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In many industrial environments it is necessary to 
determine whether there is interference among 
components. There are many potential interference 
problems in products made up of assemblies of 
components and in product manufacturing and testing. 
Typically, drawings are used in an attempt to detect 
such unwanted interferences, but the two-dimensional, 
static drafting medium does not always show 
interferences among three-dimensional, moving parts. 
This paper presents a computer representation for 
solids and surfaces and algorithms which carry out 
interference checking among objects so represented. 
Objects are represented as polyhedra or as piecewise 
planar surfaces. Two types of interference checking are 
discussed: detection of intersections among objects in 
fixed positions and detection of collisions among 
objects moving along specified trajectories. 
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Introduction 

In many industrial environments it is necessary to 
ascertain whether or not there is interference among 
components. In products made up of  assemblies of  com- 
ponents, and in product manufacturing and testing fa- 
cilities, there are many potential interference problems. 
In current practice an attempt is made to detect such 

Permission to copy without fee all or part of this material is 
granted provided that the copies are not made or distributed for direct 
commercial advantage, the ACM copyright notice and the title of the 
publication and its date appear, and notice is given that copying is by 
permission of the Association for Computing Machinery. To copy 
otherwise, or to republish, requires a fee and/or specific permission. 

Author's address: Computer Science Department, General Motors 
Research Laboratories, Warren MI 48090. 
© 1979 ACM 0001-0782/79/0100-0003 $00.75. 

unwanted interferences before the fact by using drafting 
methods. Engineering drawings of  the product assembly 
or test facility are prepared to show the various compo- 
nents in a number of  views and possible positions. If 
interferences are detected on these drawings, modifica- 
tions are made and new drawings are prepared. Unfor- 
tunately, the two-dimensional, static drafting medium 
does not always show interferences among three-dimen- 
sional objects, especially when these objects can move 
relative to one another. When drawings fail, the interfer- 
ence problems appear in the prototype stage or when 
facilities are set up for production. Correcting these 
problems at this point is expensive and time consuming. 
What is needed to avoid these unwanted interference 
problems is first, a true three-dimensional representation 
of the objects to be checked for interference, and second, 
ways of  using this representation to tell when such 
interferences occur. 

Computer representations of  sculptured (free form) 
surfaces are highly developed and have been used suc- 
cessfully for computer aided design in the automotive, 
aircraft, and shipbuilding industries [8]. This work has 
been concentrated on elegant mathematical representa- 
tions for sculptured surfaces but has not addressed the 
problem of  representing solids. Most mechanical com- 
ponents are characterized by the relationships among the 
fairly simple surface types (e.g. planar and cylindrical) 
that enclose them and not by the complexity of  their 
surfaces. For computer aided interference checking 
among solids, a representation is needed that takes ad- 
vantage of  the simple nature of  the surface patches and, 
in addition, represents the complex boundaries between 
these surface areas which combine to enclose a solid 
object. 

A few researchers have realized the paucity of  results 
in the area of  geometric modeling of  solids with "simple" 
surfaces and are looking into various aspects of  this 
problem. Geometric modeling work at the Universities 
of  Rochester and Cambridge has been aimed toward 
computer aided design and manufacture of simple me- 
chanical parts [1, 5, 6, 7, 15, 16]. At Carnegie-Mellon the 
work has been oriented toward computer aided architec- 
ture [9], while at Stanford the objective has been to 
provide internal descriptions of  objects for a computer 
vision system [2, 3, 4]. All these systems limit object 
boundaries to planar or planar and cylindrical surfaces. 
The systems also provide operators which make it pos- 
sible to build a representation for a complex object by 
taking set unions, intersections, and differences of  sim- 
pler objects (primitives). These operators are subject to 
certain restrictions on the primitives, e.g. relative loca- 
tions, orthogonality, or types of  primitives allowed in an 
operation. The restrictions vary from one system to 
another. 

The work at the University of  Rochester is especially 
interesting because it rests on a sound mathematical 
foundation. Solids are rigorously defined as regular sets 
of  points in Euclidean 3-space [13]. (A set is regular if it 
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Fig. 1. Basic data structure for object. 
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equals the closure of its interior.) Regularized union, 
intersection, and difference operators are defined which 
preserve regularity and thereby prevent the creation of 
nonphysical solids. Thus, for example, the regularized 
intersection of a stack of two cubes is null rather than 
being a (nonsolid) planar patch. 

The following three sections present a data structure 
for representing 3-D objects and algorithms for two kinds 
of interference checking: detection of intersections 
among objects in fixed positions (static interference 
checking) and detection of collisions among fixed objects 
and objects moving along specified trajectories (dynamic 
interference checking). An interactive graphic interface 
to these algorithms provides users with the ability to 
create, display, and manipulate objects in space and to 
check them for interference; this is discussed in a section 
on implementation. 

Very little has been published which is aimed specif- 
ically at the interference checking problem. Forrest [10] 
mentions the problem and suggests some possible ap- 
proaches. Pieper [12], Widdoes [18], and Udupa [14] 
attack the problem heuristically with the specific goal of 
determining collision-free trajectories for a robot arm. 
The geometric modeling systems alluded to earlier [ 1-7, 
9, 15, 16] solve the static interference checking problem 
with their intersection operation because non-null inter- 
section of two solids implies interference. (As noted 
above, the system at the University of Rochester uses 
regularized set operations [13] and thus distinguishes 
surface contact from interpenetration.) To the author's 

knowledge, the only published work aimed entirely at 
interference checking was done by Maruyama [11]. He 
developed an algorithm which differs from that devel- 
oped here for static interference checking among solid 
objects but did not discuss dynamic interference check- 
ing. 

Representation of Solids and Surfaces 

Many computer representations are possible for 
physical objects. This section explains the data structure 
used to describe objects and discusses some of the reasons 
for using it. Three basic types of objects are represented: 
solids, surfaces, and containers. Solids and containers are 
both depicted by polyhedra that may have an arbitrary 
number of faces and holes; the difference is that con- 
tainers are void on their interior. Surfaces are represented 
by polygonal patches joined at their edges and may also 
have holes in them. 

Although a "thin" polyhedron could characterize a 
surface, a separate surface representation is provided 
because in many applications only the surface geometry 
is of interest. For example, the thickness of a table top 
may be of no concern to a robot arm; the table top is 
simply a surface that supports objects and limits the 
arm's motion. 

We limit our computer representations to polyhedra 
because this greatly simplifies interference checking com- 
putations and because it is easy to generate a wire-frame 
graphic display from such a representation. For many 
interference checking applications, piecewise planar ap- 
proximations to curved surfaces are adequate because 
tolerances are broad enough that an exact representation 
is unnecessary. Of course, any surface can be approxi- 
mated as closely as desired by polygonal patches. To get 
a very close approximation to a curved surface, however, 
requires a large number of facets, which in turn implies 
a large amount of storage and long processing times for 
interference checking. 

The basic data structure used to describe a polyhe- 
dron corresponds to its topology as shown in Figure 1, 
where the object is bounded by faces which are bounded 
by edges delimited by vertices. A rectangle represents an 
item which may contain data and which may own entities 
(ellipses) which contain a set of items. The object 
item holds data which define the object type (solid/ 
container/surface) and which define a circumscribed 
sphere and box for the object. A face is defined as a 
connected plane surface bounded by edges. The homo- 
geneous coordinate representation for the plane is stored 
with an outward normal in the face item, and the face 
item owns sets which define its perimeter and any holes. 
These are holes in the face, not in the object, and so in 
Figure 2 the data structure for face "X" is identical for 
the two solids. An edge is a straight line segment defined 
by the two vertices it owns. Finally, each vertex item 
contains its Cartesian coordinates. 
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Fig. 2. Face "'X'" has identical structure in the two objects. Fig. 3. Edge/face intersection. 

Only the basic structure is shown in Figure 1. To 
simplify algorithms and increase efficiency other sets 
exist as well, e.g. the object owns a set containing a list 
of  all vertices. Additional sets and items are created on 
a temporary basis for purposes of  checking collisions 
along given trajectories; e.g. an item in which the coef- 
ficient matrix of  the quadric generated when an edge is 
rotated around a given axis is stored. Finally, this lowest 
level object may be owned by higher level objects so that 
complex solids or surfaces can be built up from simpler 
ones. 

Intersection Checking 

Given the data structure outlined above for represen- 
tation of  solids, containers and surfaces, the problem is 
to determine which (if any) pairs of  objects intersect. In 
the following paragraphs we develop tests to determine 
when such intersections occur. The idea is that when a 
graphic console user moves objects on the screen, the 
system should audit the placement of  objects to prevent 
the user from placing them in positions where they 
interfere with one another. This is called static interfer- 
ence checking because the concern is with stationary 
objects and their spatial relationships. The next section 
discusses collision detection; there the problem is deter- 
mining whether a moving object strikes other objects as 
it moves along a given trajectory. 

More formally, define a solid object as that set of  
points interior to and on the surface of the solid and let 
a surface comprise the set of  points on the surface. Then 

Edge 1 J 
Edge 3 J 

\ 

Edge2 / ~  /~ Face Plane / 

\ k 
two such solids/surfaces do not interfere if and only if 
the intersection of  their defining point sets is null. Simi- 
larly, a container comprises the set of  points in its interior 
and there is no interference between a solid/surface and 
a container if and only if the solid or surface is a subset 
of  the container, Note that this definition means that 
interference exists when a pair of  objects interpenetrates 
or when the faces of  adjacent objects coincide. Compu-  
tationally it is not difficult to insist on some small E 
between the surfaces of  noninterfering objects. 

For deciding whether two objects interfere define the 
following four mutually exclusive relations between a 
pair of  objects represented by point sets A and B: 

(1) A A B = Q ~ .  

(2) A N B = A 

(3) A n B = B 

(4) A n B = C; 

(A C_ B). 

(B C_A). 

C~(~,  C ~ A ,  C ~ B .  

As noted above, if (1) holds and both objects are 
solids/surfaces, there is no interference. I f  (2) holds with 
A a solid/surface and B a container, there is no interfer- 
ence (where it is assumed that interference exists unless 
A lies wholly within B). Interference checking proceeds 
by first deciding whether relation (4) holds and if it does 
not, testing for relations (1)-(3). 

Surfaces of  objects intersect only in case (4) and 
testing for this constitutes the bulk of the interference 
checking computation. The key to surface intersection 
checking is to note that the surface intersection of two 
plane-faced objects occurs if and only if an edge of one 
intersects a face of  the other or vice-versa. (A face 
includes its bounding edges.) Some possible relations 
between an edge and face are shown in Figure 3. The 
edge cannot intersect the face if both endpoints lie on 
the same side of  the plane containing the face and this 
is easily checked. I f  the edge intersects the face plane, we 
cast a ray from the intersection point to infinity in the 
face plane to decide whether the edge intersects the face. 
The edge intersects the face if and only if the ray crosses 
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Fig. 4. Face/edge collision. 
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edges of the face an odd number of times. For complete- 
ness, note that the edge can lie in the face plane. Inter- 
section exists if the given edge crosses any edge of  the 
face or if a ray cast from any point on the given edge has 
an odd number of face edge crossings. 

If a test of all face/edge pairs on the two objects 
shows no surface intersection, then we must decide which 
of  the relations (1)-(3) holds to complete the interference 
checking. With the elimination of (4), and assuming A is 
a solid, testing for (3) can be done by picking any vertex 
of  B. This vertex (and therefore B itself) is inside A if 
the first face of  A crossed by a ray cast from the vertex 
takes us from the inside to the outside of A. Similar tests 
can be used for relations (1) and (2). 

It is worth noting here the sorts of  difficulties that 
can occur with tests such as these. To test for a point 
interior to a solid we might have used a test analogous 
to that used to determine whether a point is interior to 
a face, i.e. draw a ray from the point to infinity and 
count the number of  face crossings for the ray; if this 
number is odd, assume the point lies inside the object. 
This works in principle, but if the ray passes through an 
edge of  the solid, there is a danger that the crossing will 
be counted twice or not at all when it should be counted 
once. Accounting for all such special cases in order to 
assure that interference checking is complete can cause 
major difficulties. 

Checking for interference using the methods outlined 
above requires considerable computation for objects with 
many faces. To speed this up for objects that are far 
apart we carry in each object item the radius and center 
coordinates for a circumscribed sphere, and the mini- 
mum and maximum coordinate values for the object. 
This allows quick sphere and box intersection tests to be 
carried out for a pair of objects, and only if these show 
possible interference is detailed checking necessary. 

C o l l i s i o n  D e t e c t i o n  

The previous section discussed static interference 
checking; this section discusses tests for collision between 

6 

a moving and stationary object. It will be assumed in all 
cases that a pair of objects to be tested for collision do 
not intersect in their initial positions. Recall that a face 
on either a polyhedron or a surface is a connected plane 
surface bounded by straight line segments and includes 
its boundary. Collision between two objects occurs when 
the surface of one object comes into contact with the 
surface of  a second object. For surface objects comprising 
polygonal patches and for polyhedra, collision occurs 
when a face of one object contacts a face of  another. 

It is not possible for the faces of two plane-faced 
objects to contact without the edge of one of the objects 
contacting a face of the other. Thus to detect a collision 
between two such objects, it is sufficient to detect a 
collison of  an edge on one object with a face of  the other 
or vice-versa. Because a face consists of  its interior and 
a boundary, collision of  a face and edge occurs in one of  
two ways; the edge comes into contact either with the 
interior of  the face or with the boundary of  the face (one 
of  the edges of  the face). The two cases are shown in 
Figure 4. The collision detection algorithm considers 
each of these two possible situations as follows: 

1. Edge contacts face interior. Because edges are 
straight line segments and faces are planar, contact must 
occur at an endpoint of  the edge. Assuming an edge 
moving relative to a stationary face, collision can be 
detected by determining the locus of  each endpoint of 
the moving edge and examining these loci (space curves) 
to see whether either one intersects the face. (Note that 
such an endpoint is the endpoint of at least three edges 
and so the examination of a single endpoint services at 
least three edges.) 

2. Edge contacts face boundary. Again assume an 
edge moving relative to a stationary face and note that 
the locus of this moving edge generates a surface in 
space. Collision is detected by examining the boundary 
of  the face to see if it intersects the surface generated by 
the moving edge. (Note that the face is bounded by 
straight line segments and so the check consists of  look- 
ing for intersections of  line segments with the generated 
surface.) 

These are the tests that need to be carried out for 
collision detection, although nothing has been said about 
how we might perform them. The tests are perfectly 
general and will work for arbitrary trajectories. Solutions 
have been obtained for two very important special cases: 
translation and rotation. Below we outline the algorithm 
for detecting collision between a rotating edge of  one 
polyhedral object and a stationary face of  another. Ro- 
tation is around an arbitrary axis which need not pass 
through the object. Similar algorithms can be used for 
other trajectories. The algorithm consists of  two parts 
which correspond to the two situations discussed above 
and shown in Figure 4. Below we consider separately 
each of  these two possible types of  collision. Without loss 
of generality assume rotation around the z axis through 
angle O > 0. 
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Fig. 5. Collision of edge and face interior in the Z = Z~ plane. 
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Fig. 6. Collision of edge and face boundary. 
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The moving edge is defined by the location of its 
endpoints in the initial position: 

el = (Xel, yel, Zel), 

e2 = (Xe2, ye2, z~2). 

The face is defined by the equation for the plane in 
which it lies and by the locations of  the (n) vertices in 
order around the boundary of  the face: 

ax  + by + cz - d = O, 

111 = (Xv l ,  yol, zoz), 

v n  = (Xvn ,  y v n ,  Zvn). 

1. Collision of Edge and Face Interior 
Here we must determine if an endpoint, say el,  of  

the rotating edge intersects the face. The locus of  this 
point lies in the plane z = zel so we can work in this 
plane as shown in Figure 5. The moving point starts at 
a r c t a n  (yel/Xel) and ends at a r c t a n  (fel/Xel) "4- O. (To 
simplify the discussion we will ignore the fact that arctan 
is multiple-valued and will also ignore special cases 
which occur for certain orientations of  the edge and 
face.) 

As shown in Figure 5, the locus of  the endpoint lies 
on x 2 + yZ = x21 + ~el in the z = z~l plane, and we wish 

//#/ Ze 
e2' /7 

to find intersections of  this locus with the plane ax  + by 
+ cz = d. Intersections occur at real roots of  these 
equations. If, for example, such an intersection occurs at 
point e~,, two further conditions must be met for collision 
to take place. First, arctan (yea/xel)  < arctan (ye~/xe~) 
< arctan (ye~/Xel) + 8; and second the intersection point 
must lie within the boundary of the face. This last 
condition can be determined using ray casting in the face 
plane, as discussed in the previous section (Figure 3). 

2. Collision of Edge and Face Boundary 
Collision occurs if an edge of the face (v i /v j  in Figure 

6) intersects the surface swept by the rotating edge. This 
surface patch is bounded by the solid lines in Figure 6 
and is generated when edge e l /e2  rotates through angle 
O to e l ' /e2 ' .  

The locus of  any point on the rotating edge is an arc 
of  the circle represented by x 2 + y2 = k~ and z = kz for 
some kl and k2. One point on this locus must satisfy the 
line equations 

x = (xe2 - Xel)t + Xea, 

y = (ye2 --yea)t  +yea,  (1) 

Z = (ge2 - -  Ze l ) l  + Zel, 

and these determine kl and k2 and give us the equations 
for the surface: (The "e"  subscript has been dropped to 
reduce clutter.) x 2 + .v 2 = [(x2 - xl ) t  + xa] 2 + [(f2 - ya) 
t + .vl] 2, z = (z2 - za)t + za. Eliminating t we get an 
explicit equation for the surface which is a hyperboloid 
of  revolution with axis the z-axis: 
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Fig. 7. Sequence of  displays. 
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rotating edge in its initial position and are found from 
eqs. (1) and the fact that z~0 = ze,. 

This completes the algorithm for finding collisions 
between faces and edges. The goal, however, is to detect 
a collision between two objects and furthermore to de- 
termine just where this collision occurs. This is done by 
recording all face/edge collisions and the points on the 
moving object's trajectory where these collisions occur. 
The collision between objects is then the earliest 
face/edge collision along the trajectory. The tests apply 
to any combination of solids, surfaces, or containers. 

There are capabilities in addition to that of collision 
detection which are useful for some applications. The 
collision detection algorithms determine the distance 
translated or angle rotated before collision occurs and 
also the coordinates of  the collision point. Thus, for 
example, one can use the algorithms to determine the 
distance separating two objects in a given direction. 

As with static interference checking, there are quick 
collision tests which can be carried out to eliminate the 
necessity of  detailed checking when objects are far apart. 
Basically, for a translating object, a circumscribed cyl- 
inder is generated which envelops the moving object 
throughout its trajectory. Intersection of this cylinder 
with the circumscribed sphere of  the stationary object is 
then tested and if there is none, no object collision can 
occur. A similar sort of quick test is used for a rotating 
object except that here the envelope is toroidal. 

X 2 " [ - ~  : [(X2 - -  Xl)  (Z - -  ZI ) /Cz  2 - -  Z,) + X, ]  2 
(2) 

"Jr- [ ( y 2  - - y l )  (Z - -  21)/(22 - -  Z1) "~ y l ]  2. 

This surface is unbounded and would be obtained by 
extending edge e l /e2  to infinity and rotating 360 °. 

Next we ask if any face edge intersects this quadric. 
Consider v i / v j ,  defined by equations 

X = ( X v j  - -  X v i ) t  + Xvi ,  

Y = (Y.i - y . i ) t  + y~i, (3) 

z = ( Z v g - Z v i ) t + z v i ;  O < _ t < _  1. 

Substitute these into eq. (2) and solve the quadratic in t. 
Any real root, ~', such that 0 _< z _< 1 means the face edge 
intersects the quadric at coordinates given by setting 
t = ~- in eqs. (3). 

If  the face edge intersects the unbounded surface at 
e(h = (xe~, ye,, ze~), collision occurs providing this inter- 
section point lies within the quadric patch swept by the 
rotating edge. The point is inside the patch if the follow- 
ing two conditions hold. First, rotation is around the z- 
axis and so the intersection must be between planes 
z = z~a and z = ze2, i.e. condition zea < z~ < Ze2 must 
hold (assuming z~l < zez). Second, the rotation angle 
must be less than 0 at the intersection point, i.e. in Figure 
6, arctan (y~+/xe+) - arctan (y~o/x~o)  < O. x e ,  and ye, are 
known, x~0 and y~o are the corresponding points on the 

Implementation 

An interactive graphic system which uses the algo- 
rithms outlined above for interference checking has com- 
mands which allow the user to translate objects for any 
distance in any direction or to rotate any angle around 
an arbitrary axis. If  the user requests collision detection, 
the system stops the moving object at any point along 
the specified trajectory where a collision occurs and tells 
the user what object was hit, the distance or angle moved 
when collision occurred and the coordinates of the col- 
lision point. The user can also request that an object be 
moved to a new position and that a static interference 
check be carried out. In this case the system lists all 
objects that intersect the moved object in its new position. 
When asking for collision detection or static interference 
checking, the user has the option of requesting that all 
objects in the database be tested against the moving 
object or that only a user specified subset of the objects 
be tested. 

Perspective displays of  the objects being manipulated 
are available on the graphic console. A sequence of such 
displays is shown in Figure 7. The first display shows 
the drawback of  attempting visual interference checking. 
It is not clear how many objects are displayed, much less 
whether or not they interfere. This particular simple 
group of  objects may be viewed from angles which show 
clearly there is no interference (Display 3). In more 
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complex scenes, however, it is often impossible to find 
viewing angles which allow such visual verification. Dis- 
play 4 shows the result of commands to move the poly- 
hedra until they collide with the surface; in this case 
collision detection was used to place the polyhedra on 
the surface in given positions. Visually, it is not clear 
from this display that the polyhedra do not interfere. 
Blowing up the display as in 5 does not help. The 
interference checking algorithms, however, can tell us 
not only that the solids do not interfere, but also that 
they are separated a distance of 0.79 cm in the horizontal 
(X) direction. 

A virtual memory data management system [17] sup- 
ports the data structure outlined earlier. This system 
makes it easy to create, modify, and access complex and 
flexible network structures of the sort needed for inter- 
active graphic applications [19] and representation of  
complex geometric entities. 

Concluding Remarks 

This paper has presented a structure for representing 
three-dimensional objects and algorithms for detecting 
intersections and collisions among these objects. This 
final section discusses the limitations of this system and 
some possible extensions. 

One major obstacle to the use of  any computer 
program that depends on a digital description of an 
object is that the digital description may not exist and 
may be fairly expensive to generate. This is really the 
chicken and egg problem: if only one or a few programs 
exist which can use the digital data, it is not worth 
generating; if the digital data exist for only a few com- 
ponents, development of programs which use the data is 
not worthwhile. On the other hand, once data do exist, 
they are usually put to many more uses than originally 
intended. It was noted in the introduction that other 
researchers in the geometric modeling area have realized 
the importance and usefulness of being able to build 
digital representations of  complex solids quickly and 
easily and have developed ways to do this by providing 
primitive objects, and union, intersection, and difference 
operators which can be used to combine these primitives 
to form more complex objects. Our current system has 
rudimentary capabilities of this type through its object 
tree structure, but more extensive capabilities would 
greatly extend the usefulness of the system. 

The limitation of the present system to polyhedra 
and to interference checking for translational and rota- 
tional trajectories only may be too restrictive. Many 
components include simple curved surfaces, e.g. cylin- 
drical and conical surfaces. These might be represented 
directly as curved surfaces in the data structure; for 
interference checking a facet model of the surface could 
be generated dynamically to a specified tolerance. 
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