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ABSTRACT
Many modern malware employs runtime anti-forensic techniques
in order to evade detection. Anti-forensic tactics can be categorized
as anti-virtualization (anti-VM), anti-debugging, anti-sandbox, and
anti forensic-tools. The detection of such malware is challenging
since they do not reveal their malicious behavior and are therefore
considered benign.

We present CLOUDOSCOPE, a novel architecture for detecting
anti-forensic malware using the power of public cloud environ-
ments. The method we use involves running samples on bare metal
machines, then running and monitoring them in multiple forensic
environments deployed in the cloud. That includes virtual machines,
debugging, sandboxes, and forensic environments. We identify anti-
forensic behavior by comparing results in forensic and non-forensic
environments. Anti-forensic malware would expose a difference
between bare-metal, non-forensic, and virtualized forensic execu-
tions. Furthermore, our method enables the identification of the
specific anti-forensic technique(s) used by the malware. We provide
background on anti-forensic malware, present the architecture, de-
sign and implementation of CLOUDOSCOPE, and the evaluation of
our system. Public cloud environments can be used to identify and
detect stealthy, anti-forensic malware, as shown in our evaluation.
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1 INTRODUCTION
The ongoing arms race between attackers and defenders constantly
requires both sides to develop new tools and techniques to gain an
advantage over the other. As a result, attackers constantly evolve
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sophisticated forms of malware, social engineering tactics, and
creative attack techniques to bypass security defenses and gain
unauthorized access to sensitive information. On the other hand,
defendants are developing and implementing enhanced security
technologies and strategies to detect and prevent these attacks. This
includes antivirus (AV) software, intrusion detection and prevention
systems (IDS/IPS), security best practices and policies, automated
patch management systems, and user awareness training.

Meanwhile, the evasive techniques used by attackers have proven
to be highly successful, and security firms report millions of new
malware variants every year [10][11]. For instance, previous re-
search showed that by changing a small number of bytes in the
original malware executable, a sample could be rendered undetected
by security products [38].

1.1 Evasive Malware
Evasive malware refers to a class of malware designed to evade
detection. Such malware might include code encryption [51], data
hiding [41], system calls obfuscation [39], polymorphic code [29],
and metamorphic engines [46]. Malware authors often use these
techniques to bypass AV scanners and cover their tracks. Addition-
ally, it makes it difficult for forensic investigators, security experts,
and even experienced malware analysts to detect the attack and
deploy the necessary mitigation.

1.2 Anti-Forensic Malware
Anti-forensic malware is a special type of evasive malware specifi-
cally designed to bypass forensic analysis, statically or at runtime,
[50]. Anti-forensic malware tries to identify whether they are ex-
ecuted in a forensic environment, such as under a debugger, in a
virtual machine, or inside a sandbox and changes their behavior
accordingly. These techniques pose a significant challenge to secu-
rity tools and malware analysts and require high levels of expertise
and time-consuming, step-by-step manual inspection.

Advanced persistent threats (APT) commonly employ anti-forensic
techniques to remain stealthy and evade detection. For example,
Remcos malware detects whether it runs on VMware or Sandboxie
to alter its behavior [17]. The SUNBURST malicious DLL used in
the Orion SolarWinds attack in 2020 examined the host’s domain
name to check whether it operated in a natural environment [19].
Similarly, FinFisher [2], and Darkhotel [21] APTs employ virtual
machine and sandbox detection mechanisms by checking hardware
resources and file names to determine whether they are being ana-
lyzed. Ransomware often employs anti-forensic techniques as well.
TeslaCrypt and Locky ransomware detect whether they are running
inside a virtual machine or under a debugger and terminate their
execution accordingly [9].
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1.3 Anti-Forensic Challenge
Detecting anti-forensic malware is particularly challenging since
they are designed to remain stealthy and bypass security products.
The predominant strategy to counter anti-forensic malware today
is hiding the markers of forensic environments, such as eliminating
virtual machine and sandbox artifacts or running debuggers in
hidden mode. However, these approaches are proven to have only
a limited effect and can be easily bypassed if the attacker knows
them [40][32][34][49][31].

1.4 Our Contribution
We present CLOUDOSCOPE, a system that allows the detection
of anti-forensic malware using the power of public cloud environ-
ments. Our method involves running samples on bare metal ma-
chines and then monitoring the samples in a variety of cloud-based
forensic environments, including virtual machines, sandboxes, de-
buggers, and forensic environments. We identify anti-forensic be-
havior by comparing the results of multiple executions. We present
the design, implementation, and evaluation of CLOUDOSCOPE as
a generic, cloud-based solution for detecting anti-forensic malware.
To the best of our knowledge, this work presents the first archi-
tecture that uses public cloud capabilities to counter anti-forensic
attacks.

2 ANTI-FORENSIC TECHNIQUES
The anti-forensic techniques are classified into two main categories;
(1) those that bypass static analysis tools and malware scanners and
(2) those that evade detection and security products at runtime.
Static anti-forensic techniques consist of methods that aim to chal-
lenge security tools when a sample is statically examined. This
also includes strategies for preventing or delaying the successful
reverse engineering of malware. Some static techniques are anti-
disassembly [35], code obfuscation [55], stenography [41], and code
encryption [51]. Static anti-forensic techniques are considered less
challenging to mitigate since they can be resolved at runtime [50].
For example, malware may employ anti-disassembly to hide the
actual rough code from the disassembler. However, the real code
will always be exposed to the reverse engineer at runtime when
it is being debugged. In another example, the malware uses code
encryption to hide the use of suspicious API functions and evade
anti-virus scanners. As in the previous case, these calls can be in-
tercepted and revealed at runtime when the actual API function
call is executed.

Due to the inherent weakness of static anti-forensic techniques,
malware authors tend to move to runtime evasion [50]. In this
approach, malware may employ a set of techniques at runtime in
order to evade detection, security tools, and forensic investigation.
In particular, malicious code may be designed to change its behavior
or content at runtime, making it difficult to detect and analyze.

2.1 Runtime Anti-Forensic Techniques
Runtime Anti-forensic techniques aim to detect the existence of
forensic environments while executing them to evade them. The
malware will take one or more of the following strategies if such
an environment setting is identified; (1) kill itself and disappear,
(2) hide the malicious behavior by eliminating certain activities -

to avoid detection, (3) sleep for a particular period or (4) exploit
vulnerabilities to circumvent the security product.

There are four main categories of anti-forensic techniques at
runtime.

2.1.1 Anti-VM. Anti-VM (VirtualMachine) techniques are designed
to detect when a program runs in a virtual environment, such as
within a virtual machine (VM). Technically, malware determines
whether it executes on bare metal, on top of a Virtual Machine
Monitor (VMM), or on a hypervisor and changes its behavior ac-
cordingly. Malware analysts widely use virtual machines due to
their ability to prevent malware from spreading and their easy
backup, revert, and rollback capabilities. Anti-VM techniques are
difficult to detect because they can avoid detection by security
tools that are specifically designed to run in virtual environments.
There are many ways to identify virtual machines and hypervisors
based on virtualization artifacts, using special instructions, timing
measurements, and operating system markers [27].

2.1.2 Anti-debugging. Dynamic analysis of malware consists of de-
bugging the sample with debuggers. Malware uses anti-debugging
and anti-tampering techniques to detect and evade debuggers.When
a debugger is detected during execution, malware may alter its be-
havior. Debuggers can be detected using specific API calls (e.g., the
IsDebuggerPresent() Win32 API [8]), checking operating sys-
tem structures, timing measurements, and searching for breakpoint
instructions in the code [27][50].

2.1.3 Anti-sandbox. Sandboxes monitor malware in a controlled
environment to determine its behavior and impact on a system.
Various parameters of the process are monitored. Network activity
of the process is traced and logged, including inbound and out-
bound connections, DNS requests, and so on. Filesystem activities,
reading/writing from/to files, registry operations (in Microsoft Win-
dows OS). Processes and threads creation and termination are also
monitored. Many sandboxes monitor API calls of a process to de-
termine a suspicious sequence of API calls. Sandboxes automate
malware analysis on a per-sample basis. Commercial sandboxes are
deployed in the form of a gateway that can scan bulk samples and
grade them as benign or suspicious. Malware can detect whether
it executes in a sandboxed environment. If a sandbox is detected,
malware alters its behavior. Another tactic is that malware sleeps or
performs dummy operations for some time. Since sandbox scanners
terminate the process after a timeout, the sample will pass moni-
toring and be classified as benign. Malware can detect sandboxes
by checking artifacts such as drivers and user names, product keys,
injected DLL names, and environmental settings [50].

2.1.4 Forensic tools detection. Malware forensics experts commonly
use a variety of tools. These tools include process monitor tools
such as process exploiter and process monitor, PE file analysis, and
debuggers [30]. As part of dynamic analysis, these tools are used
to monitor and log malware’s impact on the system. Malware may
search for the existence of such tools in the environment, deduce
that it runs in a forensic environment, and behave accordingly.
Detecting forensic tools is done via scanning files, searching for
certain processes’ names, and looking for specific registry files [50].

Notably, many types of malware today use anti-forensic tech-
niques, including advanced persistent threats (APTs), ransomware,
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Table 1: Anti-forensic techniques

Method Techniques Mitigation

Static anti-forensic Anti-disassembly, code obfuscation, hiding and stenography, code encryption Dynamic analysis

Dynamic anti-forensic Anti-virtualization (anti-VM), anti-debugging , anti-sandbox, forensic tools detection Dynamic analysis+
anti-anti-forensic

Figure 1: Suspicious samples are run on bare-metal and in
the cloud on multiple machines. Trace logs are collected,
indexed, and analyzed to determine whether anti-forensic
techniques were used.

rootkits, fileless attacks, and exploit kits. The most common anti-
forensic techniques used by malware are summarized in Table 1.

3 DESIGN AND IMPLEMENTATION
Anti-forensic malware research focuses mainly on finding new anti-
forensic, especially anti-VM and anti-debugging techniques, either
manually or by automated tools [32][50]. Researchers previously
described methods for locating anti-forensic code via static analysis
and countermeasures that prevented them from being effective
during dynamic analysis. For example, it is possible to configure a
VM and hide its virtualization artifacts to reduce its detectability
[28]. Some debuggers provide special capabilities to counter and
evade anti-debugging techniques [48].

Our approach is based on monitoring the execution of a sus-
picious sample in a bare-metal environment in a controlled and
monitored manner. Concurrently, we deploy multiple forensic en-
vironments in the cloud and examine the malware effect on the
forensic systems. The core of our detection technique is based on
the fact that a benign sample would behave the same way in both
setups; forensic environments on the cloud and non-forensic, bare
metal environments. In order to create multiple forensic setups, we
utilized the capability of public clouds to provide highly manage-
able environments with different operating systems, applications,
and frameworks.

The architecture of our system is presented in figure 1. The
suspicious samples are executed on bare-metal machines and on
multiple heterogeneous forensic machines in the public cloud. The
trace logs are collected and then gathered into a database. Finally,
the traces are analyzed to identify differences at which points the
sample employs anti-forensic techniques.

3.1 Bare-Metal
The sample must be run on a bare metal machine as the base ref-
erence point. Technically, the sample is executed on a physical
computer that runs an operating system directly on the physical
hardware, without intermediate layers like a hypervisor or virtual
machine monitors. This execution provides traces of the process in
a non-forensic environment. The sample mustn’t be executed on
any hypervisor to neutralize its anti-VM code if it exists.

One of the main challenges of running the sample on bare metal
is the lack of advantages virtual machines offer, which are crucial to
malware analysis. In virtual machines, for instance, the operating
system is started from a ’clean’ state at every reboot to eliminate
any persistent effects of the malware analyzed. Virtual machines
are also capable of taking disk and memory snapshots at certain
checkpoints. Finally, virtual machines allow controlling the network
settings at a logical layer using the virtual network interface card
(NIC). It can be used to maintain inbound and outbound traffic,
redirect or block IP addresses, and disconnect machines, creating a
virtual air gap.

To enable these features, we used Faronics Deep Freeze [5], which
allows us to restore the computer to its checkpoint configuration at
each reboot. Note that this type of solution (and other commercial
alternatives) does not use virtualization and hence won’t trigger
the anti-VM mechanisms. To control the network, we use traffic
control at the physical router. It enables us to maintain inbound
and outbound traffic or disconnect the machine from the Internet.

3.2 Bare-Metal on Cloud
The public cloud provider uses the virtualization layer to manage
virtual machines, hardware, computation, and network resources
as part of its infrastructure. That prevents using the public cloud
for bare metal monitoring due to the persistent virtualization layer
in the underlying infrastructure, which would trigger the anti-VM
mechanisms of the sample under analysis. However, during 2021/2,
the major cloud providers started providing so-called ‘bare metal
instances’ in the cloud, allowing customers to manage services on
bare metal servers without a virtualization layer. In particular, bare
metal in the cloud enables the use of technologies that aren’t fit to
run in a typical virtualized setting. This restriction might be due to
performance issues, the need for direct hardware access, and so on.
Some of the bare metal services in the public cloud are listed below.

• Azure ‘BareMetal’ Infrastructure [23].
• Amazon EC2 bare metal instances [6].
• Google Cloud bare metal instances [1].

With this brand-new type of infrastructure, the cloud providers en-
able the customer with direct access to the hardware and resources
of the underlying machines while eliminating the hypervisor layer.
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Figure 2: The system architecture with on-cloud bare-metal
infrastructure.

This service allows the management of bare metal machines in
the cloud and preconfigures them with non-virtualized system
restoration solutions such as Deep Freeze. Specifically, it enables to
implementation of bare metal malware monitoring in public clouds,
as shown in Figure 2.

3.3 Forensic Environments on Cloud
CLOUDOSCOPE architecture consists of multiple forensic environ-
ments.

3.3.1 Virtual Machines/hypervisors. There are three main types
of virtual machine monitors that malware targets in their anti-VM
checks.

• VMWare [22]. VMware is the hypervisor most targeted by
Anti-VM techniques. We deployed a machine with a VMware
workstation, which is a type-2 hypervisor, to represent a
workstation with a virtual machine. Note that type-2 hy-
pervisors are more commonly targeted by malware than
type-1 hypervisors, which are mainly used on servers. We
also tested a machine with VMWare ESXi type-1 hypervisors
in an enterprise-class virtual environment. Note that most
commonly, anti-VM techniques don’t target a specific type
of VMWare hypervisor but are relevant to both types.

• Oracle VM VirtualBox [12]. This is a type-2 hypervisor for
Intel/AMD virtualization developed by Oracle Corporation.
VirtualBox is widely used for user-grade virtualization on
workstations for malware analysis. Many anti-VM malware
programs target this VMM specifically in their VM detection.

• Microsoft Hyper-V [7]. This is a type-1 hypervisor that is
installed on bare-metal servers or the Windows 10 operat-
ing system. Hyper-V supports different operating systems,
including FreeBSD, Linux, and Windows.

3.3.2 Debuggers. To simulate a debugging environment, we used
Windbg [24], a debugger developed by Microsoft for Windows
operating systems. It supports both user-mode and kernel-mode
debugging and provides memory dump analysis, symbol loading,
source-level debugging, and remote debugging capabilities. We
also tested the x64xdbg [25], an open-source x64/x32 debugger

Table 2: The trace logs representation matrix

Environment Files Registry Network Process/threads API

Bare-metal 𝐵𝑀𝑓 𝐵𝑀𝑟 𝐵𝑀𝑛 𝐵𝑀𝑝 𝐵𝑀𝑐

VM/Hypervisor 𝑉𝑀𝑓 𝑉𝑀𝑟 𝑉𝑀𝑛 𝑉𝑀𝑝 𝑉𝑀𝑐

Debugging 𝐷𝐵𝑓 𝐷𝐵𝑟 𝐷𝐵𝑛 𝐷𝐵𝑝 𝐷𝐵𝑐

Sandbox 𝑆𝐵𝑓 𝑆𝐵𝑟 𝑆𝐵𝑛 𝑆𝐵𝑝 𝑆𝐵𝑐

Forensic tools 𝐹𝑇𝑓 𝐹𝑇𝑟 𝐹𝑇𝑛 𝐹𝑇𝑝 𝐹𝑇𝑐

for Windows OS with command-line capabilities. Note that anti-
debugging techniques are usually resilient to the specific debugger
type and only check whether the process runs under any debugger.

3.3.3 Sandboxes. To emulate a sandbox environment, we operated
Cuckoo Sandbox [13], an open-source software for automated mal-
ware analysis. This dynamic malware analysis tool allows analysts
to analyze malicious software in a controlled and isolated environ-
ment. For analysis, sandboxes log system activity, network traffic,
and other relevant information.

3.3.4 Forensic tools. We deployedmachines representing the work-
station of a forensic investigator. It runs the Sysinternals ProcMon
[15], ProcessExplorer [14], HexRay IDA Pro [4], and RegShot [16]
utilities that forensic investigators commonly use.

3.4 System Monitoring
Our architecture is based on comparing the effect of the process
on the system. We monitor the system at different levels using the
Microsoft Sysinternals monitoring tools [20] and store the following
trace logs.

• File-system activity. The activity in the file system includes
information about file creation, deletion, modification, and
access. The logs include file information and the time of the
event.

• Registry operations. The system registry operations, key and
value creation, deletion, modification, and access. The logs
include key/value information and the time of the event.

• Network operations. The network activity, including out-
bound and inbound communication in layers 2/3. The logs
include DNS, TCP, UDP, IP addresses, and port numbers.

• Process/threads. The creation and termination of processes
and threads in the system.

• API calls. Win32 API calls made by a process. This parameter
is optional and can be disabled. It can be used to monitor
specific API calls in kernel32.dll when the files, registry,
network, and process/thread trace logs do not provide suffi-
cient information.

4 DATA COLLECTION AND ANALYSIS
All the trace logs are collected in a database. We represent the trace
logs in a matrix (‘representation matrix’) pointing to a set of logs for
each process, as presented in Table 2. After the traces are collected
and indexed, the data analysis script is executed, which checks
whether the suspicious sample employs anti-forensic mechanisms.

Algorithm 1 outline the main function DetectAF(). This func-
tion receives five documents representing the event logs in each
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parameter; files (𝑓 ), registry (𝑟 ), network (𝑛), processes/threads (𝑝),
and API monitor (𝑐). Note that the event logs are received for each
environment; bare metal (𝐵𝑀), Virtual Machine (𝑉𝑀), debuggers
(𝐷𝐵), Sandbox (𝑆𝐵), and forensic tools (𝐹𝑇 ).

For each type of event log, the algorithm compares the bare
metal event vector with the event vector of a specific forensic envi-
ronment. Suppose the event difference is greater than a threshold of
𝑇𝑑 . In that case, it indicates that the sample behaves differently in a
forensic environment, and therefore anti-forensic techniques were
employed. We set the𝑇𝑑 to be 5% to eliminate false positives. This is
because execution trace commonly displays natural (non-malicious)
minor differences due to execution on different systems. This could
result from varying timing measurements, synchronization issues,
OS versioning, and environmental configuration. The DetectAF()
function returns a vector indicating whether anti-forensic was
identified for each of the five examined anti-forensic techniques
⟨𝐴𝑛𝑡𝑖𝑉𝑀,𝐴𝑛𝑡𝑖𝐷𝑒𝑏𝑢𝑔,𝐴𝑛𝑡𝑖𝑆𝑎𝑛𝑑𝑏𝑜𝑥,𝐴𝑛𝑡𝑖𝐹𝑜𝑟𝑒𝑛𝑠𝑖𝑐𝑇𝑜𝑜𝑙𝑠⟩.

Table 3 shows a trace log representation matrix for an anti-
forensic sample. The API calls row is eliminated in this example
due to space constraints. In this case, Anti-VM and Anti-Sandbox
techniques are detected. As can be observed, in virtualization and
sandbox environments, the effect on the system is minimal; no files,
network, and registry activity and single process/thread creation
and termination. This is since VM and sandbox detection was used
in this case.

Algorithm 1 DetectAF(𝐵𝑀 ,𝑉𝑀 ,𝐷𝐵,𝑆𝐵,𝐹𝑇 )

1: 𝐵𝑀𝑎 = ⟨𝐵𝑀𝑓 , 𝐵𝑀𝑟 , 𝐵𝑀𝑛, 𝐵𝑀𝑝 , 𝐵𝑀𝑐 ⟩
2: 𝑉𝑀𝑎 = ⟨𝑉𝑀𝑓 ,𝑉𝑀𝑟 ,𝑉𝑀𝑛,𝑉𝑀𝑝 ,𝑉𝑀𝑐 ⟩
3: 𝐷𝐵𝑎 = ⟨𝐷𝐵𝑓 , 𝐷𝐵𝑟 , 𝐷𝐵𝑛, 𝐷𝐵𝑝 , 𝐷𝐵𝑐 ⟩
4: 𝑆𝐵𝑎 = ⟨𝑆𝐵𝑓 , 𝑆𝐵𝑟 , 𝑆𝐵𝑛, 𝑆𝐵𝑝 , 𝑆𝐵𝑐 ⟩
5: 𝐹𝑇𝑎 = ⟨𝐹𝑇𝑓 , 𝐹𝑇𝑟 , 𝐹𝑇𝑛, 𝐹𝑇𝑝 , 𝐹𝑇𝑐 ⟩
6: 𝐴𝑛𝑡𝑖𝑉𝑀,𝐴𝑛𝑡𝑖𝐷𝑒𝑏𝑢𝑔,𝐴𝑛𝑡𝑖𝑆𝑎𝑛𝑑𝑏𝑜𝑥,𝐴𝑛𝑡𝑖𝐹𝑜𝑟𝑒𝑛𝑠𝑖𝑐𝑇𝑜𝑜𝑙𝑠 = 0
7: if (|𝑉𝑀𝑎 − 𝐵𝑀𝑎 |) ≥ 𝑇𝑛 then
8: 𝐴𝑛𝑡𝑖𝑉𝑀 = 𝑡𝑟𝑢𝑒

9: end if
10: if (|𝐷𝐵𝑎 − 𝐵𝑀𝑎 |) ≥ 𝑇𝑛 then
11: 𝐴𝑛𝑡𝑖𝐷𝑒𝑏𝑢𝑔 = 𝑡𝑟𝑢𝑒

12: end if
13: if (|𝑆𝐵𝑎 − 𝐵𝑀𝑎 |) ≥ 𝑇𝑛 then
14: 𝐴𝑛𝑡𝑖𝑆𝑎𝑛𝑑𝑏𝑜𝑥 = 𝑡𝑟𝑢𝑒

15: end if
16: if (|𝐹𝑇𝑎 − 𝐵𝑀𝑎 |) ≥ 𝑇𝑛 then
17: 𝐴𝑛𝑡𝑖𝐹𝑜𝑟𝑒𝑛𝑠𝑖𝑐𝑇𝑜𝑜𝑙𝑠 = 𝑡𝑟𝑢𝑒

18: end if
19: 𝑣 = ⟨𝐴𝑛𝑡𝑖𝑉𝑀,𝐴𝑛𝑡𝑖𝐷𝑒𝑏𝑢𝑔,𝐴𝑛𝑡𝑖𝑆𝑎𝑛𝑑𝑏𝑜𝑥,𝐴𝑛𝑡𝑖𝐹𝑜𝑟𝑒𝑛𝑠𝑖𝑐𝑇𝑜𝑜𝑙𝑠⟩
20: return 𝑣

5 EVALUATION
We evaluated the system with 30 malware samples (executable
files) known to employ anti-forensic techniques. The results are
presented in Table 4. Twenty-three samples were identified as with
anti-VM, 7 with anti-debugging, and a single sample employed
anti-sandbox (in addition to anti-VM).

We also generated anti-forensic scripts to test our system against
a set of anti-forensic techniques. Our tests were based on Pafish [3],
an open-source tool that can identify virtual machines, debuggers,
and specific forensic environments like Sandboxie, Wine, VMware,
Bochs, and Cuckoo Sandbox. Pafish uses methods such as timing
checks via GetTickCount() Win32 API, debugger detection using
process environment block (PEB) information, thread local storage
(TLS) hooks, kernel drivers information, and so on.

We implemented anti-forensic scripts based on Pafish to mimic
the behavior of anti-forensic malware artificially. The script works
as follows: If a VM, debugger, or sandbox is found, terminate; oth-
erwise, perform random I/O operations (writing files and initiating
outbound connections) and terminate. Since Pafish doesn’t provide
forensic tools detection functionalities, we added a specific function
to detect the existence of HexRay IDA Pro in the system by relying
on the process name.

5.1 False Positives and Limitations
There are types of benign applications that behave differently in
bare metal and forensic environments. For example, debuggers
commonly check for other debuggers in the system via the Win32
API, such as IsDebuggerPresent() and its variations. In addition,
some applications don’t run properly on virtual machines or within
a nested virtualization environment. It is usually appended when
direct access to the underlined hardware is required. Some examples
are provided below.

• Graphics-intensive applications such as video editing pro-
grams, video games, and complex CAD/CAM applications.

• Defragmentation and partitioning applications that manipu-
late disk images.

• Applications that demand strict real-time performance.
• Applications that require processor-level capabilities, such
as TPMs, and software enclaves.

• Other hypervisors that may not support nested virtualiza-
tion.

These applications might be incorrectly identified as malicious
and sent for further dynamic analysis. In these cases, the applica-
tions behaved differently in a bare metal environment and were
identified as anti-forensic. In the context of malware detection, the
solution is to maintain a whitelist of benign forensic-aware appli-
cations. These applications would be excluded from anti-forensic
checking according to their hash or signature values.

5.2 False Negatives
False-negative results may occur when the investigated sample is
not identified as anti-forensic. For example, attackers may delay
malicious operations to avoid (any) forensic investigation. This
is especially relevant in automated analysis environments where
malware sleeps for a certain amount of time via functions such as
the Win32 API function Sleep() [18] or by using dummy opera-
tions. These techniques enable the malware under investigation
to reach the sandbox timeout without detection. Previous work
proposed several approaches to mitigate such evasion techniques,
e.g., monitoring specific sleeping system calls or virtualizing the
system clocks [26]. In the context of our defense, the detection
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Table 3: A trace log representation matrix (partial) for an anti-forensic sample. In this case, Anti-VM and Anti-Sandbox
techniques are detected.

Environment Files Registry Network Process/threads
Bare-metal read: 5, write: 4 read: 9, write: 3 TCP connections: 2 creation:3, termination:1
VM/Hypervisor read: 0, write: 0 read: 0, write: 0 TCP connections: 0 creation:1, termination:1
Debugging read: 5, write: 4 read: 9, write: 3 TCP connections: 2 creation:3, termination:1
Sandbox read: 0, write: 0 read: 0, write: 0 TCP connections: 0 creation:1, termination:1
Forensic tools read: 5, write: 4 read: 9, write: 3 TCP connections: 2 creation:3, termination:1

Table 4: Evaluation results with 30 anti-forensic samples

Environment Detected

VM/Hypervisor 23 (23 samples used anti-VM)
Debugging 7 (7 samples used anti-debugging)
Sandbox 1 (1 samples used anti-sandbox)
Forensic tools 0 (0 samples used anti forensic-tools)

systems will be combined in the CLOUDOSCOPE architecture to
identify samples that employ evasion techniques.

6 DISCUSSION
Anti-forensic malware are known to be challenging in the domain
of malware analysis at both practical and theoretical levels.

Branco et al. presented a non-academic overview of anti-forensic
malware and provided extended statistics based on a database of 4
million samples [27]. Chen et al. presented a comparative overview
of anti-VM and anti-debugging techniques used by malware au-
thors [31]. More recently, Gallardo et al. [32], and Mafia et al. [40]
studied the prevalence of dynamic evasive mechanisms in modern
malware. Notably, most of the proposed methods for detecting and
mitigating anti-forensic malware focus on specific anti-forensic
techniques [42]. Polino et al. introduced a runtime system based
on the Intel PIN tool for instrumentation detection. They estimated
whether a process uses anti-forensic techniques, such as timing
measurements and environmental settings [45]. There are multiple
solutions for existing debuggers that try to hide the debugger arti-
facts from the sample to counter anti-debugging techniques [36].
However, these techniques can be easily bypassed once the attacker
knows the stealth technique. Smith introduced an assembly-level
solution named REDIR that detects and highlights anti-debugging
techniques in the code based on static code analysis [52].

Several previous academic works discussed the concept of enu-
merating the differences between a given forensic environment and
a physical machine. However, the prior work mainly focused on
virtual machines and omitted other environments such as debug-
gers and sandbox [49]. Gilboy introduced DVasion, a framework
that can expose evasive behavior using so-called multiple execution
environments [33]. The proposed system is based on a monitor in a
virtual machine and is not designed to counter other types of anti-
forensic techniques. Ding et al. described a way to detect anti-VM
capabilities via collected behavioral information and a specified
distance algorithm, which estimates the difference between VM
and physical machines [53]. Guri et al. introduced a method for

testing the so-called split behavior of malware in a generic way
[34]; nonetheless, they didn’t utilize the power of modern public
clouds to manage multiple forensic environments and instead used
on-prem servers for their evaluation. Lee et al. presented an empir-
ical study of the top commercial anti-VM and anti-instrumentation
tools and provided guidelines to bypass them using traces modules
[37].

Note that due to their specified approaches, most of the previ-
ous research works can detect anti-VM techniques, and some are
extended to anti-debugging [33] [37]. Genetic approaches taken
by [34] have been evaluated for their anti-VM and anti-debugging
capabilities and are theoretically capable of working against anti-
sandbox malware, but no evaluation has been conducted for their
anti-sandbox and anti-forensic tools capabilities. Our work is rele-
vant to all four anti-forensic techniques and was evaluated on them.
The previous work and their relevancy are summarized in Table 5.

6.1 Public clouds vs. existing approaches
In addition to the contribution mentioned above, CLOUDOSCOPE
is the first architecture that uses public cloud capabilities to per-
formmanageable, extensible, and practical detection of anti-forensic
malware generically. In addition, we propose to use the newly intro-
duced bare metal infrastructure provided by major cloud providers
today to evaluate the sample in the cloud environment. There are
several advantages of using cloud environments over previous ap-
proaches, in terms of engineering and practical aspects. The main
benefits of the cloud environment to the CLOUDOSCOPE architec-
ture are listed below.

• Deployment. The approach requires deployments of tens of
runtime environments with multiple OS, hypervisors, debug-
gers, and forensic tools. It is possible in the public cloud envi-
ronment via VM deployment tools all major cloud providers
offer [54].

• Automation. The approach requires automation of multiple
environments to upload, execute, log, and analyze. Such
automation is supported by the cloud infrastructure available
today [45].

• Orchestration. The orchestration of forensic environments,
such as initiating, takingmemory snapshots, and terminating
the system under investigation, is an integral part of modern
clouds [43].

• Scalability. The cloud architecture enables greater scala-
bility of the solution, which is one of the crucial aspects in
automated malware analysis; execution of multiple samples
concurrently on cloned environments is possible and greatly
supported by the public cloud vendors [47].
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Table 5: Previous work comparison

# Work Technique VM Debugging Sandbox Tools Proposed environment

2011 Pek et al. [44] Timing and CPU virtualization YES NO NO NO On-prem, Xen monitor
2011 Sun et al. [53] Process behavioral analysis YES NO NO NO On-prem, VMware monitor
2013 Guri et al. [34] API and CPU traces comparisons YES YES YES NO On-prem, Hypervisors
2016 Gilboy et al. [33] Dynamic binary instrumentation YES YES NO NO On-prem, Intel PIN
2021 Lee et al. [37] API/instruction traces YES YES (partial) NO NO On-prem, Intel PIN
2023 CLOUDOSCOPE Public cloud multiple environments YES YES YES YES Cloud

This makes CLOUDOSCOPE a more practical, automated and
scalable solution compared to all on-prem approaches presented so
far.

7 CONCLUSION
To remain undetected, malware authors arm their code with anti-
forensic mechanisms. It includes anti-VMs, anti-debuggers, anti-
sandbox evasion, and forensic tools detection. These techniques
enabled malware to remain stealthy and proved highly efficient
against Anti-Virus products, automated sandboxes, intrusion detec-
tion systems, and even manual forensic investigators. We present
CLOUDOSCOPE, an architecture that enables the detection of anti-
forensic malware by using the capabilities of public clouds. Our
approach is based on the fact that anti-forensic malware behaves
differently in regular and forensic settings. We presented an ar-
chitecture for deploying heterogeneous forensic environments in
the cloud. With the aggregated data, we analyze bare-metal and
forensic execution traces to identify anti-forensic malware’s op-
eration. We also showed that this technique could detect specific
anti-forensic methods, even where they were unknown in advance.
We presented related work, an overview of anti-forensic methods,
the design and architecture of the system, and experimental results.
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