
Scientific F.N. Fritsch
Applications Editor

Interference Detection
Among Solids and
Surfaces
J o h n W . Boyse
G e n e r a l M o t o r s R e s e a r c h L a b o r a t o r i e s

In many industrial environments it is necessary to
determine whether there is interference among
components. There are many potential interference
problems in products made up of assemblies of
components and in product manufacturing and testing.
Typically, drawings are used in an attempt to detect
such unwanted interferences, but the two-dimensional,
static drafting medium does not always show
interferences among three-dimensional, moving parts.
This paper presents a computer representation for
solids and surfaces and algorithms which carry out
interference checking among objects so represented.
Objects are represented as polyhedra or as piecewise
planar surfaces. Two types of interference checking are
discussed: detection of intersections among objects in
fixed positions and detection of collisions among
objects moving along specified trajectories.

Key Words and Phrases: interference checking,
intersection detection, collision detection, solid
representation, polyhedral representation, graphics,
polygons, surfaces

CR Categories: 3.2, 8.2

Introduction

In many industrial environments it is necessary to
ascertain whether or not there is interference among
components. In products made up of assemblies of com-
ponents, and in product manufacturing and testing fa-
cilities, there are many potential interference problems.
In current practice an attempt is made to detect such

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

Author's address: Computer Science Department, General Motors
Research Laboratories, Warren MI 48090.
© 1979 ACM 0001-0782/79/0100-0003 $00.75.

unwanted interferences before the fact by using drafting
methods. Engineering drawings of the product assembly
or test facility are prepared to show the various compo-
nents in a number of views and possible positions. If
interferences are detected on these drawings, modifica-
tions are made and new drawings are prepared. Unfor-
tunately, the two-dimensional, static drafting medium
does not always show interferences among three-dimen-
sional objects, especially when these objects can move
relative to one another. When drawings fail, the interfer-
ence problems appear in the prototype stage or when
facilities are set up for production. Correcting these
problems at this point is expensive and time consuming.
What is needed to avoid these unwanted interference
problems is first, a true three-dimensional representation
of the objects to be checked for interference, and second,
ways of using this representation to tell when such
interferences occur.

Computer representations of sculptured (free form)
surfaces are highly developed and have been used suc-
cessfully for computer aided design in the automotive,
aircraft, and shipbuilding industries [8]. This work has
been concentrated on elegant mathematical representa-
tions for sculptured surfaces but has not addressed the
problem of representing solids. Most mechanical com-
ponents are characterized by the relationships among the
fairly simple surface types (e.g. planar and cylindrical)
that enclose them and not by the complexity of their
surfaces. For computer aided interference checking
among solids, a representation is needed that takes ad-
vantage of the simple nature of the surface patches and,
in addition, represents the complex boundaries between
these surface areas which combine to enclose a solid
object.

A few researchers have realized the paucity of results
in the area of geometric modeling of solids with "simple"
surfaces and are looking into various aspects of this
problem. Geometric modeling work at the Universities
of Rochester and Cambridge has been aimed toward
computer aided design and manufacture of simple me-
chanical parts [1, 5, 6, 7, 15, 16]. At Carnegie-Mellon the
work has been oriented toward computer aided architec-
ture [9], while at Stanford the objective has been to
provide internal descriptions of objects for a computer
vision system [2, 3, 4]. All these systems limit object
boundaries to planar or planar and cylindrical surfaces.
The systems also provide operators which make it pos-
sible to build a representation for a complex object by
taking set unions, intersections, and differences of sim-
pler objects (primitives). These operators are subject to
certain restrictions on the primitives, e.g. relative loca-
tions, orthogonality, or types of primitives allowed in an
operation. The restrictions vary from one system to
another.

The work at the University of Rochester is especially
interesting because it rests on a sound mathematical
foundation. Solids are rigorously defined as regular sets
of points in Euclidean 3-space [13]. (A set is regular if it

Communications January 1979
of Volume 22
the ACM . Number 1

http://crossmark.crossref.org/dialog/?doi=10.1145%2F359046.359048&domain=pdf&date_stamp=1979-01-01

Fig. 1. Basic data structure for object.

Object J

l/' ce I "°'1 "'°e I \ \ / \

Vertex I I Vertex

equals the closure of its interior.) Regularized union,
intersection, and difference operators are defined which
preserve regularity and thereby prevent the creation of
nonphysical solids. Thus, for example, the regularized
intersection of a stack of two cubes is null rather than
being a (nonsolid) planar patch.

The following three sections present a data structure
for representing 3-D objects and algorithms for two kinds
of interference checking: detection of intersections
among objects in fixed positions (static interference
checking) and detection of collisions among fixed objects
and objects moving along specified trajectories (dynamic
interference checking). An interactive graphic interface
to these algorithms provides users with the ability to
create, display, and manipulate objects in space and to
check them for interference; this is discussed in a section
on implementation.

Very little has been published which is aimed specif-
ically at the interference checking problem. Forrest [10]
mentions the problem and suggests some possible ap-
proaches. Pieper [12], Widdoes [18], and Udupa [14]
attack the problem heuristically with the specific goal of
determining collision-free trajectories for a robot arm.
The geometric modeling systems alluded to earlier [1-7,
9, 15, 16] solve the static interference checking problem
with their intersection operation because non-null inter-
section of two solids implies interference. (As noted
above, the system at the University of Rochester uses
regularized set operations [13] and thus distinguishes
surface contact from interpenetration.) To the author's

knowledge, the only published work aimed entirely at
interference checking was done by Maruyama [11]. He
developed an algorithm which differs from that devel-
oped here for static interference checking among solid
objects but did not discuss dynamic interference check-
ing.

Representation of Solids and Surfaces

Many computer representations are possible for
physical objects. This section explains the data structure
used to describe objects and discusses some of the reasons
for using it. Three basic types of objects are represented:
solids, surfaces, and containers. Solids and containers are
both depicted by polyhedra that may have an arbitrary
number of faces and holes; the difference is that con-
tainers are void on their interior. Surfaces are represented
by polygonal patches joined at their edges and may also
have holes in them.

Although a "thin" polyhedron could characterize a
surface, a separate surface representation is provided
because in many applications only the surface geometry
is of interest. For example, the thickness of a table top
may be of no concern to a robot arm; the table top is
simply a surface that supports objects and limits the
arm's motion.

We limit our computer representations to polyhedra
because this greatly simplifies interference checking com-
putations and because it is easy to generate a wire-frame
graphic display from such a representation. For many
interference checking applications, piecewise planar ap-
proximations to curved surfaces are adequate because
tolerances are broad enough that an exact representation
is unnecessary. Of course, any surface can be approxi-
mated as closely as desired by polygonal patches. To get
a very close approximation to a curved surface, however,
requires a large number of facets, which in turn implies
a large amount of storage and long processing times for
interference checking.

The basic data structure used to describe a polyhe-
dron corresponds to its topology as shown in Figure 1,
where the object is bounded by faces which are bounded
by edges delimited by vertices. A rectangle represents an
item which may contain data and which may own entities
(ellipses) which contain a set of items. The object
item holds data which define the object type (solid/
container/surface) and which define a circumscribed
sphere and box for the object. A face is defined as a
connected plane surface bounded by edges. The homo-
geneous coordinate representation for the plane is stored
with an outward normal in the face item, and the face
item owns sets which define its perimeter and any holes.
These are holes in the face, not in the object, and so in
Figure 2 the data structure for face "X" is identical for
the two solids. An edge is a straight line segment defined
by the two vertices it owns. Finally, each vertex item
contains its Cartesian coordinates.

Communicat ions January 1979
of Volume 22
the ACM Number 1

Fig. 2. Face "'X'" has identical structure in the two objects. Fig. 3. Edge/face intersection.

Only the basic structure is shown in Figure 1. To
simplify algorithms and increase efficiency other sets
exist as well, e.g. the object owns a set containing a list
of all vertices. Additional sets and items are created on
a temporary basis for purposes of checking collisions
along given trajectories; e.g. an item in which the coef-
ficient matrix of the quadric generated when an edge is
rotated around a given axis is stored. Finally, this lowest
level object may be owned by higher level objects so that
complex solids or surfaces can be built up from simpler
ones.

Intersection Checking

Given the data structure outlined above for represen-
tation of solids, containers and surfaces, the problem is
to determine which (if any) pairs of objects intersect. In
the following paragraphs we develop tests to determine
when such intersections occur. The idea is that when a
graphic console user moves objects on the screen, the
system should audit the placement of objects to prevent
the user from placing them in positions where they
interfere with one another. This is called static interfer-
ence checking because the concern is with stationary
objects and their spatial relationships. The next section
discusses collision detection; there the problem is deter-
mining whether a moving object strikes other objects as
it moves along a given trajectory.

More formally, define a solid object as that set of
points interior to and on the surface of the solid and let
a surface comprise the set of points on the surface. Then

Edge 1 J
Edge 3 J

\

Edge2 / ~ /~ Face Plane /

\ k
two such solids/surfaces do not interfere if and only if
the intersection of their defining point sets is null. Simi-
larly, a container comprises the set of points in its interior
and there is no interference between a solid/surface and
a container if and only if the solid or surface is a subset
of the container, Note that this definition means that
interference exists when a pair of objects interpenetrates
or when the faces of adjacent objects coincide. Compu-
tationally it is not difficult to insist on some small E
between the surfaces of noninterfering objects.

For deciding whether two objects interfere define the
following four mutually exclusive relations between a
pair of objects represented by point sets A and B:

(1) A A B = Q ~ .

(2) A N B = A

(3) A n B = B

(4) A n B = C;

(A C_ B).

(B C_A).

C~(~, C ~ A , C ~ B .

As noted above, if (1) holds and both objects are
solids/surfaces, there is no interference. I f (2) holds with
A a solid/surface and B a container, there is no interfer-
ence (where it is assumed that interference exists unless
A lies wholly within B). Interference checking proceeds
by first deciding whether relation (4) holds and if it does
not, testing for relations (1)-(3).

Surfaces of objects intersect only in case (4) and
testing for this constitutes the bulk of the interference
checking computation. The key to surface intersection
checking is to note that the surface intersection of two
plane-faced objects occurs if and only if an edge of one
intersects a face of the other or vice-versa. (A face
includes its bounding edges.) Some possible relations
between an edge and face are shown in Figure 3. The
edge cannot intersect the face if both endpoints lie on
the same side of the plane containing the face and this
is easily checked. I f the edge intersects the face plane, we
cast a ray from the intersection point to infinity in the
face plane to decide whether the edge intersects the face.
The edge intersects the face if and only if the ray crosses

Communications January 1979
of Volume 22
the ACM Number 1

Fig. 4. Face/edge collision.

/
!
,

edges of the face an odd number of times. For complete-
ness, note that the edge can lie in the face plane. Inter-
section exists if the given edge crosses any edge of the
face or if a ray cast from any point on the given edge has
an odd number of face edge crossings.

If a test of all face/edge pairs on the two objects
shows no surface intersection, then we must decide which
of the relations (1)-(3) holds to complete the interference
checking. With the elimination of (4), and assuming A is
a solid, testing for (3) can be done by picking any vertex
of B. This vertex (and therefore B itself) is inside A if
the first face of A crossed by a ray cast from the vertex
takes us from the inside to the outside of A. Similar tests
can be used for relations (1) and (2).

It is worth noting here the sorts of difficulties that
can occur with tests such as these. To test for a point
interior to a solid we might have used a test analogous
to that used to determine whether a point is interior to
a face, i.e. draw a ray from the point to infinity and
count the number of face crossings for the ray; if this
number is odd, assume the point lies inside the object.
This works in principle, but if the ray passes through an
edge of the solid, there is a danger that the crossing will
be counted twice or not at all when it should be counted
once. Accounting for all such special cases in order to
assure that interference checking is complete can cause
major difficulties.

Checking for interference using the methods outlined
above requires considerable computation for objects with
many faces. To speed this up for objects that are far
apart we carry in each object item the radius and center
coordinates for a circumscribed sphere, and the mini-
mum and maximum coordinate values for the object.
This allows quick sphere and box intersection tests to be
carried out for a pair of objects, and only if these show
possible interference is detailed checking necessary.

C o l l i s i o n D e t e c t i o n

The previous section discussed static interference
checking; this section discusses tests for collision between

6

a moving and stationary object. It will be assumed in all
cases that a pair of objects to be tested for collision do
not intersect in their initial positions. Recall that a face
on either a polyhedron or a surface is a connected plane
surface bounded by straight line segments and includes
its boundary. Collision between two objects occurs when
the surface of one object comes into contact with the
surface of a second object. For surface objects comprising
polygonal patches and for polyhedra, collision occurs
when a face of one object contacts a face of another.

It is not possible for the faces of two plane-faced
objects to contact without the edge of one of the objects
contacting a face of the other. Thus to detect a collision
between two such objects, it is sufficient to detect a
collison of an edge on one object with a face of the other
or vice-versa. Because a face consists of its interior and
a boundary, collision of a face and edge occurs in one of
two ways; the edge comes into contact either with the
interior of the face or with the boundary of the face (one
of the edges of the face). The two cases are shown in
Figure 4. The collision detection algorithm considers
each of these two possible situations as follows:

1. Edge contacts face interior. Because edges are
straight line segments and faces are planar, contact must
occur at an endpoint of the edge. Assuming an edge
moving relative to a stationary face, collision can be
detected by determining the locus of each endpoint of
the moving edge and examining these loci (space curves)
to see whether either one intersects the face. (Note that
such an endpoint is the endpoint of at least three edges
and so the examination of a single endpoint services at
least three edges.)

2. Edge contacts face boundary. Again assume an
edge moving relative to a stationary face and note that
the locus of this moving edge generates a surface in
space. Collision is detected by examining the boundary
of the face to see if it intersects the surface generated by
the moving edge. (Note that the face is bounded by
straight line segments and so the check consists of look-
ing for intersections of line segments with the generated
surface.)

These are the tests that need to be carried out for
collision detection, although nothing has been said about
how we might perform them. The tests are perfectly
general and will work for arbitrary trajectories. Solutions
have been obtained for two very important special cases:
translation and rotation. Below we outline the algorithm
for detecting collision between a rotating edge of one
polyhedral object and a stationary face of another. Ro-
tation is around an arbitrary axis which need not pass
through the object. Similar algorithms can be used for
other trajectories. The algorithm consists of two parts
which correspond to the two situations discussed above
and shown in Figure 4. Below we consider separately
each of these two possible types of collision. Without loss
of generality assume rotation around the z axis through
angle O > 0.

Communicat ions January 1979
of Volume 22
the ACM Number 1

Fig. 5. Collision of edge and face interior in the Z = Z~ plane.

Y

Fig. 6. Collision of edge and face boundary.

Y

e l '
e¢, el"

e ~

e l

arctan (Yel /Xel)
Zel

o/ ii

No Possible Collision

The moving edge is defined by the location of its
endpoints in the initial position:

el = (Xel, yel, Zel),

e2 = (Xe2, ye2, z~2).

The face is defined by the equation for the plane in
which it lies and by the locations of the (n) vertices in
order around the boundary of the face:

ax + by + cz - d = O,

111 = (Xv l , yol, zoz),

v n = (Xvn , y v n , Zvn).

1. Collision of Edge and Face Interior
Here we must determine if an endpoint, say el, of

the rotating edge intersects the face. The locus of this
point lies in the plane z = zel so we can work in this
plane as shown in Figure 5. The moving point starts at
a r c t a n (yel/Xel) and ends at a r c t a n (fel/Xel) "4- O. (To
simplify the discussion we will ignore the fact that arctan
is multiple-valued and will also ignore special cases
which occur for certain orientations of the edge and
face.)

As shown in Figure 5, the locus of the endpoint lies
on x 2 + yZ = x21 + ~el in the z = z~l plane, and we wish

//#/ Ze
e2' /7

to find intersections of this locus with the plane ax + by
+ cz = d. Intersections occur at real roots of these
equations. If, for example, such an intersection occurs at
point e~,, two further conditions must be met for collision
to take place. First, arctan (yea/xel) < arctan (ye~/xe~)
< arctan (ye~/Xel) + 8; and second the intersection point
must lie within the boundary of the face. This last
condition can be determined using ray casting in the face
plane, as discussed in the previous section (Figure 3).

2. Collision of Edge and Face Boundary
Collision occurs if an edge of the face (v i /v j in Figure

6) intersects the surface swept by the rotating edge. This
surface patch is bounded by the solid lines in Figure 6
and is generated when edge e l /e2 rotates through angle
O to e l ' /e2 ' .

The locus of any point on the rotating edge is an arc
of the circle represented by x 2 + y2 = k~ and z = kz for
some kl and k2. One point on this locus must satisfy the
line equations

x = (xe2 - Xel)t + Xea,

y = (ye2 --yea)t +yea, (1)

Z = (ge2 - - Ze l) l + Zel,

and these determine kl and k2 and give us the equations
for the surface: (The "e" subscript has been dropped to
reduce clutter.) x 2 + .v 2 = [(x2 - xl) t + xa] 2 + [(f2 - ya)
t + .vl] 2, z = (z2 - za)t + za. Eliminating t we get an
explicit equation for the surface which is a hyperboloid
of revolution with axis the z-axis:

Communications January 1979
of Volume 22
the ACM Number 1

Fig. 7. Sequence of displays.

3_
2

3 4

/

rotating edge in its initial position and are found from
eqs. (1) and the fact that z~0 = ze,.

This completes the algorithm for finding collisions
between faces and edges. The goal, however, is to detect
a collision between two objects and furthermore to de-
termine just where this collision occurs. This is done by
recording all face/edge collisions and the points on the
moving object's trajectory where these collisions occur.
The collision between objects is then the earliest
face/edge collision along the trajectory. The tests apply
to any combination of solids, surfaces, or containers.

There are capabilities in addition to that of collision
detection which are useful for some applications. The
collision detection algorithms determine the distance
translated or angle rotated before collision occurs and
also the coordinates of the collision point. Thus, for
example, one can use the algorithms to determine the
distance separating two objects in a given direction.

As with static interference checking, there are quick
collision tests which can be carried out to eliminate the
necessity of detailed checking when objects are far apart.
Basically, for a translating object, a circumscribed cyl-
inder is generated which envelops the moving object
throughout its trajectory. Intersection of this cylinder
with the circumscribed sphere of the stationary object is
then tested and if there is none, no object collision can
occur. A similar sort of quick test is used for a rotating
object except that here the envelope is toroidal.

X 2 " [- ~ : [(X2 - - Xl) (Z - - ZI) /Cz 2 - - Z,) + X,] 2
(2)

"Jr- [(y 2 - - y l) (Z - - 21)/(22 - - Z1) "~ y l] 2.

This surface is unbounded and would be obtained by
extending edge e l /e2 to infinity and rotating 360 °.

Next we ask if any face edge intersects this quadric.
Consider v i / v j , defined by equations

X = (X v j - - X v i) t + Xvi ,

Y = (Y.i - y . i) t + y~i, (3)

z = (Z v g - Z v i) t + z v i ; O < _ t < _ 1.

Substitute these into eq. (2) and solve the quadratic in t.
Any real root, ~', such that 0 _< z _< 1 means the face edge
intersects the quadric at coordinates given by setting
t = ~- in eqs. (3).

If the face edge intersects the unbounded surface at
e(h = (xe~, ye,, ze~), collision occurs providing this inter-
section point lies within the quadric patch swept by the
rotating edge. The point is inside the patch if the follow-
ing two conditions hold. First, rotation is around the z-
axis and so the intersection must be between planes
z = z~a and z = ze2, i.e. condition zea < z~ < Ze2 must
hold (assuming z~l < zez). Second, the rotation angle
must be less than 0 at the intersection point, i.e. in Figure
6, arctan (y~+/xe+) - arctan (y~o/x~o) < O. x e , and ye, are
known, x~0 and y~o are the corresponding points on the

Implementation

An interactive graphic system which uses the algo-
rithms outlined above for interference checking has com-
mands which allow the user to translate objects for any
distance in any direction or to rotate any angle around
an arbitrary axis. If the user requests collision detection,
the system stops the moving object at any point along
the specified trajectory where a collision occurs and tells
the user what object was hit, the distance or angle moved
when collision occurred and the coordinates of the col-
lision point. The user can also request that an object be
moved to a new position and that a static interference
check be carried out. In this case the system lists all
objects that intersect the moved object in its new position.
When asking for collision detection or static interference
checking, the user has the option of requesting that all
objects in the database be tested against the moving
object or that only a user specified subset of the objects
be tested.

Perspective displays of the objects being manipulated
are available on the graphic console. A sequence of such
displays is shown in Figure 7. The first display shows
the drawback of attempting visual interference checking.
It is not clear how many objects are displayed, much less
whether or not they interfere. This particular simple
group of objects may be viewed from angles which show
clearly there is no interference (Display 3). In more

Communica t ions January 1979
of Volume 22
the A C M Num ber 1

complex scenes, however, it is often impossible to find
viewing angles which allow such visual verification. Dis-
play 4 shows the result of commands to move the poly-
hedra until they collide with the surface; in this case
collision detection was used to place the polyhedra on
the surface in given positions. Visually, it is not clear
from this display that the polyhedra do not interfere.
Blowing up the display as in 5 does not help. The
interference checking algorithms, however, can tell us
not only that the solids do not interfere, but also that
they are separated a distance of 0.79 cm in the horizontal
(X) direction.

A virtual memory data management system [17] sup-
ports the data structure outlined earlier. This system
makes it easy to create, modify, and access complex and
flexible network structures of the sort needed for inter-
active graphic applications [19] and representation of
complex geometric entities.

Concluding Remarks

This paper has presented a structure for representing
three-dimensional objects and algorithms for detecting
intersections and collisions among these objects. This
final section discusses the limitations of this system and
some possible extensions.

One major obstacle to the use of any computer
program that depends on a digital description of an
object is that the digital description may not exist and
may be fairly expensive to generate. This is really the
chicken and egg problem: if only one or a few programs
exist which can use the digital data, it is not worth
generating; if the digital data exist for only a few com-
ponents, development of programs which use the data is
not worthwhile. On the other hand, once data do exist,
they are usually put to many more uses than originally
intended. It was noted in the introduction that other
researchers in the geometric modeling area have realized
the importance and usefulness of being able to build
digital representations of complex solids quickly and
easily and have developed ways to do this by providing
primitive objects, and union, intersection, and difference
operators which can be used to combine these primitives
to form more complex objects. Our current system has
rudimentary capabilities of this type through its object
tree structure, but more extensive capabilities would
greatly extend the usefulness of the system.

The limitation of the present system to polyhedra
and to interference checking for translational and rota-
tional trajectories only may be too restrictive. Many
components include simple curved surfaces, e.g. cylin-
drical and conical surfaces. These might be represented
directly as curved surfaces in the data structure; for
interference checking a facet model of the surface could
be generated dynamically to a specified tolerance.

References
1. An Introduction to PADL. Production Automation Project, Rep.
TM-22, U. of Rochester, Dec. 1974.
2. Baumgart, B.G. GEOMED-a geometric editor. Rep. No. CS-414,
Comptr. Sci. Dept., Stanford U., May 1974.
3. Baumgart, B.G. Geometric modeling for computer vision. Ph.D.
Th., Rep. No. CS-463, Comptr. Sci. Dept., Stanford U., Oct. 1974.
4. Baumgart, B.G. A polyhedron representation for computer
vision. Nat. Comptr. Conf., 1975, pp. 589-596.
5. Braid, 1.C. Designing with Volumes, 2nd ed. Cantab Press,
Cambridge, England, 1974.
6. Braid, I.C. The synthesis of solids bounded by many faces.
Comm. ACM 18, 4 (April 1975), 209-216.
7. Braid, I.C., and Lang, C.A. Computer-aided design of
mechanical components with volume building bricks. Proc. 2nd
IFIP/IFAC PROLAMAT Conf., North-Holland Pub. Co.,
Amsterdam, 1973, pp. 173-184.
8. Computer Aided Geometric Design. R.E. Barnhill and R.F.
Riesenfeld, Eds. Academic Press, 1974.
9. Eastman, C., Lividini, J., and Stoker, D. A database for designing
large physical systems. Nat. Comptr. Conf. Proc., 1975, pp. 603-61 I.
10. Forrest, A.R. Computational geometry--achievements and
problems. In Computer Aided Geometric Design, Academic Press,
1974.
!1. Maruyama, K. A procedure to determine intersections between
polyhedral objects. Int. J. of Comptr. and Inform. Sci. 1, 3 (1972),
255-266.
12. Pieper, D.L. The kinematics of manipulators under computer
control. Ph.D. Th., CS-116, Comptr. Sci. Dept., Stanford U., October,
1968.
13. Requicha, A.A.G., and Voelcker, H.B. Constructive solid
geometry. Production Automation Project, Report TM-25, U. of
Rochester, November 1977.
14. Udupa, S. Collision detection and avoidance in computer
controlled manipulators. Proc. 5th Int. Joint Conf. Artif. lntel.,
Cambridge, Mass., 1977, pp. 737-748.
15. Voelcker, H.B., et al. Discrete part manufacturing: theory and
practice. Production Automation Project, Rep. TR-I-I, U. of
Rochester, 1974.
16. Voelcker, H.B., and Requicha, A.A.G. Geometric modeling of
mechanical parts and processes. Computer 10, 12 (Dec. 1977), 48-57.
17. Warn, D.R. VDAM--a virtual data access manager for computer
aided design. Proc. Workshop on Data Bases for Interactive Design,
Waterloo, 1975, pp. 104-11 I.
18. Widdoes, C. A heuristic collision avoider for the Stanford robot
arm. Stanford AI Lab, June 1974, unpublished.
19. Williams, R. A survey of data structures for computer graphics
systems. Comput. Surveys 3, I (March 1971), 1-21.

Received August 1977; revised May 1978

Communications January 1979
of Volume 22
the ACM Number 1

