
The Unexpected E�ciency of Bin Packing Algorithms
for Dynamic Storage Allocation in the Wild

An Intellectual Abstract

Christos Panagiotis Lamprakos
cplamprakos@microlab.ntua.gr

National Technical University of Athens
Athens, Greece

Katholieke Universiteit Leuven
Leuven, Belgium

Sotirios Xydis
sxydis@microlab.ntua.gr

National Technical University of Athens
Athens, Greece

Francky Catthoor
francky.ca�hoor@imec.be

IMEC Science Park
Leuven, Belgium

Katholieke Universiteit Leuven
Leuven, Belgium

Dimitrios Soudris
dsoudris@microlab.ntua.gr

National Technical University of Athens
Athens, Greece

Abstract

Two-dimensional rectangular bin packing (2DBP) is a known
abstraction of dynamic storage allocation (DSA). We argue
that such abstractions can aid practical purposes. 2DBP al-
gorithms optimize their placements’ makespan, i.e., the size
of the used address range. Demand paging-enabled virtual
memory systems rendermakespan irrelevant: allocators com-
monly employ sparse addressing and need worry only about
fragmentation caused within page boundaries. But in the
embedded domain, where portions of memory are statically
pre-allocated, makespan remains a reasonable metric.
Recent work has shown that viewing allocators as black-

box 2DBP solvers bears meaning. There exists a 2DBP-based
fragmentation metric which often correlates monotonically
with maximum resident set size (RSS). Given the �eld’s in-
determinacy with respect to fragmentation de�nitions, as
well as the immense value of physical memory savings, we
are motivated to set allocator-generated placements against
their 2DBP-devised, makespan-optimizing counterparts. Of
course, allocators must operate online while 2DBP algo-
rithms work on complete request traces; but since both sides
aim for minimummemorywastage, the idea of studying their
relationship preserves its intellectual–and practical–interest.

ISMM ’23, June 18, 2023, Orlando, FL, USA

© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0179-5/23/06.
h�ps://doi.org/10.1145/3591195.3595279

No implementations of 2DBP algorithms for DSA exist.
This paper presents a �rst, though partial, implementation
of the state-of-the-art. We validate its functionality by com-
paring its outputs’ makespan to the theoretical upper bound
provided by the original authors. Along the way, we identify
and document key details to assist analogous future e�orts.

Our experiments comprise 4 modern allocators and 8 real
application workloads. We make several notable observa-
tions: in terms of makespan, allocators outperform Robson’s
worst-case lower bound 93.75% of the time. In 87.5% of cases,
GNU’s malloc implementation demonstrates equivalent or
superior performance to the 2DBP state-of-the-art, despite
the second operating o�ine. Most surprisingly, the 2DBP al-
gorithm proves competent in terms of fragmentation, produc-
ing up to 2.46x better solutions. Future research can leverage
such insights towards memory-targeting optimizations.

CCS Concepts: • Software and its engineering → Vir-

tual memory; Main memory; Allocation / deallocation

strategies.

Keywords: dynamic storage allocation, memory fragmenta-
tion, bin packing

ACM Reference Format:

Christos Panagiotis Lamprakos, Sotirios Xydis, Francky Catthoor,
and Dimitrios Soudris. 2023. The Unexpected E�ciency of Bin
Packing Algorithms for Dynamic Storage Allocation in the Wild:
An Intellectual Abstract. In Proceedings of the 2023 ACM SIGPLAN

International Symposium on Memory Management (ISMM ’23), June

18, 2023, Orlando, FL, USA. ACM, New York, NY, USA, 13 pages.
h�ps://doi.org/10.1145/3591195.3595279

This work is licensed under a Creative Commons Attribution-

NonCommercial-NoDerivatives 4.0 International License.

58

http://creativecommons.org/licenses/by-nc-nd/4.0/
https://orcid.org/0000-0002-3370-857X
https://orcid.org/0000-0003-3151-2730
https://orcid.org/0000-0002-3599-8515
https://orcid.org/0000-0002-6930-6847
https://doi.org/10.1145/3591195.3595279
https://doi.org/10.1145/3591195.3595279
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3591195.3595279&domain=pdf&date_stamp=2023-06-06

ISMM ’23, June 18, 2023, Orlando, FL, USA Lamprakos, Xydis, Ca�hoor, and Soudris

1 Introduction

Despite dynamic memory allocation’s (DSA) omnipresence
in modern computing, it is, by means of �rst principles, mis-
treated. The fundamental enemy that is fragmentation has
yet to receive a clear, quantitative de�nition [4, 14]. And de-
spite knowing about the interplay between workload behav-
ior, allocator policy and fragmentation for decades [19], we
lack a systematic approach to characterize programs based
on their dynamic memory characteristics. These gaps impose
invisible costs to systems in terms of physical memory.

In a sister work [9], we claim that constructing represen-
tations of workload-allocator interaction1 as instances of
two-dimensional rectangular bin packing (2DBP) can serve
as an informed basis for future analysis and design methods.
We support our claim by de�ning a fragmentation metric in
our representation space, and showing that, for many work-
loads, our metric correlates with maximum resident set size
(RSS) in a monotonically increasing fashion. This intellectual
abstract commences from where that work ends: if 2DBP is
a potent substrate, how do real allocator placements compare

to solutions produced by 2DBP algorithms?

Such a comparison may seem counterintuitive at �rst; allo-
cators operate online, while 2DBP algorithms take complete
request sequences as input. But it is precisely this di�erence
that makes our investigation worthwhile, for it o�ers an
empirical view of allocators’ practical limits. By setting allo-
cators against o�ine oracles we can measure their distance
from optimal behavior. This distance is expected to vary
across di�erent applications, and thus enables us to detect
workloads that have a lot to gain from custom placement
policies. In the opposite direction, one’s search for custom
policies may be inspired by work in the 2DBP �eld.
Several 2DBP subcategories exist, but only a speci�c one

is suitable for DSA [3]. Rectangles are often allowed to slide
in both dimensions of the plane [7]; in our case, rectangle
position on one axis must be �xed, denoting allocation and
deallocation time respectively. This variation is commonly
referred to as DSA in the theoretical literature [2]. To the best
of our knowledge, there are no implementations of 2DBP
DSA algorithms available. We thus embarked on implement-
ing the state-of-the-art, published by Buchsbaum et al. in
2003 [2]. This paper records all insights gained along the
way. We make the following contributions:

• a partial implementation of the state-of-the-art 2DBP
algorithm2 suitable for modeling DSA

• a set of remarks on shortcomings of both BA itself and
our own implementation3

1In this text, by “allocator” we always mean general-purpose, non-moving
allocators managing Linux virtual memory.
2From this point onwards, we are going to abbreviate said algorithm as BA,
i.e., “the algorithm published in 2003 by Buchsbaum et al.” [2]
3In reality we cannot be certain about the observed shortcomings’ cause.
It could as much be the case that our source code contains unidenti�ed

• an evaluation of 4 modern allocators across 8 work-
loads in terms of makespan, with respect to Robson’s
worst-case lower bound for general policies [17]

• a comparison, both in terms of makespan and page-
local fragmentation, of allocator-generated placements
against the respective BA solutions

The rest of this intellectual abstract is organized as follows:
Section 2 elaborates on what led us tackle this work. Section
3 provides the necessary background. Section 4 describes
our BA implementation. Section 5 includes the collected
empirical evidence as well as a �rst discussion. Related works
are listed in Section 6. Section 7 concludes our paper.

2 Motivation and Rationale

As mentioned, this paper is an immediate consequence of
a sister work introducing 2DBP as a potentially useful tool
for representing workload-allocator interaction. Despite it
being infeasible to unpack everything done in that context,
we try to summarize some key thoughts and link them to
the work presented here.

2.1 The Need for a Structured Representation

We build on the conjecture that returning to �rst principles is
necessary if a rigorous memory management theory is to be
established [9]. By �rst principles, fragmentation is the main
enemy of any allocator, and it is a function of the interaction
between workload behavior and allocator policy [19].
To de�ne fragmentation, the �eld employs functions of

resident set size (RSS) [15], this being probably an in�uence
from the four alternative formulations proposed by John-
stone and Wilson in 1998 [6]. No attempts to evaluate each
option’s utility have been made, in spite of the original au-
thors encouraging such prospects. Whether general-purpose
policies su�ce to handle modern workloads or not is unclear,
since works supporting both views exist [1, 12].
Our sister work’s research objective was to �nd a struc-

tured representation capturing workload-allocator interac-
tion, and a systematic approach which would enable this
in practice for realistic workloads. We started by observing
two distinct branches of DSA research: practical work in-
tended to operate on realistic environments, and theoretical
work exploring limits and other aspects of allocator policy.
Next, we noted DSA’s resemblance to a variation of two-
dimensional rectangular bin packing (2DBP) [2, 3]. Up to

bugs, as that transitioning from purely theoretical constructs to practical
implementations is expected to yield di�culty.

We are indebted to BA’s original authors. Without their contribution this
paper would not exist. We communicated to them both our gratitude and the
complete text, asking for feedback. We received three replies, the common
denominator being that too much time has passed since the algorithm’s
conception in order for any substantial remarks to be made. One of the
two main authors (the second one has not replied until the time of writing)
emphasized that adjustments are expected when applying mathematical
ideas in practice.

59

The Unexpected E�iciency of Bin Packing Algorithms for Dynamic Storage Allocation in the Wild ISMM ’23, June 18, 2023, Orlando, FL, USA

0.6 0.7 0.8 0.9 1.0
Fragmentation (normalized)

0.88

0.90

0.92

0.94

0.96

0.98

1.00

1.02

Pe
ak

 R
SS

 (n
or

m
al

iz
ed

)

snmalloc

jemalloc

mimalloc

glibc

snmalloc

jemalloc

mimalloc

glibc

snmalloc

jemalloc

mimalloc

glibc

input_0
input_1
input_2

Figure 1. Scatter plot of three Linux xmllint workloads’
peak RSS versus their 2DBP-based fragmentation across four
modern allocators (glibc, jemalloc [4], mimalloc [10] and
snmalloc [11]. The black error bars are standard deviations
of our RSS measurements. Fragmentation calculation is de-
terministic.

that point 2DBP had been treated as an NP-hard optimiza-
tion problem [5], with approximate algorithms generating
placements of minimal makespan. We did not intend to cre-
ate a novel 2DBP algorithm; but what if we viewed allocators
themselves as 2DBP “algorithms”with unknown optimization
criteria? The resulting structures should multiplex enough
of the workload-allocator interaction that we were targeting.

To this end we devised a trace-based simulation methodol-
ogy for representing workload-allocator interaction as 2DBP
instances. To evaluate the representations produced, we in-
vestigated their relationship to maximum resident set size
(RSS). We de�ned fragmentation in the 2DBP space, and mea-
sured it for 28 workloads linked to 4 modern allocators. For
46.4% of the studied workloads, 2DBP-based fragmentation
and maximum RSS exhibited a monotonic relationship as
per Spearman’s correlation coe�cient (d > 0.65). Lower
fragmentation in 2DBP yielded up to 30% smaller memory
footprint in the real world. Figure 1 shows an example.

The fact that computations on trace-based simulation data
correlated with empirical RSS measurements convinced us
of 2DBP’s potency. The non-uniformity in said correlation
implies that, contrary to common practice, fragmentation is
not always the culprit behind RSS �uctuations.

2.2 The Logical Conclusion of Using 2DBP

If representing workload-allocator pairs as 2DBP instances
makes sense, then computing their approximately optimal
counterparts and exploring how they relate could prove use-
ful. For instance, until now we do not have any concrete

idea on the bounds of real allocator placements–other than
that real allocator placements on realistic inputs normally
produce much better results than Robson’s worst-case lower
bounds [1, 6, 17]. However, both Robson’s bounds and o�ine
2DBP algorithms assume a single, contiguous mapping of
memory–thus conceptualizing fragmentation as divergence
from a placement’s optimal makespan.

Linux virtual memory employing demand paging renders
makespan irrelevant; allocators are commonly known to
employ sparse addressing to combat fragmentation (this is
what led us to de�ne a page-local metric in our our sister
work’s context). However, Linux systems are not the only
ones making use of dynamic memory allocation. In the em-
bedded domain, statically pre-allocating and managing con-
tiguous physical space is often the norm. Following this line
of thought to its logical conclusion, we get this intellectual
abstract’s rationale:

• fragmentation is a context-dependent concept
• 2DBP is a context-free representation of fragmenta-
tion’s source, that is, the interplay between program
behavior and placement policy

• we do not know the achievable limits of allocators
with respect to fragmentation

• we do know the achievable limits of 2DBP algorithms
with respect to a speci�c fragmentation de�nition

• comparing 2DBP algorithms and allocators in 2DBP’s
common substrate could lead to fruitful results–a sim-
ple example being the ability to di�erentiate between
programs that can, or cannot, bene�t further from
custom placement policies

3 Background

This section deals with the 2DBP formulation we are building
on (Section 3.1) and the algorithm we are implementing
(Section 3.2).

3.1 Viewing Program-Allocator Interaction as a Bin

Packing Instance

Assume that an application is executed and, as regards dy-
namicmemory, it is served by some speci�ed allocator. Along
its course the application will have generated a sequence of
 requests ' = {'0, '1, ..., ' −1}. For simplicity, assume that
for each request '8 , 8 ∈ {0, ..., − 1} the following is true:

'8 =

{
" (=) (allocate n bytes)

� (9), 9 < 8 (free memory allocated for request ' 9)
(1)

An allocator can be considered as a function�() operating
on request sequences like '. Then the allocator’s output after
processing the last request is a set of# = /2 placedmemory
blocks, which from now on we will refer to as “jobs”:

�(') = �%� = {�%�,0, ..., �%�,#−1} (2)

60

ISMM ’23, June 18, 2023, Orlando, FL, USA Lamprakos, Xydis, Ca�hoor, and Soudris

A

0x00

Time (bytes allocated)

Vi
rtu

al
 a

dd
re

ss
 s

pa
ce

0x01

0x02

B

1 3

C

6

0x03

0x05

Figure 2. A 2DBP example. Consider the requests: (i) A
= malloc(1), (ii) B = malloc(2), (iii) free(A), (iv) C =

malloc(3), (v) free(B) and (vi) free(C). This �gure com-
bines them with an imaginary allocator’s responses, placing
block A at virtual address 0x01, block B at 0x03 and block C
at 0x00. The horizontal axis measures time in allocated bytes.
Time progresses forward after each allocation request, and
remains unaltered after each deallocation request. Our sis-
ter work’s proposal regarding fragmentation is indicated by
the two shaded rectangles. They represent segments which
the allocator left unused, thus reserving higher addresses in
order to handle all requests.

�%�,8 = (CB�,8 , C4�,8 , ℎ�,8 , ?�,8) (3)

The subscript %� means “placed by allocator �”, 8 is a
unique job identi�er (8 ∈ {0, ..., # − 1}), CB�,8 is the point in
time when job 8 was allocated, C4�,8 the respective time of
deallocation, ℎ�,8 is the size of the memory block that � allo-
cated (di�erent allocators spawn di�erent-sized blocks for
same-sized requests, according to their policy with respect
to size classes and block metadata), and ?�,8 is the virtual
address where the job was placed. Time is measured in allo-
cated bytes, and progresses forward based on the rule below:

C ('8) =




0 initially

C ('8−1) i� '8 = � (9) : 9 < 8

C ('8−1) + ℎ�,8 i� '8 = " (=)

(4)

Let us also assume the below statements hold:

• the served application is single-threaded and determin-

istic. Every time it is executed with the same input, it
produces exactly the same request sequence

• there are no memory leaks, no double frees, and more
generally the requests sequence is well-formed

The jobs sequence �%� can be viewed as the solution that
allocator � devised for the two-dimensional bin packing
(2DBP) problem de�ned by a corresponding sequence of
unplaced jobs � :

� = {�0, ..., �#−1} (5)

�8 = (CB,8 , C4,8 , ℎ8) (6)

However, instead of optimizing for the �nal placement’s
makespan as normally happens in 2DBP, allocator � placed
each job in � according to some unknown criterion implied
by its (also unknown) policy.

We now note down some more de�nitions that will be of
use later. First, a job is considered live in the open interval
(CB,8 , C4,8). Thus we de�ne the liveness function 0(�8 , C):

0(�8 , C) =

{
1 CB,8 < C < C4,8

0 elsewhere
(7)

The load at some particular moment C corresponds to the
sum of heights belonging to jobs that are alive at C :

; (C) =

#−1∑

8=0

0(�8 , C)ℎ8 (8)

Across its lifetime, a job contributes an individual load

|�8 | = (C4,8 − CB,8)ℎ8 . A series of jobs � is characterized by
its total load !) =

∑#−1
8=0 |�8 |. It is also characterized by its

maximum load ! = ; (CC!) : ; (C8) ≤ !, ∀8 ∈ {0, ..., # − 1}.
A �tting analogy for a 2DBP instance is a Tetris game: we

want to minimize the gaps between placed blocks. The frag-
mentation metric we propose is the gaps-to-total-load ratio.
Returning to the allocator placement in Eq. 2, we traverse
it and record all gaps between jobs belonging to the same

virtual page. Recall that in the context of virtual memory
with demand paging treating gaps between pages as sources
of fragmentation is meaningless.
A placement �%� thus implies, beyond its jobs, a second

sequence of rectangles � , corresponding to gaps between
jobs as de�ned in this paragraph. Assuming that the number
of those gaps is #� , fragmentation can be quanti�ed as:

� =

∑#�

9=0 |� 9 |

!)
(9)

3.2 The Algorithm

BA operates on inputs of the form de�ned in Eqs. 5 and 6. It
produces, as the abstract allocator in Eqs. 2 and 3, a series
of placed jobs. At each point in time, addresses are occupied
by at most one job.

The criterion optimized is the output placement’smakespan
" , that is the maximum address used for a placement. BA
produces approximately optimal solutions. In particular, BA

61

The Unexpected E�iciency of Bin Packing Algorithms for Dynamic Storage Allocation in the Wild ISMM ’23, June 18, 2023, Orlando, FL, USA

J

C17

T16

X_L

X_S C15 +

F?NO

C15

YES

ε

J_B

Figure 3. BA in theory. � , -! and -(denote intermediate
sets of boxes. The + operator merges sets of boxes together
in a single set. The � condition is explained in the text. The
three rectangles are BA’s basic pillars: Corollary 17 (Section
3.2.2), Theorem 16 (Section 3.2.3), and Corollary 15 (Section
3.2.4). �� is the algorithm’s end product, that is a set of boxes
of identical height. The double dotted arrow indicates how
the initial sequence of di�erent-sized jobs is transformed,
after BA’s application, into a set of same-sized boxes.

guarantees that " ≤ [1 +$ ((ℎ<0G/!)
1/7)]!. The same pa-

per describes a stronger �avor producing placements with
" ≤ (2 + n)! for every n > 0.4

We managed to implement only the weaker version of BA,
for reasons that will be explained later (Section 3.2.7). We
expand on the weaker one for now. Its overview is shown
at Figure 3. Regarding individual components, i.e., theorems
and corollaries derived in the original paper, we follow the
naming and numbering established in the STOC proceedings
version [2]. Having a copy of it available side by side with
this intellectual abstract is more than advised, if possible.
We have tried to make this text self-contained, in the

sense of depicting and elaborating on everything that we
implemented. Still, BA is understandably complex. Apart
from consulting the original publication, we also suggest
reading the current section’s contents twice: once in their
default order and once more in reverse.

3.2.1 Main Idea. 2DBP is NP-hard due to the variety of
sizes present in sequence � ; if all rectangles had the same

4If the strength relationship between the two algorithms is not evident,
consider the following cases:

(i) for ℎ<0G = !, the weak algorithm guarantees that " ≤ [1 +

$ (1)]! ⇒ ∃ 21 > 0 : " ≤ (1 + 21)!. To outperform the strong ver-
sion, it should hold that 1 + 21 < 2 + n ⇒ 21 < 1 + n . Arguably such
instances may appear, but since we know nothing about the range of 21, we
must reason according to the worst case–and assignmuch higher probability
to 21 exceeding 1 + n .

(ii) for ℎ<0G = !/128, we similarly arrive to the condition 22 < 2(1 + n) .
Recall that the strong algorithm works for all n > 0, so we may as well
consider it small enough to require 22 < 2. Again, we have no evidence
suggesting such a tight range for 22.

J SORT X_1 x

1

T2 x

h_1

+X_2

X_N

...

. . .

. . .

J_B

ε

Η

Figure 4. Corollary 15, unpacked. A new component, that
is Theorem 2, appears here. This will be unpacked later on.
A new operator G is also shown. It is used to change a job’s
height. For example it changes the jobs in -1, initially of
height ℎ1, to jobs of unit height.

height, the problem’s optimal solution could be derived via
interval graph coloring (IGC). BA exploits this fact.

BA views all data as boxes, de�ned by triplets identical to
Eq. 6. Jobs in � are boxes containing nothing. New boxes,
containing existing ones, are created in multiple parts of the
algorithm. The ultimate goal is to box all jobs in � into a series
of boxes of identical height. Then IGC can be applied to �nd
an optimal placement. Figure 3 shows how � is transformed
to a set �� comprising same-sized boxes. From this point
onward, whenever the term “job” is used, we could either
refer to actual jobs or boxes. For BA everything is a box.

3.2.2 Corollary 17. This is the algorithm’s entry point.5

Its only function is to calculate the error parameter n , to be
given as input to Theorem 16. n is de�ned as (ℎ<0G/!)

1/7.
An intuition-friendly way to view it is that the bigger it is,
the less optimal will the overall boxing be.

3.2.3 Theorem16. This stage operates on arbitrary sets of
jobs, and expects an error parameter n ∈ (0, 1] as additional
input. Then the elements A = ℎ<0G/ℎ<8= , ` = n/log2 A and
� = ⌈`5ℎ<0G/log

2 A⌉ are computed. Then jobs are divided in
two disjoint subsets:

• -(: jobs of height at most `�
• -! : the rest of the jobs

Corollary 15 is applied to -(with error parameter n = `
and height parameter � . This yields a set of boxes of height
� . The boxes are merged with the jobs of -! , A and ` are
recomputed, and then one of two possible scenarios holds;
either log2 A ≥ 1/n or log2 A < 1/n . In the �rst case, Theo-
rem 16 is recursively applied to the merged set with error

5Treating corollaries and theorems as if they were execution stages may
seem weird. But every proof in the original paper is given by construction;
a claim is made, then the operations to apply to the input are described in
terms of earlier corollaries and theorems, and �nally the claim is validated
based on properties of the involved operations. Thus following BA in its
entirety amounts to following how each component is applied to the rest.

62

ISMM ’23, June 18, 2023, Orlando, FL, USA Lamprakos, Xydis, Ca�hoor, and Soudris

J t_crit

sort

R

X

L1

J_R

U IGC J_U

GAPS

+

T2

(0, T)

J_B

Figure 5. Theorem 2, unpacked. Lemma 1 and interval graph
coloring (IGC) also appear.

parameter n . Otherwise, a last application of Corollary 15 is
made. On Figure 3 this condition check is represented as � .

3.2.4 Corollary 15. This stage accepts (i) a set of jobs � ,
(ii) an error parameter n > 0 and (iii) a height parameter � .
Jobs in � must be of height at most n� ; this holds by default
in Figure 3 due to the de�nition of -(.
Figure 4 illustrates this stage: jobs are sorted in buckets

according to the inequality (1 + n)8−1 < ℎ ≤ (1 + n)8 . Jobs
belonging to the same bucket are rounded up so that their
height is ℎ8 = ⌊(1 + n)8⌋. Thus in the �gure, all the jobs in
-1 have height ℎ1, etc. Each bucket is then downscaled to
unit height and Theorem 2 is called with height parameter
⌊�/ℎ8⌋. Theorem 2’s output is upscaled to boxes of height
� and all box subsets, i.e. as created by a parallel application
of the described �ow to every -8 , are merged to a single set
�� comprising boxes of height � .

3.2.5 Theorem 2. This is the most complex part of BA,
and is a recursive procedure. It is depicted at Figure 5. Theo-
rem 2 expects as inputs (i) a set of jobs of unit height and (ii)
a set of bounding intervals represented as clouds in the �gure.
Initially the bounding interval equals to the whole time hori-
zon of the jobs in � , plus a random moment at which at least
one job is live. Bounding intervals correspond to temporal
segments used to sort jobs in � , this time not according to
their heights but their liveness:

• if we name all the endpoints of all the bounding inter-
vals as critical times, ' contains jobs that are live at
least at one critical time

• set - holds jobs that are not live at any critical time

Lemma 1 is then applied to the jobs in '. As a result, a set
of boxed jobs �' and a set of unresolved jobs* are created.
The jobs in U are packed via IGC, and from that packing a
new set of bounding intervals is created besides �* . These
feed a deeper invocation of Theorem 2, which focuses on
the jobs in - . At the last call of Theorem 2, - is expected
to be empty. Boxed jobs are returned and consolidated with
products of shallower recursive layers.

3.2.6 Lemma 1. This is BA’s cornerstone, and straight-
forward enough not to require an illustration. A set of jobs
of unit height, all live at a speci�c moment C and a height

J SORT

X_S

X_L

T16

T12

J_S

J_L

???

+ J_B

ε

δ

δ

δ

Figure 6. Theorem 19. Continuous arrows denote normal
progression of time. Dashed arrows are time-travelling in-
formation. We did not succeed in implementing this.

parameter � are the inputs. A set of boxes �� and a set of
unresolved, i.e. unboxed jobs* are the outputs.
We omit box derivation since it mostly serves the orig-

inal publication’s mathematical arguments, leading to the
makespan-related guarantees of the overall algorithm. Elab-
orating further on its internals is outside this paper’s scope.

3.2.7 Theorem 19. As mentioned in Section 3.2 there is a
stronger algorithm in the BA paper than Corollary 17. It is
shown in Figure 6. Its inputs are an arbitrary set of jobs and
an error parameter n > 0.
The main di�culty posed by this theorem is that it uses

information from the future. It commences with a height-
based sorting operation according to some “small positive X”
that has not yet been computed. It then applies Theorem 16
to the �rst subset, yielding an (1 + 2X)-approximation. Then
it computes X via the equation:

X (2 + 1) = n (10)

This information must travel back in time to feed the sorting
operation and Theorem 16 itself!We emphasize this di�culty
with the “???” component in Figure 6.

A workaround we thought was some form of speculative
execution: choose X at random, and if it satis�es Eq. 10 within
some acceptable error range, proceed with the remaining
steps, else retry. We have not explored this idea further.

4 Implementation

Let us turn to our implementation. This exposition does not
intend to be of software engineering character; we will not
allocate space to describe the particular tools used, e.g., pro-
gramming language, sorting algorithms, jobs representation
etc. We shall focus on the high-level obstacles found and
the high-level mechanisms devised to overcome them. More
seasoned developers will come up with more e�cient mech-
anisms, but they will stumble on the same intricacies that
we now come to discuss.

An example is shown in Table 1. The �rst two columns
show the characteristics of some indicative workloads. The

63

The Unexpected E�iciency of Bin Packing Algorithms for Dynamic Storage Allocation in the Wild ISMM ’23, June 18, 2023, Orlando, FL, USA

Table 1. An example of what led us to adjust BA. Theorem
16 falls in an in�nite loop if the height threshold de�ning -!
and -(is smaller than the smallest height in � .

ℎ<8= ℎ<0G (nC , ℎC) (n? , ℎ?)

8 524288 (0.76, 0.033) (6.19, 8.27)
8 1048576 (0.97, 0.037) (6.55, 10.01)
16 524288 (0.75, 0.037) (6.12, 18.91)
8 75497472 (0.98, 0.020) (6.59, 9.62)

third column contains (i) the theoretical n that Corollary 17
computed and (ii) the corresponding threshold used by The-
orem 16 to split its jobs in-(and-! . Given that Theorem 16
is recursive, if at some point -(is empty, the algorithm falls
in an in�nite loop. This would have happened for virtually
every input if we had relied on the theoretical n provided
by Corollary 17. The fourth column of Table 1 shows the
corresponding values that allowed Theorem 16 to converge.
In that case, the practical n values used are well outside the
(0, 1] range that BA in theory demands.
At this point we could either discontinue our e�ort or

devise a fault-tolerant scheme that would allow us to proceed.
This could not be done for each component in isolation, since
it must be evident by now that there are strong dependencies
from each stage to the next. We chose the second option. Our
design was based on two key observations:

• components can be broken into safe and unsafe sec-
tions. For instance, merging distinct sets of boxes to a
single set is safe. Calling another component is unsafe

• most of the time, the failure of unsafe sections is owed
to the n value computed by Corollary 17

We now turn to putting said observations to good use.

4.1 Unsafe Parts and Failure Propagation

BA has a cascade structure. After the error parameter n has
been computed, jobs pass through the other components
getting re-boxed at each stage. If we view each theorem and
corollary as a separate function, the stack trace starts from
Corollary 17 and grows across the rest of the pipeline.
By trial and error, we found n to be the most frequent

culprit for behind component malfunction. Our idea is thus
to propagate, upon detection of failure, a signal towards the
root of the stack trace–that is to BA’s entry point, Corollary
17. As shown in the right part of Figure 8, on such occasions
a new n is computed and the overall �ow is retried. A large
amount of e�ort was thus invested in identifying component
sections that may lead to failure (“unsafe code” in Figure 8).
An example has already been given via Table 1.

SAFE CODE

UNSAFE CODE

FAILED?

CONTINUEERROR PROP.

NOYES

INIT ε

Τ16

FAILED?

NEW ε IGC

UNBOX

START

END

YES YES NO

Figure 8. BA components are split into safe and unsafe
portions. Each unsafe portion is mapped to a speci�c cri-
terion. At failure an error signal is propagated back across
the pipeline. Corollary 17 has been adjusted to change the
value of n upon failure detection (right).

Once the identi�cation process was complete, implement-
ing a fault-tolerance mechanism was trivial. We just checked
a case-speci�c condition immediately after executing unsafe
code. If the condition’s result was “error”, we propagated
an error signal back to the caller. All calls to component
functions are considered unsafe points on their own: conse-
quently, the caller checks its own error condition upon the
callee’s return, and if an error is found it is sent further back
until it reaches Corollary 17, which adjusts n .

4.1.1 Recomputing n. A few simple heuristics oversee
the process that recompute Corollary 17’s error parameter:

• in the �rst iteration, follow the formula in Section 3.2.2
• if the last value did not box any jobs, increase n by 10%
• if the last value boxedmore jobs than the previous one,
keep it as a bottom limit. There is no point in trying
smaller values in the future

• if, after its increase, n exceeds two times the bottom
limit, start from the bottom again. There is no point
in trying too big values either

4.1.2 Help signals. Apart from the error signal, we made
use of two more that proved necessary. The �rst has already
been mentioned: we keep track of how many jobs from the
original input set managed to get boxed before failure. The
second is discussed below.

4.2 Theorem 2 Edge Cases & Critical Time Injection

Just as Theorem 16 depends on whether -(contains any
jobs in order to converge, Theorem 2 depends on ' being
non-empty (see Figure 5).

The sorting operation of Theorem 2 uses a liveness crite-
rion: jobs that are live during at least one critical time go in
'. We noticed that, for some edge cases, this does not hold

64

ISMM ’23, June 18, 2023, Orlando, FL, USA Lamprakos, Xydis, Ca�hoor, and Soudris

Figure 7. A sample placement for the bork benchmark, produced by our BA implementation.

for any job in the input. In theory this should not happen: it
is nowhere implied in the BA paper that one should worry
whether ' is empty or not. But in practice we must. In our
opinion, this is owed to the “random moment” that initial-
izes the component’s bounding intervals (see Section 3.2.5).
Given that time is measured in allocated bytes, the range is
vast enough to allow such edge cases to pop up.

Thus, upon detecting an empty ', apart from an error sig-
nal a di�erent moment is returned, at which the problematic
input does contain live jobs. This is the only occasion where
the error is not propagated all theway back to the entry point,
because it makes sense to retry Theorem 2 with a bounding
intervals vector injected with the moment returned. If the
second attempt fails as well, we allow our implementation
to go rogue and use an appropriate critical time whenever it
stumbles on the edge case described without returning.6

4.3 Final Placement Retrieval

Upon convergence BA produces a set of boxes of identical
height. These contain boxes, which contain boxes, which
contain other boxes, and so on until at the heart of each
box, where a subset of the initial jobs resides. At this point

6Yes, this is as much cheating as it looks. We expect and celebrate future
e�orts that provide a �nal answer, stemming from more principled methods
than trial-and-error.

everything has been boxed, but nothing has been placed. As
Figure 8 shows in its right half, two tasks remain:

• derive an optimal outer box placement via IGC
• unbox placed boxes recursively until original jobs are
found. At each unboxing stage, place children, i.e.,
contained boxes, according to their parent’s placement

An important detail that goes unnoticed in the original
publication is that the placement that emerges after unboxing
the last job is very sparse, probably owed to the recursive
scaling imposed by Corollary 15. To tighten said placement,
a very simple algorithm can be followed: (i) order jobs by
increasing address, (ii) place the �rst job at address zero, and
(iii) keep a vector of all traversed jobs. Traverse all remaining
jobs, each time checking the traversed vector for temporally
coinciding jobs with the current one. If such jobs exist, place
the job right on top of the tallest coinciding one. Else place
it at address zero. Keep traversing until done.

4.4 On Performance and Scalability

BA’s recursive nature tends to drive even a server with 32 GiB
DRAM to out-of-memory errors for workloads containing a
mere 20 thousand jobs. This number is at least two orders
of magnitude smaller than realistic workload sizes. Note,
however, that job count is not the de�nitive factor to predict
OOM killers: as will be shown later (Tables 2 and 3), we
managed to pull complete BA runs on 80K and 200K job

65

The Unexpected E�iciency of Bin Packing Algorithms for Dynamic Storage Allocation in the Wild ISMM ’23, June 18, 2023, Orlando, FL, USA

bork
bullet

espeak

java-scimark2

compress-gzip
dcraw

tjbench

system-libxml2
0

1

2

3

4

5

M
ak

es
pa

n
(n

or
m

al
iz

ed
)

0.
11 0.
15

0.
11 0.
13

0.
14

0.
08

0.
09 0.

16

0.
47 0.
50

0.
48

0.
44

0.
43

0.
10 0.
16

0.
140.

22

0.
48

0.
19 0.
21

0.
87

0.
26

0.
10

2.
24

0.
33

0.
13

0.
66

0.
30

5.
70

0.
17

0.
17

0.
51

Allocators vs. Robson's lower bound

Allocator
glibc
jemalloc
mimalloc
snmalloc

bork
bullet

espeak

java-scimark2

compress-gzip
dcraw

tjbench

system-libxml2
0.0

0.5

1.0

1.5

2.0

2.5

M
ak

es
pa

n
(n

or
m

al
iz

ed
)

0.
60

2.
15

0.
53

0.
90

1.
10

0.
48

0.
48 0.

56

0.
68

2.
55

0.
51

0.
94 1.

00

0.
48

0.
48

0.
580.

63

2.
72

0.
51

0.
77

1.
12

1.
43

0.
48

0.
570.

65

2.
71

0.
51

0.
78

1.
18

0.
48

0.
48

0.
46

BA vs. Buchsbaum's upper bound

Input Placement
glibc
jemalloc
mimalloc
snmalloc

Figure 9. Left: allocators’ makespan normalized to Robson’s worst-case lower bound (1
2
! · ;>62ℎ<0G). Right: BA’s makespan

normalized to its corresponding upper bound, [1+ 2 · (ℎ<0G/!)1/7]!. Note that we replaced the original bound’s big-O notation
with a factor of 2.

workloads. This leads us to conclude that more �ne-grain
characteristics, such as the size distributions of jobs as well
as their placement in time (controlled by program behavior),
are more relevant. We have not come up with a criterion to
di�erentiate between tractable and intractable cases.

5 Results and Discussion

We run experiments on a x86_64 commodity server running
Ubuntu 20.04 LTS. We collected placement data from a pool
of applications linked to a pool of state-of-the-art allocators,
and then fed that data to BA. All benchmarks come from
the Single-Threaded Tests collection on openbenchmark-
ing.org.7 We used the Phoronix Test Suite8 to install and run
the applications. A complete record of our measurements
can be found at Tables 2 and 3.

All results shown are products of trace-based simulation.
Linux kernel-side virtual-to-physical mapping decisions do
not matter in this context: the underlying assumption is that
all mappings are contiguous. All evaluation regards place-
ment on the virtual address space. The degree to which such
decisions a�ect main memory is established in this paper’s
sister work (see Section 2 for details).

7https://openbenchmarking.org/suite/pts/single-threaded
8https://www.phoronix-test-suite.com/

5.1 Bounds Comparison

We have two reasons to compare placements with theoretical
bounds: on the allocators’ side, it is a good chance to see
how they perform with respect to Robson’s worst-case lower
bound, de�ned as 1

2
! · ;>62ℎ<0G for an “optimal strategy” [17,

18]. On BA’s side, abidance to the authors’ theoretical upper
bound, that is, " ≤ [1 + $ ((ℎ<0G/!)

1/7)]!, is a reliable
indicator of our implementation’s functional correctness–
which is more than desired, given the multitude of ad-hoc
�xes that we applied toward convergence. Both comparisons
are depicted at Figure 9.
We see that allocators outperform Robson’s worst-case

bound in 30 out of 32 cases–despite employing sparse ad-
dressing. Note that we compute themakespan via subtracting
the smallest address used from the largest one, and that we
always operate on virtual addresses. Consequently, even re-
gions between the “endpoint” blocks that may never have
gotten mapped to physical memory are accounted for–and
thus sparse addressing does a�ect the reported makespan.
This result comes in line with earlier work producing similar
conclusions in the RSS domain [1, 6].
With respect to BA, we get a much tighter upper bound.

75% of the time, our implementation does indeed conform
to" ≤ [1 + 2 · (ℎ<0G/!)

1/7)]!.

66

https://openbenchmarking.org/suite/pts/single-threaded
https://www.phoronix-test-suite.com/

ISMM ’23, June 18, 2023, Orlando, FL, USA Lamprakos, Xydis, Ca�hoor, and Soudris

bork
bullet

espeak

java-scimark2

compress-gzip
dcraw

tjbench

system-libxml2
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

M
ak

es
pa

n
(n

or
m

al
iz

ed
)

0.
96

0.
43 0.

99

0.
78

0.
54 1.

00

1.
00 1.
16

3.
64

1.
18

4.
70

2.
51

1.
82

1.
28 1.

78

4.
56

1.
86

1.
06

1.
89

1.
44

3.
32

1.
13

1.
14

15
.9

7

2.
72

0.
29

6.
62

2.
02

20
.5

1

2.
25

1.
90

4.
67

Allocator
glibc
jemalloc
mimalloc
snmalloc

bork
bullet

espeak

java-scimark2

compress-gzip
dcraw

tjbench

system-libxml2
0.0

0.5

1.0

1.5

2.0

2.5

Fr
ag

m
en

ta
tio

n
(n

or
m

al
iz

ed
)

1.
19

0.
13

0.
74

0.
96

0.
45

1.
00

0.
56

1.
39

1.
18

0.
30

2.
17

0.
80

1.
10

1.
00

0.
98

2.
08

1.
19

0.
37

1.
34

1.
21

0.
77

0.
00

0.
85

1.
57

1.
25

0.
33

2.
26

1.
29

1.
22

1.
00

1.
15

2.
46Allocator

glibc
jemalloc
mimalloc
snmalloc

Figure 10. Left: allocators’ makespan normalized to the corresponding BA placement’s makespan. Right: the analogous data for
page-local 2DBP-based fragmentation. Particularly about dcraw and mimalloc, the allocator scored a perfect 0 fragmentation
while BA did worse–hence the zero value in the �gure.

Of particular note is glibc’s terri�c performance against
the Robson lower bound across all workloads. Upon inspec-
tion of visualized placement �les like the one shown in Fig-
ure 7, we found out that glibc almost never uses sparse
addressing within each spawned memory mapping–as op-
posed to more “modern” implementations such as mimalloc.
We attribute its very small makespan to this observation.

5.2 Allocators vs. BA

Figure 10 displays the empirical evidence regarding alloca-
tors’ performance against BA. Quite a few interesting re-
marks can be made. This being an intellectual abstract, we
shall not try and fully explain the data shown. We invest our
best of e�orts, however, to provide a �rst interpretation.

1. 75% of the time, BA outperforms allocators as regards
makespan. This is expected, given BA’s o�ine, make-
span-optimizing nature.

A less obvious detail is that, trend-wise, Figure 10’s
left half largely follows Figure 9’s left half. In other
words, allocators’ makespan versus BA is proportion-
ate to allocators’ makespan versus Robson’s lower
bound. This could hint at BA makespan being more
appropriate as a lower bound than Robson’s values.
But we leave said question open for this paper

2. glibc yields makespan that is equivalent to or lower
than BA in 7 out of 8 workloads. We have already men-
tioned glibc’s observed reluctance for sparse place-
ments, but still the fact that it is such a �erce competi-
tor to BA is surprising.

Again, Figure 9 carries some information: BA is de-
feated to the greatest degree in workloads where it
fared theworst regarding its own upper bound (bullet,
java-scimark2, compress-gzip)

3. The most surprising �nding is that BA outperforms or
is equivalent to allocators with respect to page-local
fragmentation more than 65% of the time.
How good BA behaves seems once again linked to

how its makespan compares to its upper bound (Figure
9, right half). bullet and dcraw-mimalloc are the
most obvious cases, but closer inspection illuminates
this observation’s uniformity across all workloads

We hope the above points to be su�cient as inspiration
for future work. If 2DBP fragmentation does indeed a�ect
RSS, then one can imagine pro�le-guided optimization of
individual workloads based on “optimal” placements com-
puted by BA. Analogous e�orts targeting makespan could
be attempted in domains where it makes sense.

67

The Unexpected E�iciency of Bin Packing Algorithms for Dynamic Storage Allocation in the Wild ISMM ’23, June 18, 2023, Orlando, FL, USA

Table 2. The complete set of measurements we took in order to form the experimental results discussed. The only extra
information here is the number of jobs per workload. The present data are continued in Table 3.

Workload

(#jobs)

Allocator L hmax Robson

bound

BA

bound

Setting Makespan Fragmentation

bork (12837)

glibc 4919904 528376 46766652 8869297
idealloc 5365096 0.149
real 5130728 0.176

jemalloc 4923384 524288 46772148 8870789
idealloc 5993192 0.147
real 21826256 0.174

mimalloc 4956152 524288 47083444 8926065
idealloc 5664904 0.150
real 10550912 0.178

snmalloc 5267888 524288 50044936 9450893
idealloc 6132336 0.151
real 16695280 0.189

bullet
(79950)

glibc 35388688 26742776 436566283 72928235
idealloc 156912368 0.256
real 67285248 0.034

jemalloc 38789376 29360128 481130908 79945817
idealloc 203864400 0.047
real 240987280 0.014

mimalloc 38101248 27262976 470558789 78204253
idealloc 212559984 0.043
real 224395264 0.016

snmalloc 45991616 33554432 574895200 94534066
idealloc 256191312 0.042
real 74727936 0.014

espeak (984)

glibc 1549032 675832 14999513 3068195
idealloc 1638008 0.048
real 1622136 0.036

jemalloc 1799744 786432 17623959 3565175
idealloc 1806344 0.039
real 8480992 0.084

mimalloc 2455104 1048576 24551040 4855554
idealloc 2459656 0.024
real 4652672 0.032

snmalloc 2520656 1048576 25206560 4975939
idealloc 2528784 0.024
real 16728144 0.054

java-
scimark2
(11261)

glibc 5358936 528376 50939916 9608547
idealloc 8659120 0.174
real 6711904 0.167

jemalloc 5428672 524288 51572384 9720874
idealloc 9108328 0.222
real 22833600 0.174

mimalloc 5526976 524288 52506272 9885714
idealloc 7639624 0.149
real 11009664 0.180

snmalloc 5953440 524288 56557680 10598910
idealloc 8272960 0.147
real 16728064 0.190

6 Related Work

Wilson et al. have written the seminal treatment on DSA and
the central role of fragmentation [19]. Johnstone and Wilson
conduct the �rst study of RSS-based fragmentation de�ni-
tions [6]. Berger et al. show that modern allocators perform
acceptably well with respect to RSS-based fragmentation [1].
Maas et al. propose a novel fragmentation de�nition incor-
porating chances of immediate memory reuse [14]. Powers
et al. and Maas et al. contribute notably unorthodox ways to
deal with fragmentation [12, 15]. Maas et al. frame on-the-
�y static bu�er allocation during machine learning model
compilation as 2DBP [13].
On the theoretical side, Robson has computed general

worst-case fragmentation bounds for any policy [16, 17], as
well as tighter bounds for the best �t and �rst �t policies [18].

Optimal placement is reported as NP-hard by Garey and
Johnson [5]. Chrobak and Ślusarek formulate DSA as a 2DBP
instance [3]. Given our focus on 2DBP, we do not mention
other formulations such as graph coloring [8].

7 Conclusion

This paper brings into focus the theoretical branch of litera-
ture dealing with dynamic memory allocation, envisioning
to exploit its state-of-the-art to the advantage of real-world
systems. It is built on top of work which proves that two-
dimensional rectangle bin packing is an informative repre-
sentation of workload-allocator interaction. We extend that
work by (i) implementing the best known bin packing algo-
rithm suitable for modeling dynamic memory allocation and
(ii) comparing its products, both in terms of makespan and

68

ISMM ’23, June 18, 2023, Orlando, FL, USA Lamprakos, Xydis, Ca�hoor, and Soudris

Table 3. (continued from Table 2)

Workload

(#jobs)

Allocator L hmax Robson

bound

BA

bound

Setting Makespan Fragmentation

compress-
gzip
(22963)

glibc 318304 32832 2387728 572349
idealloc 627600 0.465
real 339776 0.210

jemalloc 383400 40960 2937213 690939
idealloc 693608 0.408
real 1265472 0.450

mimalloc 383400 40960 2937213 690939
idealloc 774520 0.397
real 2567808 0.306

snmalloc 383568 40960 2938500 691222
idealloc 816464 0.416
real 16744448 0.507

dcraw (63)

glibc 81561656 81526776 1071751586 171607522
idealloc 81588600 0.000
real 81564744 0.000

jemalloc 83922104 83886080 1104495793 176573935
idealloc 83931320 0.000
real 107294064 0.000

mimalloc 83922104 83886080 1104495793 176573935
idealloc 251694312 0.333
real 285212288 0.000

snmalloc 134253760 134217728 1812425760 282476244
idealloc 134262976 0.000
real 301798384 0.000

system-
libxml2
(200512)

glibc 153984 72720 1243425 306717
idealloc 172784 0.267
real 200512 0.371

jemalloc 169264 81920 1381357 337742
idealloc 195376 0.265
real 891584 0.551

mimalloc 169264 81920 1381357 337742
idealloc 193648 0.268
real 3092480 0.420

snmalloc 218464 131072 1856944 442691
idealloc 202521 0.199
real 945232 0.490

tjbench
(34618)

glibc 7607792 7307256 86732245 15959249
idealloc 7637200 0.007
real 7612448 0.004

jemalloc 7674960 7340032 87522768 16094960
idealloc 7693960 0.006
real 13691920 0.006

mimalloc 7707728 7340032 87896444 16158532
idealloc 7726728 0.006
real 8830976 0.005

snmalloc 8756320 8388608 100697680 18365011
idealloc 8775312 0.005
real 16711728 0.006

fragmentation, with four modern allocators. Our demonstra-
tion aspires to spark further interest towards crossbreeds of
theoretical and practical memory memory management.

Acknowledgements

This work would not exist were it not for the original BA
paper published by Buchsbaum et al. in 2003. [2] We thus
thank Adam Buchsbaum, Howard Karlo�, Claire Mathieu,
Nick Reingold and Mikkel Thorup for their contribution.
Moreover we thank Paul Wilson, Mark Johnstone, Michael
Neely and David Boles for inspiring us to study DSA from
�rst principles. [19]
We owe all improvements on our initially submitted ver-

sion to the feedback received from ISMM’s Reviewers and
Shepherd. We are particularly thankful to the Shepherd for
guiding us through the last mile, as well as to Professor Erez

Petrank for instantly resolving any inquiry. We thank the
ISMM Organizing and Program Committees for allowing us
an ideal space to showcase our work.
This research was supported by the Hellenic Foundation

for Research and Innovation (HFRI) under the 3rd Call for
HFRI PhD Fellowships (Fellowship Number: 61/512200), and
by the European Union’s Horizon 2020 research and innova-
tion programme under grant agreement No. 101021274.

References
[1] Emery D. Berger, Benjamin G. Zorn, and Kathryn S. McKinley. 2002.

Reconsidering Custom Memory Allocation. SIGPLAN Not. 37, 11 (nov
2002), 1–12. h�ps://doi.org/10.1145/583854.582421

[2] Adam L. Buchsbaum, Howard Karlo�, Claire Kenyon, Nick Reingold,
and Mikkel Thorup. 2003. OPT versus LOAD in Dynamic Storage
Allocation. In Proceedings of the Thirty-Fifth Annual ACM Symposium

on Theory of Computing (San Diego, CA, USA) (STOC ’03). Association

69

https://doi.org/10.1145/583854.582421

The Unexpected E�iciency of Bin Packing Algorithms for Dynamic Storage Allocation in the Wild ISMM ’23, June 18, 2023, Orlando, FL, USA

for Computing Machinery, New York, NY, USA, 556–564. h�ps://doi.

org/10.1145/780542.780624

[3] Marek Chrobak and Maciej Ślusarek. 1988. On some packing problem
related to dynamic storage allocation. RAIRO-Theoretical Informatics

and Applications 22, 4 (1988), 487–499.
[4] Jason Evans. 2006. A scalable concurrent malloc (3) implementation for

FreeBSD. In Proceedings of the BSDCan Conference, Ottawa, Canada.
[5] Michael Garey and David S. Johnson. 1979. Computers and Intractabil-

ity: A Guide to the Theory of NP-Completeness. W. H. Freeman and
Company.

[6] Mark S. Johnstone and Paul R. Wilson. 1998. The Memory Frag-
mentation Problem: Solved?. In Proceedings of the 1st International

Symposium on Memory Management (Vancouver, British Columbia,
Canada) (ISMM ’98). Association for Computing Machinery, New York,
NY, USA, 26–36. h�ps://doi.org/10.1145/286860.286864

[7] Jukka Jylänki. 2010. A thousand ways to pack the bin-a practical
approach to two-dimensional rectangle bin packing. retrived from

http://clb.demon.�/�les/RectangleBinPack.pdf (2010).
[8] H.A. Kierstead. 1991. A polynomial time approximation algorithm for

dynamic storage allocation. Discrete Mathematics 88, 2 (1991), 231–237.
h�ps://doi.org/10.1016/0012-365X(91)90011-P

[9] Christos P. Lamprakos, Sotirios Xydis, Francky Catthoor, and Dimitrios
Soudris. 2023. Viewing Allocators as Bin Packing Solvers Demysti�es
Fragmentation. arXiv:2304.10862 [cs.PL]

[10] Daan Leijen, Benjamin Zorn, and Leonardo de Moura. 2019. Mimalloc:
Free List Sharding in Action. In Programming Languages and Systems,
Anthony Widjaja Lin (Ed.). Springer International Publishing, Cham,
244–265.

[11] Paul Liétar, Theodore Butler, Sylvan Clebsch, Sophia Drossopoulou,
Juliana Franco, Matthew J. Parkinson, Alex Shamis, Christoph M. Win-
tersteiger, and David Chisnall. 2019. Snmalloc: A Message Passing
Allocator. In Proceedings of the 2019 ACM SIGPLAN International Sym-

posium on Memory Management (Phoenix, AZ, USA) (ISMM 2019).
Association for Computing Machinery, New York, NY, USA, 122–135.
h�ps://doi.org/10.1145/3315573.3329980

[12] Martin Maas, David G. Andersen, Michael Isard, Mohammad Mahdi
Javanmard, Kathryn S. McKinley, and Colin Ra�el. 2020. Learning-
Based Memory Allocation for C++ Server Workloads. Association for

Computing Machinery, New York, NY, USA, 541–556. h�ps://doi.org/

10.1145/3373376.3378525

[13] Martin Maas, Ulysse Beaugnon, Arun Chauhan, and Berkin Ilbeyi.
2022. TelaMalloc: E�cient On-Chip Memory Allocation for Produc-
tion Machine Learning Accelerators. In Proceedings of the 28th ACM

International Conference on Architectural Support for Programming

Languages and Operating Systems, Volume 1 (Vancouver, BC, Canada)
(ASPLOS 2023). Association for Computing Machinery, New York, NY,
USA, 123–137. h�ps://doi.org/10.1145/3567955.3567961

[14] Martin Maas, Chris Kennelly, Khanh Nguyen, Darryl Gove, Kathryn S.
McKinley, and Paul Turner. 2021. Adaptive Huge-Page Subrelease
for Non-Moving Memory Allocators in Warehouse-Scale Computers.
In Proceedings of the 2021 ACM SIGPLAN International Symposium on

Memory Management (Virtual, Canada) (ISMM 2021). Association for
Computing Machinery, New York, NY, USA, 28–38. h�ps://doi.org/

10.1145/3459898.3463905

[15] Bobby Powers, David Tench, Emery D. Berger, and Andrew McGregor.
2019. Mesh: Compacting Memory Management for C/C++ Applica-
tions. In Proceedings of the 40th ACM SIGPLAN Conference on Program-

ming Language Design and Implementation (Phoenix, AZ, USA) (PLDI
2019). Association for Computing Machinery, New York, NY, USA,
333–346. h�ps://doi.org/10.1145/3314221.3314582

[16] J. M. Robson. 1971. An Estimate of the Store Size Necessary for
Dynamic Storage Allocation. J. ACM 18, 3 (jul 1971), 416–423.
h�ps://doi.org/10.1145/321650.321658

[17] J. M. Robson. 1974. Bounds for Some Functions Concerning Dynamic
Storage Allocation. J. ACM 21, 3 (jul 1974), 491–499. h�ps://doi.org/

10.1145/321832.321846

[18] John M Robson. 1977. Worst case fragmentation of �rst �t and best �t
storage allocation strategies. Comput. J. 20, 3 (1977), 242–244.

[19] Paul R. Wilson, Mark S. Johnstone, Michael Neely, and David Boles.
1995. Dynamic storage allocation: A survey and critical review. In
MemoryManagement, Henry G. Baler (Ed.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 1–116.

Received 2023-03-03; accepted 2023-04-24

70

https://doi.org/10.1145/780542.780624
https://doi.org/10.1145/780542.780624
https://doi.org/10.1145/286860.286864
https://doi.org/10.1016/0012-365X(91)90011-P
https://arxiv.org/abs/2304.10862
https://doi.org/10.1145/3315573.3329980
https://doi.org/10.1145/3373376.3378525
https://doi.org/10.1145/3373376.3378525
https://doi.org/10.1145/3567955.3567961
https://doi.org/10.1145/3459898.3463905
https://doi.org/10.1145/3459898.3463905
https://doi.org/10.1145/3314221.3314582
https://doi.org/10.1145/321650.321658
https://doi.org/10.1145/321832.321846
https://doi.org/10.1145/321832.321846

	Abstract
	1 Introduction
	2 Motivation and Rationale
	2.1 The Need for a Structured Representation
	2.2 The Logical Conclusion of Using 2DBP

	3 Background
	3.1 Viewing Program-Allocator Interaction as a Bin Packing Instance
	3.2 The Algorithm

	4 Implementation
	4.1 Unsafe Parts and Failure Propagation
	4.2 Theorem 2 Edge Cases & Critical Time Injection
	4.3 Final Placement Retrieval
	4.4 On Performance and Scalability

	5 Results and Discussion
	5.1 Bounds Comparison
	5.2 Allocators vs. BA

	6 Related Work
	7 Conclusion
	References

