
Reports and Articles 

Social Processes and Proofs of Theorems 
and Programs 
Richard A. De Millo 
Georgia Institute of Technology 

Richard J. Lipton and Alan J. Perlis 
Yale University 

It is argued that formal verifications of programs, 
no matter how obtained, will not play the same key role 
in the development of computer science and software 
engineering as proofs do in mathematics. Furthermore 
the absence of continuity, the inevitability of change, 
and the complexity of specification of significantly 
many real programs make the formal verification 
process difficult to justify and manage. It is felt that 
ease of formal verification should not dominate 
program language design. 

Key Words and Phrases: formal mathematics, 
mathematical proofs, program verification, program 
specification 

CR Categories: 2.10, 4.6, 5.24 

Permission to copy without fee all or part of this material is 
granted provided that the copies are not made or distributed for direct 
commercial advantage, the ACM copyright notice and the title of the 
publication and its date appear, and notice is given that copying is by 
permission of the Association for Computing Machinery. To copy 
otherwise, or to republish, requires a fee and/or specific permission. 

This work was supported in part by the U.S. Army Research 
Office on grants DAHC 04-74-G-0179 and DAAG 29-76-G-0038 
and by the National Science Foundation on grant MCS 78-81486. 

Authors' addresses: R.A. De Millo, Georgia Institute of Technol- 
ogy, Atlanta, GA 30332; A.J. Perlis and R.J. Lipton, Dept. of Computer 
Science, Yale University, New Haven, CT 06520. 
© i 979 ACM 0001-0782/79/0500-0271 $00.75. 

271 

I should like to ask the same question that Descartes asked. You 
are proposing to give a precise definition of logical correctness 
which is to be the same as my vague intuitive feeling for logical 
correctness. How do you intend to show that they are the same? 
... The average mathematician should not forget that intuition is 
the final authority. 

J. Barkley Rosser 

Many people have argued that computer program- 
ming should strive to become more like mathematics. 
Maybe so, but not in the way they seem to think. The 
aim of  program verification, an attempt to make pro- 
gramming more mathematics-like, is to increase dramat- 
ically one's confidence in the correct functioning of  a 
piece of software, and the device that verifiers use to 
achieve this goal is a long chain of formal, deductive 
logic. In mathematics, the aim is to increase one's con- 
fidence in the correctness of  a theorem, and it's true that 
one of  the devices mathematicians could in theory use to 
achieve this goal is a long chain of  formal logic. But in 
fact they don't. What they use is a proof, a very different 
animal. Nor does the proof  settle the matter; contrary to 
what its name suggests, a proof  is only one step in the 
direction of  confidence. We believe that, in the end, it is 
a social process that determines whether mathematicians 
feel confident about a theorem--and we believe that, 
because no comparable social process can take place 
among program verifiers, program verification is bound 
to fail. We can't see how it's going to be able to affect 
anyone's confidence about programs. 
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Outsiders see mathematics as a cold, formal, logical, 
mechanical, monolithic process of sheer intellection; we 
argue that insofar as it is successful, mathematics is a 
social, informal, intuitive, organic, human process, a 
community project. Within the mathematical commu- 
nity, the view of mathematics as logical and formal was 
elaborated by Bertrand Russell and David Hilbert in the 
first years of this century. They saw mathematics as 
proceeding in principle from axioms or hypotheses to 
theorems by steps, each step easily justifiable from its 
predecessors by a strict rule of transformation, the rules 
of transformation being few and fixed. The Principia 
Mathematica was the crowning achievement of the for- 
malists. It was also the deathblow for the formalist view. 
There is no contradiction here: Russell did succeed in 
showing that ordinary working proofs can be reduced to 
formal, symbolic deductions. But he failed, in three 
enormous, taxing volumes, to get beyond the elementary 
facts of arithmetic. He showed what can be done in 
principle and what cannot be done in practice. If  the 
mathematical process were really one of strict, logical 
progression, we would still be counting on our fingers. 

Believing Theorems and Proofs 

Indeed every mathemat ic ian knows that a proof has not been 
"understood" if one has done nothing more than verify step by 
step the correctness of  the deductions of  which it is composed and 
has not tried to gain a clear insight into the ideas which have led 
to the construction of  this particular chain of  deductions in pref- 
erence to every other one. 

N. Bourbaki 

Agree with me if I seem to speak the truth. 
Socrates 

Stanislaw Ulam estimates that mathematicians pub- 
lish 200,000 theorems every year [20]. A number of these 
are subsequently contradicted or otherwise disallowed, 
others are thrown into doubt, and most are ignored. Only 
a tiny fraction come to be understood and believed by 
any sizable group of mathematicians. 

The theorems that get ignored or discredited are 
seldom the work of crackpots or incompetents. In 1879, 
Kempe [11] published a proof of the four-color conjec- 
ture that stood for eleven years before Heawood [8] 
uncovered a fatal flaw in the reasoning. The first collab- 
oration between Hardy and Littlewood resulted in a 
paper they delivered at the June 1911 meeting of the 
London Mathematical Society; the paper was never pub- 
lished because they subsequently discovered that their 
proof was wrong [4]. Cauchy, Lamr, and Kummer all 
thought at one time or another that they had proved 
Fermat's Last Theorem [3]. In 1945, Rademacher 
thought he had solved the Riemann Hypothesis; his 
results not only circulated in the mathematical world but 
were announced in Time magazine [3]. 
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Recently we found the following group of footnotes 
appended to a brief historical sketch of some independ- 
ence results in set theory [10]: 

(1) The result of Problem 11 contradicts the results 
announced by Levy [1963b]. Unfortunately, the con- 
struction presented there cannot be completed. 

(2) The transfer to ZFwas  also claimed by Marek [1966] 
but the outlined method appears to be unsatisfactory 
and has not been published. 

(3) A contradicting result was announced and later with- 
drawn by Truss [1970]. 

(4) The example in Problem 22 is a counterexample to 
another condition of Mostowski, who conjectured its 
sufficiency and singled out this example as a test 
case. 

(5) The independence result contradicts the claim of 
Feigner [1969] that the Cofinality Principle implies 
the Axiom of Choice. An error has been found by 
Morris (see Feigner's corrections to [1969]). 

The author has no axe to grind; he has probably never 
even heard of the current controversy in programming; 
and it is clearly no part of his concern to hold his friends 
and colleagues up to scorn. There is simply no way to 
describe the history of mathematical ideas without de- 
scribing the successive social processes at work in proofs. 
The point is not that mathematicians make mistakes; 
that goes without saying. The point is that mathemati- 
cians' errors are corrected, not by formal symbolic logic, 
but by other mathematicians. 

Just increasing the number of  mathematicians work- 
ing on a given problem does not necessarily insure 
believable proofs. Recently, two independent groups of 
topologists, one American, the other Japanese, independ- 
ently announced results concerning the same kind of 
topological object, a thing called a homotopy group. The 
results turned out to be contradictory, and since both 
proofs involved complex symbolic and numerical calcu- 
lation, it was not at all evident who had goofed. But the 
stakes were sufficiently high to justify pressing the issue, 
so the Japanese and American proofs were exchanged. 
Obviously, each group was highly motivated to discover 
an error in the other's proof; obviously, one proof or the 
other was incorrect. But neither the Japanese nor the 
American proof could be discredited. Subsequently, a 
third group of  researchers obtained yet another proof, 
this time supporting the American result. The weight of  
the evidence now being against their proof, the Japanese 
have retired to consider the matter further. 

There are actually two morals to this story. First, a 
proof does not in itself significantly raise our confidence 
in the probable truth of the theorem it purports to prove. 
Indeed, for the theorem about the homotopy group, the 
horribleness of all the proffered proofs suggests that the 
theorem itself requires rethinking. A second point to be 
made is that proofs consisting entirely of calculations are 
not necessarily correct. 
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Even simplicity, clarity, and ease provide no guar- 
antee that a proof is correct. The history of attempts to 
prove the Parallel Postulate is a particularly rich source 
of lovely, trim proofs that turned out to be false. From 
Ptolemy to Legendre (who tried time and time again), 
the greatest geometricians of every age kept ramming 
their heads against Euclid's fifth postulate. What's worse, 
even though we now know that the postulate is inde- 
monstrable, many of the faulty proofs are still so beguil- 
ing that in Heath's definitive commentary on Euclid [7] 
they are not allowed to stand alone; Heath marks them 
up with italics, footnotes, and explanatory marginalia, 
lest some young mathematician, thumbing through the 
volume, be misled. 

The idea that a proof can, at best, only probably 
express truth makes an interesting connection with a 
recent mathematical controversy. In a recent issue of 
Science [12], Gina Bari Kolata suggested that the appar- 
ently secure notion of mathematical proof may be due 
for revision. Here the central question is not "How do 
theorems get believed?" but "What is it that we believe 
when we believe a theorem?" There are two relevant 
views, which can be roughly labeled classical and prob- 
abilistic. 

The classicists say that when one believes mathemat- 
ical statement A, one believes that in principle there is a 
correct, formal, valid, step by step, syntactically checka- 
ble deduction leading to A in a suitable logical calculus 
such as Zermelo-Fraenkel set theory or Peano arithme- 
tic, a deduction of A ~ la the Principia, a deduction that 
completely formalizes the truth of A in the binary, 
Aristotelian notion of truth: "A proposition is true if it 
says of what is, that it is, and if it says of what is not, 
that it is not." This formal chain of reasoning is by no 
means the same thing as an everyday, ordinary mathe- 
matical proof. The classical view does not require that 
an ordinary proof be accompanied by its formal coun- 
terpart; on the contrary, there are mathematically sound 
reasons for allowing the gods to formalize most of our 
arguments. One theoretician estimates, for instance, that 
a formal demonstration of one of Ramanujan's conjec- 
tures assuming set theory and elementary analysis would 
take about two thousand pages; the length of a deduction 
from first principles is nearly inconceivable [14]. But the 
classicist believes that the formalization is in principle a 
possibility and that the truth it expresses is binary, either 
so or not so. 

The probabilists argue that since any very long proof 
can at best be viewed as only probably correct, why not 
state theorems probabilistically and give probabilistic 
proofs? The probabilistic proof may have the dual ad- 
vantage of being technically easier than the classical, 
bivalent one, and may allow mathematicians to isolate 
the critical ideas that give rise to uncertainty in tradi- 
tional, binary proofs. This process may even lead to a 
more plausible classical proof. An illustration of the 
probabilist approach is Michael Rabin's algorithm for 

testing probable primality [17]. For very large integers 
N, all of the classical techniques for determining whether 
N is composite become unworkable. Using even the 
most clever programming, the calculations required to 
determine whether numbers larger than 10 ~°4 are prime 
require staggering amounts of computing time. Rabin's 
insight was that if you are willing to settle for a very 
good probability that N is prime (or not prime), then you 
can get it within a reasonable amount of t ime--and with 
vanishingly small probability of error. 

In view of these uncertainties over what constitutes 
an acceptable proof, which is after all a fairly basic 
element of the mathematical process, how is it that 
mathematics has survived and been so successful? If  
proofs bear little resemblance to formal deductive rea- 
soning, if they can stand for generations and then fall, if 
they can contain flaws that defy detection, if they can 
express only the probability of truth within certain error 
bounds-- i f  they are, in fact, not able to prove theorems 
in the sense of guaranteeing them beyond probability 
and, if necessary, beyond insight, well, then, how does 
mathematics work? How does it succeed in developing 
theorems that are significant and that compel belief?. 

First of all, the proof of a theorem is a message. A 
proof is not a beautiful abstract object with an independ- 
ent existence. No mathematician grasps a proof, sits 
back, and sighs happily at the knowledge that he can 
now be certain of the truth of his theorem. He runs out 
into the hall and looks for someone to listen to it. He 
bursts into a colleague's office and commandeers the 
blackboard. He throws aside his scheduled topic and 
regales a seminar with his new idea. He drags his grad- 
uate students away from their dissertations to listen. He 
gets onto the phone and tells his colleagues in Texas and 
Toronto. In its first incarnation, a proof is a spoken 
message, or at most a sketch on a chalkboard or a paper 
napkin. 

That spoken stage is the first filter for a proof. If  it 
generates no excitement or belief among his friends, the 
wise mathematician reconsiders it. But if they fred it 
tolerably interesting and believable, he writes it up. After 
it has circulated in draft for a while, if it still seems 
plausible, he does a polished version and submits it for 
publication. If  the referees also fred it attractive and 
convincing, it gets published so that it can be read by a 
wider audience. If  enough members of that larger audi- 
ence believe it and like it, then after a suitable cooling- 
off period the reviewing publications take a more lei- 
surely look, to see whether the proof is really as pleasing 
as it first appeared and whether, on calm consideration, 
they really believe it. 

And what happens to a proof when it is believed? 
The most immediate process is probably an internaliza- 
tion of the result. That is, the mathematician who reads 
and believes a proof will attempt to paraphrase it, to put 
it in his own terms, to fit it into his own personal view of 
mathematical knowledge. No two mathematicians are 
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likely to internalize a mathematical concept in exactly 
the same way, so this process leads usually to multiple 
versions of  the same theorem, each reinforcing belief, 
each adding to the feeling of  the mathematical commu- 
nity that the original statement is likely to be true. Gauss, 
for example, obtained at least half  a dozen independent 
proofs of  his "law of  quadratic reciprocity"; to date over 
fifty proofs of  this law are known. Imre Lakatos gives, in 
his Proofs and Refutations [13], historically accurate dis- 
cussions of  the transformations that several famous theo- 
rems underwent from initial conception to general ac- 
ceptance. Lakatos demonstrates that Euler's formula 
V -  E + F = 2 was reformulated again and again for 
almost two hundred years after its first statement, until 
it fmally reached its current stable form. The most 
compelling transformation that can take place is gener- 
alization. If, by the same social process that works on 
the original theorem, the generalized theorem comes to 
be believed, then the original statement gains greatly in 
plausibility. 

A believable theorem gets used. It may appear as a 
lemma in larger proofs; if it does not lead to contradic- 
tions, then we are all the more inclined to believe it. Or 
engineers may use it by plugging physical values into it. 
We have fairly high confidence in classical stress equa- 
tions because we see bridges that stand; we have some 
confidence in the basic theorems of  fluid mechanics 
because we see airplanes that fly. 

Believable results sometimes make contact with other 
areas of  mathematics-- important  ones invariably do. 
The successful transfer of  a theorem or a proof  technique 
from one branch of  mathematics to another increases 
our feeling of  confidence in it. In 1964, for example, Paul 
Cohen used a technique called forcing to prove a theorem 
in set theory [2]; at that time, his notions were so radical 
that the proof  was hardly understood. But subsequently 
other investigators interpreted the notion of  forcing in 
an algebraic context, connected it with more familiar 
ideas in logic, generalized the concepts, and found the 
generalizations useful. All of  these connections (along 
with the other normal social processes that lead to ac- 
ceptance) made the idea of  forcing a good deal more 
compelling, and today forcing is routinely studied by 
graduate students in set theory. 

After enough internalization, enough transformation, 
enough generalization, enough use, and enough connec- 
tion, the mathematical community eventually decides 
that the central concepts in the original theorem, now 
perhaps greatly changed, have an ultimate stability. If  
the various proofs feel right and the results are examined 
from enough angles, then the truth of  the theorem is 
eventually considered to be established. The theorem is 
thought to be true in the classical sense--that  is, in the 
sense that it could be demonstrated by formal, deductive 
logic, although for almost all theorems no such deduction 
ever took place or ever will. 

The Role of Simplicity 

For what is clear and easily comprehended attracts; the compli- 
cated repels. 

David Hilbert 

Sometimes one has  to say difficult things, but  one ought to say 
them as simply as one knows how. 

G.H. Hardy 

As a rule, the most important mathematical problems 
are clean and easy to state. An important theorem is 
much more likely to take form A than form B. 

A: Every . . . . .  is a . . . . .  . 
B: If  . . . . .  and . . . . .  and . . . . .  and . . . . .  and . . . . .  except 

for special cases 
a)  . . . . .  

b) . . . . .  
C) . . . . .  , 

then unless 
i) . . . . .  or 

ii) . . . . .  or 
iii) . . . . .  , 

every . . . . .  that satisfies . . . . .  is a . . . . .  . 

The problems that have most fascinated and tor- 
mented and delighted mathematicians over the centuries 
have been the simplest ones to state. Einstein held that 
the maturity of  a scientific theory could be judged by 
how well it could be explained to the man on the street. 
The four-color theorem rests on such slender foundations 
that it can be stated with complete precision to a child. 
If  the child has learned his multiplication tables, he can 
understand the problem of  the location and distribution 
of  the prime numbers. And the deep fascination of  the 
problem of  defining the concept of  "number"  might turn 
him into a mathematician. 

The correlation between importance and simplicity 
is no accident. Simple, attractive theorems are the ones 
most likely to be heard, read, internalized, and used. 
Mathematicians use simplicity as the first test for a proof. 
Only if it looks interesting at first glance will they 
consider it in detail. Mathematicians are not altruistic 
masochists. On the contrary, the history of  mathematics 
is one long search for ease and pleasure and elegance--  
in the realm of  symbols, of  course. 

Even if they didn't want to, mathematicians would 
have to use the criterion of  simplicity; it is a psychological 
impossibility to choose any but the simplest and most 
attractive of  200,000 candidates for one's attention. If  
there are important, fundamental concepts in mathe- 
matics that are not simple, mathematicians will probably 
never discover them. 

Messy, ugly mathematical propositions that apply 
only to paltry classes of  structures, idiosyncratic propo- 
sitions, propositions that rely on inordinately expensive 
mathematical machinery, propositions that require five 
blackboards or a roll of  paper towels to sketch--these 
are unlikely ever to be assimilated into the body o f  
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mathematics. And yet it is only by such assimilation that 
proofs gain believability. The proof  by itself is nothing; 
only when it has been subjected to the social processes 
of  the mathematical community does it become believ- 
able. 

In this paper, we have tended to stress simplicity 
above all else because that is the first filter for any proof. 
But we do not wish to paint ourselves and our fellow 
mathematicians as philistines or brutes. Once an idea 
has met the criterion of  simplicity, other standards help 
determine its place among the ideas that make mathe- 
maticians gaze off  abstractedly into the distance. Yuri 
Manin [14] has put it best: A good proof  is one that 
makes us wiser. 

Disbelieving Verifications 

On the contrary, I fred nothing in logistic for the discoverer but 
shackles. It does not help us at all in the direction of conciseness, 
far from it; and if it requires twenty-seven equations to establish 
that 1 is a number, how many will it require to demonstrate a real 
theorem? 

Henri Poincar6 

One of the chief duties of the mathematician in acting as an 
advisor to scientists ... is to discourage them from expecting too 
much from mathematics. 

Norbert Weiner 

Mathematical proofs increase our confidence in the 
truth of  mathematical statements only after they have 
been subjected to the social mechanisms of  the mathe- 
matical community. These same mechanisms doom the 
so-called proofs of  software, the long formal verifications 
that correspond, not to the working mathematical proof, 
but to the imaginary logical structure that the mathe- 
matician conjures up to describe his feeling of  belief. 
Verifications are not messages; a person who ran out 
into the hall to communicate his latest verification would 
rapidly fred himself a social pariah. Verifications cannot 
really be read; a reader can flay himself through one of  
the shorter ones by dint of  heroic effort, but that's not 
reading. Being unreadable and--l i teral ly--unspeakable,  
verifications cannot be internalized, transformed, gen- 
eralized, used, connected to other disciplines, and even- 
tually incorporated into a community consciousness. 
They cannot acquire credibility gradually, as a mathe- 
matical theorem does; one either believes them blindly, 
as a pure act of  faith, or not at all. 

At this point, some adherents of  verification admit 
that the analogy to mathematics fails. Having argued 
that A, programming, resembles B, mathematics, and 
having subsequently learned that B is nothing like what 
they imagined, they wish to argue instead that A is like 
B', their mythical version of  B. We then find ourselves 
in the peculiar position of  putting across the argument 
that was originally theirs, asserting that yes, indeed, A 
does resemble B; our argument, however, matches the 
terms up differently from theirs. (See Figures 1 and 2.) 
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Fig. 1. The verifiers' original analogy. 
Mathematics Programming 

theorem ... program 
proof.., verification 

Fig. 2. Our analogy. 
Mathematics Programming 

theorem ... specification 
proof ... program 

imaginary 
formal 

demonstration ... verification 

Verifiers who wish to abandon the simile and substitute 
B' should as an aid to understanding' abandon the lan- 
guage of  B as well-- in particular, it would help if they 
did not call their verifications "proofs." As for ourselves, 
we will continue to argue that programming is like 
mathematics, and that the same social processes that 
work in mathematical proofs doom verifications. 

There is a fundamental logical objection to verifica- 
tion, an objection on its own ground of  formalistic rigor. 
Since the requirement for a program is informal and the 
program is formal, there must be a transition, and the 
transition itself must necessarily be informal. We have 
been distressed to learn that this proposition, which 
seems self-evident to us, is controversial. So we should 
emphasize that as antiformalists, we would not object to 
verification on these grounds; we only wonder how this 
inherently informal step fits into the formalist view. Have 
the adherents of  verification lost sight of  the infor- 
mal origins of  the formal objects they deal with? Is it 
their assertion that their formalizations are somehow 
incontrovertible? We must confess our confusion and 
dismay. 

Then there is another logical difficulty, nearly as 
basic, and by no means so hair-splitting as the one above: 
The formal demonstration that a program is consistent 
with its specifications has value only if the specifications 
and the program are independently derived. In the toy- 
program atmosphere of  experimental verification, this 
criterion is easily met. But in real life, if during the 
design process a program fails, it is changed, and the 
changes are based on knowledge of  its specifications; or 
the specifications are changed, and those changes are 
based on knowledge of  the program gained through the 
failure. In either case, the requirement of  having inde- 
pendent criteria to check against each other is no longer 
met. Again, we hope that no one would suggest that 
programs and specifications should not be repeatedly 
modified during the design process. That  would be a 
position of incredible pover ty-- the  sort of  poverty that 
does, we fear, result from infatuation with formal logic. 

Back in the real world, the kinds of  input/output  
specifications that accompany production software are 
seldom simple. They tend to be long and complex and 
peculiar. To cite an extreme case, computing the payroll 
for the French National Railroad requires more than 
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3,000 pay rates (one uphill, one downhill, and so on). 
The specifications for any reasonable compiler or oper- 
ating system fill volumes--and no one believes that they 
are complete. There are even some cases of  black-box 
code, numerical algorithms that can be shown to work 
in the sense that they are used to build real airplanes or 
drill real oil wells, but work for no reason that anyone 
knows; the input assertions for these algorithms are not 
even formulable, let alone formalizable. To take just one 
example, an important algorithm with the rather jaunty 
name of  Reverse Cuthill-McKee was known for years to 
be far better than plain Cuthill-McKee, known empiri- 
cally, in laboratory tests and field trials and in produc- 
tion. Only recently, however, has its superiority been 
theoretically demonstrable [6], and even then only with 
the usual informal mathematical proof, not with a formal 
deduction. During all of  the years when Reverse Cuthill- 
McKee was unproved, even though it automatically 
made any program in which it appeared unverifiable, 
programmers perversely went on using it. 

It might be countered that while real-life specifica- 
tions are lengthy and complicated, they are not deep. 
Their  verifications are, in fact, nothing more than ex- 
tremely long chains of  substitutions to be checked with 
the aid of  simple algebraic identities. 

All we can say in response to this is: Precisely. 
Verifications are long and involved but shallow; that's 
what's wrong with them. The verification of  even a puny 
program can run into dozens of  pages, and there's not a 
light moment or a spark of  wit on any of  those pages. 
Nobody is going to run into a friend's office with a 
program verification. Nobody is going to sketch a veri- 
fication out on a paper napkin. Nobody is going to 
buttonhole a colleague into listening to a verification. 
Nobody is ever going to read it. One can feel one's eyes 
glaze over at the very thought. 

It has been suggested that very high level languages, 
which can deal directly with a broad range of  mathe- 
matical objects or functional languages, which it is said 
can be concisely axiomatized, might be used to insure 
that a verification would be interesting and therefore 
responsive to a social process like the social process of  
mathematics. 

In theory this idea sounds hopeful; in practice, it 
doesn't work out. For  example, the following verification 
condition arises in the proof  of  a fast Fourier transform 
written in MADCAP, a very high level language [18]: 

I f S  e {1, -1} ,  b = exp (2rriS/N), r is an integer, N = 2 ~, 
(1) C = {2j: 0 _ j  < N / 4 }  and 
(2) a = <at: ar = b rm°d(N/2), 0 <-- r < N / 2 >  and 
(3) A = {j: j m o d N  < N/2 ,  0 <_j < N} and 
(4) A * =  ( j : 0 < _ j < N ) - A a n d  
(5) F = <fr : f r  = ~, ka(b kltr/2r lJm°dN), Rr ---- {j: ( j  -- r) 

k I ~Rn 

rood(N/2) = 0} > and k _< r 

then 
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(1) A fq (A + 2 r-k-l) = (x: xmod 2 r-k < 2 r-k-1, 0 <_ x 
< N) 
(2) < E>act>ac> = <ar: ar = b rekm°dtN/el, 0 <-- r < N / 2 >  

(3) <[:>(FaN(a+2r-k-l} "Jr" F¢j: O<_j<N}-AA(A+2r-~-I)) 

t>(< t>act>ac> 
*(Fanla+2r-*-'~ + F¢j: o <_j <N~-A nla+2 r-,-ll )) 

r-k-I 
> = < f r : f r  = 52 kl(b tr/2 JimodN), 

kl eRr 
R r  = { j : ( j -  r )mod2  r-k-t = 0}> 

(4) <C>(FA + Fa.)t>a*(Fa - FA.)> = <fr: f i  = y' 
kl eRr 

kl(bk~tr/2r-qm°ag), R r  = { j :  ( j -  r)mod(N/2) = 0 } >  

This is not what we would call pleasant reading. 
Some verifiers will concede that verification is simply 

unworkable for the vast majority of  programs but argue 
that for a few crucial applications the agony is worth- 
while. They point to air-traffic control, missile systems, 
and the exploration of  space as areas in which the risks 
are so high that any expenditure of time and effort can 
be justified. 

Even if this were so, we would still insist that verifi- 
cation renounce its claim on all other areas of  program- 
ming; to teach students in introductory programming 
courses how to do verification, for instance, ought to be 
as farfetched as teaching students in introductory biology 
how to do open-heart surgery. But the stakes do not 
affect our belief in the basic impossibility of  verifying 
any system large enough and flexible enough to do any 
real-world task. No matter how high the payoff, no one 
will ever be able to force himself to read the incredibly 
long, tedious verifications of  real-life systems, and unless 
they can be read, understood, and refined, the verifica- 
tions are worthless. 

Now, it might be argued that all these references to 
readability and internalization are irrelevant, that the 
aim of  verification is eventually t~) construct an automatic 
verifying system. 

Unfortunately, there is a wealth of  evidence that fully 
automated verifying systems are out of  the question. The 
lower bounds on the length of  formal demonstrations for 
mathematical theorems are immense [19], and there is 
no reason to believe that such demonstrations for pro- 
grams would be any shorter or cleaner--quite the con- 
trary. In fact, even the strong adherents of  program 
verification do not take seriously the possibility of  totally 
automated verifiers. Ralph London, a proponent of ver- 
ification, speaks of  an out-to-lunch system, one that 
could be left unsupervised to grind out verifications; but 
he doubts that such a system can be built to work with 
reasonable reliability. One group, despairing of  auto- 
mation in the foreseeable future, has proposed that ver- 
ifications should be performed by teams of  "grunt math- 
ematicians," low level mathematical teams who will 
check verification conditions. The sensibilities of  people 
who could make such a proposal seem odd, but they do 
serve to indicate how remote the possibility of  automated 
verification must be. 

Suppose, however, that an automatic verifier could 
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somehow be built. Suppose further that programmers 
did somehow come to have faith in its verifications. In 
the absence of  any real-world basis for such belief, it 
would have to be blind faith, but no matter. Suppose 
that the philosopher's stone had been found, that lead 
could be changed to gold, and that programmers were 
convinced of  the merits of  feeding their programs into 
the gaping jaws of  a verifier. It seems to us that the 
scenario envisioned by the proponents of  verification 
goes something like this: The programmer inserts his 
300-line input/output  package into the verifier. Several 
hours later, he returns. There is his 20,000-line verifica- 
tion and the message "VERIFIED."  

There is a tendency, as we begin to feel that a 
structure is logically, provably right, to remove from it 
whatever redundancies we originally built in because of  
lack of  understanding. Taken to its extreme, this ten- 
dency brings on the so-called Titanic effect; when failure 
does occur, it is massive and uncontrolled. To put it 
another way, the severity with which a system fails is 
directly proportional to the intensity of  the designer's 
belief that it cannot fail. Programs designed to be clean 
and tidy merely so that they can be verified will be 
particularly susceptible to the Titanic effect. Already we 
see signs of  this phenomenon. In their notes on Euclid 
[16], a language designed for program verification, sev- 
eral of  the foremost verification adherents say, "Because 
we expect all Euclid programs to be verified, we have 
not made special provisions for exception handling ... 
Runtime software errors should not occur in verified 
programs." Errors should not occur? Shades of  the ship 
that shouldn't be sunk. 

So, having for the moment suspended all rational 
disbelief, let us suppose that the programmer gets the 
message "VERIFIED."  And let us suppose further that 
the message does not result from a failure on the part of  
the verifying system. What does the programmer know? 
He knows that his program is formally, logically, prov- 
ably, certifiably correct. He does not know, however, to 
what extent it is reliable, dependable, trustworthy, safe; 
he does not know within what limits it will work; he does 
not know what happens when it exceeds those limits. 
And yet he has that mystical stamp of  approval: "VER- 
IFIED." We can almost see the iceberg looming in the 
background over the unsinkable ship. 

Luckily, there is little reason to fear such a future. 
Picture the same programmer returning to find the same 
20,000 lines. What message would he really fred, sup- 
posing that an automatic verifier could really be built? 
Of course, the message would be "NOT VERIFIED."  
The programmer would make a change, feed the pro- 
gram in again, return again. "NOT VERIFIED."  Again 
he would make a change, again he would feed the 
program to the verifier, again "NOT VERIFIED."  A 
program is a human artifact; a real-life program is a 
complex human artifact; and any human artifact of  
sufficient size and complexity is imperfect. The message 
will never read "VERIFIED."  

The Role of Continuity 

We may say, roughly, that a mathematical idea is "significant" if 
it can be connected, in a natural and illuminating way, with a large 
complex of other mathematical ideas. 

G.H. Hardy 

The only really fetching defense ever offered for 
verification is the scaling-up argument. As best we can 
reproduce it, here is how it goes: 
(1) Verification is now in its infancy. At the moment, 

the largest tasks it can handle are verifications of  
algorithms like FIND and model programs like 
GCD. It will in time be able to tackle more and 
more complicated algorithms and trickier and trick- 
ier model programs. These verifications are com- 
parable to mathematical proofs. They are read. 
They generate the same kinds of  interest and ex- 
citement that theorems do. They are subject to the 
ordinary social processes that work on mathemati- 
cal reasoning, or on reasoning in any other disci- 
pline, for that matter. 

(2) Big production systems are made up of  nothing 
more than algorithms and model programs. Once 
verified, algorithms and model programs can make 
up large, workaday production systems, and the 
(admittedly unreadable) verification of  a big system 
will be the sum of  the many small, attractive, inter- 
esting verifications of  its components. 

With (1) we have no quarrel. Actually, algorithms 
were proved and the proofs read and discussed and 
assimilated long before the invention of  computers--and 
with a striking lack of  formal machinery. Our guess is 
that the study of  algorithms and model programs will 
develop like any other mathematical activity, chiefly by 
informal, social mechanisms, very little if at all by formal 
mechanisms. 

It is with (2) that we have our fundamental disagree- 
ment. We argue that there is no continuity between the 
world of  FIND or G CD  and the world of  production 
software, billing systems that write real bills, scheduling 
systems that schedule real events, ticketing systems that 
issue real tickets. And we argue that the world of  pro- 
duction software is itself discontinuous. 

No programmer would agree that large production 
systems are composed of  nothing more than algorithms 
and small programs. Patches, ad hoc constructions, ban- 
daids and tourniquets, bells and whistles, glue, spit and 
polish, signature code, blood-sweat-and-tears, and, of  
course, the kitchen s ink-- the colorful jargon of  the prac- 
ticing programmer seems to be saying something about 
the nature of  the structures he works with; maybe theo- 
reticians ought to be listening to him. It has been esti- 
mated that more than half  the code in any real produc- 
tion system consists of  user interfaces and error mes- 
sages--ad hoc, informal structures that are by definition 
unverifiable. Even the verifiers themselves sometimes 
seem to realize the unverifiable nature of  most real 
software. C.A.R. Hoare has been quoted [9] as saying, 
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"In many applications, algorithm plays almost no role, 
and certainly presents almost no problem." (We wish we 
could report that he thereupon threw up his hands and 
abandoned verification, but no such luck.) 

Or look at the difference between the world of  G CD  
and the world of  production software in another way: 
The specifications for algorithms are concise and tidy, 
while the specifications for real-world systems are im- 
mense, frequently of  the same order of  magnitude as the 
systems themselves. The specifications for algorithms are 
highly stable, stable over decades or even centuries; the 
specifications for real systems vary daily or hourly (as 
any programmer can testify). The specifications for al- 
gorithms are exportable, general; the specifications for 
real systems are idiosyncratic and ad hoc. These are not 
differences in degree. They are differences in kind. Baby- 
sitting for a sleeping child for one hour does not scale up 
to raising a family of  t en- - the  problems are essentially, 
fundamentally different. 

And within the world of  real production software 
there is no continuity either. The scaling-up argument 
seems to be based on the fuzzy notion that the world of  
programming is like the world of  Newtonian physics-- 
made up of  smooth, continuous functions. But, in fact, 
programs are jagged and full of  holes and caverns. Every 
programmer knows that altering a line or sometimes 
even a bit can utterly destroy a program or multilate it 
in ways that we do not understand and cannot predict. 
And yet at other times fairly substantial changes seem to 
alter nothing; the folklore is filled with stories of  pranks 
and acts of  vandalism that frustrated the perpetrators by 
remaining forever undetected. 

There is a classic science-fiction story about a time 
traveler who goes back to the primeval jungles to watch 
dinosaurs and then returns to find his own time altered 
almost beyond recognition. Politics, architecture, lan- 
g u a g e - e v e n  the plants and animals seem wrong, dis- 
torted. Only when he removes his time-travel suit does 
he understand what has happened. On the heel of  his 
boot, carried away from the past and therefore unable to 
perform its function in the evolution of  the world, is 
crushed the wing of  a butterfly. Every programmer 
knows the sensation: A trivial, minute change wreaks 
havoc in a massive system. Until we know more about 
programming, we had better for all practical purposes 
think of  systems as composed, not of  sturdy structures 
like algorithms and smaller programs, but of  butterflies' 
wings. 

The discontinuous nature of  programming sounds 
the death knell for verification. A sufficiently fanatical 
researcher might be willing to devote two or three years 
to verifying a significant piece of  software if he could be 
assured that the software would remain stable. But real- 
life programs need to be maintained and modified. There 
is no reason to believe that verifying a modified program 
is any easier than verifying the original the first time 
around. There is no reason to believe that a big verifi- 
cation can be the sum of  many small verifications. There 

is no reason to believe that a verification can transfer to 
any other program--not  even to a program only one 
single line different from the original. 

And it is this discontinuity that obviates the possibil- 
ity of refining verifications by the sorts of social processes 
that refine mathematical proofs. The lone fanatic might 
construct his own verification, but he would never have 
any reason to read anyone else's, nor would anyone else 
ever be willing to read his. No community could develop. 
Even the most zealous verifier could be induced to read 
a verification only if he thought he might be able to use 
or borrow or swipe something from it. Nothing could 
force him to read someone else's verification once he had 
grasped the point that no verification bears any necessary 
connection to any other verification. 

Believing Software 

The program itself is the only complete description of what the 
program will do. 

P.J. Davis 

Since computers can write symbols agd move them 
about with negligible expenditure of  energy, it is tempt- 
ing to leap to the conclusion that anything is possible in 
the symbolic realm. But reality does not yield so easily; 
physics does not suddenly break down. It is no more 
possible to construct symbolic structures without using 
resources than it is to construct material structures with- 
out using them. For even the most trivial mathematical 
theories, there are simple statements whose formal dem- 
onstrations would be impossibly long. Albert Meyer's 
outstanding lecture on the history of  such research [15] 
concludes with a striking interpretation of  how hard it 
may be to deduce even fairly simple mathematical state- 
ments. Suppose that we encode logical formulas as bi- 
nary strings and set out to build a computer that will 
decide the truth of  a simple set of  formulas of  length, 
say, at most a thousand bits. Suppose that we even allow 
ourselves the luxury of  a technology that will produce 
proton-size electronic components connected by infi- 
nitely thin wires. Even so, the computer we design must 
densely fill the entire observable universe. This precise 
observation about the length of  formal deductions agrees 
with our intuition about the amount of  detail embedded 
in ordinary, workaday mathematical proofs. We often 
use "Let us assume, without loss of  generality ..." or 
"Therefore, by renumbering, if necessary ..." to replace 
enormous amounts of  formal detail. To insist on the 
formal detail would be a silly waste of  resources. Both 
symbolic and material structures must be engineered 
with a very cautious eye. Resources are limited; time is 
limited; energy is limited. Not even the computer can 
change the t'mite nature of  the universe. 

We assume that these constraints have prevented the 
adherents of  verification from offering what might be 
fairly convincing evidence in support of  their methods. 
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The lack at this late date of  even a single verification of  
a working system has sometimes been attributed to the 
youth of  the field. The verifiers argue, for instance, that 
they are only now beginning to understand loop invar- 
iants. At first blush, this sounds like another variant of  
the scaling-up argument. But in fact there are large 
classes of  real-life systems with virtually no loops-- they 
scarcely ever occur in commercial programming appli- 
cations. And yet there has never been a verification of, 
say, a Cobol system that prints real checks; lacking even 
one makes it seem doubtful that there could at some 
time in the future be many. Resources, and time, and 
energy are just as limited for verifiers as they are for all 
the rest of  us. 

We must therefore come to grips with two problems 
that have occupied engineers for many generations: First, 
people must plunge into activities that they do not un- 
derstand. Second, people cannot create perfect mecha- 
nisms. 

How then do engineers manage to create reliable 
structures? First, they use social processes very like the 
social processes of  mathematics to achieve successive 
approximations at understanding. Second, they have a 
mature and realistic view of  what "reliable" means; in 
particular, the one thing it never means is "perfect." 
There is no way to deduce logically that bridges stand, 
or that airplanes fly, or that power stations deliver elec- 
tricity. True, no bridges would fall, no airplanes would 
crash, no electrical systems black out if engineers would 
first demonstrate their perfection before building them- -  
true because they would never be built at all. 

The analogy in programming is any functioning, 
useful, real-world system. Take for instance an organic- 
chemical synthesizer called SYNCHEM [5]. For this 
program, the criterion of  reliability is particularly 
straightforward--if  it synthesizes a chemical, it works; if 
it doesn't, it doesn't work. No amount of  correctness 
could ever hope to improve on this standard; indeed, it 
is not at all clear how one could even begin to formalize 
such a standard in a way that would lend itself to 
verification. But it is a useful and continuing enterprise 
to try to increase the number of  chemicals the program 
can synthesize. 

It is nothing but symbol chauvinism that makes 
computer scientists think that our structures are so much 
more important than material structures that (a) they 
should be perfect, and (b) the energy necessary to make 
them perfect should be expended. We argue rather that 
(a) they cannot be perfect, and (b) energy should not be 
wasted in the futile attempt to make them perfect. It is 
no accident that the probabilistic view of  mathematical 
truth is closely allied to the engineering notion of  relia- 
bility. Perhaps we should make a sharp distinction be- 
tween program reliability and program perfect ion--and 
concentrate our efforts on reliability. 

The desire to make programs correct is constructive 
and valuable. But the monolithic view of  verification is 
blind to the benefits that could result from accepting a 
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standard of  correctness like the standard of  correctness 
for real mathematical proofs, or a standard of  reliability 
like the standard for real engineering structures. The 
quest for workability within economic limits, the willing- 
ness to channel innovation by recycling successful design, 
the trust in the functioning of  a community of  peers--al l  
the mechanisms that make engineering and mathematics 
really work are obscured in the fruitless search for perfect 
verifiability. 

What elements could contribute to making program- 
ming more like engineering and mathematics? One 
mechanism that can be exploited is the creation of  
general structures whose specific instances become more 
reliable as the reliability of  the general structure in- 
creases. 1 This notion has appeared in several incarna- 
tions, of  which Knuth's  insistence on creating and un- 
derstanding generally useful algorithms is one of the 
most important and encouraging. Baker's team-program- 
ming methodology [1] is an explicit attempt to expose 
software to social processes. If  reusability becomes a 
criterion for effective design, a wider and wider com- 
munity will examine the most common programming 
tools. 

The concept of  verifiable software has been with us 
too long to be easily displaced. For the practice of  
programming, however, verifiability must not be allowed 
to overshadow reliability. Scientists should not confuse 
mathematical models with real i ty--and verification is 
nothing but a model of  believability. Verifiability is not 
and cannot be a dominating concern in software design. 
Economics, deadlines, cost-benefit ratios, personal and 
group style, the limits of  acceptable error--al l  these carry 
immensely much more weight in design than verifiability 
or nonverifiability. 

So far, there has been little philosophical discussion 
of  making software reliable rather than verifiable. If  
verification adherents could redefine their efforts and 
reorient themselves to this goal, or if another view of  
software could arise that would draw on the social 
processes of  mathematics and the modest expectations of  
engineering, the interests of  real-life programming and 
theoretical computer science might both be better served. 

Even if, for some reason that we are not now able to 
understand, we should be proved wholly wrong and the 
verifiers wholly right, this is not the moment to restrict 
research on programming. We know too little now to 
sense what directions will be most fruitful. If  our reason- 
ing convinces no one, if verification still seems an avenue 
worth exploring, so be it; we three can only try to argue 
against verification, not blast it off  the face of the earth. 
But we implore our friends and colleagues not to narrow 
their vision to this one view no matter how promising it 

This process has recently come to be called "abstraction," but we 
feel that for a variety of reasons "abstraction" is a bad term. It is easily 
confused with the totally different notion of abstraction in mathematics, 
and often what has passed for abstraction in the computer science 
literature is simply the removal of implementation details. 
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may seem. Let it not be the only view, the only avenue. 
Jacob Bronowski has an important insight about a time 
in the history of  another discipline that may be similar 
to our own time in the development of  computing: "A 
science which orders its thought too early is stifled ... 
The hope of the medieval alchemists that the elements 
might be changed was not as fanciful as we once thought. 
But it was merely damaging to a chemistry which did 
not yet understand the composition of water and com- 
mon salt." 
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