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I. Introduction 

Algorithms for finding the convex hull of a finite set 
of n points in the plane have been developed by several 
authors in recent years [l, 2, 4, 5]. Most of these algo- 
rithms are also optimal; that is, as pointed out in [6], they 
have worst-case running time O(n log n), which is also 
the best achievable performance for obtaining the or- 
dered hull. 

A common feature of the above mentioned algo- 
rithms is that they are all off-line, i.e. they operate on the 
data collectively. In other words, information about all 
points of the set must be available before any of those 
algorithms can be applied. 

Instead, it is desirable to develop an algorithm which 
receives one point at a time and updates the convex hull 
accordingly, so that after points pl, p2 . . . . .  pi have been 
received, their convex hull is available. Such an algo- 
rithm is appropriately called on-line. A general feature 
of on-line algorithms is that no bound is placed on the 
update time, or equivalently, a new item (point) is input 
on request as soon as the update relative to the last item 
has been completed. We shall refer to the time interval 
between two consecutive inputs as the interarrival delay. 

Frequently, known on-line algorithms are less effi- 
cient on the entire set than the corresponding off-line 
algorithms (some price must generally be paid to acquire 
the on-line property). For the planar convex hull prob- 
lem, however, Shamos has designed an elegant on-line 
algorithm [7], which runs in time O(n log n), thereby 
matching the performance of off-line algorithms for the 
same problem. 

A more demanding case of on-line applications oc- 
curs when the interarrival delay is outside the control of 
the algorithm. In this case the update must be completed 
in time no greater than the minimum interarrival delay. 
Algorithms for such applications are appropriately called 
in real-time. Shamos [7] points out that since any ordered 
hull algorithm on n points requires [2 (n log n) time, any 
real-time algorithm for this problem must be allowed 
O(log n) processing time between successive inputs. 

Unfortunately, the algorithm described by Shamos 
exceeds this allowance, since its interarrival delay can be 
O((log n)2). The algorithm works as follows. When the 
pointpi is supplied, assume inductively that the algorithm 
has available the convex hull Hi-~ of the set of points 
{pi . . . . .  pi-1}, a point 0 internal to Hi-~, and the polar 
angles of the vertices of Hi-l--a convex polygon--about 
0. The vertices of Hi-1 are arranged in a height-balanced 
tree (e.g. an AVL tree), in the order of their polar angles. 
Thus point pi can be located between two consecutive 
vertices of H~_~ in time at most O(log/) and then tested 
for inclusion in Hi-1. If  it is internal, it is discarded; 
otherwise, two vertices l a n d  r of H,-~ have to be located 
so that the segments p~f and pir belong to the lines of 
support of H~-I. The points l a n d  r can each be located 
by performing a standard binary search on the vertex 
cycle of Hi-j; on the other hand, each probe of this 
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search is itself a search in the AVL tree, thereby resulting 
in a worst-case running time O((log i) 2) = O((log n) 2) for 
an update. 

The intuitive reason why the algorithm sketched 
above fails to achieve an O(log n) update time is that a 
binary search is artificially forced on a search tree, rather 
than allowing the latter to be the guide of  the search 
operation. This natural observation is the basis of  the 
following convex hull algorithm, which runs in time O(n 
log n ) a n d  is therefore optimal, and has update time 
O(log n) and is therefore in real-time. 

2. The Real-Time Algorithm 

Let P be a polygon in the plane and let (Vo . . . . .  v~-l) 
be the counterclockwise cycle of  its vertices (indices are 
modulo s). The vertices of  P are stored as an ordered 
sequence in a data structure T(P) which is a height- 
balanced tree modified in a trivial way to be described 
later (see Appendix). Let min T(P) denote the vertex 
stored in the leftmost node of T(P), arbitrarily chosen in 
the vertex cycle. The convex-hull algorithms will make 
use of  two procedures: TANGENTS and RESTRUCTURE. 

Procedure TANGENTS (P, m, p) accepts as its inputs a 
point p, a convex polygon P, represented by the tree 
T(P), and the vertex m = min T(P); this algorithm tests 
whether p is internal or external to P, and, in the latter 
case, it determines two vertices Eand r, previously defined 
(see Figure 1). Notice that f and r are named so that ,~ 
(rpf) < ~r. 1 I f  p is internal, the algorithm terminates 
without altering T(P); otherwise the string of  vertices 
comprised between l a n d  r is deleted, and the vertex p is 
then inserted between f and r. This operation is per- 
formed by the procedure RESTRUCTURE ( P ,  p, f ,  r). 

Less informally, we have (A is the empty symbol): 

CONVEX-HULL UPDATE 

lnpul: 
Output: 
I. begin 
2. 
3. 

end 

T(Hi-z),  pi 
T(Hi) 

m ~- min T(H,_I) 
(t a, r) ~ TANGENTS (Hi-i ,  m, pi) 
I f (d ,  r) # (A, A) then H, ,-- RESTRUCTURE (Hi-t ,  pi, f ,  r) 

else Hi ~ Hi-J 
(Comment: (L r) = (A, A) means that p, is internal to Hi-l) 

Obviously, Step 1 runs in time at most O(log i) (search 
in height balanced tree with at most i elements). We shall 
now show that both TANGENTS and RESTRUCTURE run in 
time at most O(log i). 

We begin by considering TANGENTS. Let T = T(Hi-1), 
m = min(T),  M = ROOT(T) ,  and let L(M), R(M) be 
respectively the left and right subtrees of  the root of  T: 
Note that m is the leftmost member  and M is some 
intermediate member  of  the vertex sequence. Given a 
point p~ and a vertex v of  H,-1, we shall say that v is 

i ¢Z (abc) denotes the counterclockwise angle formed by segments 

ba and bc. 
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Fig. I. Definition of vertices l a n d  r. 
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Fig. 2. Illustration of concave, supporting, and reflex vertices. 
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concave (with respect to pi) if the segment p,v intersects 
the interior o f  H~_]; otherwise, if the two vertices adjacent 
to v lie on the same side of  the line containing p,v, v is 
supporting; in the remaining case, v is reflex (see Figure 
2). We also denote as a the angle ~ (mpiM): obviously 
a is classified as convex (<_ rr) or reflex (> ,r). Depending 
upon the classifications of  the vertices m and M and of  
the angle a, we have a total of  18 possible cases: In fact, 
m and M can each be classified in three ways (concave, 
reflex, supporting) and a is either convex or reflex. 
However these cases can be conveniently reduced to 
eight new cases which cover all possibilities, as is sum- 
marized in Table I and illustrated in Figure 3. The 
diagrams of  Figure 3 are to be read as follows: The 
"circle" on which "points" M and m lie stands for the 
polygon P; the sequence of  vertices, as stored in T(P), 
starts at m and runs counterclockwise on the circle; M is 
the vertex stored in the root of  T(P); here L(M) and 
R(M) refer respectively to the vertex sequences stored in 
the left and right subtrees of  the root of  T(P). Each of  
these cases requires a distinct action. Specifically, in 
cases 1, 3, 5, and 7 (see Figure 3), the special vertices f 
and r are to be found in a proper subsequence of  the 
vertex sequence; this subsequence is either the sequence 
stored in L(M) or that stored in R(M). In cases 2, 4, 6, 
and 8 (Figure 3), there are two subsequences which 
respectively contain f and r; as can be seen, each such 
subsequence is either the sequence stored in L(M) or 
R(M), or one of  the latter extended with the vertex M. 
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Table I. Classification o f  a, m, and  M for each of  the cases of  Figure 
3. 

Case a rn M 

l convex concave concave 
2 convex concave nonconoave 
3 convex nonconcave reflex 
4 convex nonconcave nonreflex 
5 reflex reflex reflex 
6 reflex reflex nonreflex 
7 reflex nonreflex concave 
8 reflex nonreflex nonconcave 

Fig. 3. The eight possible cases handled by algorithm TEST. 
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Thus the first task of  the procedure is the classification 
of  the situation according to Table I; subsequently, de- 
pending upon the outcome of  this classification, the 
procedure either recursively calls itself on the shorter 
subsequence or it calls two other simple procedures, 
LEFTSEARCH a n d  RIGHTSEARCH, which respectively deter- 
mine f and r. It is worth pointing out that when p~ is 
internal to Hi-~, cases l or 7 or Figure 3 will occur 
repeatedly; that is, the algorithm will examine a nested 
family of  subtrees and will terminate when the subtree 
consists o f  only one leaf, i.e. when m = M. 

4O4 

The arguments of  LEFTSEARCH and RIGHTSEARCH are 
search trees, although not necessarily AVL trees; in fact, 
the trees T -  R(M) and T -  L(M),  whose root is M, are 
not AVL but have depth O(log/).  Both procedures are 
quite straightforward: basically, each of  them traces a 
path of  T searching for a vertex v such that the line 
containing pv is supporting for the polygon. As an ex- 
ample, LEETSEARCH is sketched below, while a detailed 
description of  TANGENTS is given as an appendix. Below, 
L(c) and R(c) are respectively the left and right subtrees 
of  a node c. 

P r o c e d u r e  L E F T S E A R C H  

Input: a tree T, describing a sequence 
Output: a vertex r. 
I. begin c , ,-  ROOT(T)  
2. If pc is supporting then f * -  c 
3. else begin If c is reflex then T +- L(c) else T ~-  R(c) 
4, f ~'- LEFTSEARCH(T) 

end 
return 

o f  vertices. 

5. 

end 

It is obvious that LEFTSEARCH involves tracing a path 
of  the tree T, spending a bounded time at each node. 
Since Tis  a balanced tree with at most (i - 1) nodes, the 
running time is O(log i). Referring now to the time 
performance of  TANGENTS, we notice that the case clas- 
sification task is completed in time bounded by a con- 
stant; thus the bulk of  the work is done either on the 
recursive call or in the calls of  the auxiliary procedures 
LEFTSEARCH and RIGHTSEARCH. Typically, algorithm 
TANGENTS could be viewed as tracing a path from the 
root to some node c of  T(Hi-I), recursively calling itself. 
I f  pi is internal to Hi-l, then c is a leaf of  T(Hi-1); 
otherwise, starting at node c, two paths of  T(H~-I) are 
traced by LEFTSEARCH and RIGHTSEARCH, respectively, 
until f and r are found. Since the amount  of  work 
expended at each node is bounded by a constant, TAN- 
GENTS runs in time proportional to the depth of  T(H~_I), 
i.e. O(log/)).  

Finally, we consider the procedure RESTRUCTURE, 
which is invoked only when pi is external to H,-1. Let 
n~_~ be the number  of  vertices Hi-1. As mentioned earlier, 
the vertices comprised between f and r must be deleted 
and p~ inserted. Wi th  regard to the deletion, slightly 
different actions will be taken depending upon whether 
fprecedes  r in T(Hi-1) or not. In the first case, we have 
to split twice and splice once AVL trees with at most 
i - l elements; in the second case, only two splittings 
occur. But split and splice of  AVL trees are standard 
operations, known as Crane 's  algorithms [3, p. 465], 
which can be performed in time O(log i) and will not be 
further discussed. Similarly, insertion o fp i  can be done 
in time O(10g/). 

Therefore, we conclude that the CONVEX-nULL UP- 
DATE can be executed in time O(log i) after i points have 
been processed and can be used as an optimal real-time 
convex-hull algorithm. 
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A p p e n d i x  

T h e  p r o c e d u r e  TANGENTS (P, m, p )  accep t s  as its 
i npu t s  a p o i n t  p a n d  a c o n v e x  p o l y g o n  P, g i v e n  as a 

s e q u e n c e  o f  ve r t i ces  b e g i n n i n g  wi th  m, also expl ic i t ly  

g iven .  P is r e p r e s e n t e d  by m e a n s  o f  an  A V L  tree  T ( P )  

m o d i f i e d  so tha t  e a c h  ve r t ex  vi stores  a p o i n t e r  NEXT[V/] 

to the  add res s  o f  its successor  vi+~ on  the  b o u n d a r y  o f  P. 

T h i s  m o d i f i c a t i o n  is p r o m p t e d  by  the  f o l l o w i n g  cons id -  

e ra t ions .  T h e  "case  c lass i f i ca t ion  t a sk"  p e r f o r m e d  by  

TANGENTS uses the  two  ver t i ces  m a n d  M;  to e n s u r e  tha t  

this  task  be  c o m p l e t e d  in c o n s t a n t  t ime,  b o t h  M (the 

root)  a n d  m ( the  first m e m b e r )  o f  T ( P )  m u s t  be  ava i l ab le .  

T h u s  w h e n  e i t he r  the  left. o r  the  r ight  sub t rees  o f  T ( P )  

are  c h o s e n  for  a r ecu r s ive  cal l  o f  TANGENTS, the i r  first 
e l e m e n t s  m u s t  be  also supp l i ed  a n d  this  is e x p e d i e n t l y  

d o n e  by  m e a n s  o f  the  p o i n t e r  NEXT. ( A n  u p d a t e  o f  NEXT 

occu r s  o n l y  w h e n  a . v e r t e x p i  is in se r t ed  by  RESTRUCTURE 

a n d  it is eas i ly  seen  tha t  it o n l y  i nvo lves  two  poin ters ,  

a s soc i a t ed  wi th  f a n d  pi  respec t ive ly . )  Be low,  u is a 

B o o l e a n  p a r a m e t e r  w h i c h  is set to 1 in cases  l, 3, 5, 7 

( r ecurs ive  cal ls  o f  TANGENTS) a n d  is set to 0 o therwise .  

TANGENTS 

Input: H, a polygon, given as a sequence of vertices stored in a 
modified AVL tree T(H); p a point, m the first element in 
r (n) .  

Output: Either a pair (K r) of integers or (A, A). 
1. begin M ~ ROOT(T(H)), T <--- T(H) 

6. 
7. 
8. 
9. 

10. 

11. 
12. 

13. 
14. 
15. 

16. 
end 

If m = M then r ~-- f ~ A (Comment: pi is internal) 
e lse  begin If ct < ~r then 

if m is concave then 

if M is concave then T <-- R(M), m ~-- NEXT(M), 
u *-- 1 (case 1) 

else  TI ,~- T - R(M), 7"2 <-- R(M), u <-- 0 (case 2) 
else  If  M is reflex then T ~-- L(M) ,  u <-- 1 (case 3) 

e lse  Tt ~ T - L(M), T.z ~-- L(M), u <-- 0 (case 4) 
else  If m is reflex then 

If M is reflex then T <-- R(M),  m ~ -  N E X T ( M ) ,  
u ~ l  (case 5) 

else Tj ~ R(M), T2 ~-- T - R(M), u ~ 0 (case 6) 
else  if M is concave then T <-- L(M), u ~-- 1 (case 

7) 
else  T~ ~-- L(M), T2 ~ T - L(M), u ~ 0 (case 8) 

If u = 1 then (f, r) ~ TANGENTS(T, m, pi) 
else f,--- LEFTSEARCH(T0, r <---- RIGHTSEARCH(T2) 

end 
return (t ,  r) 
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