rapidly tend to lock most of  the granules 
and to prevent activation of  new transactions. On the 
other hand, this effect is partly alleviated by an increase 
in the number of  granules. However, as we shall see in 
the following sections, the increase in the number of  
granules causes an increase of  the CPU and I /O activity 
devoted to locks requests, which is detrimental to the 
processing rate of  active transactions. 
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Table II. /k. 

n m k = l  k f f i2  k = 3  k f f i 4  k = 5  k = 6  k = 7  k - - 8  

2 2 1.333 
4 2 1.600 
8 2 1.778 

16 2 1.882 
32 2 1.939 

***************************************************************** 
***************************************************************** 
***************************************************************** 
***************************************************************** 
***************************************************************** 

2 4 1.600 3.000 3.833 
4 4 2.286 3.671 3.969 
8 4 2.909 3.910 3.995 

16 4 3.368 3.977 3.999 
32 4 3.657 3.994 4.000 

2 8 1.778 3.500 5.132 
4 8 2.909 5.413 7.194 
8 8 4.267 7.003 7.885 

16 8 5.565 7.740 7.985 
32 8 6.564 7.943 7.998 

2 16 1.882 3.750 5.599 
4 16 3.368 6.599 9.626 
8 16 5.565 10.341 13.864 

16 16 8.258 13.664 15.727 
32 16 10.894 15.370 15.976 

********************************************* 
********************************************* 
********************************************* 
********************************************* 

6.596 7.597 7.899 7.977 8.000 
7.850 7.969 7.993 7.999 8.000 
7.986 7.998 8.000 8.000 8.000 
7.999 8.000 8.000 8.000 8.000 
8.000 8.000 8.000 8.000 8.000 

7.423 9.213 10.954 12.616 14.138 
12.327 14.462 15.586 15.892 15.966 
15.589 15.939 15.988 15.997 15.999 
15.979 15.998 16.000 16.000 16.000 
15.999 16.000 16.000 16.000 16.000 

2 32 1.939 3.875 5.806 7.733 
4 32 3.657 7.274 10.841 14.344 
8 32 6.564 12.836 18.690 23.914 

16 32 10.894 20.235 27.220 30.982 
32 32 16.254 26.994 31.368 31.971 

2 64 1.969 3.937 5.905 7.871 
4 64 3.821 7.631 11.429 15.213 
8 64 7.211 14.333 21.345 28.216 

16 64 12.962 25.326 36.848 47.137 
32 64 21.558 40.039 53.944 61.685 

2 128 1.984 3.969 5.953 7.936 
4 128 3.908 7.814 11.717 15.616 
8 128 7.585 15.146 22.678 30.180 

16 128 14.322 28.456 42.361 55.975 
32 128 25.761 50.314 73.180 93.603 

2 256 1.992 3.984 5.976 7.969 
4 256 3.954 7.907 11.859 15.810 
8 256 7.787 15.568 23.341 31.108 

16 256 15.114 30.176 45.180 60.117 
32 256 28.544 56.705 84.397 111.500 

9.654 11.568 13.474 15.372 
17.761 21.061 24.192 27.060 
28.149 30.852 31.787 31.957 
31.900 31.989 31.998 32.000 
31.998 32.000 32.000 32.000 

9.836 l l .800 13.762 15.723 
18.981 22.731 26.460 30.164 
34.905 41.349 47.452 53.053 
55.556 61.209 63.562 63.950 
63.824 63.990 63.999 64.000 

9.920 11.903 13.886 15.869 
19.512 23.404 27.293 31.177 
37.645 45.070 52.447 59.768 
69.215 81.958 94.017 105.097 

110.387 121.878 127.027 127.939 

9.960 11.952 13.944 15.936 
19.761 23.711 27.660 31.608 
38.866 46.616 54.357 62.089 
74.979 89.754 104.430 118.989 

137.845 163.190 187.168 209.211 

4. Organization and Operations of the CPU and I/O 
Resources 

At a given instant, the transactions in states RE- 
QUEST or ACTIVE share the CPU and I/O resources 
of the system. We shall assume that there is no priority 
scheme set between ACTIVE and REQUEST transac- 
tions, and that the CPU processes these transactions on 
a processing-sharing (PS) fashion and I/O units process 
them according to a FIFO policy. The system consists of 
one central processing unit (CPU) and a set of B identical 
independent disk units (DU). The I/O operations of a 
transaction are uniformly distributed over the B DUs. 

We shall now describe the different CPU and I/O 
operations performed by REQUEST and ACTIVE 
transactions. 

4.1 Operations Performed by REQUEST Transaction 
Let v(m) be the mean number of distinct granules 

requested by a transaction. A transaction in the state 
REQUEST will thus perform on the average v(m) ele- 
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mentary lock request operations. An elementary lock 
request operation consists of: 

- -a  CPU service time with mean tR; 
- -a  DU service time with mean SR. 

An expression of v(m) is simply obtained from the 
results presented in the previous section. We have 

v(m) = ~ p . x (p )  

and, from eq. (1), 

mn 
v(m) - (7) 

m + n - 1  

It should be noted here that we have assumed that 
the elementary operations involved in a lock request, i.e., 
the CPU and DU services, do not depend on m. This is 
certainly an optimistic assumption since management of 
locks tables may become more costly as m increases, and, 
for instance, several disk accesses may be needed per 
lock request for a large value of m. Therefore, results 

Communications October 1980 
of  Volume 23 
the ACM Number l0 



Fig. 3(a). /k function of  m, n = 4. 
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followed by a CPU processing time. The activity of  an 
ACTIVE transaction will thus consist of  n elementary 
operations comprising: 

- - a  CPU service time with mean ta; 
- - a  DU service time with mean SA. 

We assume that the CPU and DU service times are 
independent random variables, and that DU service 
times have a negative exponential distribution. 

Fig. 3(b). ~ function o f  m, n = 16. 
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obtained for fixed values of  tn and sn will have to be 
interpreted with respect to this assumption. 

4.2 Operations Performed by Active Transactions 
A transaction in the ACTIVE state performs n ac- 

cesses to the entities of  the database, each access being 

4.3 Processing Rates of ACTIVE and REQUEST 
Transactions 

Let k a n d p  be, respectively, the number of  ACTIVE 
and REQUEST transactions processed by the resources 
at a given instant of  time. Due to the fact that ACTIVE 
and REQUEST transactions have different behaviors, 
their processing rates depend on k and p through func- 
tions of  the form #A(k, p) and i~R(k, p). 

In order to derive #A(k, p) and #n(k, p), we follow 
the standard approach used for the throughput analysis 
.of multiprogramming systems [4]. As represented in 
Figure 4, fixed numbers k and p of  ACTIVE and RE- 
QUEST transactions are maintained in the system, and 
the sharing of  the CPU and DU resources by the two 
types of  transactions is analyzed using a closed queueing 
network model with different classes of  customers [1]. 

An analysis of  this model will yield for instance the 
throughput rate XA(k, p) and XR(k, p) of  ACTIVE and 
REQUEST transactions through station CPU. Since 
ACTIVE and REQUEST transactions require on the 
average, respectively, n and v(m) CPU service times, we 
have 

~A(k, p) = XA(k, p)/n, 
#n(k, p) = Xn(k, p)/v(m). 

The functions #a(k, p)  and #n(k, p) aggregate the 
different effects of  resource sharing by ACTIVE and 
REQUEST transactions. Using the equivalent server 
approach [3], they will be used at modeling level 1 to 
analyze the global performance of  the transaction system. 

It should be noted that #A(k, p) and ttR(k, p) depend 
on the granularity m through the function v(m). Increas- 
ing the number of  granules will increase the number of  
elementary lock requests performed by a transaction in 
the state REQUEST,  and limit the availability of  the 
CPU and DU resources to ACTIVE transaction. As a 
consequence, the processing rate of  ACTIVE transac- 
tions will be degraded. 

In order to illustrate this effect, we have plotted in 
Figure 5 #a(k, p) as a function o f p  for m ranging from 
2 to 28 with n = 4 and k = 2. The results have been 
derived with the following values of  the parameters: 

ta = 50 msec. 
tR = 10 msec. 
SA = SR = 50 msec. 
B = 3 (3 identical DUs). 
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Fig. 5. #R(k, p )  funct ion  o f p .  
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They have been obtained by using the solution pack- 
age QNAP [6, 16] developed by CII-Honeywell Bull and 
INRIA. The listing of the QNAP program used for this 
computation and examples of its output are given in 
Table III. Note that the value of 1/I.ta(k, p) and 1/llR(k, 
p) are stored in an array after each resolution so as to be 
used later on when global performance is analyzed. 

It can be observed from Figure 5 that, due to the 
specific behavior of the function v(m), the effect of 
granularity on the locking overheads is particularly im- 
portant as m increases from 2 to 2 5. 

5. Analysis of Global Performance 

Having analyzed modeling levels 2 and 3, we now 
dispose of the aggregate results that are needed for the 
analysis of the global performance. The interactions 
between the different factors which have already been 
investigated are summarized in Figure 6. Analysis will 
be conducted at modeling level 1 by using a multiclass 
queueing network model as presented in Figure 7. The 
set of K terminals is modeled by an infinite servers 
station TERMINAL with mean thinking time T, and the 
set of CPU-I/O resources is replaced by two exponential 
FIFO stations RESREQ and RESACT, with processing 
dependent rates/~A(k, p), (/xR(k, p)) when k ACTIVE 
transactions and p REQUEST transactions are, respec- 
tively, present in these stations. 

When a REQUEST transaction has completed its 
lock requests, its locks are granted with probability qk, 
if k transactions are active, and it then enters the set of 
ACTIVE transactions; with probability 1 - qk, its locks 
are denied and the transaction proceeds to the 
BLOCKED queue. 

Transactions are removed from the BLOCKED 
queue when ACTIVE transactions terminate and release 
their locks. Thus, the removal of transactions from the 
BLOCKED queue is triggered by departures from the 

station RESACT. Let r be the maximum number of 
transactions removed from queue BLOCKED. If i is the 
current number of transactions in queue BLOCKED, 
the actual number of transactions removed from queue 
BLOCKED at each departure is min(i, r). 

Due to the strong dependence between queues 
BLOCKED, RESACT, and RESREQ, standard results 
on multiclass queueing network models are no longer 
applicable. Given the assumptions of the model, the only 

Tab l e  III .  

/DECLAR/QUEUE CPU,DU1,DU2,DU3; 
CLASS ACTIVE,REQUEST; 
REAL XA,XRfY,NAtNR,TA(IOO),TR(IOO)~M.N; 

INTEGER K ~ R t l A , I R , I ;  

/STATIONINAHE=CPU; 
SCHED=PS; 
SERVICE(ACTIVE)=EXP(XA); 
SERVICE(REOUEST)=EXP(XR); 
TRANS=DUI,t,DU2,1,DU3tl;  
INIT(ACTIVE)=IA; 
INIT(REOUEST)=IR; 

& 

/STATION/NAfiE=DU1; 
SERVICE=EXP(Y); 

TRANS=CPU; 

/SIATION/NANE=PU2;COPY=BUI; 

/STATION/NAHE=DU3;COPY=VU1; 
S 
& 

/PARAH/CLASS=CPU; 
/EXEC/BEGIN 

XA:=D.OS; 
XR:=O.D1; 

g:=4; 
N : = l ;  

NA:=4;  
NR:=H*H/(H+N°I) ;  

Y:=O.05; 
KTR:=5; 

I A : = O ;  
UHILE IA<:K;R DO DEGIN 

IR:=D; 
UNILE IR<=KTR DO DEGIN 
ANALYTIC; 
I : = (KTR+I ) * IA÷ IR+ I ;  
TA(1):=NA/NTHRUPUT(CPU,ACTIVE); 
TR(I):=NR/NTHRUPUT(CPU,REOUEST); 
PRINT(I,IA,IR,TA(1),TR(1)); 

IR := IR÷I ;  
END; 

IA:= IA41;  
ENd; 

END; 

* *~ •  ANALYTIC RESOLUTION * * * *  

****SUDCHA1N 110TAL NUHBER OF CUSTONERS= 3 
****SUBCHAIN 2 TOTAL NUNBER OF CUSTONERS= S 

• NANE * SERVICE * BUSY PCT * CUST NB * RESPONSE * THRUPUT * 

* CPU * . 2 0 2 7 E - 0 1 . . 9 5 3 5  * 2.637 
• (ACTI) * .5000E-OI* .5404 * 1.528 
• (REOU) * . 1000E-01 . .3131  * 1.110 

* PU1 * .5000E-01• .7020 * 1.788 

* DU2 * .5000E-01• .7020 * 1.788 

* DU3 * .5000E-01~ .7020 * 1.786 

* .6262E-01. 42.12 
• , 1 4 1 3  * 1 0 . 8 1  * 
• .3545E-01.  31.31 * 

* .1273 * 14.04 * 
• $ $ 

* .1273 * 14.04 

* .1273 * 14.04 • 

SPACE USED : 3/100 
* * * *  ENII OF ANALYTIC RESOLUTION ~ • * •  
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exact solution technique available is through Markovian 
analysis [14]. This is done by again using the solution 
package QNAP. The text of  the QNAP program is given 
in Table IV. Transfers from the BLOCKED queue to 
the RESREQ queue are specified by the primitive 
MOVE. Since QNAP uses only linear arrays, a macroin- 
struction IND(I) is used to access the element of  the 
arrays TA and TR where 1/txA(k, p )  and 1/lln(k,  p )  are 
stored. 

The results are presented in Figures 8 and 9. They 
have been obtained with the following values of  the 
parameters of  the model: 

n = 4, 
m = 20 to 28, 
ta = 50 msec., 
tR = 10 msec., 
SA = SR = 50 msec., 
B = 3 ,  
r ~- l ,  

T = 1.5 sec. 

Figure 8 displays the mean number of  ACTIVE, 
REQUEST,  and BLOCKED transactions in the system 
as a function of  m. The main observation is that as m 
increases, the mean number of  BLOCKED transactions 
decreases rapidly, while the mean number of  ACTIVE 
transactions steadily increases. 

Table IV. 

/DECLAR/QUEUE TERHINAL~RESREQ,RESACT,BLOCK;INTE6ER 
K1,K2;REAL TREF,TREQUEST,TACTIVE,QG; 
REAL g(10)=l.O,O.?4,0.B83,0.B28,O.776,0.727,0.68,O.635 

,0.592,0.332; 

$ MACRO IND(1) 
IA:=CUSTMB(RESACT); 
IRt=CUSTNB(RESREO); 
I:=(KTR+I)*IA+IR+I; 

$ END 

/STATION/NAME=TERMINAL; 
TYPE=DELAY; 
SERVICE=EXP(TREF); 
TRANS=RESREQ(REOUEST); 
INIT(ACTIVE)=KTR; 

ISTATIONINAME=RESREQ; 
SERVICE=BEOIN 

I:=CUSTNB(RESACT); 
QQ:=Q(I+I); 
$1ND(1) 
EXP(TR(1)); 

END; 
TRANSIT=RESACT(ACTIVE),QQ,BLOCR; 

/STATION/NAME=RESACT; 
SERVICE=BEGIN 

Rl:=l ;  
$1ND(1) 
EXP(TA(1)); 

END; 
TRANSIT=TERMINAL; 

IPARAMIOPTION=REBULT;TESI=BEGIN 
IF Rl=l THEN BEDIM KI:=O;MOVE(BLOCK,RESREQ);END; 
END; 

/EXEC/DEGIN 
NETUORK(IERMIMAL,RESREQ~RESACT,BLOCR); 

KI:=O; 
TREFI=I.5; 
MARROV; 
PRINT(MCUSTNB(BLOCR),MTHRUPUT(BLOCK),MRESPONBE(BLOCK)); 
END; 
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Fig. 8. Mean number of transactions in queues, 
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The mean number of REQUEST transactions 
reached a maximum for m = 32 and slowly decreases 
afterward. It is thus to be expected that the global 
throughput will increase with m for large values of m. 

This is illustrated in Figure 9 where the throughput 
D(m) of the system is plotted, for n ranging from 2 to 25, 
expressed in terms of the mean number of transactions 
processed per unit of time. It is observed that D(m) 
decreases through a minimum and then increases with 
m. 

This observation, which contradicts the results pre- 
sented in [9] where D(m) exhibited a maximum, is to be 
interpreted with respect to the set of assumptions that 
have been used throughout the analysis. As it appears 
from the results of modeling levels 2 and 3, since qk 
increases with m, the ratio of the number of ACTIVE 
transactions to the number of REQUEST transactions 
tends to increase; on the other hand, since the mean 
number of locks v(m) tested by REQUEST transactions 
increases with m, REQUEST transactions tend to need 
more processing as m increases. However, as indicated 
by the behavior of the throughput function D(m), this 
behavior is determined by the increase of qk rather than 
by the increase of v(m). This points out again the key 
role played by locking overheads, here quantified by the 
function v(m). In order to explain the discrepancies 
observed between our results and those presented in [9], 
it should be recalled that the function v(m) used in this 
study is of the form v(m) = am. In general, assumptions 
on transaction behavior used in those two studies are 
basically different: Ries and Stonebraker use a "linear" 
model of transaction behavior; we use a "nonlinear" 
model. 

6. Conclusions 

We have presented in this paper an analytical frame- 
work for the performance analysis of locking mecha- 
nisms in transaction systems, and we have illustrated this 
approach by a detailed analysis based on a simple prob- 
abilistic model of transaction behavior. 

This analysis provides a clear understanding of the 
various factors that determine global performance. It 
also raises many new issues that can only be solved by 
further extensive experimental and analytical studies. 
Two particular topics deserve special attention: the 
modeling of transaction behavior and the modeling of 
locking overheads. As noted above, the model of trans- 
action behavior we have used makes a strong assumption 
on the distribution of references over the database: This 
model has to be validated by comparing its results to 
those of more complex models, involving, for instance, 
localities or sequentialities in the reference pattern. We 
have also pointed out in Section 5 the key role played by 
locking overheads. Here again a more ref'med analysis is 
needed, in relation to the modeling of transaction behav- 
ior. We are currently working along those directions and 
we hope that this paper will initiate parallel investiga- 
tions. 
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