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ABSTRACT
As multimedia content often contains noise from intrinsic defects of
digital devices, image denoising is an important step for high-level
vision recognition tasks. Although several studies have developed
the denoising field employing advanced Transformers, these net-
works are too momory-intensive for real-world applications. Addi-
tionally, there is a lack of research on lightweight denosing (LWDN)
with Transformers. To handle this, this work provides seven compar-
ative baseline Transformers for LWDN, serving as a foundation for
future research.We also demonstrate the parts of randomly cropped
patches significantly affect the denoising performances during train-
ing. While previous studies have overlooked this aspect, we aim to
train our baseline Transformers in a truly fair manner. Furthermore,
we conduct empirical analyses of various components to deter-
mine the key considerations for constructing LWDN Transformers.
Codes are available at https://github.com/rami0205/LWDN.
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Figure 1: Visual examples of large and lightweight denosing
results. PSNR (dB) / the number of parameters are compared.
Although our lightweight baselines quantitatively fall be-
hind the large counterparts due tomuch fewerweights, ours
can recover similar texture to the large models for human-
perception.

1 INTRODUCTION
Since multimedia materials often contain noise generated by the
intrinsic defect of sensor (e.g., in camera) [57, 67, 69], image de-
noising (DN) is an important step before other downstream vision
tasks. Many convolutional neural networks (CNN) have improved
this field [12, 50, 53, 72, 73, 75]. Meanwhile, after Vision Trans-
former (ViT) [8] emerged, Transformers [60] have substituted for
CNNs in DN [6, 33, 63, 65, 68, 71, 82]. Nevertheless, it is infeasi-
ble to apply these models to real-world applications due to their
intensive memory consumption (the number of parameters). Un-
like the lightweight super-resolution (SR) Transformers actively
explored [7, 9, 10, 40, 77], the most of lightweight DN (LWDN)
studies [15, 25, 31, 58, 83] have still adhered to conventional CNNs.
This unexplored field has few elaborate baselines to be compared
with. The well-designed baselines, however, are very important to
provoke future works. For instance, the lightweight SR studies be-
gan to be actively examined, only after several years (2016-2018) of
monumental baselines proposed [2, 23, 27, 28, 30, 55, 56]. Motivated
by this, we carefully work on constructing and analyzing LWDN
Transformer baselines1.

First, we not only make the state-of-the-art (SOTA) large DN
Transformers compact but also transplant SOTA lightweight SR
1Compared with large DN models composed of 10M∼50M parameters, we let LWDN
models have around or below 1M parameters (4MB) following Choi et al.’s work [7].
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Transformers into LWDNfield for diverse baselines. Specifically, the
four best large DN methods are downsized, such as Uformer [63],
Restormer [68], ART [71], and CAT [82]. We adopt three SOTA
lightweight SR methods, such as SwinIR-light [33], ELAN-light [77],
and NGswin [7]. These well-made Transformers, proposed during
the last two years, represent our interesting field. In terms of human-
perception, they show comparable results to the large DN models
with even fewer parameters, as illustrated in Figure 1.

Second, we identify some unfairness in existing denoising stud-
ies. We figure out an issue opposing to conventional wisdom: The
numerous trials would almost remove the performance differences
resulting from randomness. Instead, since randomly selected patches
for training process can obviously change the results (Section 4.3),
the direct comparisons in previous papers are inevitably unfair. Con-
sequently, we authentically control the randomness for training all
models. The same random patch from a training image is used by
all networks at a certain iteration. Additionally, while some studies
trained their models with constant variance for deciding Gauss-
ian noise level [6, 33, 79, 80], others employed blind (unknown)
one [72–75]. Yet, the models learned with constant one is good at
restoring a single level of noise but bad at recovering the other
noise levels. Thus, we standardize our work by using blind noise
level for training all models.

Third, we empirically analyze the different components of our
baselines. Please note that we do not present new methods to en-
hance the performances. However, our novelty is that we establish
the baselines for an under-explored topic, and deliver interpretabil-
ity and insight, thereby encouraging future research. Starting with
a (1)hierarchical network, we characterize it by three aspects: the
encoder connection, bottleneck input, and decoder structure. We
apply the robust and advanced elements proposed by [7] with re-
spect to these aspects to another hierarchical network, and confirm
the potential of hierarchical structures to be improved. Next, we
discover that the (2)channel self-attention is worse at recovering
the noisy images than the spatial self-attention methods, under
the parameter constraint (i.e., lightweight condition). After that,
we show (3)excessive weight sharing may lead to unstable learning
due to limited flexibility and representation of the network. At last,
we illuminate that the careful (4)design of CNNs is still relevant in
the present where self-attention is widely adopted by varying the
shared tail module composed of only CNNs.

The summarized main contributions are as follows:

(1) We provide various comparison groups of lightweight Trans-
former architectures for color and grayscale Gaussian denois-
ing, which have not been explored until recently. Three light-
weight super-resolution and four state-of-the-art large denois-
ing methods are used to establish LWDN Transformer base-
lines. They can serve as foundation of active future studies
(Sections 3.1, 3.2, 4.2).

(2) Since many image restoration papers have overlooked the truly
same training settings, we aim to implement the authentically
fair experiments. All models used in this paper are trained on
identically cropped random patches (Sections 3.3, 4.3).

(3) Some empirical studies on different components provide in-
terpretability or insight for LWDN field. These practices are
expected to facilitate and inspire future works (Section 4.4).

2 RELATEDWORK
Importance of Baselines. The models with remarkable improve-
ments take several years to be accumulated so that the research area
evolves independently. For example, lightweight super-resolution
(SR) had been a separate area, only after several years of monumen-
tal baselines proposed [2, 23, 27, 28, 30, 55, 56] (2016-2018). After-
wards, many researchers introduced lightweight SR networks [7,
9, 10, 22, 36, 40, 41, 77]. This phenomenon was also observed in
other unrelated fields, such as reinforcement learning (RL). After
DQN [46] introduced a deep learning method in RL, various inno-
vative methods were proposed over a few years (2015-2018) [16,
34, 45, 52]. Since then, other deep learning approaches have been
developed in RL [4, 5]. Meanwhile, well-designed lightweight SR
and large DN Transformers have been proposed over the past two
years. Our work takes advantages of these techniques to shorten
the periods for future LWDN research with Transformers.
ImageRestoration.ManyTransformer-based approaches improved
image restoration (IR) performances, such as image denoising (DN)
and super-resolution (SR). SwinIR [33] exploited local window self-
attention (SA) [60] of Swin Transformer [39]. Subsequent stud-
ies focused on expanding the receptive field while leveraging the
long-range dependencies of SA. Uformer [63] introduced locally en-
hanced feed-forward network while keeping a U-Net structure [51].
Restormer [68] performed global SA in a channel space instead of
spatial dimension. ELAN [77] employed shift-convolution [64] and
multi-scaled local window SA. CAT [82] replaced a square window
with a rectangular one. ART [71] introduced sparse attention by
dilated window SA. NGswin [7] proposed N-Gram embedding that
considers neighboring regions of each window before SA.
Patch-Driven IR.Our attempt at fair training is related to interpre-
tation studies. They implied that the patches selected for training
should be deemed important. As prior work, the authors of [14] pro-
posed a local attribution map (LAM) to visualize the contribution of
each pixel in image recovery. They demonstrated that some areas in
a local patch, like edges and textures, significantly affect the restora-
tion performances. Magid et al. [43] evaluated the error based on
semantic labels from a learned texture-classifier. They distinguished
between more complex and simpler textures of low-quality images
to restore. The researchers of RCAN-it [35] hypothesized that if a
network were trained more on the low-quality patches that have a
lower PSNR over their high-quality counterparts, the performance
could be improved. Although the performances decreased, they
found that there were attributes of the random patches that influ-
ence the low-level vision tasks. In spite of those evidences, existing
IR papers have overlooked the influences of randomly selected
patches and compared their works in an unfair manner.

3 METHODOLOGY
3.1 LWDN Transformer
Employing seven state-of-the-art Transformer methods, we estab-
lish baselines for lightweight denoising (LWDN). Three models
originate from lightweight super-resolution task, including SwinIR-
light [33], ELAN-light [77], and NGswin [7]. Each architecture
remains unchanged, with an exception of the final reconstruction
module (See Section 3.2). The other four Transformers come from
the large DN task, including Restormer [68], Uformer [63], CAT [82],
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Table 1: Summary of the characteristics of our lightweight denoising baseline Transformers. “Hier.” indicates whether each
network adopts a hierarchical U-Net [51] based architecture or a non-hierarchical structure.

Method Hier. Self-attention (SA) Feed-forward network Bottleneck
SwinIR-light X Plain window [39] Plain [8] -
ELAN-light X Multi-scale window Before SA, Shift-conv [64] -
NGswin O N-Gram neighbor window Post-layer-norm [38] SCDP
Restormer-light O Channel space [78] Adding depthwise conv Transformer
Uformer-light O Plain window [39] Adding depthwise conv Transformer
CAT-light O Rectangle window Plain [8] Transformer
ART-light X Sparse and dense window Plain [8] -

Table 2: Reduction of large to lightweight DN. “Depth” indi-
cates the number of Transformer blocks in each layer. “Hid-
den (FFN)” means the hidden dimension in feed-forward
network after self-attention. We keep the number of learn-
able parameters as around one million.

Model Depth Channels Hidden (FFN) #Params

Restormer [68] [4, 6, 6, 8, 6, 6, 4, 4]→ 48 → 16 128→ 32 26,112K → 1,054K[2, 2, 2, 2, 2, 2, 2, 2]

Uformer [63] [1, 2, 8, 8, 2, 8, 8, 2, 1] → 32 → 16 128→ 32 50,881K → 1,084K[2, 4, 2, 2, 2, 4, 2]

CAT [82] [4, 6, 6, 8, 6, 6, 4, 4]→ 48 → 16 128→ 32 25,770K → 1,042K[2, 2, 4, 2, 4, 2, 2, 2]

ART [71] [6, 6, 6, 6, 6, 6] → 180→ 60 720→ 120 16,150K→ 1,084K[6, 6, 6, 6, 6]

Shallow Module
(head)

Transformer
Blocks (body)

Reconstruction
Module (tail)

𝐿1 Loss

Figure 2: Brief pipeline of baselines. The only difference be-
tween each model is Transformer block (body).

and ART [71]. We reduce the number of Transformer blocks and
channels, or change other hyper-parameters. As a result, the total
number of learnable parameters in each model is set to around 1M.
The details of reductions are in Table 2. We also summarize the
attributes of the network components in each model in Table 1.

3.2 Shared Common Components
To maintain consistency across models, we apply identical shallow
(or head) module, reconstruction (or tail) modules, and loss function
to all models. Figure 2 depicts the brief pipeline. The only difference
is the Transformer blocks (body). This unity assures to identify
the effectiveness of unique algorithms in self-attention and feed-
forward networks, which are the key factors of Transformers.
Shallow Module. This module consists of a 3 × 3 convolution.
It takes a low-quality noisy image 𝐼𝐿𝑄 ∈ R𝐶𝑖𝑛×𝐻×𝑊 , extracting
the shallow feature 𝑧𝑠 ∈ R𝐶×𝐻×𝑊 , where 𝐶𝑖𝑛 is 1 or 3 according
to whether grayscale or color input, and H and W indicate the
resolution of the input. 𝐶 is the embedding dimension (channels)
of each network.
Reconstruction Module. The final reconstruction module F𝑟𝑒𝑐𝑜𝑛
is composed of two 3 × 3 convolutional layers. The first adjusts the
channels of feature maps to 𝐶𝑜𝑢𝑡 , which is equal to 𝐶𝑖𝑛 . Then the
second layer produces the residual output 𝐼𝑟𝑒𝑠 , which is added to
𝐼𝐿𝑄 . Finally, we get the reconstructed clean image 𝐼𝑅𝐶 , as follows:

𝐼𝑟𝑒𝑠 = F𝑟𝑒𝑐𝑜𝑛 (F𝑏𝑜𝑑𝑦 (𝑧𝑠 )), 𝐼𝑅𝐶 = 𝐼𝐿𝑄 + 𝐼𝑟𝑒𝑠 , (1)

where F𝑏𝑜𝑑𝑦 represents the Transformer blocks. The tail modules
of SwinIR-light, ELAN-light, and NGswin differ from the original
ones. An upsampling pixel-shuffle [54] layer is removed. In Sec-
tion 4.4.4, we examine the variants of this module. This is because
image restoration tasks still need convolution for aggregating local
features despite the robustness of self-attention [82].
Loss Function. We minimize 𝐿1 pixel loss for training LWDN
baseline networks: L = ∥𝐼𝐻𝑄 − 𝐼𝑅𝐶 ∥1, where 𝐼𝐻𝑄 is a high-quality
ground truth image.

3.3 Fair Training
In this section, we identify two unfair problems in existing studies,
and present our training strategies to resolve each problem.

Foremost, most recent denoising studies have trained their mod-
els on randomly cropped patches from training images [33, 63, 65,
68, 71, 82], because the resolution of the original image is too high
to process with current hardware. However, as opposite to conven-
tional wisdom that numerous trials always lead to almost identical
results, we discover that the areas randomly cropped from training
data hugely influence the denoising performances. Even if existing
studies have striven to compare models fairly, it was unfair at least
for denoising task. For example, assume that an image 𝐼𝐿𝑄 is used
for training the networks at a iteration, as illustrated in Figure 3.
While one random seed 𝛼 crops a patch that is relatively easy to
recover (e.g., background sky or ground), another random seed 𝛽
crops a patch that is challenging to restore (e.g., complex pattern
or texture) [14, 35]. Even when the learned network architecture
is the same, a network using random seed 𝛽 (or 𝛼) shows better
performances than 𝛼 (or 𝛽) (Table 4). We, therefore, struggle to
control every randomness that can appear during training. The
same random patch from a training image is guaranteed to be cho-
sen through all networks at a certain iteration. The identical data
augmentation (see Section 4.1) is also applied at that iteration. We
cross-check whether the same patches are really used for training.
Figure 4 reveals that the fair training is realized. The isomorphic
movement of loss of every network means that identical data points
are used for training the different models.

In implement, the mini-batch size and the number of GPUs affect
the randomly selected patches or augmentation parameters. Some
models, such as SwinIR-light and ART-light, require more GPU
memory than the others, which result in a smaller batch size or
more GPUs. It causes the random patches and augmentation to
alter. Therefore, we record the vertical and horizontal start points
of cropped areas, as well as the random augmentation parameters
(flip and roation), at each iteration while training a model. This
information is loaded when training the others.
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DIV2K 0593

Seed 𝛼

Seed 𝛽

Seed 𝛼

Seed 𝛽Flickr2K 002219

BSD500 326085 Seed 𝛽

Seed 𝛼 Seed 𝛼

Seed 𝛽WED 00022

Figure 3: Examples of randomly cropped patches according
to a random seed 𝛼 or 𝛽 . The random seed 𝛽 can select more
the regions challenging to recover than 𝛼 . In the extreme
cases, 𝛼 leads to lower performances, as in Table 4.

Next, the commonmethod to generate random noise is to exploit
additive white Gaussian noise (AWGN). This follows an assumption
that Gaussian distribution can approximate the distribution of real-
world unknown noise [31]. Given a high-quality image 𝐼𝐻𝑄 , a low-
quality noisy image 𝐼𝐿𝑄 can be produced as follows:

𝐼𝐿𝑄 = 𝐼𝐻𝑄 + S,S ∼ N(0, 𝜎2), (2)

where S denotes a noise term and 𝜎2 indicates the variance of
Gaussian distribution N . 𝜎 determines noise level, i.e., the larger 𝜎
adds more noise. While some studies use a constant 𝜎 for training
each independent model [6, 33, 79, 80], others utilize a blind 𝜎 to
construct a single model [72–75]. The latter is worse at restoring
a specific 𝜎 the former chooses. In contrast, the former is bad at
recovering noisy images from the other 𝜎 values. Because of this
difference, it is unfair to compare the former and latter directly.
Thus, we get the low-quality noisy images by adding Gaussian
noise with blind 𝜎 (sampled uniformly between 0 and 50), and train
all Transformers following this rule.

4 EXPERIMENTS
4.1 Experimental Setup
We implemented all works using PyTorch [49] on 2NVIDIAGeForce
RTX 4090 GPUs, including the model configurations, training, and
evaluation procedures.
Training. Following previous works [33, 68, 71], we used a merged
dataset DFBW including 8,594 high-quality images (800 DIV2K [1],
2,650 Flickr2K [59], 400 BSD500 [3], and 4,744 WED [42]). The
training process lasted for 400 epochs. As previously mentioned, a
blind Gaussian noise was added to a high-quality image. Moreover,
we employed progressive learning following Restormer [68]. The
patch size for random cropping was initialized as 64×64 (batch
size: 64) and then increased to 96×96 (batch size: 32) and 128×128
(batch size: 16) after 100 and 200 epochs, respectively. As empha-
sized in Section 3.3, a random patch at a certain iteration was all
the same for all models. After random cropping, we augmented
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Figure 4: Trends of training loss of each model. The isomor-
phic movements across all models along each epoch means
that the identical patches are used at a certain iteration. Note
that the training loss of NGswin and ELAN-light are com-
pared in Section 4.4.3 to describe the instability of ELAN-
light.

the data by random horizontal flipping and rotation (90◦, 180◦,
270◦). The learning rate was initialized as 0.0004, which is halved
after {200, 300, 350, 375} epochs. For the first 20 epochs, there was
warmup phase [13] that linearly increased the learning rate from
0.0 to 0.0004. We used Adam [29] optimizer.
Evaluation. We reported PSNR (dB) and SSIM [62] on the stan-
dard benchmark test datasets as metrics. The test sets for color
DN include CBSD68 [44], Kodak24 [11], McMaster [76], and Ur-
ban100 [21]. The performances on Set12 [73], BSD68 [44], and
Urban100 [21] for grayscale DN were evaluated. The noise levels 𝜎
of evaluation were 15, 25, and 50.

4.2 Main Results of Baselines
As shown in Table 3a, we compare our fairly trained lightweight
Transformer baselines for color blind Gaussian denoising (DN). We
witnessed two interesting points in this table.

In terms of the original task of each model, the networks from
lightweight super-resolution (SR) field generally perform better
than the counterparts stemming from large DN. This differences
result from a reason that the methods from lightweight SR were
already designed to perform efficiently. It implies that lightening
deep neural networks is beyond simply reducing the number of
parameters. Therefore, we discuss this issue in Section 4.4 to pro-
vide some considerations and insights when designing a effective
lightweight network. Although not covered in this work, more so-
phisticated skills, such as quantization [18, 19, 32, 37, 61] or network
pruning [26, 70, 81], may be also considered.

Next, with respect to thenetwork architecture, non-hierarchical
structure (please remind Table 1) results in better performances on
lower noise level. Non-hierarchical ART-light performs the best
among the networks from large DN (below dashline) on 𝜎 = 15, 25.
As demonstrated in [7], this is because reconstruction of high qual-
ity image by utilizing higher resolution features is more straight-
forward than by handling smaller features. But situation changes
when recovering the highly distorted images (𝜎 = 50). ART-light
only shows similar results to Uformer-light and CAT-light. Other
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Table 3: The results of our baselines for blind Gaussian denoising. We ensure the entirely identical settings for training and
testing. The first, second, and third best performances are in red, blue, and green. “OOM” represents Out-Of-Memory.

(a) Color blind Gaussian denoising baselines.

Model #Params 𝜎
CBSD68 [44] Kodak24 [11] McMaster [76] Urban100 [21]
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

SwinIR-light 905K
15

34.16 0.9323 35.18 0.9269 35.23 0.9295 34.59 0.9478
ELAN-light 616K 34.06 0.9312 35.06 0.9256 35.09 0.9277 34.47 0.9464
NGswin 993K 34.12 0.9324 35.12 0.9268 35.17 0.9294 34.53 0.9476

Restormer-light 1,054K

15

33.99 0.9311 34.86 0.9244 34.69 0.9229 34.00 0.9439
Uformer-light 1,084K 34.02 0.9310 34.91 0.9246 34.81 0.9241 34.04 0.9442
CAT-light 1,042K 34.01 0.9304 34.90 0.9237 34.83 0.9247 OOM OOM
ART-light 1,084K 34.08 0.9315 35.00 0.9251 35.10 0.9282 OOM OOM

SwinIR-light 905K
25

31.50 0.8883 32.69 0.8868 32.90 0.8977 32.23 0.9222
ELAN-light 616K 31.39 0.8864 32.56 0.8846 32.76 0.8950 32.09 0.9198
NGswin 993K 31.44 0.8884 32.61 0.8865 32.82 0.8978 32.13 0.9215

Restormer-light 1,054K

25

31.33 0.8865 32.38 0.8833 32.44 0.8905 31.60 0.9161
Uformer-light 1,084K 31.38 0.8866 32.44 0.8836 32.59 0.8922 31.67 0.9165
CAT-light 1,042K 31.37 0.8855 32.43 0.8822 32.58 0.8928 OOM OOM
ART-light 1,084K 31.40 0.8864 32.49 0.8833 32.74 0.8956 OOM OOM

SwinIR-light 905K
50

28.22 0.8006 29.54 0.8089 29.71 0.8339 28.89 0.8658
ELAN-light 616K 28.07 0.7957 29.35 0.8028 29.51 0.8277 28.67 0.8596
NGswin 993K 28.13 0.8011 29.42 0.8087 29.59 0.8339 28.75 0.8644

Restormer-light 1,054K

50

28.04 0.7974 29.19 0.8034 29.31 0.8256 28.30 0.8559
Uformer-light 1,084K 28.11 0.7968 29.26 0.8020 29.46 0.8259 28.33 0.8551
CAT-light 1,042K 28.11 0.7960 29.29 0.8024 29.48 0.8296 OOM OOM
ART-light 1,084K 28.08 0.7950 29.27 0.8000 29.48 0.8279 OOM OOM

(b) Grayscale blind Gaussian denoising baselines.

Model #Params 𝜎
Set12 [73] BSD68 [44] Urban100 [21]

PSNR SSIM PSNR SSIM PSNR SSIM
SwinIR-light 903K

15
33.04 0.9052 31.78 0.8926 33.04 0.9317

ELAN-light 613K 33.01 0.9044 31.74 0.8910 32.97 0.9299
NGswin 991K 33.04 0.9055 31.78 0.8927 32.99 0.9314

Restormer-light 1,053K

15

32.93 0.9039 31.76 0.8922 32.81 0.9306
Uformer-light 1,084K 32.88 0.9034 31.70 0.8910 32.66 0.9286
CAT-light 1,041K 32.91 0.9021 31.89 0.8913 OOM OOM
ART-light 1,082K 32.93 0.9023 31.73 0.8911 OOM OOM

SwinIR-light 903K
25

30.67 0.8669 29.32 0.8325 30.52 0.8963
ELAN-light 613K 30.65 0.8665 29.29 0.8304 30.46 0.8950
NGswin 991K 30.65 0.8671 29.33 0.8324 30.46 0.8961

Restormer-light 1,053K

25

30.60 0.8659 29.32 0.8322 30.32 0.8952
Uformer-light 1,084K 30.57 0.8650 29.26 0.8303 30.21 0.8929
CAT-light 1,041K 30.60 0.8641 29.47 0.8330 OOM OOM
ART-light 1,082K 30.52 0.8620 29.25 0.8285 OOM OOM

SwinIR-light 903K
50

27.50 0.7966 26.35 0.7299 27.01 0.8190
ELAN-light 613K 27.46 0.7959 26.33 0.7269 26.93 0.8172
NGswin 991K 27.42 0.7961 26.38 0.7298 26.96 0.8192

Restormer-light 1,053K

50

27.48 0.7960 26.38 0.7285 26.92 0.8190
Uformer-light 1,084K 27.43 0.7934 26.33 0.7262 26.81 0.8154
CAT-light 1,041K 27.49 0.7935 26.52 0.7333 OOM OOM
ART-light 1,082K 27.26 0.7856 26.25 0.7194 OOM OOM

Table 4: Study on randomness. The random seed 𝛼 is the
same as what our baselines follow. Another seed 𝛽 differs
from 𝛼 . The results marked as a same seed mean that the
identical patches and corresponding augmentation are used
at a certain iteration. PSNR / SSIM are evaluated with 𝜎 = 50.

Method Seed CBSD68 [44] Kodak24 [11] McMaster [76] Urban100 [21]

ELAN-light 𝛼 28.07 / 0.7957 29.35 / 0.8028 29.51 / 0.8277 28.67 / 0.8596
𝛽 28.20 / 0.8002 29.49 / 0.8087 29.65 / 0.8338 28.85 / 0.8651

NGswin 𝛼 28.13 / 0.8011 29.42 / 0.8087 29.59 / 0.8339 28.75 / 0.8644
𝛽 28.27 / 0.8027 29.58 / 0.8114 29.75 / 0.8362 28.90 / 0.8671

Restormer-light 𝛼 28.04 / 0.7974 29.19 / 0.8034 29.31 / 0.8256 28.30 / 0.8559
𝛽 28.11 / 0.7951 29.25 / 0.8008 29.35 / 0.8248 28.28 / 0.8533

Uformer-light 𝛼 28.11 / 0.7968 29.26 / 0.8020 29.46 / 0.8259 28.33 / 0.8551
𝛽 28.12 / 0.7986 29.34 / 0.8051 29.51 / 0.8299 28.44 / 0.8591

algorithms of self-attention or FFN arranged in Table 1 affected
this challenging task. Meanwhile, NGswin seems to overcome the
issue of hierarchical network by several crucial components de-
signed efficiently (see Section 4.4.1). In addition, Restormer-light
shows the low reconstruction performances. It employs channel
self-attention to capture global dependency of every pixel instead of
local spatial self-attention adopted in the other baselines. While the
large DN model (Restormer [68]) achieved their goal by a number
of parameters, Restormer-light lacks at the capacity to consider
sufficient spatial information due to parameter constraint (around
one milion). It is discussed in Section 4.4.2.

Secondarily, we also provide lightweight Transformer baselines
for grayscale blind Gaussian denoising in Table 3b. The results
were similar to color denoising. Interestingly, however, CAT-light
recorded outstanding results especially on BSD68 dataset. From
the result, we drew the possibility that a task- or dataset-oriented
architecture can be designed intentionally.

The visual comparisons are supplied in Figure 5.

4.3 Analysis of Randomness
As recorded in Table 4, PSNR scores of all models on all datasets
increased with a new seed, except for Restormer-light on Urban100.

Table 5: Study on causal verification of random elements.
“Seed for data” 𝑥 means the ares randomly cropped follow
the random seed 𝑥 . If “seed for init.” is set to 𝑥 , the weights
are initialized using the random seed 𝑥 . The underlined re-
sults are the same as Uformer-light using 𝛼 or 𝛽 in Table 4.

Seed Seed CBSD68 [44] Kodak24 [11] McMaster [76] Urban100 [21]
for data for init. PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

𝛼
𝛼 28.11 0.7968 29.26 0.8020 29.46 0.8259 28.33 0.8551
𝛽 28.10 0.7963 29.30 0.8032 29.47 0.8263 28.32 0.8547

𝛽
𝛼 28.12 0.7987 29.35 0.8062 29.51 0.8299 28.43 0.8588
𝛽 28.12 0.7986 29.34 0.8051 29.51 0.8299 28.44 0.8591

SSIM values for all but Restormer-light also grew up. For example,
NGswin with new seed 𝛽 outperformed SwinIR-light using the orig-
inal seed 𝛼 (refer to Table 3). In turn, ELAN-light with 𝛽 surpassed
NGswin using 𝛼 . It is demonstrated that a vast number of trials
cannot solve problem of randomness at least in image denoising
task. Please note that those overall improved results are not attrib-
uted to a novel or smart approaches. Rather, they proved accident
selection of random seed gives more successful results. By contrast
to previous works that overlooked this problem, our attempt to
fairly prepare the training patches and compare the models based
on this fairness is compelling. To support our findings, we verify the
true cause of these results by comparing the results from randomly
cropped data and randomly initialized weights in Table 5. The latter
could not make relatively meaningful differences when randomly
cropped patches are maintained as the same at a certain iteration.
As a result, it is necessary to consider and control the training data
resulting from randomness for truly fair comparison.

4.4 Empirical Analysis of Components
4.4.1 Hierarchical Structure. The hierarchical structures have been
widely employed in the general image restoration (IR) tasks for
the network efficiency [7, 24, 63, 68, 72, 82]. Among our LWDN
Transformer baselines, NGswin, Restormer-light, Uformer-light,
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McMaster 12 (𝜎 = 25) Uformer-lightRestormer-light CAT-light ART-light SwinIR (large)

SwinIR-light ELAN-light NGswinHigh Quality
Ground Truth

Low Quality
Noisy Image

Uformer-lightRestormer-light CAT-light ART-light SwinIR (large)

SwinIR-light ELAN-light NGswinHigh Quality
Ground Truth

Low Quality
Noisy Image

CBSD68 236037 (𝜎 = 25)

Figure 5: The visual comparison of denoising results of our seven baseline Transformers and a large model. While the large
SwinIR recovers degraded images the best, our baselines can generally produce the comparable results for human-perception
with much fewer parameters.

and CAT-light utilize this U-Net [51] based architectures (recall Ta-
ble 1). However, the layers taking and producing lower-resolution
features lose the spatial details of high-frequency information [7].
Considering the degradation in other IR tasks (e.g., deraining, demo-
saicing) follows a relatively homogeneous pattern, preserving high-
frequency details is particularly crucial in denoising task to recover
edges and textures destroyed by heterogeneous random noise. Thus,
the hierarchical denoiser tends to fall behind the non-hierarchical
structures when the parameter budget is maintained similar. The
fact that the non-hierarchical SwinIR-light is the best baselines
highlights the importance of this issue. Although Restormer [68],
Uformer [63], and CAT [82] (i.e., large DN models) tried to over-
come it by enlarging their model size, they suffered from too many
parameters (26M, 51M, and 26M, respectively). This strategy is not
reasonable in lightweight IR tasks that extremely constrain the
network size (around 1M parameters in this paper). Nevertheless, a
hierarchical NGswin stops the significant drop of the performances.
In that point we investigate the U-Net components that can com-
pensate the drawbacks efficiently.

In Table 6, we contrast NGswin with the other hierarchical base-
lines in terms of the main layers of U-Net. First, NGswin placed a
dense connectivity [20] between encoder layers, while there were
not any specific connections in the others. This cascading mecha-
nism conveys the information of the previous layers efficiently [2].
Second, an input to a bottleneck layer is also different. After the
encoder stages, NGswin introduces the bottleneck taking merged

Table 6: The differences of hierarchical LWDN Transform-
ers.

Method Encoder Connection Bottleneck Input Decoder Structure
Restormer-light None Last encoder output Symmetric
Uformer-light None Last encoder output Symmetric
CAT-light None Last encoder output Symmetric
NGswin Dense connection [20] Merged multi-scale encoder features Asymmetric [17]

multi-scale features. It is named as SCDP; pixel-Shuffle, Concate-
nation, Depthwise convolution, and Point-wise projection. SCDP
can enhance the performances with the negligible extra parame-
ters. Third, NGswin exploits an asymmetric single decoder that is
smaller than the encoder. It not only highly increases the network
efficiency but also takes advantages of high-resolution features.

As shown in Table 7, we conduct an ablation study applying
those robust U-shaped components to Uformer-light, to inspect the
potential of the hierarchical structures. First of all, the features from
the shallow module and each encoder layer are densely connected.
The performances slightly gain with a few additional parameters.
Next, we replaced the plain bottleneck with a modified SCDP. We
transformed some steps in SCDP of the original paper [7] due
to the fundamental structural differences between NGswin and
Uformer-light. As this bottleneck only took the features before
downsizing (i.e., the direct outputs from each encoder level), the
3rd downsizing layer was no more required. Therefore, we could
reduce the parameters but further enhance reconstruction accuracy.
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Table 7: Ablation study on the hierarchical structure. The
baseline is Uformer-light. 𝜟 calculates the gaps over the
baseline. The additional components are accumulated.

Configuration #Params 𝜎
CBSD68 [44] Kodak24 [11] McMaster [76] Urban100 [21]
PSNR 𝜟 PSNR 𝜟 PSNR 𝜟 PSNR 𝜟

Baseline 1,084K

15

34.02 - 34.91 - 34.81 - 34.04 -
+ Dense Connection 1,093K 34.02 0.00 34.92 +0.01 34.82 +0.01 34.03 -0.01
+ Multi-scale Bottleneck 1,020K 34.10 +0.08 35.04 +0.13 34.97 +0.16 34.22 +0.18
+ Asymmetric Decoder 544K 34.10 +0.08 35.07 +0.16 35.09 +0.28 34.40 +0.36
Baseline 1,084K

25

31.38 - 32.44 - 32.59 - 31.67 -
+ Dense Connection 1,093K 31.37 -0.01 32.46 +0.02 32.59 0.00 31.67 -0.01
+ Multi-scale Bottleneck 1,020K 31.47 +0.09 32.60 +0.16 32.74 +0.15 31.88 +0.21
+ Asymmetric Decoder 544K 31.44 +0.06 32.59 +0.15 32.78 +0.19 32.01 +0.34
Baseline 1,084K

50

28.11 - 29.26 - 29.46 - 28.33 -
+ Dense Connection 1,093K 28.10 -0.01 29.31 +0.05 29.46 0.00 28.35 +0.02
+ Multi-scale Bottleneck 1,020K 28.21 +0.10 29.48 +0.22 29.62 +0.16 28.61 +0.28
+ Asymmetric Decoder 544K 28.16 +0.05 29.43 +0.17 29.59 +0.13 28.65 +0.32

The performances of enhanced Uformer-light were comparable to
NGswin and ELAN-light (refer to Table 3). Finally, we changed
a symmetric decoder into an asymmetric one. The three decoder
levels were fused into one levels, which allows more encoder layers
to be included. The network depth shifts from [2, 4, 2, 2, 2, 4, 2] to
[4, 4, 2, 2, 8]. Despite the deeper depth, removing existing decoders
that took quite large channels enabled the number of parameters to
be almost halved compared to the baseline. This transformation also
improved the performances. It is demonstrated that the lightweight
hierarchical network has the potential to progress.

4.4.2 Spatial vs. Channel Self-Attention. It is ideal to involve every
pixel of the feature maps in the spatial self-attention (SP-SA) com-
putation as done in ViT [8] and IPT [6], but very high resolution of
inputs for image restoration task leads to quadratic increase of time-
complexity. Thus, the origin [7, 33, 63, 71, 77, 82] of our baselines
employed the local window-based SP-SA except for Restormer [68].
Restormer utilized a channel self-attention (CH-SA) taking advan-
tage of the global2 information, as local SP-SA is insufficient for
considering global context. The time-complexity3 of typical local
SP-SA and CH-SA are:

Ω(local SP-SA) = 4𝐻𝑖𝑊𝑖𝐶
2
𝑖 + 2𝑀2𝐻𝑖𝑊𝑖𝐶𝑖 ,

Ω(CH-SA) = 4𝐻𝑖𝑊𝑖𝐶
2
𝑖 + 2𝐻𝑖𝑊𝑖𝐶

2
𝑖 /𝐿𝑖 ,

(3)

where 𝐻𝑖 ,𝑊𝑖 , and 𝐶𝑖 , denote the height, width, and channels of
feature maps in an 𝑖-th Transformer block, and𝑀 is a size of local
window. 𝐿𝑖 is the number of multi-heads. CH-SA looks more effi-
cient than SP-SA, as the main differences can be abbreviated as𝑀2

and 𝐶𝑖/𝐿𝑖 in the second terms.
But there is a general trend that as the time complexity increases,

so does the network capacity. In other words, the capacity of CH-
SA inversely proportional to 𝐿𝑖 means that more parallel multi-
heads for attending to various spatial details from different per-
spectives [60] reduces the network capacity. In the models without
parameter constraint (i.e., in larger models), this can be overcome
by increasing the channels. On the other hand, under a lightweight
circumstance, the channels are highly reduced, which limits the in-
crease of the parallel multi-heads in order to conserve capacity. The
inevitably limited (fewer) multi-heads, in turn, decrease the ability
of attending to different parts of the input. Correspondingly, CH-SA

2In this section, the term “global” expresses that it involves all pixels of feature maps
in computation of self-attention, not some pixels within a “local” window.
3We omit other components proposed in each model, and softmax.

#Params#Params

29.40

29.25

(a) (b)

1.0M 1.4M 1.8M 2.2M 1M 5M 10M 20M 26M

Baseline (CH-SA)

1,053,495

SP-SA

1,061,495

SP-SA + Channel up

2,338,631

Channel up

2,330,231

SwinIR-light

905,367

Restormer-light (Baseline)

Restormer (large)

SwinIR (large)

SwinIR-light (Baseline)

Restormer-light (SP-SA)

Restormer

SwinIR

29.50

29.75

30.00

30.25

29.60

29.80

P
S

N
R

 (
d

B
)

Figure 6: Ablation study on local spatial and channel self-
attention. (a) The results of variants of Restormer-light. (b)
The comparison with the large models. PSNR is evaluated
on McMaster [76] with 𝜎 = 50.

lacks the capability to capture and preserve semantic information
in spatial dimension compared to SP-SA (Table 3a).

To reinforce our claims, we conducted an ablation study in Fig-
ure 6a. While the other structures or hyper-parameters were re-
tained as the same of the baseline, wemodified two components; the
space of self-attention and the number of channels. First, we tried
to exploit global SP-SA following the original aim of Restoremer,
but hardware was unable to endure massive complexity. CH-SA of
Restormer-light, therefore, was replaced with local square window-
based SP-SA adopted in SwinIR-light, Uformer-light, and NGswin.
The result shows local SP-SA is superior over CH-SA under the
lightweight condition. The PSNR on McMaster dataset gains 0.3 dB
with negligible extra parameters and time-complexity. Second, we
increased the channels while keeping CH-SA. Despite a notable im-
provement with over twice the parameters, increasing channels did
not meet SP-SA, which exposed the superiority of local SP-SA again.
Plus, when both modifications were applied, it barely outperformed
SwinIR-light with 2.58 times more parameters. Finally, we compare
the models in both large and lightweight size. Figure 6b shows that
CH-SA is effective without parameter constraints as mentioned be-
fore, whereas the effectiveness dwindles due to insufficient spatial
comprehension in the lightweight field.

4.4.3 Excessive weight sharing. ELAN-light [77] employed many
weight sharing methods. First, it proposed the accelerated self-
attention, which shares the query and key in computation of self-
attention (i.e., 𝑄 = 𝐾). Second, once a shallower layer calculates
the attention scores (𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑄𝐾

𝑇

√
𝐷

), 𝑄 = 𝐾, 𝐷 : 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛), a
consecutive layer shares them instead of separately producing them.
Third, ELAN-light employed shift-convolution [64], where several
elements ,of which the original spatial locations and channels differ
from each other, share the weight of a linear projection.

However, we figure out that the excessive weight sharing of this
network leads to an unstable learning [66], as depicted in Figure 7.
The training becomes stabilized when ELAN-light discards weight
sharing methods. The excessive weight sharing results in limited
network flexibility and weak representation toward diverse inputs.
We hypothesize that those flaws may let a particular data point
(an image patch) make the hypertrophied (overgrown) gradients
during back-propagation. This phenomenon causes the network
parameters to diverge from optimal points in a moment, bring-
ing out an abnormal loss. Certainly, the mild weight sharing in a
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Figure 7: Trends of training loss.∅mark denotes removal of
weight sharing in the model. The training of ELAN-light be-
comes unstable at some epochs. However, ELAN-light with-
out weight sharing is trained stably.
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Figure 8: Study on tail variants. We increase the number
of CNN layers or kernel size. PSNR is evaluated on Ur-
ban100 [21] with 𝜎 = 50.

neural network is beneficial for some purposes, such as memory-
and computation-efficiency. Therefore, since the weight sharing
leads to a trade-off between efficiency and flexibility, it is expected
that future works aim to systematically find the optimal point of
this trade-off. Some regularization strategies, such as gradient clip-
ping [47, 48], or neural architecture search (NAS) methods [66] can
be helpful for handling this issue.

4.4.4 Still useful CNN. Despite long-range dependency of the self-
attention mechanism, the role of the meticulous composition of
CNN is still relevant for image restoration tasks. Unlike high-level
vision tasks (e.g., classification, object detection), low-level tasks
mainly aim to reconstruct each distorted pixel. As this recovery
process requires the information in the surrounding areas of each
pixel [7, 17, 82], CNN, which is conventionally good at extracting
local features, is essential. Figure 8 visualizes the effect of variants
of a reconstruction (tail) module, which is composed of only the
convolutional layers. In this experimental settings, we increased the
number of convolutional layers or their kernel size. The extra CNN
layers added to the tail module outputted the same channels as the
input features (a kernel size was fixed at 3 × 3). When the kernel
size increased, the number of layers was kept at 2. As a result, the
performance was proportional to the number of CNN in the tail
module, while the kernel size followed case by case.
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Figure 9: Training loss of all experiments in Section 4.4. (a)
Table 4. (b) Table 5. (c) Table 7. (d) Figure 6. (e), (f) Figure 8.
Note: the legends of (b)mean (data seed, init seed), which
reveals only the data seed can lead to similar trends of loss.

4.4.5 A Supplement. In Figure 9, we supply the training losses of
all experiments in Section 4.4. Considering the similar movements
of all of them, our crucial goal is achieved, the truly fair training.

5 CONCLUSION
This work presented seven Transformer baselines for lightweight
denoising (LWDN), which has been unexplored until recently. We
aimed to control the randomness and train all models in a truly
fair manner, because the patches randomly selected from a train-
ing image were found outstandingly influential in the recovery
performances. Based on our baselines, the empirical studies on
different components delivered the considerations for LWDN with
Transformers. We verified the potential of hierarchical network to
be further improved with the advanced elements, such as a dense
connection, a multi-scale bottleneck, and an asymmetric decoder.
And it was proven more effective to utilize local window-based
spatial self-attention in lightweight tasks rather than channel self-
attention, unlike the models without parameter constraint. Besides,
excessive weight sharing caused the learning unstable, and the de-
sign of convolution was still relevant to denoising tasks. In closing,
we hope this work can encourage succeeding researchers to develop
this field by using our baselines and findings.
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