
Reports and Articles

Social Processes and Proofs of Theorems
and Programs
Richard A. De Millo
Georgia Institute of Technology

Richard J. Lipton and Alan J. Perlis
Yale University

It is argued that formal verifications of programs,
no matter how obtained, will not play the same key role
in the development of computer science and software
engineering as proofs do in mathematics. Furthermore
the absence of continuity, the inevitability of change,
and the complexity of specification of significantly
many real programs make the formal verification
process difficult to justify and manage. It is felt that
ease of formal verification should not dominate
program language design.

Key Words and Phrases: formal mathematics,
mathematical proofs, program verification, program
specification

CR Categories: 2.10, 4.6, 5.24

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

This work was supported in part by the U.S. Army Research
Office on grants DAHC 04-74-G-0179 and DAAG 29-76-G-0038
and by the National Science Foundation on grant MCS 78-81486.

Authors' addresses: R.A. De Millo, Georgia Institute of Technol-
ogy, Atlanta, GA 30332; A.J. Perlis and R.J. Lipton, Dept. of Computer
Science, Yale University, New Haven, CT 06520.
© i 979 ACM 0001-0782/79/0500-0271 $00.75.

271

I should like to ask the same question that Descartes asked. You
are proposing to give a precise definition of logical correctness
which is to be the same as my vague intuitive feeling for logical
correctness. How do you intend to show that they are the same?
... The average mathematician should not forget that intuition is
the final authority.

J. Barkley Rosser

Many people have argued that computer program-
ming should strive to become more like mathematics.
Maybe so, but not in the way they seem to think. The
aim of program verification, an attempt to make pro-
gramming more mathematics-like, is to increase dramat-
ically one's confidence in the correct functioning of a
piece of software, and the device that verifiers use to
achieve this goal is a long chain of formal, deductive
logic. In mathematics, the aim is to increase one's con-
fidence in the correctness of a theorem, and it's true that
one of the devices mathematicians could in theory use to
achieve this goal is a long chain of formal logic. But in
fact they don't. What they use is a proof, a very different
animal. Nor does the proof settle the matter; contrary to
what its name suggests, a proof is only one step in the
direction of confidence. We believe that, in the end, it is
a social process that determines whether mathematicians
feel confident about a theorem--and we believe that,
because no comparable social process can take place
among program verifiers, program verification is bound
to fail. We can't see how it's going to be able to affect
anyone's confidence about programs.

Communications May 1979
of Volume 22
the ACM Number 5

http://crossmark.crossref.org/dialog/?doi=10.1145%2F359104.359106&domain=pdf&date_stamp=1979-05-01

Outsiders see mathematics as a cold, formal, logical,
mechanical, monolithic process of sheer intellection; we
argue that insofar as it is successful, mathematics is a
social, informal, intuitive, organic, human process, a
community project. Within the mathematical commu-
nity, the view of mathematics as logical and formal was
elaborated by Bertrand Russell and David Hilbert in the
first years of this century. They saw mathematics as
proceeding in principle from axioms or hypotheses to
theorems by steps, each step easily justifiable from its
predecessors by a strict rule of transformation, the rules
of transformation being few and fixed. The Principia
Mathematica was the crowning achievement of the for-
malists. It was also the deathblow for the formalist view.
There is no contradiction here: Russell did succeed in
showing that ordinary working proofs can be reduced to
formal, symbolic deductions. But he failed, in three
enormous, taxing volumes, to get beyond the elementary
facts of arithmetic. He showed what can be done in
principle and what cannot be done in practice. If the
mathematical process were really one of strict, logical
progression, we would still be counting on our fingers.

Believing Theorems and Proofs

Indeed every mathemat ic ian knows that a proof has not been
"understood" if one has done nothing more than verify step by
step the correctness of the deductions of which it is composed and
has not tried to gain a clear insight into the ideas which have led
to the construction of this particular chain of deductions in pref-
erence to every other one.

N. Bourbaki

Agree with me if I seem to speak the truth.
Socrates

Stanislaw Ulam estimates that mathematicians pub-
lish 200,000 theorems every year [20]. A number of these
are subsequently contradicted or otherwise disallowed,
others are thrown into doubt, and most are ignored. Only
a tiny fraction come to be understood and believed by
any sizable group of mathematicians.

The theorems that get ignored or discredited are
seldom the work of crackpots or incompetents. In 1879,
Kempe [11] published a proof of the four-color conjec-
ture that stood for eleven years before Heawood [8]
uncovered a fatal flaw in the reasoning. The first collab-
oration between Hardy and Littlewood resulted in a
paper they delivered at the June 1911 meeting of the
London Mathematical Society; the paper was never pub-
lished because they subsequently discovered that their
proof was wrong [4]. Cauchy, Lamr, and Kummer all
thought at one time or another that they had proved
Fermat's Last Theorem [3]. In 1945, Rademacher
thought he had solved the Riemann Hypothesis; his
results not only circulated in the mathematical world but
were announced in Time magazine [3].

272

Recently we found the following group of footnotes
appended to a brief historical sketch of some independ-
ence results in set theory [10]:

(1) The result of Problem 11 contradicts the results
announced by Levy [1963b]. Unfortunately, the con-
struction presented there cannot be completed.

(2) The transfer to ZFwas also claimed by Marek [1966]
but the outlined method appears to be unsatisfactory
and has not been published.

(3) A contradicting result was announced and later with-
drawn by Truss [1970].

(4) The example in Problem 22 is a counterexample to
another condition of Mostowski, who conjectured its
sufficiency and singled out this example as a test
case.

(5) The independence result contradicts the claim of
Feigner [1969] that the Cofinality Principle implies
the Axiom of Choice. An error has been found by
Morris (see Feigner's corrections to [1969]).

The author has no axe to grind; he has probably never
even heard of the current controversy in programming;
and it is clearly no part of his concern to hold his friends
and colleagues up to scorn. There is simply no way to
describe the history of mathematical ideas without de-
scribing the successive social processes at work in proofs.
The point is not that mathematicians make mistakes;
that goes without saying. The point is that mathemati-
cians' errors are corrected, not by formal symbolic logic,
but by other mathematicians.

Just increasing the number of mathematicians work-
ing on a given problem does not necessarily insure
believable proofs. Recently, two independent groups of
topologists, one American, the other Japanese, independ-
ently announced results concerning the same kind of
topological object, a thing called a homotopy group. The
results turned out to be contradictory, and since both
proofs involved complex symbolic and numerical calcu-
lation, it was not at all evident who had goofed. But the
stakes were sufficiently high to justify pressing the issue,
so the Japanese and American proofs were exchanged.
Obviously, each group was highly motivated to discover
an error in the other's proof; obviously, one proof or the
other was incorrect. But neither the Japanese nor the
American proof could be discredited. Subsequently, a
third group of researchers obtained yet another proof,
this time supporting the American result. The weight of
the evidence now being against their proof, the Japanese
have retired to consider the matter further.

There are actually two morals to this story. First, a
proof does not in itself significantly raise our confidence
in the probable truth of the theorem it purports to prove.
Indeed, for the theorem about the homotopy group, the
horribleness of all the proffered proofs suggests that the
theorem itself requires rethinking. A second point to be
made is that proofs consisting entirely of calculations are
not necessarily correct.

Communica t ions May 1979
of Volume 22
the A C M Number 5

Even simplicity, clarity, and ease provide no guar-
antee that a proof is correct. The history of attempts to
prove the Parallel Postulate is a particularly rich source
of lovely, trim proofs that turned out to be false. From
Ptolemy to Legendre (who tried time and time again),
the greatest geometricians of every age kept ramming
their heads against Euclid's fifth postulate. What's worse,
even though we now know that the postulate is inde-
monstrable, many of the faulty proofs are still so beguil-
ing that in Heath's definitive commentary on Euclid [7]
they are not allowed to stand alone; Heath marks them
up with italics, footnotes, and explanatory marginalia,
lest some young mathematician, thumbing through the
volume, be misled.

The idea that a proof can, at best, only probably
express truth makes an interesting connection with a
recent mathematical controversy. In a recent issue of
Science [12], Gina Bari Kolata suggested that the appar-
ently secure notion of mathematical proof may be due
for revision. Here the central question is not "How do
theorems get believed?" but "What is it that we believe
when we believe a theorem?" There are two relevant
views, which can be roughly labeled classical and prob-
abilistic.

The classicists say that when one believes mathemat-
ical statement A, one believes that in principle there is a
correct, formal, valid, step by step, syntactically checka-
ble deduction leading to A in a suitable logical calculus
such as Zermelo-Fraenkel set theory or Peano arithme-
tic, a deduction of A ~ la the Principia, a deduction that
completely formalizes the truth of A in the binary,
Aristotelian notion of truth: "A proposition is true if it
says of what is, that it is, and if it says of what is not,
that it is not." This formal chain of reasoning is by no
means the same thing as an everyday, ordinary mathe-
matical proof. The classical view does not require that
an ordinary proof be accompanied by its formal coun-
terpart; on the contrary, there are mathematically sound
reasons for allowing the gods to formalize most of our
arguments. One theoretician estimates, for instance, that
a formal demonstration of one of Ramanujan's conjec-
tures assuming set theory and elementary analysis would
take about two thousand pages; the length of a deduction
from first principles is nearly inconceivable [14]. But the
classicist believes that the formalization is in principle a
possibility and that the truth it expresses is binary, either
so or not so.

The probabilists argue that since any very long proof
can at best be viewed as only probably correct, why not
state theorems probabilistically and give probabilistic
proofs? The probabilistic proof may have the dual ad-
vantage of being technically easier than the classical,
bivalent one, and may allow mathematicians to isolate
the critical ideas that give rise to uncertainty in tradi-
tional, binary proofs. This process may even lead to a
more plausible classical proof. An illustration of the
probabilist approach is Michael Rabin's algorithm for

testing probable primality [17]. For very large integers
N, all of the classical techniques for determining whether
N is composite become unworkable. Using even the
most clever programming, the calculations required to
determine whether numbers larger than 10 ~°4 are prime
require staggering amounts of computing time. Rabin's
insight was that if you are willing to settle for a very
good probability that N is prime (or not prime), then you
can get it within a reasonable amount of t ime--and with
vanishingly small probability of error.

In view of these uncertainties over what constitutes
an acceptable proof, which is after all a fairly basic
element of the mathematical process, how is it that
mathematics has survived and been so successful? If
proofs bear little resemblance to formal deductive rea-
soning, if they can stand for generations and then fall, if
they can contain flaws that defy detection, if they can
express only the probability of truth within certain error
bounds-- i f they are, in fact, not able to prove theorems
in the sense of guaranteeing them beyond probability
and, if necessary, beyond insight, well, then, how does
mathematics work? How does it succeed in developing
theorems that are significant and that compel belief?.

First of all, the proof of a theorem is a message. A
proof is not a beautiful abstract object with an independ-
ent existence. No mathematician grasps a proof, sits
back, and sighs happily at the knowledge that he can
now be certain of the truth of his theorem. He runs out
into the hall and looks for someone to listen to it. He
bursts into a colleague's office and commandeers the
blackboard. He throws aside his scheduled topic and
regales a seminar with his new idea. He drags his grad-
uate students away from their dissertations to listen. He
gets onto the phone and tells his colleagues in Texas and
Toronto. In its first incarnation, a proof is a spoken
message, or at most a sketch on a chalkboard or a paper
napkin.

That spoken stage is the first filter for a proof. If it
generates no excitement or belief among his friends, the
wise mathematician reconsiders it. But if they fred it
tolerably interesting and believable, he writes it up. After
it has circulated in draft for a while, if it still seems
plausible, he does a polished version and submits it for
publication. If the referees also fred it attractive and
convincing, it gets published so that it can be read by a
wider audience. If enough members of that larger audi-
ence believe it and like it, then after a suitable cooling-
off period the reviewing publications take a more lei-
surely look, to see whether the proof is really as pleasing
as it first appeared and whether, on calm consideration,
they really believe it.

And what happens to a proof when it is believed?
The most immediate process is probably an internaliza-
tion of the result. That is, the mathematician who reads
and believes a proof will attempt to paraphrase it, to put
it in his own terms, to fit it into his own personal view of
mathematical knowledge. No two mathematicians are

273 Communications May 1979
of Volume 22
the ACM Number 5

likely to internalize a mathematical concept in exactly
the same way, so this process leads usually to multiple
versions of the same theorem, each reinforcing belief,
each adding to the feeling of the mathematical commu-
nity that the original statement is likely to be true. Gauss,
for example, obtained at least half a dozen independent
proofs of his "law of quadratic reciprocity"; to date over
fifty proofs of this law are known. Imre Lakatos gives, in
his Proofs and Refutations [13], historically accurate dis-
cussions of the transformations that several famous theo-
rems underwent from initial conception to general ac-
ceptance. Lakatos demonstrates that Euler's formula
V - E + F = 2 was reformulated again and again for
almost two hundred years after its first statement, until
it fmally reached its current stable form. The most
compelling transformation that can take place is gener-
alization. If, by the same social process that works on
the original theorem, the generalized theorem comes to
be believed, then the original statement gains greatly in
plausibility.

A believable theorem gets used. It may appear as a
lemma in larger proofs; if it does not lead to contradic-
tions, then we are all the more inclined to believe it. Or
engineers may use it by plugging physical values into it.
We have fairly high confidence in classical stress equa-
tions because we see bridges that stand; we have some
confidence in the basic theorems of fluid mechanics
because we see airplanes that fly.

Believable results sometimes make contact with other
areas of mathematics-- important ones invariably do.
The successful transfer of a theorem or a proof technique
from one branch of mathematics to another increases
our feeling of confidence in it. In 1964, for example, Paul
Cohen used a technique called forcing to prove a theorem
in set theory [2]; at that time, his notions were so radical
that the proof was hardly understood. But subsequently
other investigators interpreted the notion of forcing in
an algebraic context, connected it with more familiar
ideas in logic, generalized the concepts, and found the
generalizations useful. All of these connections (along
with the other normal social processes that lead to ac-
ceptance) made the idea of forcing a good deal more
compelling, and today forcing is routinely studied by
graduate students in set theory.

After enough internalization, enough transformation,
enough generalization, enough use, and enough connec-
tion, the mathematical community eventually decides
that the central concepts in the original theorem, now
perhaps greatly changed, have an ultimate stability. If
the various proofs feel right and the results are examined
from enough angles, then the truth of the theorem is
eventually considered to be established. The theorem is
thought to be true in the classical sense--that is, in the
sense that it could be demonstrated by formal, deductive
logic, although for almost all theorems no such deduction
ever took place or ever will.

The Role of Simplicity

For what is clear and easily comprehended attracts; the compli-
cated repels.

David Hilbert

Sometimes one has to say difficult things, but one ought to say
them as simply as one knows how.

G.H. Hardy

As a rule, the most important mathematical problems
are clean and easy to state. An important theorem is
much more likely to take form A than form B.

A: Every is a
B: If and and and and except

for special cases
a)

b)
C) ,

then unless
i) or

ii) or
iii) ,

every that satisfies is a

The problems that have most fascinated and tor-
mented and delighted mathematicians over the centuries
have been the simplest ones to state. Einstein held that
the maturity of a scientific theory could be judged by
how well it could be explained to the man on the street.
The four-color theorem rests on such slender foundations
that it can be stated with complete precision to a child.
If the child has learned his multiplication tables, he can
understand the problem of the location and distribution
of the prime numbers. And the deep fascination of the
problem of defining the concept of "number" might turn
him into a mathematician.

The correlation between importance and simplicity
is no accident. Simple, attractive theorems are the ones
most likely to be heard, read, internalized, and used.
Mathematicians use simplicity as the first test for a proof.
Only if it looks interesting at first glance will they
consider it in detail. Mathematicians are not altruistic
masochists. On the contrary, the history of mathematics
is one long search for ease and pleasure and elegance--
in the realm of symbols, of course.

Even if they didn't want to, mathematicians would
have to use the criterion of simplicity; it is a psychological
impossibility to choose any but the simplest and most
attractive of 200,000 candidates for one's attention. If
there are important, fundamental concepts in mathe-
matics that are not simple, mathematicians will probably
never discover them.

Messy, ugly mathematical propositions that apply
only to paltry classes of structures, idiosyncratic propo-
sitions, propositions that rely on inordinately expensive
mathematical machinery, propositions that require five
blackboards or a roll of paper towels to sketch--these
are unlikely ever to be assimilated into the body o f

274 Communica t ions May 1979
of Volume 22
the ACM Number 5

mathematics. And yet it is only by such assimilation that
proofs gain believability. The proof by itself is nothing;
only when it has been subjected to the social processes
of the mathematical community does it become believ-
able.

In this paper, we have tended to stress simplicity
above all else because that is the first filter for any proof.
But we do not wish to paint ourselves and our fellow
mathematicians as philistines or brutes. Once an idea
has met the criterion of simplicity, other standards help
determine its place among the ideas that make mathe-
maticians gaze off abstractedly into the distance. Yuri
Manin [14] has put it best: A good proof is one that
makes us wiser.

Disbelieving Verifications

On the contrary, I fred nothing in logistic for the discoverer but
shackles. It does not help us at all in the direction of conciseness,
far from it; and if it requires twenty-seven equations to establish
that 1 is a number, how many will it require to demonstrate a real
theorem?

Henri Poincar6

One of the chief duties of the mathematician in acting as an
advisor to scientists ... is to discourage them from expecting too
much from mathematics.

Norbert Weiner

Mathematical proofs increase our confidence in the
truth of mathematical statements only after they have
been subjected to the social mechanisms of the mathe-
matical community. These same mechanisms doom the
so-called proofs of software, the long formal verifications
that correspond, not to the working mathematical proof,
but to the imaginary logical structure that the mathe-
matician conjures up to describe his feeling of belief.
Verifications are not messages; a person who ran out
into the hall to communicate his latest verification would
rapidly fred himself a social pariah. Verifications cannot
really be read; a reader can flay himself through one of
the shorter ones by dint of heroic effort, but that's not
reading. Being unreadable and--l i teral ly--unspeakable,
verifications cannot be internalized, transformed, gen-
eralized, used, connected to other disciplines, and even-
tually incorporated into a community consciousness.
They cannot acquire credibility gradually, as a mathe-
matical theorem does; one either believes them blindly,
as a pure act of faith, or not at all.

At this point, some adherents of verification admit
that the analogy to mathematics fails. Having argued
that A, programming, resembles B, mathematics, and
having subsequently learned that B is nothing like what
they imagined, they wish to argue instead that A is like
B', their mythical version of B. We then find ourselves
in the peculiar position of putting across the argument
that was originally theirs, asserting that yes, indeed, A
does resemble B; our argument, however, matches the
terms up differently from theirs. (See Figures 1 and 2.)

275

Fig. 1. The verifiers' original analogy.
Mathematics Programming

theorem ... program
proof.., verification

Fig. 2. Our analogy.
Mathematics Programming

theorem ... specification
proof ... program

imaginary
formal

demonstration ... verification

Verifiers who wish to abandon the simile and substitute
B' should as an aid to understanding' abandon the lan-
guage of B as well-- in particular, it would help if they
did not call their verifications "proofs." As for ourselves,
we will continue to argue that programming is like
mathematics, and that the same social processes that
work in mathematical proofs doom verifications.

There is a fundamental logical objection to verifica-
tion, an objection on its own ground of formalistic rigor.
Since the requirement for a program is informal and the
program is formal, there must be a transition, and the
transition itself must necessarily be informal. We have
been distressed to learn that this proposition, which
seems self-evident to us, is controversial. So we should
emphasize that as antiformalists, we would not object to
verification on these grounds; we only wonder how this
inherently informal step fits into the formalist view. Have
the adherents of verification lost sight of the infor-
mal origins of the formal objects they deal with? Is it
their assertion that their formalizations are somehow
incontrovertible? We must confess our confusion and
dismay.

Then there is another logical difficulty, nearly as
basic, and by no means so hair-splitting as the one above:
The formal demonstration that a program is consistent
with its specifications has value only if the specifications
and the program are independently derived. In the toy-
program atmosphere of experimental verification, this
criterion is easily met. But in real life, if during the
design process a program fails, it is changed, and the
changes are based on knowledge of its specifications; or
the specifications are changed, and those changes are
based on knowledge of the program gained through the
failure. In either case, the requirement of having inde-
pendent criteria to check against each other is no longer
met. Again, we hope that no one would suggest that
programs and specifications should not be repeatedly
modified during the design process. That would be a
position of incredible pover ty-- the sort of poverty that
does, we fear, result from infatuation with formal logic.

Back in the real world, the kinds of input/output
specifications that accompany production software are
seldom simple. They tend to be long and complex and
peculiar. To cite an extreme case, computing the payroll
for the French National Railroad requires more than

Communications May 1979
of Volume 22
the ACM Number 5

3,000 pay rates (one uphill, one downhill, and so on).
The specifications for any reasonable compiler or oper-
ating system fill volumes--and no one believes that they
are complete. There are even some cases of black-box
code, numerical algorithms that can be shown to work
in the sense that they are used to build real airplanes or
drill real oil wells, but work for no reason that anyone
knows; the input assertions for these algorithms are not
even formulable, let alone formalizable. To take just one
example, an important algorithm with the rather jaunty
name of Reverse Cuthill-McKee was known for years to
be far better than plain Cuthill-McKee, known empiri-
cally, in laboratory tests and field trials and in produc-
tion. Only recently, however, has its superiority been
theoretically demonstrable [6], and even then only with
the usual informal mathematical proof, not with a formal
deduction. During all of the years when Reverse Cuthill-
McKee was unproved, even though it automatically
made any program in which it appeared unverifiable,
programmers perversely went on using it.

It might be countered that while real-life specifica-
tions are lengthy and complicated, they are not deep.
Their verifications are, in fact, nothing more than ex-
tremely long chains of substitutions to be checked with
the aid of simple algebraic identities.

All we can say in response to this is: Precisely.
Verifications are long and involved but shallow; that's
what's wrong with them. The verification of even a puny
program can run into dozens of pages, and there's not a
light moment or a spark of wit on any of those pages.
Nobody is going to run into a friend's office with a
program verification. Nobody is going to sketch a veri-
fication out on a paper napkin. Nobody is going to
buttonhole a colleague into listening to a verification.
Nobody is ever going to read it. One can feel one's eyes
glaze over at the very thought.

It has been suggested that very high level languages,
which can deal directly with a broad range of mathe-
matical objects or functional languages, which it is said
can be concisely axiomatized, might be used to insure
that a verification would be interesting and therefore
responsive to a social process like the social process of
mathematics.

In theory this idea sounds hopeful; in practice, it
doesn't work out. For example, the following verification
condition arises in the proof of a fast Fourier transform
written in MADCAP, a very high level language [18]:

I f S e {1, -1} , b = exp (2rriS/N), r is an integer, N = 2 ~,
(1) C = {2j: 0 _ j < N / 4 } and
(2) a = <at: ar = b rm°d(N/2), 0 <-- r < N / 2 > and
(3) A = {j: j m o d N < N/2 , 0 <_j < N} and
(4) A * = (j : 0 < _ j < N) - A a n d
(5) F = <fr : f r = ~, ka(b kltr/2r lJm°dN), Rr ---- {j: (j -- r)

k I ~Rn

rood(N/2) = 0} > and k _< r

then

276

(1) A fq (A + 2 r-k-l) = (x: xmod 2 r-k < 2 r-k-1, 0 <_ x
< N)
(2) < E>act>ac> = <ar: ar = b rekm°dtN/el, 0 <-- r < N / 2 >

(3) <[:>(FaN(a+2r-k-l} "Jr" F¢j: O<_j<N}-AA(A+2r-~-I))

t>(< t>act>ac>
(Fanla+2r--'~ + F¢j: o <_j <N~-A nla+2 r-,-ll))

r-k-I
> = < f r : f r = 52 kl(b tr/2 JimodN),

kl eRr
R r = { j : (j - r)mod2 r-k-t = 0}>

(4) <C>(FA + Fa.)t>a*(Fa - FA.)> = <fr: f i = y'
kl eRr

kl(bk~tr/2r-qm°ag), R r = { j : (j - r)mod(N/2) = 0 } >

This is not what we would call pleasant reading.
Some verifiers will concede that verification is simply

unworkable for the vast majority of programs but argue
that for a few crucial applications the agony is worth-
while. They point to air-traffic control, missile systems,
and the exploration of space as areas in which the risks
are so high that any expenditure of time and effort can
be justified.

Even if this were so, we would still insist that verifi-
cation renounce its claim on all other areas of program-
ming; to teach students in introductory programming
courses how to do verification, for instance, ought to be
as farfetched as teaching students in introductory biology
how to do open-heart surgery. But the stakes do not
affect our belief in the basic impossibility of verifying
any system large enough and flexible enough to do any
real-world task. No matter how high the payoff, no one
will ever be able to force himself to read the incredibly
long, tedious verifications of real-life systems, and unless
they can be read, understood, and refined, the verifica-
tions are worthless.

Now, it might be argued that all these references to
readability and internalization are irrelevant, that the
aim of verification is eventually t~) construct an automatic
verifying system.

Unfortunately, there is a wealth of evidence that fully
automated verifying systems are out of the question. The
lower bounds on the length of formal demonstrations for
mathematical theorems are immense [19], and there is
no reason to believe that such demonstrations for pro-
grams would be any shorter or cleaner--quite the con-
trary. In fact, even the strong adherents of program
verification do not take seriously the possibility of totally
automated verifiers. Ralph London, a proponent of ver-
ification, speaks of an out-to-lunch system, one that
could be left unsupervised to grind out verifications; but
he doubts that such a system can be built to work with
reasonable reliability. One group, despairing of auto-
mation in the foreseeable future, has proposed that ver-
ifications should be performed by teams of "grunt math-
ematicians," low level mathematical teams who will
check verification conditions. The sensibilities of people
who could make such a proposal seem odd, but they do
serve to indicate how remote the possibility of automated
verification must be.

Suppose, however, that an automatic verifier could

Communicat ions May 1979
of Volume 22
the ACM Number 5

somehow be built. Suppose further that programmers
did somehow come to have faith in its verifications. In
the absence of any real-world basis for such belief, it
would have to be blind faith, but no matter. Suppose
that the philosopher's stone had been found, that lead
could be changed to gold, and that programmers were
convinced of the merits of feeding their programs into
the gaping jaws of a verifier. It seems to us that the
scenario envisioned by the proponents of verification
goes something like this: The programmer inserts his
300-line input/output package into the verifier. Several
hours later, he returns. There is his 20,000-line verifica-
tion and the message "VERIFIED."

There is a tendency, as we begin to feel that a
structure is logically, provably right, to remove from it
whatever redundancies we originally built in because of
lack of understanding. Taken to its extreme, this ten-
dency brings on the so-called Titanic effect; when failure
does occur, it is massive and uncontrolled. To put it
another way, the severity with which a system fails is
directly proportional to the intensity of the designer's
belief that it cannot fail. Programs designed to be clean
and tidy merely so that they can be verified will be
particularly susceptible to the Titanic effect. Already we
see signs of this phenomenon. In their notes on Euclid
[16], a language designed for program verification, sev-
eral of the foremost verification adherents say, "Because
we expect all Euclid programs to be verified, we have
not made special provisions for exception handling ...
Runtime software errors should not occur in verified
programs." Errors should not occur? Shades of the ship
that shouldn't be sunk.

So, having for the moment suspended all rational
disbelief, let us suppose that the programmer gets the
message "VERIFIED." And let us suppose further that
the message does not result from a failure on the part of
the verifying system. What does the programmer know?
He knows that his program is formally, logically, prov-
ably, certifiably correct. He does not know, however, to
what extent it is reliable, dependable, trustworthy, safe;
he does not know within what limits it will work; he does
not know what happens when it exceeds those limits.
And yet he has that mystical stamp of approval: "VER-
IFIED." We can almost see the iceberg looming in the
background over the unsinkable ship.

Luckily, there is little reason to fear such a future.
Picture the same programmer returning to find the same
20,000 lines. What message would he really fred, sup-
posing that an automatic verifier could really be built?
Of course, the message would be "NOT VERIFIED."
The programmer would make a change, feed the pro-
gram in again, return again. "NOT VERIFIED." Again
he would make a change, again he would feed the
program to the verifier, again "NOT VERIFIED." A
program is a human artifact; a real-life program is a
complex human artifact; and any human artifact of
sufficient size and complexity is imperfect. The message
will never read "VERIFIED."

The Role of Continuity

We may say, roughly, that a mathematical idea is "significant" if
it can be connected, in a natural and illuminating way, with a large
complex of other mathematical ideas.

G.H. Hardy

The only really fetching defense ever offered for
verification is the scaling-up argument. As best we can
reproduce it, here is how it goes:
(1) Verification is now in its infancy. At the moment,

the largest tasks it can handle are verifications of
algorithms like FIND and model programs like
GCD. It will in time be able to tackle more and
more complicated algorithms and trickier and trick-
ier model programs. These verifications are com-
parable to mathematical proofs. They are read.
They generate the same kinds of interest and ex-
citement that theorems do. They are subject to the
ordinary social processes that work on mathemati-
cal reasoning, or on reasoning in any other disci-
pline, for that matter.

(2) Big production systems are made up of nothing
more than algorithms and model programs. Once
verified, algorithms and model programs can make
up large, workaday production systems, and the
(admittedly unreadable) verification of a big system
will be the sum of the many small, attractive, inter-
esting verifications of its components.

With (1) we have no quarrel. Actually, algorithms
were proved and the proofs read and discussed and
assimilated long before the invention of computers--and
with a striking lack of formal machinery. Our guess is
that the study of algorithms and model programs will
develop like any other mathematical activity, chiefly by
informal, social mechanisms, very little if at all by formal
mechanisms.

It is with (2) that we have our fundamental disagree-
ment. We argue that there is no continuity between the
world of FIND or G CD and the world of production
software, billing systems that write real bills, scheduling
systems that schedule real events, ticketing systems that
issue real tickets. And we argue that the world of pro-
duction software is itself discontinuous.

No programmer would agree that large production
systems are composed of nothing more than algorithms
and small programs. Patches, ad hoc constructions, ban-
daids and tourniquets, bells and whistles, glue, spit and
polish, signature code, blood-sweat-and-tears, and, of
course, the kitchen s ink-- the colorful jargon of the prac-
ticing programmer seems to be saying something about
the nature of the structures he works with; maybe theo-
reticians ought to be listening to him. It has been esti-
mated that more than half the code in any real produc-
tion system consists of user interfaces and error mes-
sages--ad hoc, informal structures that are by definition
unverifiable. Even the verifiers themselves sometimes
seem to realize the unverifiable nature of most real
software. C.A.R. Hoare has been quoted [9] as saying,

277 Communications May 1979
of Volume 22
the ACM Number 5

"In many applications, algorithm plays almost no role,
and certainly presents almost no problem." (We wish we
could report that he thereupon threw up his hands and
abandoned verification, but no such luck.)

Or look at the difference between the world of G CD
and the world of production software in another way:
The specifications for algorithms are concise and tidy,
while the specifications for real-world systems are im-
mense, frequently of the same order of magnitude as the
systems themselves. The specifications for algorithms are
highly stable, stable over decades or even centuries; the
specifications for real systems vary daily or hourly (as
any programmer can testify). The specifications for al-
gorithms are exportable, general; the specifications for
real systems are idiosyncratic and ad hoc. These are not
differences in degree. They are differences in kind. Baby-
sitting for a sleeping child for one hour does not scale up
to raising a family of t en- - the problems are essentially,
fundamentally different.

And within the world of real production software
there is no continuity either. The scaling-up argument
seems to be based on the fuzzy notion that the world of
programming is like the world of Newtonian physics--
made up of smooth, continuous functions. But, in fact,
programs are jagged and full of holes and caverns. Every
programmer knows that altering a line or sometimes
even a bit can utterly destroy a program or multilate it
in ways that we do not understand and cannot predict.
And yet at other times fairly substantial changes seem to
alter nothing; the folklore is filled with stories of pranks
and acts of vandalism that frustrated the perpetrators by
remaining forever undetected.

There is a classic science-fiction story about a time
traveler who goes back to the primeval jungles to watch
dinosaurs and then returns to find his own time altered
almost beyond recognition. Politics, architecture, lan-
g u a g e - e v e n the plants and animals seem wrong, dis-
torted. Only when he removes his time-travel suit does
he understand what has happened. On the heel of his
boot, carried away from the past and therefore unable to
perform its function in the evolution of the world, is
crushed the wing of a butterfly. Every programmer
knows the sensation: A trivial, minute change wreaks
havoc in a massive system. Until we know more about
programming, we had better for all practical purposes
think of systems as composed, not of sturdy structures
like algorithms and smaller programs, but of butterflies'
wings.

The discontinuous nature of programming sounds
the death knell for verification. A sufficiently fanatical
researcher might be willing to devote two or three years
to verifying a significant piece of software if he could be
assured that the software would remain stable. But real-
life programs need to be maintained and modified. There
is no reason to believe that verifying a modified program
is any easier than verifying the original the first time
around. There is no reason to believe that a big verifi-
cation can be the sum of many small verifications. There

is no reason to believe that a verification can transfer to
any other program--not even to a program only one
single line different from the original.

And it is this discontinuity that obviates the possibil-
ity of refining verifications by the sorts of social processes
that refine mathematical proofs. The lone fanatic might
construct his own verification, but he would never have
any reason to read anyone else's, nor would anyone else
ever be willing to read his. No community could develop.
Even the most zealous verifier could be induced to read
a verification only if he thought he might be able to use
or borrow or swipe something from it. Nothing could
force him to read someone else's verification once he had
grasped the point that no verification bears any necessary
connection to any other verification.

Believing Software

The program itself is the only complete description of what the
program will do.

P.J. Davis

Since computers can write symbols agd move them
about with negligible expenditure of energy, it is tempt-
ing to leap to the conclusion that anything is possible in
the symbolic realm. But reality does not yield so easily;
physics does not suddenly break down. It is no more
possible to construct symbolic structures without using
resources than it is to construct material structures with-
out using them. For even the most trivial mathematical
theories, there are simple statements whose formal dem-
onstrations would be impossibly long. Albert Meyer's
outstanding lecture on the history of such research [15]
concludes with a striking interpretation of how hard it
may be to deduce even fairly simple mathematical state-
ments. Suppose that we encode logical formulas as bi-
nary strings and set out to build a computer that will
decide the truth of a simple set of formulas of length,
say, at most a thousand bits. Suppose that we even allow
ourselves the luxury of a technology that will produce
proton-size electronic components connected by infi-
nitely thin wires. Even so, the computer we design must
densely fill the entire observable universe. This precise
observation about the length of formal deductions agrees
with our intuition about the amount of detail embedded
in ordinary, workaday mathematical proofs. We often
use "Let us assume, without loss of generality ..." or
"Therefore, by renumbering, if necessary ..." to replace
enormous amounts of formal detail. To insist on the
formal detail would be a silly waste of resources. Both
symbolic and material structures must be engineered
with a very cautious eye. Resources are limited; time is
limited; energy is limited. Not even the computer can
change the t'mite nature of the universe.

We assume that these constraints have prevented the
adherents of verification from offering what might be
fairly convincing evidence in support of their methods.

278 Communications May 1979
of Volume 22
the ACM Number 5

The lack at this late date of even a single verification of
a working system has sometimes been attributed to the
youth of the field. The verifiers argue, for instance, that
they are only now beginning to understand loop invar-
iants. At first blush, this sounds like another variant of
the scaling-up argument. But in fact there are large
classes of real-life systems with virtually no loops-- they
scarcely ever occur in commercial programming appli-
cations. And yet there has never been a verification of,
say, a Cobol system that prints real checks; lacking even
one makes it seem doubtful that there could at some
time in the future be many. Resources, and time, and
energy are just as limited for verifiers as they are for all
the rest of us.

We must therefore come to grips with two problems
that have occupied engineers for many generations: First,
people must plunge into activities that they do not un-
derstand. Second, people cannot create perfect mecha-
nisms.

How then do engineers manage to create reliable
structures? First, they use social processes very like the
social processes of mathematics to achieve successive
approximations at understanding. Second, they have a
mature and realistic view of what "reliable" means; in
particular, the one thing it never means is "perfect."
There is no way to deduce logically that bridges stand,
or that airplanes fly, or that power stations deliver elec-
tricity. True, no bridges would fall, no airplanes would
crash, no electrical systems black out if engineers would
first demonstrate their perfection before building them- -
true because they would never be built at all.

The analogy in programming is any functioning,
useful, real-world system. Take for instance an organic-
chemical synthesizer called SYNCHEM [5]. For this
program, the criterion of reliability is particularly
straightforward--if it synthesizes a chemical, it works; if
it doesn't, it doesn't work. No amount of correctness
could ever hope to improve on this standard; indeed, it
is not at all clear how one could even begin to formalize
such a standard in a way that would lend itself to
verification. But it is a useful and continuing enterprise
to try to increase the number of chemicals the program
can synthesize.

It is nothing but symbol chauvinism that makes
computer scientists think that our structures are so much
more important than material structures that (a) they
should be perfect, and (b) the energy necessary to make
them perfect should be expended. We argue rather that
(a) they cannot be perfect, and (b) energy should not be
wasted in the futile attempt to make them perfect. It is
no accident that the probabilistic view of mathematical
truth is closely allied to the engineering notion of relia-
bility. Perhaps we should make a sharp distinction be-
tween program reliability and program perfect ion--and
concentrate our efforts on reliability.

The desire to make programs correct is constructive
and valuable. But the monolithic view of verification is
blind to the benefits that could result from accepting a

279

standard of correctness like the standard of correctness
for real mathematical proofs, or a standard of reliability
like the standard for real engineering structures. The
quest for workability within economic limits, the willing-
ness to channel innovation by recycling successful design,
the trust in the functioning of a community of peers--al l
the mechanisms that make engineering and mathematics
really work are obscured in the fruitless search for perfect
verifiability.

What elements could contribute to making program-
ming more like engineering and mathematics? One
mechanism that can be exploited is the creation of
general structures whose specific instances become more
reliable as the reliability of the general structure in-
creases. 1 This notion has appeared in several incarna-
tions, of which Knuth's insistence on creating and un-
derstanding generally useful algorithms is one of the
most important and encouraging. Baker's team-program-
ming methodology [1] is an explicit attempt to expose
software to social processes. If reusability becomes a
criterion for effective design, a wider and wider com-
munity will examine the most common programming
tools.

The concept of verifiable software has been with us
too long to be easily displaced. For the practice of
programming, however, verifiability must not be allowed
to overshadow reliability. Scientists should not confuse
mathematical models with real i ty--and verification is
nothing but a model of believability. Verifiability is not
and cannot be a dominating concern in software design.
Economics, deadlines, cost-benefit ratios, personal and
group style, the limits of acceptable error--al l these carry
immensely much more weight in design than verifiability
or nonverifiability.

So far, there has been little philosophical discussion
of making software reliable rather than verifiable. If
verification adherents could redefine their efforts and
reorient themselves to this goal, or if another view of
software could arise that would draw on the social
processes of mathematics and the modest expectations of
engineering, the interests of real-life programming and
theoretical computer science might both be better served.

Even if, for some reason that we are not now able to
understand, we should be proved wholly wrong and the
verifiers wholly right, this is not the moment to restrict
research on programming. We know too little now to
sense what directions will be most fruitful. If our reason-
ing convinces no one, if verification still seems an avenue
worth exploring, so be it; we three can only try to argue
against verification, not blast it off the face of the earth.
But we implore our friends and colleagues not to narrow
their vision to this one view no matter how promising it

This process has recently come to be called "abstraction," but we
feel that for a variety of reasons "abstraction" is a bad term. It is easily
confused with the totally different notion of abstraction in mathematics,
and often what has passed for abstraction in the computer science
literature is simply the removal of implementation details.

Communications May 1979
of Volume 22
the ACM Number 5

may seem. Let it not be the only view, the only avenue.
Jacob Bronowski has an important insight about a time
in the history of another discipline that may be similar
to our own time in the development of computing: "A
science which orders its thought too early is stifled ...
The hope of the medieval alchemists that the elements
might be changed was not as fanciful as we once thought.
But it was merely damaging to a chemistry which did
not yet understand the composition of water and com-
mon salt."

Acknowledgments. We especially wish to thank those
who gave us public forums-- the 4th POPL program
committee for giving us our first chance; Bob Taylor and
Jim Morris for letting us express our views in a discussion
at Xerox PARC; L. Zadeh and Larry Rowe for doing
the same at the Computer Science Department of the
University of California at Berkeley; Marvin Dennicoff
and Peter Wegner for allowing us to address the DOD
conference on research directions in software technology.

We also wish to thank Larry Landweber for allowing
us to visit for a summer the University of Wisconsin at
Madison. The environment and the support of Ben
Noble and his staff at the Mathematics Research Center
was instrumental in letting us work effectively.

The seeds of these ideas were formed out of discus-
sions held at the DOD Conference on Software Tech-
nology in 1976 at Durham, North Carolina. We wish to
thank in particular J.R. Suttle, who organized this con-
ference and has been of continuing encouragement in
our work.

We also wish to thank our many friends who have
discussed these issues with us. They include: AI Aho, Jon
Barwise, Manuel Blum, Tim Budd, Lucio Chiaraviglio,
Philip Davis, Peter Denning, Bernie Elspas, Mike
Fischer, Ralph Griswold, Leo Guibas, David Hansen,
Mike Harrison, Steve Johnson, Jerome Kiesler, Kenneth
Kunen, Nancy Lynch, Albert Meyer, Barkley Rosser,
Fred Sayward, Tim Standish, Larry Travis, Tony Was-
serman, and Ann Yasuhara.

We also wish to thank both Bob Grafton and Marvin
Dennicoff of ONR for their comments and encourage-
ment.

Only those who have seen earlier drafts of this paper
can appreciate the contribution made by our editor,
Mary-Claire van Leunen. Were it the custom in com-
puter science to list a credit line "As told to " that
might be a better description of the service she per-
formed.

An informal obituary. The Math. lntelligencer 1, l (1978), 28-33.
5. Gelerenter, H., et al. The discovery of organic synthetic roots by
computer. Topics in Current Chemistry 41, Springer-Verlag, 1973, pp.
113-150.
6. George, J. Alan. Computer Implementation of the Finite
Element Method. Ph.D. Th., Stanford U., Stanford, Calif., 1971.
7. Heath, Thomas L. The Thirteen Books of Euclid's Elements.
Dover, New York, 1956, pp. 204-219.
8. Heawood, P.J. Map colouring theorems. Quarterly J. Math.,
Oxford Series 24 (1890), 322-339.
9. Hoare, C.A.R. Quoted in Software Management, C. McGowan
and R. McHenry, Eds.; to appear in Research Directions in Software
Technology, M.I.T. Press, Cambridge, Mass., 1978.
10. Jech, Thomas J. The Axiom of Choice. North-Holland Pub. Co.,
Amsterdam, 1973, p. 118.
1 I. Kempe, A.B. On the geographical problem of the four colors.
Amer. J. Math. 2 (1879), 193-200.
12. Kolata, G. Bail. Mathematical proof: The genesis of reasonable
doubt. Science 192 (1976), 989-990.
13. Lakatos, Imre. Proofs and Refutations: The Logic of Mathematical
Discovery. Cambridge University Press, England, 1976.
14. Manin, Yu. I. A Course in Mathematical Logic. Springer-Verlag,
1977, pp. 48-51.
15. Meyer, A. The inherent computational complexity of theories of
ordered sets: A brief survey. Int. Cong. of Mathematicians, Aug.
1974.
16. Popek, G., et al. Notes on the design of Euclid. Proc. Conf.
Language Design for Reliable Software, SIGPLAN Notices (ACM)
12, 3 (1977), pp. 11-18.
17. Rabin, M.O. Probabilistic algorithms. In Algorithms and
Complexity: New Directions and Recent Results, J.F. Traub, Ed.,
Academic Press, New York, 1976, pp. 2140.
18. Schwartz, J. On programming. Courant Rep., New York U.,
New York, 1973.
19. Stockmeyer, L. The complexity of decision problems in automata
theory and logic. Ph.D. Th., M.I.T., Cambridge, Mass., 1974.
20. Ulam, S.M. Adventures of a Mathematician. Scribner's, New York,
1976, p. 288.

Received October 1978

References
1. Baker, F.T. Chief programmer team management of production
programming. IBM Syst. J. 11, 1 (1972), 56-73.
2. Cohen, P.J. The independence of the continuum hypothesis.
Proc. Nat. Acad. Sci., USA. Part I, vol. 50 (1963), pp. 1143-1148;
Part II, vol. 51 (1964), pp. 105-110.
3. Davis, P.J. Fidelity in mathematical discourse: Is one and one
really two? The Amer. Math. Monthly 79, 3 (1972), 252-263.
4. Bateman, P., and Diamond, H. John E. Littlewood (1885-1977):

280 Communications May 1979
of Volume 22
the ACM Number 5

