
Programming R. Rivest
Techniques Editor

An Optimal Real-
Time Algorithm for
Planar Convex Hulls
F.P. P r e p a r a t a
U n i v e r s i t y o f I l l ino is

An algorithm is described for the construction in
real-time of the convex hull of a set of n points in the
plane. Using an appropriate data structure, the
algorithm constructs the convex hull by successive
updates, each taking time O(log n), thereby achieving a
total processing time O(n log n).

Key Words and Phrases: computational geometry,
convex hull, planar set of points, real-time algorithms,
on-line algorithms

CR Categories: 4.49, 5.25, 5.32

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

This work was supported in part by the National Science Foun-
dation under Grant MCS76-17321 and in part by the Joint Services
Electronics Program under Contract DAAB-07-72-C-0259.

Author's address: F.P. Preparata, Coordinated Science Laboratory,
University of Illinois, Urbana, IL 61801.
© 1979 ACM 0001-0782/79/0700-0402 $00.75.

402

I. Introduction

Algorithms for finding the convex hull of a finite set
of n points in the plane have been developed by several
authors in recent years [l, 2, 4, 5]. Most of these algo-
rithms are also optimal; that is, as pointed out in [6], they
have worst-case running time O(n log n), which is also
the best achievable performance for obtaining the or-
dered hull.

A common feature of the above mentioned algo-
rithms is that they are all off-line, i.e. they operate on the
data collectively. In other words, information about all
points of the set must be available before any of those
algorithms can be applied.

Instead, it is desirable to develop an algorithm which
receives one point at a time and updates the convex hull
accordingly, so that after points pl, p2 pi have been
received, their convex hull is available. Such an algo-
rithm is appropriately called on-line. A general feature
of on-line algorithms is that no bound is placed on the
update time, or equivalently, a new item (point) is input
on request as soon as the update relative to the last item
has been completed. We shall refer to the time interval
between two consecutive inputs as the interarrival delay.

Frequently, known on-line algorithms are less effi-
cient on the entire set than the corresponding off-line
algorithms (some price must generally be paid to acquire
the on-line property). For the planar convex hull prob-
lem, however, Shamos has designed an elegant on-line
algorithm [7], which runs in time O(n log n), thereby
matching the performance of off-line algorithms for the
same problem.

A more demanding case of on-line applications oc-
curs when the interarrival delay is outside the control of
the algorithm. In this case the update must be completed
in time no greater than the minimum interarrival delay.
Algorithms for such applications are appropriately called
in real-time. Shamos [7] points out that since any ordered
hull algorithm on n points requires [2 (n log n) time, any
real-time algorithm for this problem must be allowed
O(log n) processing time between successive inputs.

Unfortunately, the algorithm described by Shamos
exceeds this allowance, since its interarrival delay can be
O((log n)2). The algorithm works as follows. When the
pointpi is supplied, assume inductively that the algorithm
has available the convex hull Hi-~ of the set of points
{pi pi-1}, a point 0 internal to Hi-~, and the polar
angles of the vertices of Hi-l--a convex polygon--about
0. The vertices of Hi-1 are arranged in a height-balanced
tree (e.g. an AVL tree), in the order of their polar angles.
Thus point pi can be located between two consecutive
vertices of H~_~ in time at most O(log/) and then tested
for inclusion in Hi-1. If it is internal, it is discarded;
otherwise, two vertices l a n d r of H,-~ have to be located
so that the segments p~f and pir belong to the lines of
support of H~-I. The points l a n d r can each be located
by performing a standard binary search on the vertex
cycle of Hi-j; on the other hand, each probe of this

Communications July 1979
of Volume 22
the ACM Number 7

http://crossmark.crossref.org/dialog/?doi=10.1145%2F359131.359132&domain=pdf&date_stamp=1979-07-01

search is itself a search in the AVL tree, thereby resulting
in a worst-case running time O((log i) 2) = O((log n) 2) for
an update.

The intuitive reason why the algorithm sketched
above fails to achieve an O(log n) update time is that a
binary search is artificially forced on a search tree, rather
than allowing the latter to be the guide of the search
operation. This natural observation is the basis of the
following convex hull algorithm, which runs in time O(n
log n) a n d is therefore optimal, and has update time
O(log n) and is therefore in real-time.

2. The Real-Time Algorithm

Let P be a polygon in the plane and let (Vo v~-l)
be the counterclockwise cycle of its vertices (indices are
modulo s). The vertices of P are stored as an ordered
sequence in a data structure T(P) which is a height-
balanced tree modified in a trivial way to be described
later (see Appendix). Let min T(P) denote the vertex
stored in the leftmost node of T(P), arbitrarily chosen in
the vertex cycle. The convex-hull algorithms will make
use of two procedures: TANGENTS and RESTRUCTURE.

Procedure TANGENTS (P, m, p) accepts as its inputs a
point p, a convex polygon P, represented by the tree
T(P), and the vertex m = min T(P); this algorithm tests
whether p is internal or external to P, and, in the latter
case, it determines two vertices Eand r, previously defined
(see Figure 1). Notice that f and r are named so that ,~
(rpf) < ~r. 1 I f p is internal, the algorithm terminates
without altering T(P); otherwise the string of vertices
comprised between l a n d r is deleted, and the vertex p is
then inserted between f and r. This operation is per-
formed by the procedure RESTRUCTURE (P , p, f , r).

Less informally, we have (A is the empty symbol):

CONVEX-HULL UPDATE

lnpul:
Output:
I. begin
2.
3.

end

T(Hi-z), pi
T(Hi)

m ~- min T(H,_I)
(t a, r) ~ TANGENTS (Hi-i , m, pi)
I f (d , r) # (A, A) then H, ,-- RESTRUCTURE (Hi-t , pi, f , r)

else Hi ~ Hi-J
(Comment: (L r) = (A, A) means that p, is internal to Hi-l)

Obviously, Step 1 runs in time at most O(log i) (search
in height balanced tree with at most i elements). We shall
now show that both TANGENTS and RESTRUCTURE run in
time at most O(log i).

We begin by considering TANGENTS. Let T = T(Hi-1),
m = min(T), M = ROOT(T) , and let L(M), R(M) be
respectively the left and right subtrees of the root of T:
Note that m is the leftmost member and M is some
intermediate member of the vertex sequence. Given a
point p~ and a vertex v of H,-1, we shall say that v is

i ¢Z (abc) denotes the counterclockwise angle formed by segments

ba and bc.

403

Fig. I. Definition of vertices l a n d r.

~ r

P ~ - , . { ~ , ~ 1 r 0L)

Fig. 2. Illustration of concave, supporting, and reflex vertices.

v ~ P i
(o)

i

(bl

¢/ \
,

v(~~cv~ ' Pi

concave (with respect to pi) if the segment p,v intersects
the interior o f H~_]; otherwise, if the two vertices adjacent
to v lie on the same side of the line containing p,v, v is
supporting; in the remaining case, v is reflex (see Figure
2). We also denote as a the angle ~ (mpiM): obviously
a is classified as convex (<_ rr) or reflex (> ,r). Depending
upon the classifications of the vertices m and M and of
the angle a, we have a total of 18 possible cases: In fact,
m and M can each be classified in three ways (concave,
reflex, supporting) and a is either convex or reflex.
However these cases can be conveniently reduced to
eight new cases which cover all possibilities, as is sum-
marized in Table I and illustrated in Figure 3. The
diagrams of Figure 3 are to be read as follows: The
"circle" on which "points" M and m lie stands for the
polygon P; the sequence of vertices, as stored in T(P),
starts at m and runs counterclockwise on the circle; M is
the vertex stored in the root of T(P); here L(M) and
R(M) refer respectively to the vertex sequences stored in
the left and right subtrees of the root of T(P). Each of
these cases requires a distinct action. Specifically, in
cases 1, 3, 5, and 7 (see Figure 3), the special vertices f
and r are to be found in a proper subsequence of the
vertex sequence; this subsequence is either the sequence
stored in L(M) or that stored in R(M). In cases 2, 4, 6,
and 8 (Figure 3), there are two subsequences which
respectively contain f and r; as can be seen, each such
subsequence is either the sequence stored in L(M) or
R(M), or one of the latter extended with the vertex M.

Communications July 1979
of Volume 22
the ACM Number 7

Table I. Classification o f a, m, and M for each of the cases of Figure
3.

Case a rn M

l convex concave concave
2 convex concave nonconoave
3 convex nonconcave reflex
4 convex nonconcave nonreflex
5 reflex reflex reflex
6 reflex reflex nonreflex
7 reflex nonreflex concave
8 reflex nonreflex nonconcave

Fig. 3. The eight possible cases handled by algorithm TEST.

M//
m.\ T-R(M) /

/.,//

(1) P (2) P

t, t:,,. ,,') ,,"-,.. ~ ~
' / L(M)

' M ~ " L(M)
(3) (4) p

~ - ~ i

" "" \YD /
t '~M) "

m V M T-R(M)

(51 16)

m M m . -_

("" 'i L(M)

M)

(7) I 5 (8) ~'
T-L(M)

Thus the first task of the procedure is the classification
of the situation according to Table I; subsequently, de-
pending upon the outcome of this classification, the
procedure either recursively calls itself on the shorter
subsequence or it calls two other simple procedures,
LEFTSEARCH a n d RIGHTSEARCH, which respectively deter-
mine f and r. It is worth pointing out that when p~ is
internal to Hi-~, cases l or 7 or Figure 3 will occur
repeatedly; that is, the algorithm will examine a nested
family of subtrees and will terminate when the subtree
consists o f only one leaf, i.e. when m = M.

4O4

The arguments of LEFTSEARCH and RIGHTSEARCH are
search trees, although not necessarily AVL trees; in fact,
the trees T - R(M) and T - L(M), whose root is M, are
not AVL but have depth O(log/). Both procedures are
quite straightforward: basically, each of them traces a
path of T searching for a vertex v such that the line
containing pv is supporting for the polygon. As an ex-
ample, LEETSEARCH is sketched below, while a detailed
description of TANGENTS is given as an appendix. Below,
L(c) and R(c) are respectively the left and right subtrees
of a node c.

P r o c e d u r e L E F T S E A R C H

Input: a tree T, describing a sequence
Output: a vertex r.
I. begin c , ,- ROOT(T)
2. If pc is supporting then f * - c
3. else begin If c is reflex then T +- L(c) else T ~- R(c)
4, f ~'- LEFTSEARCH(T)

end
return

o f vertices.

5.

end

It is obvious that LEFTSEARCH involves tracing a path
of the tree T, spending a bounded time at each node.
Since Tis a balanced tree with at most (i - 1) nodes, the
running time is O(log i). Referring now to the time
performance of TANGENTS, we notice that the case clas-
sification task is completed in time bounded by a con-
stant; thus the bulk of the work is done either on the
recursive call or in the calls of the auxiliary procedures
LEFTSEARCH and RIGHTSEARCH. Typically, algorithm
TANGENTS could be viewed as tracing a path from the
root to some node c of T(Hi-I), recursively calling itself.
I f pi is internal to Hi-l, then c is a leaf of T(Hi-1);
otherwise, starting at node c, two paths of T(H~-I) are
traced by LEFTSEARCH and RIGHTSEARCH, respectively,
until f and r are found. Since the amount of work
expended at each node is bounded by a constant, TAN-
GENTS runs in time proportional to the depth of T(H~_I),
i.e. O(log/)).

Finally, we consider the procedure RESTRUCTURE,
which is invoked only when pi is external to H,-1. Let
n~_~ be the number of vertices Hi-1. As mentioned earlier,
the vertices comprised between f and r must be deleted
and p~ inserted. Wi th regard to the deletion, slightly
different actions will be taken depending upon whether
fprecedes r in T(Hi-1) or not. In the first case, we have
to split twice and splice once AVL trees with at most
i - l elements; in the second case, only two splittings
occur. But split and splice of AVL trees are standard
operations, known as Crane 's algorithms [3, p. 465],
which can be performed in time O(log i) and will not be
further discussed. Similarly, insertion o fp i can be done
in time O(10g/).

Therefore, we conclude that the CONVEX-nULL UP-
DATE can be executed in time O(log i) after i points have
been processed and can be used as an optimal real-time
convex-hull algorithm.

Communica t ions July 1979
of Volume 22
the ACM Number 7

A p p e n d i x

T h e p r o c e d u r e TANGENTS (P, m, p) accep t s as its
i npu t s a p o i n t p a n d a c o n v e x p o l y g o n P, g i v e n as a

s e q u e n c e o f ve r t i ces b e g i n n i n g wi th m, also expl ic i t ly

g iven . P is r e p r e s e n t e d by m e a n s o f an A V L tree T (P)

m o d i f i e d so tha t e a c h ve r t ex vi stores a p o i n t e r NEXT[V/]

to the add res s o f its successor vi+~ on the b o u n d a r y o f P.

T h i s m o d i f i c a t i o n is p r o m p t e d by the f o l l o w i n g cons id -

e ra t ions . T h e "case c lass i f i ca t ion t a sk" p e r f o r m e d by

TANGENTS uses the two ver t i ces m a n d M; to e n s u r e tha t

this task be c o m p l e t e d in c o n s t a n t t ime, b o t h M (the

root) a n d m (the first m e m b e r) o f T (P) m u s t be ava i l ab le .

T h u s w h e n e i t he r the left. o r the r ight sub t rees o f T (P)

are c h o s e n for a r ecu r s ive cal l o f TANGENTS, the i r first
e l e m e n t s m u s t be also supp l i ed a n d this is e x p e d i e n t l y

d o n e by m e a n s o f the p o i n t e r NEXT. (A n u p d a t e o f NEXT

occu r s o n l y w h e n a . v e r t e x p i is in se r t ed by RESTRUCTURE

a n d it is eas i ly seen tha t it o n l y i nvo lves two poin ters ,

a s soc i a t ed wi th f a n d pi respec t ive ly .) Be low, u is a

B o o l e a n p a r a m e t e r w h i c h is set to 1 in cases l, 3, 5, 7

(r ecurs ive cal ls o f TANGENTS) a n d is set to 0 o therwise .

TANGENTS

Input: H, a polygon, given as a sequence of vertices stored in a
modified AVL tree T(H); p a point, m the first element in
r (n) .

Output: Either a pair (K r) of integers or (A, A).
1. begin M ~ ROOT(T(H)), T <--- T(H)

6.
7.
8.
9.

10.

11.
12.

13.
14.
15.

16.
end

If m = M then r ~-- f ~ A (Comment: pi is internal)
e lse begin If ct < ~r then

if m is concave then

if M is concave then T <-- R(M), m ~-- NEXT(M),
u *-- 1 (case 1)

else TI ,~- T - R(M), 7"2 <-- R(M), u <-- 0 (case 2)
else If M is reflex then T ~-- L(M) , u <-- 1 (case 3)

e lse Tt ~ T - L(M), T.z ~-- L(M), u <-- 0 (case 4)
else If m is reflex then

If M is reflex then T <-- R(M), m ~ - N E X T (M) ,
u ~ l (case 5)

else Tj ~ R(M), T2 ~-- T - R(M), u ~ 0 (case 6)
else if M is concave then T <-- L(M), u ~-- 1 (case

7)
else T~ ~-- L(M), T2 ~ T - L(M), u ~ 0 (case 8)

If u = 1 then (f, r) ~ TANGENTS(T, m, pi)
else f,--- LEFTSEARCH(T0, r <---- RIGHTSEARCH(T2)

end
return (t , r)

Received October 1977

References
1. Graham, R.L. An efficient algorithm for determining the convex
hull of a finite planar set. Inform. Processing Letters 1 (1972), 132-
133.
2. Jarvis, R.A. On the identification of the convex hull of a finite set
of points in the plane. Inform. Processing Letters 2 (1973), 18-21.
3. Knuth, D.E. The Art of Computer Programming. Vol. 3: Sorting
and Searching. Addison-Wesley, Reading, Mass., 1973.
4. Preparata, F.P., and Hong, SJ. Convex hulls of finite sets in two
and three dimensions. Comm. A C M 20, 2 (Feb. 1977), 87-93.
5. Shamos, M.I. Problems in computational geometry. Dept. of
Comptr. Sci., Yale U., New Haven, Conn., May 1975.
6. Shamos, M.I. Geometric complexity. Proc. Seventh Annual ACM
Symp. on Theory of Computing, May 1975, pp. 224-233.
7. Shamos, M.1. Computational geometry. Dept. Comptr. Sci., Yale
U., New Haven, Conn., 1977 (to be published by Springer Verlag).

405

