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ABSTRACT

The prediction of adaptive radiation therapy (ART) prior to
radiation therapy (RT) for nasopharyngeal carcinoma (NPC)
patients is important to reduce toxicity and prolong the sur-
vival of patients. Currently, due to the complex tumor micro-
environment, a single type of high-resolution image can pro-
vide only limited information. Meanwhile, the traditional
softmax-based loss is insufficient for quantifying the discrim-
inative power of a model. To overcome these challenges, we
propose a supervised multi-view contrastive learning method
with an additive margin (MMCon). For each patient, four
medical images are considered to form multi-view positive
pairs, which can provide additional information and enhance
the representation of medical images. In addition, the embed-
ding space is learned by means of contrastive learning. NPC
samples from the same patient or with similar labels will re-
main close in the embedding space, while NPC samples with
different labels will be far apart. To improve the discrimina-
tive ability of the loss function, we incorporate a margin into
the contrastive learning. Experimental result show this new
learning objective can be used to find an embedding space
that exhibits superior discrimination ability for NPC images.

Index Terms— Medical Image Analysis, Multi-view,
Nasopharyngeal Carcinoma, Contrastive Learning, Additive
Margin

1. INTRODUCTION

Planning intensity-modulated radiotherapy (IMRT) for
NPC requires medical imaging guidance. Previous studies
have shown that the target volume (TV) and organ-at-risk
(OAR) geometry appearing in images can change signifi-
cantly during IMRT [1, 2]. To reduce unnecessary exposure
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Fig. 1: Illustration of our basic idea. V1, V2, V3, and V4 are
different medical image views in the NPC-GTV dataset. vi

and vj are different patients associated with NPC samples.
zi and zj represent vectors. Our objective is to learn an em-
bedding space in which similar sample pairs stay close while
dissimilar ones are far apart.

during treatment, it is necessary to incorporate medical im-
age analysis to assist doctors in evaluating whether ART is
needed.

In contrast to other medical image classification tasks,
such as tumour identification [3, 4], and cancer diagnosis [5,
6], the prediction task for NPC ART is to analyze the proper-
ties of tumour to distinguish the need for radiotherapy replan-
ning in the short term. Due to the heterogeneity of tumours
[7, 8], the volume, shape, and texture of the tumour region
may vary from patient to patient, and many diverse factors
may cause these features to change.

In a previous study, [9] used artificially extracted mag-
netic resonance imaging (MRI) features to study radiation
therapy planning for NPC. However, a single manually ex-
tracted omics signature cannot fully express the information
of NPC samples [10]. The sample learning methods used
in many studies [10] showed that manually extracted multi-
omics feature representation data could not be obtained better
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features than using effective deep learning algorithms. Lever-
aging better NPC feature representation to predict tumour
variability remains a challenge for NPC ART.

With the resurgence of contrastive learning, significant
advancements have recently been achieved in the learning of
image representations [11, 12, 13, 14]. The research in [14]
demonstrated how data augmentation based on various views
of the same sample can benefit visual representation. How-
ever, [15] proved that the softmax-based contrastive learning
loss is not directly applicable to image classification tasks,
even though their work proposes a framework to improve
the classification performance in contrastive learning, this
method is not suitable for complex medical imaging tasks.

To alleviate the above challenge, we propose multiview
margin contrastive (MMCon) learning, a medical image rep-
resentation learning method. As shown in Fig 1, given a set of
NPC image views, a deep representation is learned by bring-
ing views of the same class patient together in embedding
space while pushing views of different class ones apart. We
show an example of learned representation for 4-views(T1,
T2, CT, and Dose). The embedding vector for each view may
be concatenated to form the full representation of a patient.

The main contributions can be summarized as follows:

• We incorporated multi-view medical images to learn an
NPC representation that aims to maximize the mutual
information between different views of the same class
patient by using positive pairs from various views.

• We introduce a margin between distinct target class
regions to achieve discriminative ability for unclear
boundary samples via extending the conventional con-
trastive learning loss. With an extra margin, MMCon
is more discriminative and noise-tolerant in the embed-
ding space.

2. DATASET COLLECTION

We collected samples from 502 NPC patients who re-
ceived radiotherapy in Hong Kong to construct the NPC-
GTV dataset. Each patient has four different views, including
CECT-T1w (T1 image), T2 MR (T2 image), CT images, and
dose. All the planning images were retrospectively collected
in the Digital Imaging and Communications in Medicine
(DICOM) format and archived using an image archiving
and communication system (PAC). Patients who had clinical
records regarded as necessitating the implementation of ART
were labeled as 1; otherwise, patients were labeled as 0. The
statistic of NPC-GTV is shown in Table 1.

The imaging data included planning CT images and pre-
treatment T1 and T2 MR images. The treatment-related data
were the dose fractionation schemes. The outcome data in-
cluded the replanning status and any replanning-related med-
ical records. The attending radiation oncologists input all of

the enrolled clinical records of the patients, which were care-
fully examined to determine the binary prediction outcome in
this study. All CT and MR images were resampled to a voxel
size of 1x1x1 mm3 to mitigate the impacts of differences in
image acquisition parameters among different patients.

Table 1: The statistic of NPC-GTV dataset.

Organ Views Non-necessitating ART Necessitating ART Samples Total images

GTVn

T1 364 138 502

2,008T2 364 138 502
CT 364 138 502

Dose 364 138 502

3. METHODOLOGY

In this section, the representation learning framework in
this study is first introduced. Then, this work proposes a
marginal contrastive loss function with significant discrimi-
nation. Finally, we conclude by comparing the framework in
this study and the contrastive loss function of the classifica-
tion ability with multi-view to previous work. Our goal is to
train a feature embedding network using labeled medical im-
ages. Embeddings for patient samples with similar diseases
should be close to each other, while those from patients from
different diseases should be far apart. The whole framework
is shown in Fig. 2.

3.1. Representation Learning Network

Given a batch of input samples, we use different types of
NPC images (T1, T2, CT, Dose) of the same organ to con-
struct positive samples, we regard them as multi-view med-
ical images. The patient features of the embedding vector
from the same instance should remain the same across various
viewpoints, while the embeddings from different instances
should be different. As shown in Figure 1, the multi-view
instances are presented to the encoder network. At the output
of the network, a margin contrastive loss is computed.

Multi-view data We match each input query sample to
three different medical image views, each providing a unique
view of the data. Among them, the T1 image is used as the
query sample for each sample, and the remaining T2, CT, and
Dose images from the same patient are used as positive sam-
ples relative to this sample. Other images from different pa-
tients belong to the negative sample. We set these views as
M , whichM = {V1,V2, . . . ,Vm}.

Encoder Network Our goal is to train an encoder network
from a set of labeled images X = {x1, fθ(·)x2, . . . ,xi}.
fθ(·) converts the input image xi to a low-dimensional em-
bedding vector hi = fθ (xi) ∈ Rd, where d is the output
dimension. Both original and augmented samples are inde-
pendently fed into the same type of encoder, resulting in four
representation vectors. In this study, we chose ViT [16] as the
encoder.
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Fig. 2: The whole framework of Multi-view Margin Contrastive Learning. We use NPC-GTV dataset to divide four different
types of images (T1, T2, CT, Dose). 1. Sample Selection: The patient i with vi1, vi2, vi3, vi4 can be constructed a serious of
positive samples. Each view has 502 samples. Other samples from different patients j belong to the negative samples. 2. ViT:
Each sample of views will be encoded by ViT. 3. MMCon: The vectors from the encoder and the label information will be
calculated in the MMCon loss function.

3.2. Contrastive Loss Function

3.2.1. Supervised Contrastive Losses

Supervised contrastive loss (SupCon)[17] can handle the
situation where multiple samples are known to belong to the
same class due to the presence of labels:

LSupCon =

N∑
i=1

−1
|P(i)|

∑
p∈P(i)

log
exp(zi · zp/τ)∑

a∈A(i) exp(zi · za/τ)
(1)

In Eq. 1, P(i) contains the indices of positive samples in the
augmented batch (original + augmentation) with respect to
zi and |P(i)| is the cardinality of P(i). zi is an anchor, it
belongs to the query samples. za are negative samples. zp
are positive samples, and A(i) is the index set of negative
samples.

3.2.2. Angular Margin based Contrastive Learning

In Eq. 1, the angular θi,p as follows:

θi,p = arccos(
z>
i , zp

‖zi‖ · ‖zp‖
) (2)

The decision boundary for zi is θi,p = θi,a. A tiny pertur-
bation around the decision boundary may result in an inaccu-
rate conclusion if an insufficient decision margin is present.
To alleviate the problem, we proposed a new training objec-
tive for representation learning by adding an additive angular

margin m between positive pair zi, zp, and negative pair zi,
za, which can be formulated as follows:

LMarginCon =

N∑
i=1

−1
|P (i)|

∑
p∈P (i)

log
exp(cos(θi,p + α)/τ)∑

a∈A(i) exp(cos(θi,a + α)/τ)

(3)

In this loss, α is the increased angle, the decision bound-
ary for zi is θi,p + α = θi,a. It increases the compactness of
organ feature representation with the same semantics and en-
larges the discrepancy of different semantic representations.
This help enhances the alignment and uniformity properties,
which are two key measures of representation quality related
to contrastive learning, indicating how close between posi-
tive pair embeddings is and how well the embeddings are uni-
formly distributed.

3.2.3. Multi-view Margin Contrastive Loss

Let multi-view sample as M = {V1, V2, . . . , Vm}. And
divide them into three parts, which are query sample repre-
sentation vector zi, positive samples representation vectors
zp, and negative samples representation vectors za. We bring
samples from different views into the LMarginCon, and zi =

vi1, zp = {vi2, . . . ,vim}, zj = {v
j
1,v

j
2, . . . ,v

j
m}.

sim(zi, zp) =
fθ1(v

i
1) · fθ2({vi2, . . . ,vim}

‖fθ1(vi1)‖ · ‖fθ2({vi2, . . . ,vim})‖
(4)



sim(zi, za) =
fθ1(v

i
1)fθ2({v

j
1, . . . ,v

j
m})

‖fθ1(vi1)‖. ‖fθ2({v
j
1, . . . ,v

j
m})‖

(5)

Though the training objective tries to pull representations
with similar images closer and push dissimilar ones away
from each other, these representations may still not be suf-
ficiently discriminative and not very robust to noise. By
incorporating multi-view similarity and Eq.3, We propose a
Multi-view Margin supervised Contrastive (MMCon) loss
function for supervised embedding learning to improve the
ability of decision classification as Eq.6.

LMMCon =

N∑
i=1

−1
|P (i)|

∑
p∈P (i)

log
exp((sim(zi, zp)−m)/τ)∑

a∈A(i) exp((sim(zi, za)−m)/τ)

(6)
where m is a margin, our margin is a scalar subtracted from
cosθ.

4. EXPERIMENT

4.1. Implementation Details

We performed experiments on the NPC-GTV dataset. We
use K-fold cross-validation for training and testing, where k is
10. We set the marginm to 0.2. The mini-batch size for train-
ing was 50. The contrastive learning temperature τ was set
to 0.07. The learning rate was set to 0.001. Our experiments
were run for 300 epochs. An SGD optimizer was used to op-
timize parameters. We used 3 A40 GPUs with 48G memory
for training. This paper uses accuracy, precision, recall, and
F1 value as metrics in binary classification.

4.2. Results and Analysis

We evaluate the MMCon loss on the NPC-GTV dataset.
We adopted image registration for the different view images
which are CT image, T1 image, T2 image, and Dose. For
the encoder network, we experimented with three different
encoders [18, 16, 19], and three different loss which are con-
trastive learning loss [17], Cross entropy loss and MMCon.

As shown in Table 2, the performance of [17] is the worst
among the three encoders. It divides the samples into three
categories: query samples, positive samples, and negative
samples. The query samples are compared with the posi-
tive and negative samples by learning the differences among
them. However, the prediction task in this study is a fuzzy
boundary classification problem. The results show that even
after clustering, samples on the fuzzy boundary cannot be
well classified. Cross entropy achieves good performance
by effectively leveraging the label information to ensure that
samples of the same class are closely clustered. However, for
NPC medical images, using only one view does not provide
sufficient information for representation. Therefore, MM-
Con incorporates multi-view information and achieves best

results than the other losses when used in combination with
each encoder. MMCon also added a margin to the original
contrastive learning loss function to ensure discriminative
separation of the target and nontarget classes.

Table 2: The experiment of three different encoders and loss
functions. For each encoder result, the best and second-best
results in each metric are bold and underlined, respective.

Encoder Loss Function Accuracy(%) Precision(%) Recall(%) F1(%)

ResNet50 [18]

Supcon 81.58 69.44 83.33 75.76
Cross Entropy 82.97 86.21 86.21 86.21

MMCon 90.67 82.20 90.67 86.23

DenseNet[19]

Supcon 77.28 70.95 75.86 72.58
Cross Entropy 80.79 85.94 82.76 84.32

MMCon 88.90 83.06 91.14 86.91

ViT [16]

Supcon 80.85 75.77 79.31 77.14
Cross Entropy 86.90 80.77 89.87 85.08

MMCon 91.28 83.42 91.33 87.20

4.3. Ablation Study

As shown in Table 3, we compare single-view images
and multi-view images. In the single-view experiment, we
used only 1 type of NPC image. Under the same loss func-
tion, three different encoders were used to conduct compar-
ative experiments on T1 single-view, CT single-view, and
T1+CT+T2+dose multi-view images. Due to space limita-
tions, the experimental results obtained for T2 single-view
and dose single-view images are omitted because they do
not provide much useful analytical value. All three encoders
show better results under the multi-view approach than under
the single-view approach.

Table 3: The experiment of different views by using three
different encoders with MMCon. For each encoder result, the
best results in each metric are bold.

Loss Encoder Views Accuracy(%) Precision(%) Recall(%) F1(%)

MMCon Resnet50[18]
T1 54.28 40.00 54.80 46.24
CT 60.12 43.92 52.00 47.62

T1+T2+CT+Dose 90.67 82.20 90.67 86.23

MMCon DenseNet[19]
T1 52.70 40.32 55.17 46.59
CT 62.88 43.16 66.74 52.42

T1+T2+CT+Dose 88.90 83.06 91.14 86.91

MMCon ViT[16]
T1 67.41 43.94 56.31 49.36
CT 64.20 50.37 58.29 54.04

T1+T2+CT+Dose 91.28 83.42 91.33 87.20

5. CONCLUSION

This study proposes a classification-capable supervised
contrastive representation learning framework. We incorpo-
rate multi-view discrimination and an angular margin into the
supervised contrastive learning loss to model the NPC im-
age representation, thereby enhancing its discriminative abil-
ity. Experiments show that our architecture generally outper-
forms previous baselines on the NPC-GTV dataset.
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