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ABSTRACT
The IoT is widely used in a number of industries and generates
large amounts of data. The data are processed, computed, and stored
through distributed computing for analytical purposes. This invokes
serious security and privacy concerns, and presents scalability is-
sues. This paper describes a secure P2P and group communication
supportive edge computing framework for IIoT systems, a consor-
tium blockchain, and IPFS-based immutable data storage system,
and an intelligent threat detectionmodel to protect confidential data
and identify cyber-attacks. Secure communications were ensured
using a hybrid security scheme that included modified ECC, PUF,
and Lagrange interpolation. We utilized a modified PoV consensus
algorithm to resolve latency issues due to overhead and point of
failure errors during block mining. The threat intelligence model
used an autoencoder to transform data into a new format which
was then fed into an RNN-DL to identify cyber-attacks. The model
detected normal and anomalous activity, and then identified the
category of detected malicious activity. We evaluated the frame-
work according to various metrics and compared it with ECC, PoV,
and ML-based classifiers. The results showed that the proposed
system demonstrated a higher efficiency and improved scalability
than conventional frameworks.
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1 INTRODUCTION
Distributed computing consists of various software components
operating in geographically distant computers that are connected
through a local or wide area network. The computing devices (i.e.,
Mist, Fog, Cloud) are placed at different physical or virtual layers
and provide data processing, storage, access/retrieval, and analyt-
ics for individuals or industries [1], [2]. The industrial internet of
things (IIoT) utilizes connected IoT devices, such as RFID tags, smart
sensors, actuators, and smart meters, in manufacturing, agriculture,
healthcare, transportation, power generation, and other fields, to
increase productivity.

The data collected by IoT devices are often used to get the ser-
vices offered with reliability, low latency, moderate service costs,
minimum energy-consumption, and robust security and privacy
protocols. The concerns can be alleviated using the edge comput-
ing which ensures (i) efficient task management, (ii) security and
privacy resiliency, (iii) intelligent intrusion detection or prevention
system, and (iv) on-chain or off-chain immutable data storage.

Several approaches have been introduced to enable the services
and meet the objectives over the last few years. Efficient resource
and task allocation, one of the primary objectives of edge comput-
ing, can be achieved by applying statistical techniques or artificial
intelligence (AI), such as machine learning (ML) and deep learning
(DL) [3], [4], [5]. Securing confidential data and user privacy are of
paramount importance. To ensure the protection of user data among
constrained heterogeneous IIoT devices, several encryption tech-
niques have been studied [6], [7], [8] and utilized, such as ElGamal,
physical unclonable function (PUF), elliptic curve cryptography
(ECC), and zero trust security.

The significant increase of the number of IIoT devices that rely
on the internet to exchange and control large amounts of data
has necessitated heightened security measures. Typically, there
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are two types of attacks: physical and cyber. Physical attacks are
conducted by tampering with devices, injecting malicious codes,
and through falsified node injection. While physical attacks do oc-
cur, cyber-attacks are much more prevalent and have the potential
to be considerably more damaging and include denial-of-service
(DoS), distributed DoS (DDoS), man-in-the-middle (MitM), and
ransomware attacks. Intrusion detection systems (IDS) or threat in-
telligence (TI) improves cybersecurity by examining network traffic
for abnormal activity and by accumulating knowledge regarding
different types of threats [9].

Data that is stored locally, on-chain, or off-chain needs to fa-
cilitate data-oriented services with confirming data unalteration
and denying unauthorized access. To meet these requirements,
blockchain technology and the InterPlanetary file system (IPFS)
can be used concurrently. Blockchain is a decentralized data storage
system where data are listed on a verified block and added into a
blockchain. The blockchain is recorded using ledgers on the nodes
in a blockchain network. In contrast, the IFPS uses a content identi-
fier (CID) to uniquely identify each file in a global namespace that
connects devices.

1.1 Motivation and Key Challenges
A unified IIoT-enabled edge computing system requires a fine-tuned
uninterrupted flow-based integration and an interoperable frame-
work. The key features of an interoperable framework are secure
point-to-point (P2P) and group communications among the devices
across the layers, user authentication, data confidentiality, a proac-
tive security mechanism exhibiting a high level of attack detection
accuracy, access availability, and finally, the ability to ensure on-
chain or off-chain unalterable and authorized data storage. These
features can be implemented using state-of-the-art edge computing,
AI-based TI, blockchain, and the IPFS.

Data flow of an edge computing network requires P2P and group
communications to make the applications more functional and
effective. It needs lightweight and supportive cryptography that
should be well-suited to minimizing complexity without compro-
mising security. A number of researchers have proposed the use
of tightly-coupled security algorithms such as AES, DES, ElGamal,
and ECC, with or without modification, where a substantial part
of the network is in close-contact with energy, storage, and com-
putationally constrained IIoT-devices. Full-fledged time-complex
cryptography is often inapplicable to communications across layers
with ensuring efficiency when various evaluation metrics are taken
into consideration. This has encouraged researchers to design an
interactive and secure communication system featuring a hybrid
security scheme, including a private session key derived via PUF
and shared using modified ECC at the edge layer, as this layer is
more impactful due to its heterogeneous nature.

Most TI cybersecurity models are based on conventional statis-
tical and ML tools. However, these models are ineffective against
dynamic threats that are complex and highly non-linear. This may
result in lower threat detection accuracy, a higher false alarm rate,
and lack of generalization ability. In contrast, DL, a subset of ML, al-
lows a system to learn from unstructured and diverse data sets, and
to extract hidden influenced features. Thus, DL can be used to de-
velop adaptive TI models. To protect confidential data and prevent

data inference, DL with essential layers reduces data dimensionality
to a variable-length through a transformation by training multiple
neural networks.

Blockchain and an edge-computing integrated domain can make
an entire IIoT network secure and cost-effective by avoiding
middlemen-vendors and third-party providers, using cryptograph-
ically generated blocks recorded on-chain [10], [11]. It provides
immutability, transparency, security, and privacy against various
attacks involving false data injection or data poisoning. As IIoT
data should be kept confidential in most applications (i.e., health-
care, power grid, federated AI, etc.) and relevant to use by multiple
interested beneficiaries, a consortium blockchain can be used. Con-
sortium blockchain is governed by multiple organizations with
similar interests through a permission, instead of being controlled
by a single organization which lacks the decentralized features of
the technology. Data storage limitations, a major impediment of
implementing blockchain at the edge layer, can be resolved using
IPFS.

1.2 Key Contributions
To accumulate the modules and address the challenges, we designed
and implemented a secure blockchain-enabled edge computing
framework for IIoT called SECBlock-IIoT. The goal of this study
was to develop a sustainable IIoT and edge computing integrated
network by combining secure P2P and group communication, an
interactive ITD module, and blockchain based on-chain and IPFS
based off-chain immutable data storage. The key contributions of
this work can be summarized as follows:
• A secure integrated edge computing and IIoT network was
designed that implements an arbitrary PUF to generate a
session key for P2P communication, and the Lagrange in-
terpolation algorithm to generate a group session key for
group communications, and ECC is used to share the secret
session keys. In addition, a certificate-based authentication
technique was adopted to confirm an authorized participa-
tion in the network.
• A two-fold privacy and security data assurance technique
was using DL-based TI and blockchain technology. The ITD
module uses autoencoder (AE) recurrent neural network
(RNN) for attack detection across two levels. In Level-1, the
network-flow data are classified as normal or anomalous and
anomalous data are then forwarded to Level-2 for further
subcategorization of the malicious activity.
• Off-chain IFPS was used for blockchain storage at edge layer
to overcome the data storage limitation of the constrained
devices.

The rest of the paper is organized as follows. Section 2 discusses
the advancement of the IIoT-enabled edge computing and related
works in the literature. Section 3 presents the proposed framework.
Section 4 includes the security resiliency of the proposed framework.
The experimental results and analysis are given in Section 5. Section
6 concludes the work.

2 RELATEDWORK
This section discusses the development of edge computing for IIoT
networks.
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Integrated edge computing and blockchain systems have several
shortcomings, such as decentralized management, security, and
scalability [12], [13]. A two-level network flow-based anomalous
activity detection technique was been proposed by Ullah et al. to
improve the security of IoT networks [14]. This robust anomaly de-
tection system utilizes two levels: Level-1 categorizes the network
flow as normal or abnormal, and forwards the results to Level-2
where the detected malicious activity is subcategorized. The sub-
sequent IDS model proposed by Ullah et al. also operated using
two levels: Level-1 used a decision tree (DT) and Level-2 used a
random forest (RF) classifier on the extracted flow-based features of
a IoT-Botnet dataset [15]. This achieved higher anomaly detection
accuracy than their previous model. A trustworthy privacy preserv-
ing secured framework for smart cities utilizing blockchain and
ML was developed by Kumar et al. [16]. Their two-level privacy
module implemented a blockchain-based enhanced proof-of-work
(ePoW) consensus algorithm, and transformed data using princi-
pal component analysis (PCA). The authors applied the XGBoost
classifier algorithm for multivariate classification of IoT-Botnet and
ToN-IoT datasets [17], and their ITDmodel achieved a higher threat
detection rate while ensuring privacy. A number of studies have
examined the applicability of ML and DL techniques to IDS in IIoT
networks [18] [19]; however, this study did not evaluate whether
the data sources were reliable, which is important for ensuring the
quality of data fed to the IDS. The authors in [20], [21] presented an
efficient IDS based on ML for IIoT networks. The aforementioned
models applied lightGBM and RF algorithms for intrusion detection
on the manually extracted features, which requires a high level of
expertise to label the threats.

The studies performed by Alkadi et al. [22] and Liang et al. [23]
discuss blockchain-based data immutability, data storage, data trace-
ability, and data sharing between participants. Keshk et al. devel-
oped a security framework that applied a variational autoencoder
and blockchain technology to ensure privacy, and long short-term
memory (LSTM) to improve IDS [24]. However, these studies did not
analyze block creation or access time of their proposed consensus
algorithm regarding various transactions on smart power networks.
In another publication, Alkadi et al. emphasized the benefits of in-
tegrating blockchain with IDS in a deep blockchain framework, but
did not perform blockchain specific implementation and evaluation
[25].

Previous studies have largely concentrated on either defensive
IDS/TI models with or without data transformation, or a blockchain
integrated with existing consensus mechanisms oriented to a pub-
lic blockchain. These blockchain systems are unsuitable in time-
sensitive applications such as smart healthcare, federated learn-
ing in edge computing, drone security [26], and energy trading
[27]. To remedy these deficiencies, Li et al. proposed a consortium
blockchain with a balanced trade-off between performance and
security using a proof-of-vote (PoV) consensus algorithm [28]. The
drawbacks of the PoV algorithm are that the butler (miner) selection
process is not independent, and each broadcast of butler information
selected by a commissioner involves a communication overhead
and a point of failure caused by internal and external interventions.
In addition, network communications are P2P/peer-to-peer and
group communication is not allowed among the participants, even

though group communication is often required for effective col-
laboration and decision making. To address these challenges, we
developed a blockchain-enabled edge computing for IIoT networks.

3 PROPOSED SECBLOCK-IIOT FRAMEWORK
This section describes the SECBlock-IIoT framework, its compo-
nents, and functionality.

3.1 System Architecture
The SECBlock-IIoT framework was designed to ensure the pri-
vacy and security of IIoT data and tasks in an edge computing
network. The system is composed of four functional modules: the
IIoT-terminal layer, the edge service management layer (ESML), the
blockchain-based data storage module (BDM), and the DL-based in-
telligent threat detection (ITD) module (Figure 1). The IIoT-terminal
layer contains smart devices which monitor, control, and examine
different industry 4.0 applications. ESML utilizes user local hosts
(ULHs) (i.e., an industrial computer providing local data acquisition
and the pre-processing point of the IIoT-terminal layer), and edge
computing nodes as data storage and tasks execution hubs. An edge
service management hub (ESMH), which manages ESML, receives
tasks from users and distributes the tasks to computing nodes [2].
The ESMH facilitates data storage, access/retrieve service manage-
ment, and task execution. The communication between IIoT-nodes
and ULHs, and between ULHs and the edge server/manager, can
be grouped or individualized depending on the context of the ser-
vices. A particular result (and accompanying data) of a task may
be required by an interested group of users through ULHs, which
requires group communication. On the other hand, confidential
data/results should only be available to those who require access
or execute by a single user that requires a P2P communication.

The BDM includes a consortium blockchain, a consensus al-
gorithm, and IPFS to process unalterable data record, policy,
agreement, and support data storing and sharing system. In the
blockchain, transactions are recorded and added into blocks that
vary according to the type of service: (i) IIoT-node data are stored,
accessed, and retrieved from edge server, and (ii) IIoT-node tasks are
sent to the edge server for execution. The classified blocks are then
added into the blockchain. Once an IIoT-node task is completed and
the task manager receives the result from the assigned computing
node(s), a transaction record is generated that contains the source
ID, task ID, computing node ID, task, results, and a timestamp. In
practice, a blockchain is an immutable distributed ledger of trans-
actions and can be stored on-chain of blockchain or off-chain of
IPFS.

The proposed framework incorporates an ITD module using
an AE-RNN-based DL technique. AE is an unsupervised artificial
neural network that compresses and encodes data into a variable-
length latent space and reconstructs data back to the original input
as possible. AE reduces data dimensionality by extracting hidden
features and preserves data confidentiality by defending against
inference attacks.

3.2 Blockchain-enabled Secure Communication
The SECBlock-IIoT consists of three phases: system initialization
phase, registration phase, and validation phase.
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Figure 1: An overview of the architecture of the secure edge computing framework for industrial internet of things (SECBlock-
IIoT).

3.2.1 System Initialization. In this phase, a trusted registration au-
thority (RA) with a unique identity (𝐼𝐷𝑅𝐴) selects the parameters
which support single and group communications among the nodes.
To begin, the RA selects a non-singular elliptic curve over a finite
field F𝑝≠2,3 that satisfies the equation 𝐸 (𝑎, 𝑏) = 𝑥3+𝑎𝑥+ 𝑏 (𝑚𝑜𝑑 𝑝),
where 𝑝 is a large prime number, (𝑎, 𝑏) ∈ F2𝑝 are the coefficients, and
4𝑎3+27𝑏2 ≠ 0 is the discriminant. The RA also selects a generator
(𝐺 ≤ 𝑝), a private key (𝑃𝑟𝑅𝐴

𝑘
∈ F∗𝑝={1, 2, 3, . . . , 𝑝 − 1}), and com-

putes a public key (𝑃𝑏𝑅𝐴
𝑘

=𝑃𝑟𝑅𝐴
𝑘

𝐺). RA then publishes the param-
eters ({𝐸 (𝑎, 𝑏), 𝐺, 𝑃𝑏𝑅𝐴

𝑘
, ℎ(.)}) on the public directory. Suppose

that 𝐴(𝑥𝐴, 𝑦𝐴) ≠ 𝐵(𝑥𝐵, 𝑦𝐵) are two points on given elliptic curve
𝐸 (𝑎, 𝑏), such that the line (𝐿) through (𝐴, 𝐵) is not tangent to 𝐸 at ei-
ther𝐴 or 𝐵, and that 𝐿 intersects 𝐸 at a third point 𝑅(𝑥𝑅, 𝑦𝑅) ≠ 𝐴, 𝐵.
The proposition of points addition 𝑅 = 𝐴 + 𝐵 is evaluated as
𝑥𝑅 = 𝑚2 − 𝑥𝐴 − 𝑥𝐵 (𝑚𝑜𝑑 𝑝) and 𝑦𝑅 = 𝑚(𝑥𝐴 − 𝑥𝑅) − 𝑦𝐴 (𝑚𝑜𝑑 𝑝),
where the slope (𝑚) = ( 3𝑥2+𝑎

2𝑦 ) (𝑚𝑜𝑑 𝑝) if A = B, otherwise
𝑚 =

𝑦𝐵−𝑦𝐴
𝑥𝐵−𝑥𝐴 (𝑚𝑜𝑑 𝑝). The scalar point multiplication is calculated

using the repetition of point doubling and addition operations as,
𝑛 × (𝐴, 𝐵) = (𝐴, 𝐵)+(𝐴, 𝐵)+. . .+ (𝐴, 𝐵)𝑛 .

3.2.2 Registration Process. The registration of an ESMH is pro-
cessed by the RA through a secure channel, and registration of
ESML-nodes (i.e., Fog, Mist, and other edge service providers) is
processed by an associate ESMH. The registration process varies
according to P2P and group communications (discussed below)
and the data encryption and decryption process are provided in
Algorithm 1 and 2, respectively.

Edge Service Management Hub (ESMH) Registration. ESMHs in-
clude ULHs and edge service managers. The registration of an
ESMH proceeds according to the following steps:

P2P Communication: Prior to registration, each ESMH,𝑀𝐻 𝑗

chooses a private and public key (𝑃𝑟𝑀𝐻 𝑗

𝑘
∈ F∗𝑝 , 𝑃𝑏

𝑀𝐻 𝑗

𝑘
= 𝑃𝑟

𝑀𝐻 𝑗

𝑘
𝐺)

and sends the information {𝑆𝐼𝐷𝑀𝐻 𝑗
, 𝑃𝑏𝑀𝐻 𝑗

𝑘
, 𝑆𝐼𝐷𝐺 { .} , 𝑡𝑠𝑡𝑎𝑚𝑝 }, en-

crypted using 𝑃𝑏𝑅𝐴
𝑘

, decrypt support vector 𝑘𝐺 , and a digital sig-
nature 𝑠𝑖𝑔𝑀𝐻 𝑗

, to the RA, where 𝑆𝐼𝐷𝐺 { .} refers to the interested
nodes pseudo-IDs of a group and 𝑘 ∈ F∗𝑝 is a secret random inte-
ger. The pseudo-IDs set of a group is null as a single entity and is
recorded during the registration. The RA receives the encrypted
information and decrypts it using the private key 𝑃𝑟𝑅𝐴

𝑘
. After the

RA verifies the credentials, it generates a certificate 𝐶𝑟𝑡𝑀𝐻 𝑗
cor-

responding to the node. The RA then publishes the information
{𝑆𝐼𝐷𝑀𝐻 𝑗

, 𝑃𝑏
𝑀𝐻 𝑗

𝑘
,𝐶𝑟𝑡𝑀𝐻 𝑗

, 𝐸 (𝑎, 𝑏), 𝐺, ℎ(.)} on the public directory.
The certificate of each𝑀𝐻 𝑗 is generated as defined in Equation 1).

𝐶𝑟𝑡𝑀𝐻 𝑗
= 𝑃𝑟

𝑀𝐻 𝑗

𝑘
+ ℎ

(
𝑆𝐼𝐷𝑀𝐻 𝑗

������𝑃𝑏𝑀𝐻 𝑗

𝑘
| |𝐼𝐷𝑅𝐴 | | 𝑃𝑏𝑅𝐴𝑘

������ 𝑡𝑠𝑡𝑎𝑚𝑝

)
×𝑃𝑟𝑅𝐴

𝑘
(𝑚𝑜𝑑 𝑝)

(1)
Where ℎ(𝑑𝑜𝑡) is the collision free hash function (i.e., sha512) and

𝑡𝑠𝑡𝑎𝑚𝑝 is the registration time.
Group Communication: For this, assume nodes 𝑛 with the

same interest are grouped to participate in group communication.
For registration as a group, RA provides a pseudo group identifica-
tion 𝑆𝐺𝐼𝐷𝑀𝐻 𝑗 :𝑛 of the nodes. To generate a shared group private
key, the Lagrange interpolation L𝑛 (𝑥) algorithm is utilized. The
RA begins by mappings 𝑛 points P𝑛 ={P0 (𝑥0, 𝑦0) . . .P𝑛 (𝑥𝑛, 𝑦𝑛)} ∈
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𝐸 (𝑎, 𝑏) (𝑚𝑜𝑑 𝑝) corresponding to the interested nodes and applies
the interpolation formula defined in Equation 2).

L𝑛 (𝑥) =
𝑛∑︁
𝑖=0
L𝑖 (𝑥) 𝑓 (𝑥𝑖 ) (𝑚𝑜𝑑 𝑝) (2)

Where (𝑥𝑖 ) = 𝑦𝑖 and L𝑖 (𝑥) =
𝑛∏

𝑗 = 0
𝑗 ≠ 𝑖

𝑥−𝑥 𝑗

𝑥𝑖−𝑥 𝑗
(𝑚𝑜𝑑 𝑝).

The RA then generates the private key associated with each node
as 𝑃𝑟𝑠𝑀𝐻 𝑗

𝑘
= L𝑖 (𝑥 = 𝑟 ) (𝑚𝑜𝑑 𝑝), where 𝑟 ∈ F∗𝑝 is a chosen random

number based on the agreement of a group. RA also generates a

group public key 𝐺𝑃𝑏𝑀𝐻 𝑗 :𝑛

𝑘
= 𝐺

𝑛∑
𝑗=1

𝑃𝑟𝑠
𝑀𝐻 𝑗

𝑘
and a group certificate

defined in Equation 3).

𝐺𝐶𝑟𝑡𝑀𝐻 𝑗 :𝑛 =
𝑛∑
𝑗=1

𝑃𝑟
𝑀𝐻 𝑗

𝑘

+ℎ
({
𝑆𝐼𝐷𝑀𝐻 𝑗

| |. . .| | 𝑆𝐼𝐷𝑀𝐻𝑛

}
| |𝐼𝐷𝑅𝐴 | | 𝑃𝑏𝑅𝐴𝑘

������𝐺𝑃𝑏𝑀𝐻 𝑗 :𝑛
𝑘

������ 𝑡𝑠𝑡𝑎𝑚𝑝

)
×𝑃𝑟𝑅𝐴

𝑘
(𝑚𝑜𝑑 𝑝)

(3)
The generated private keys are assigned to each node in the

group and the keys are deleted from the RA database for secu-
rity reasons. The RA then shares the information {𝑆𝐺𝐼𝐷𝑀𝐻 𝑗 :𝑛 ,

𝐺𝑃𝑏
𝑀𝐻 𝑗 :𝑛
𝑘

, 𝐼𝐷𝑅𝐴 , 𝑃𝑏𝑅𝐴𝑘 ,𝐺𝐶𝑟𝑡𝑀𝐻 𝑗 :𝑛 , 𝐸 (𝑎, 𝑏), ℎ(.),𝐺} on the public
directory before deployment of the ESMHs.

Edge Service Management Layer (ESML) Registration. Each
ESML-node 𝐸𝑆𝑀𝐿𝑖 is registered via their associate ESMH as a
single or group entity, as previously described. During single entity
registration, each ESML-node sends the 𝑆𝐼𝐷𝐺 { .} and derived
public key 𝑃𝑏

𝐸𝑆𝑀𝐿𝑖
𝑘

to the ESMH. The ESMH generates the
certificate on to the ESMH. The ESMH generates the certificate
once the provided information is verified. The generation of
certificate of interested 𝑚 nodes in a group is based on the
Lagrange interpolation, where the group public key is expressed as

𝐺𝑃𝑏
𝐸𝑆𝑀𝐿𝑖 :𝑚
𝑘

=𝐺
𝑚∑
𝑖=1

𝑃𝑟𝑠
𝐸𝑆𝑀𝐿𝐻𝑖

𝑘
. Once the single or group certificate

(𝐶𝑟𝑡𝐸𝑆𝑀𝐿𝑖 /𝐺𝐶𝑟𝑡𝐸𝑆𝑀𝐿𝑖 :𝑚 ) generation is completed,𝑀𝐻 𝑗 publishes
the credentials {𝑆𝐼𝐷𝐸𝑆𝑀𝐿𝑖 /𝑆𝐺𝐼𝐷𝐸𝑆𝑀𝐿𝑖 :𝑚′ 𝑃𝑏

𝐸𝑆𝑀𝐿𝑖
𝑘

/𝑃𝑏𝐸𝑆𝑀𝐿𝑖
𝑘

,
𝑆𝐼𝐷𝑀𝐻 𝑗

, 𝑃𝑏𝑀𝐻 𝑗

𝑘
, 𝐶𝑟𝑡𝐸𝑆𝑀𝐿𝑖 /𝐺𝐶𝑟𝑡𝐸𝑆𝑀𝐿𝑖 , 𝐸 (𝑎, 𝑏),𝐺, ℎ(·)} on the

public directory. The certificates of a single or group entity are
generated as defined in Equation 4) and 5).

𝐶𝑟𝑡𝐸𝑆𝑀𝐿𝑖 = 𝑃𝑟
𝐸𝑆𝑀𝐿𝑖
𝑘

+ℎ
(
𝑆𝐼𝐷𝐸𝑆𝑀𝐿𝑖

������𝑃𝑏𝐸𝑆𝑀𝐿𝑖
𝑘

������𝑆𝐼𝐷𝑀𝐻 𝑗

������ 𝑃𝑏𝑀𝐻 𝑗

𝑘

������ 𝑡𝑠𝑡𝑎𝑚𝑝

)
×𝑃𝑟𝑀𝐻 𝑗

𝑘
(𝑚𝑜𝑑 𝑝)

(4)

𝐺𝐶𝑟𝑡𝐸𝑆𝑀𝐿𝑚 =
𝑚∑
𝑖=1

𝑃𝑟𝑠
𝐸𝑆𝑀𝐿𝑖
𝑘

+ℎ({𝑆𝐼𝐷𝐸𝑆𝑀𝐿𝑖 | |. . .| | 𝑆𝐼𝐷𝐸𝑆𝑀𝐿𝑚 }
������𝑆𝐼𝐷𝑀𝐻 𝑗

������𝐺𝑃𝑏𝐸𝑆𝑀𝐿𝑖 :𝑚
𝑘

| |𝑡𝑠𝑡𝑎𝑚𝑝 )

×𝑃𝑟𝑀𝐻 𝑗

𝑘
(𝑚𝑜𝑑 𝑝)

(5)

IIoT-Terminal Layer Registration. This layer comprises IIoT-
devices that collect and generates data in industry 4.0 systems.

The registration of IIoT-devices is processed by an associate ULH
via a secure channel. Due to constraints of IIoT devices, particularly
energy and computational limitations, we applied a hybrid security
scheme that utilizes an ECC-based asymmetric public key to share a
unique symmetric key to encrypt and decrypt data during a session.
The shared session key 𝑆

𝐷𝑖

𝑘
is generated on the devices PUF and

is shared to the ULH using the ULH’s public key. This approach
addresses the time-complexity and energy-consumption issues of
edge layer devices that use conventional security algorithms.

Algorithm 1 Encryption and decryption of IIoT-devices and ULH(s)
Input: 𝑆𝐼𝐷𝑈𝐿𝐻 ,𝐶𝑟𝑡𝑈𝐿𝐻 /𝐺𝐶𝑟𝑡𝑈𝐿𝐻 , 𝑃𝑏𝑈𝐿𝐻

𝑘
/𝐺𝑃𝑏𝑈𝐿𝐻

𝑘
,𝑆𝐷
𝑘
, 𝐺𝑆𝐷

𝑘
1: /* P2P communication
2: for each 𝐷𝑖 do
3: {𝐶1 = 𝑃𝑚 + 𝑘𝐷𝑖

𝑃𝑏𝑈𝐿𝐻
𝑘

,𝐶2 = 𝑘𝐷𝑖
𝐺)} → 𝑆𝐼𝐷𝑈𝐿𝐻 𝑗

/*𝑆𝑛 is
reference to the session number
4: |𝑃𝑚 = (𝑆𝐼𝐷𝐷𝑖

| |𝑆𝐷𝑖

𝑘
| |𝑆𝑛 | |𝑡𝑠𝑡𝑎𝑚𝑝 | |𝑠𝑖𝑔𝐷𝑖

)𝑝 (𝑥𝑖 , 𝑦𝑖 ) ≠ 𝐺 ∈ 𝐸 (𝑎, 𝑏)
5: 𝐷 : 𝑃𝑚 + 𝑘𝐷𝑖

𝑃𝑏
𝑈𝐿𝐻 𝑗

𝑘
− 𝑘𝑈𝐿𝐻 𝑗

𝐶2
6:
{𝐸 : (𝑆𝐷𝑖

𝑘
, (𝑃𝑇 )), 𝑠𝑖𝑔𝐷𝑖

} → 𝑆𝐼𝐷𝑈𝐿𝐻 𝑗
| 𝑃𝑇 = (𝑆𝐼𝐷𝐷𝑖

| |𝑑𝑎𝑡𝑎 | |𝑡𝑠𝑡𝑎𝑚𝑝 )
7: 𝐼𝐷𝑈𝐿𝐻 𝑗

: 𝐷 : (𝑆𝐷𝑖

𝑘
, 𝐸 (𝑆𝐷𝑖

𝑘
, (𝑑𝑎𝑡𝑎),) & verifies 𝑠𝑖𝑔𝐷𝑖

8: end
9: /* Group communication
10: for each 𝐷𝑖 ∈ 𝑆𝐺𝐼𝐷𝑈𝐿𝐻 𝑗 :𝑚 do
11:
{𝐶1 = 𝑃𝑚+𝑘𝐷𝑖

𝐺𝑃𝑏
𝑈𝐿𝐻 𝑗 :𝑚
𝑘

,𝐶2 = 𝑘𝐷𝑖
𝐺} → 𝑆𝐼𝐷𝑈𝐿𝐻 𝑗 :𝑚 /*multicasts

12: | 𝑃𝑚 = (𝑆𝐼𝐷𝐷𝑖
| |𝐺𝑆𝐷𝑖

𝑘
| |𝑆𝑛 | |𝑡𝑠𝑡𝑎𝑚𝑝 | |𝑠𝑖𝑔𝐷𝑖

)
𝑝 (𝑥𝑖 , 𝑦𝑖 ) ≠ 𝐺 ∈ 𝐸 (𝑎, 𝑏)
13: for each {𝑈𝐿𝐻1, . . . ,𝑈 𝐿𝐻𝑚} ∈ 𝐺𝑈𝐿𝐻𝑖:𝑚 do
14:
{𝐶 ′1 = 𝑃𝑚

′ + 𝑘𝑈𝐿𝐻𝑖
𝐺𝑃𝑏

𝑈𝐿𝐻 𝑗

𝑘
,𝐶
′
2 = 𝑘𝑈𝐿𝐻𝑖

𝐺} → 𝐼𝐷𝑈𝐿𝐻 𝑗≠𝑖

15:| 𝑃𝑚
′
= (𝑆𝐼𝐷𝑈𝐿𝐻𝑖

| |𝑘𝑈𝐿𝐻𝑖
𝐶2 | |𝑆𝑛 | |𝑡𝑠𝑡𝑎𝑚𝑝 | |𝑠𝑖𝑔𝑈𝐿𝐻𝑖

)
16: 𝑝′ (𝑥𝑖 , 𝑦𝑖 ) ≠ 𝐺 ∈ 𝐸 (𝑎, 𝑏)
17: for each𝑈𝐿𝐻 𝑗 do

18: 𝐷 : 𝑃𝑚 = 𝐶
′
1 − (𝑘𝑈𝐿𝐻𝑖

𝐺𝑃𝑏
𝑈𝐿𝐻 𝑗

𝑘
=

𝑚∑
𝑖
𝑘𝑈𝐿𝐻𝑖

𝐶
′
2)

19: end
20: end
21: 𝐼𝐷𝐷𝑖

: {𝐶𝑇 = 𝐸 : (𝐺𝑆𝐷𝑖

𝑘
, (𝑃𝑇 )), 𝑠𝑖𝑔𝐷𝑖

} → 𝑆𝐼𝐷𝑈𝐿𝐻𝑖 :𝑚

22: 𝐼𝐷𝑈𝐿𝐻𝑖
: 𝐷 : (𝐺𝑆𝐷𝑖

𝑘
, (𝐶𝑇 )) & verifies 𝑠𝑖𝑔𝐷𝑖

23: end
Output: (𝑆𝐷𝑖

𝑘
, 𝑃𝑇 )

Several PUF-based key generationmethods have been introduced
in the last few years [29]. The proposed SECBlock-IIoT framework
utilizes the Arbiter PUF which is considered more efficient for IIoT-
devices [30]. To implement the Arbiter PUF, we assumed that the
devices are field-programmable gate array (FPGA) enabled. FPGAs
are semiconductor devices that are composed of a matrix of con-
figurable logic-blocks connected via programmable interconnects.
The shared secret keys are changed periodically.

During their registration, each IIoT-device generates a unique
pseudo-ID using PUF, and produces a key pair (𝑃𝑟𝐷𝑖

𝑘
∈ F∗𝑝 , 𝑃𝑏

𝐷𝑖

𝑘
=
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Algorithm 2 Encryption and decryption of ULH/ESML and ESMH
1: Input:
𝑆𝐼𝐷𝑀𝐻 /𝑆𝐺𝐼𝐷𝑀𝐻 𝑗 :𝑛 , 𝑃𝑏

𝑀𝐻
𝑘
/𝐺𝑃𝑏𝑀𝐻 𝑗 :𝑛

𝑘
, 𝐶𝑟𝑡𝑀𝐻 /𝐺𝐶𝑟𝑡𝑀𝐻 𝑗 :𝑛

2: /* P2P communication
3: for each 𝑆𝐼𝐷𝐸𝑆𝑀𝐿𝑖 do
4: {𝐶1 = 𝑃𝑚 + 𝑘𝐸𝑆𝑀𝐿𝑖𝑃𝑏

𝑀𝐻 𝑗

𝑘
,𝐶2 = 𝑘𝐸𝑆𝑀𝐿𝑖𝐺)} → 𝑆𝐼𝐷𝑀𝐻 𝑗

5: | 𝑃𝑚 = (𝑆𝐼𝐷𝐸𝑆𝑀𝐿𝑖 | |𝑆𝑛 | |𝑡𝑠𝑡𝑎𝑚𝑝 | |𝑑𝑎𝑡𝑎 | |𝑠𝑖𝑔𝐸𝑆𝑀𝐿𝑖 )
6: 𝑝 (𝑥𝑖 , 𝑦𝑖 ) ≠ 𝐺 ∈ 𝐸 (𝑎, 𝑏)
7: 𝐼𝐷𝑀𝐻 𝑗 : 𝐷 : 𝑃𝑚 = (𝑃𝑚 + 𝑘𝐸𝑆𝑀𝐿𝑖𝑃𝑏

𝑀𝐻
𝑘
) − 𝑘𝑀𝐻 𝑗

𝐶2
8: end
9: /* Group communication
10: for each 𝐸𝑆𝑀𝐿𝑖 ∈ 𝑆𝐺𝐼𝐷𝑀𝐻 𝑗 :𝑛 do

11: {𝐶1 = 𝑃𝑚 + 𝑘𝐸𝑆𝑀𝐿𝑖𝐺𝑃𝑏
𝑀𝐻 𝑗 :𝑛
𝑘

,𝐶2 = 𝑘𝐸𝑆𝑀𝐿𝑖𝐺} → 𝑆𝐼𝐷𝑀𝐻 𝑗 :𝑛
12: for each 𝑆𝐼𝐷𝑀𝐻 𝑗

do
13: {𝐶 ′1 = 𝑃𝑚

′ + 𝑘𝑀𝐻 𝑗
𝑃𝑏

𝑀𝐻𝑖

𝑘
,𝐶
′
2 = 𝑘𝑀𝐻 𝑗

𝐺} → 𝑆𝐼𝐷𝑀𝐻𝑖≠𝑗

14: | 𝑃𝑚
′
= (𝑆𝐼𝐷𝑀𝐻 𝑗

| |𝑘𝑀𝐻 𝑗
𝐶2 | |𝑆𝑛 | |𝑡𝑠𝑡𝑎𝑚𝑝 | |𝑠𝑖𝑔𝐸𝑆𝑀𝐿𝑖 )

15: 𝑝′ (𝑥 𝑗 , 𝑦 𝑗 ) ≠ 𝐺 ∈ 𝐸 (𝑎, 𝑏)
16: for each 𝑆𝐼𝐷𝑀𝐻𝑖

do
17: 𝐷 : 𝑃𝑚

′
= (𝑃𝑚′ + 𝑘𝑀𝐻 𝑗

𝑃𝑏
𝑀𝐻𝑖

𝑘
) − 𝑘𝑀𝐻𝑖

𝐶
′
2

18: end
19: end
20:
𝐼𝐷𝑀𝐻 𝑗

: 𝐷 : 𝑃𝑚 = (𝑃𝑚 + 𝑘𝐸𝑆𝑀𝐿𝑖𝐺𝑃𝑏
𝑀𝐻 𝑗 :𝑛
𝑘

) − 𝑘𝐸𝑆𝑀𝐿𝑖𝐺𝑃𝑏
𝑀𝐻 𝑗 :𝑛
𝑘

21: | 𝑘𝐸𝑆𝑀𝐿𝑖𝐺𝑃𝑏
𝑀𝐻 𝑗 :𝑛
𝑘

=
𝑛∑
𝑖
𝑘𝑀𝐻𝑖

𝐶
′
2)

22: end
Output: 𝑃𝑇

𝑃𝑟
𝐷𝑖

𝑘
𝐺) using the credentials of the associate ULH, as pub-

lished by the RA. Each device then provides the pseudo group-
ID (𝑆𝐼𝐷𝐺 { .} ) and generated public key to the ULH. Accord-
ing to the information provided by the single or group entity,
the ULH generates the certificates 𝐶𝑟𝑡𝐷𝑖

and 𝐺𝐶𝑟𝑡𝐷𝑖
, where the

𝐺𝑃𝑏
𝐷𝑖 :𝑤
𝑘

= 𝐺
𝑤∑
𝑖=1

𝑃𝑟
𝐷𝑖

𝑘
of 𝑤 nodes is derived using Lagrange in-

terpolation and ECC addition and doubling operations. Once the
registration is completed, the ULH shares the information {𝑆𝐼𝐷𝑖 ,
𝑃𝑏

𝐷𝑖

𝑘
/𝐺𝑃𝑏𝐷𝑖 :𝑤

𝑘
,𝑆𝐼𝐷𝑈𝐿𝐻 , 𝐶𝑟𝑡𝐸𝑆𝑀𝐿𝑖 /𝐺𝐶𝑟𝑡𝐸𝑆𝑀𝐿𝑖 𝐸 (𝑎, 𝑏), 𝐺} on the

public directory. The devices are authorized through challenges
and responses when starting a new communication session [10].
The single and group certificates are generated as defined in Equa-
tion 6) and 7).

𝐶𝑟𝑡𝐷𝑖
= 𝑃𝑟

𝐷𝑖

𝑘

+ℎ
(
𝑆𝐼𝐷𝐷𝑖

������𝑃𝑏𝐷𝑖

𝑘

������𝑆𝐼𝐷𝑀𝐻 𝑗/𝑈𝐿𝐻

������ 𝑃𝑏𝑈𝐿𝐻
𝑘

������ 𝑡𝑠𝑡𝑎𝑚𝑝

)
×𝑃𝑟𝑈𝐿𝐻

𝑘
(𝑚𝑜𝑑 𝑝)

(6)

𝐺𝐶𝑟𝑡𝐷𝑖 :𝑚 =
𝑚∑
𝑖=1

𝑃𝑟𝑠
𝐷𝑖

𝑘

+ℎ(𝑆𝐼𝐷𝐷𝑖
| |. . .| | 𝑆𝐼𝐷𝐷𝑚

| |𝑆𝐼𝐷𝑈𝐿𝐻 | |𝐺𝑃𝑏𝐷𝑖 :𝑚
𝑘
| |𝑃𝑏𝑈𝐿𝐻

𝑘
| |𝑡𝑠𝑡𝑎𝑚𝑝 )

×𝑃𝑟𝑈𝐿𝐻
𝑘

(𝑚𝑜𝑑 𝑝)
(7)

3.3 Validation and Block Generation Module
The IIoT-nodes through the ESML-nodes interested to join the
blockchain network starts after the successful registration. The
verification is processed by the ESMHs. After the nodes are suc-
cessfully verified using the available credentials (i.e., public key,
certificate, and timestamp), they are permitted to store data on the
blockchain and is confirmed via a successful/unsuccessful message.
The data/transactions of an ESML-node are stored in a 𝑏𝑙𝑜𝑐𝑘𝑖 , veri-
fied through the federated nodes 𝐹𝑁 = {𝑓 𝑛1, 𝑓 𝑛2, . . . , 𝑓 𝑛𝑛} joined
the consortia network applied modified-PoV (mPoV) consensus al-
gorithm. In the proposed mPoV consensus algorithm, a consortium
committee is formed among the ESMH and ESML-nodes. A commis-
sioner, 𝐶𝑖 , has the right to recommend, vote for, and evaluate the
butlers 𝐵 = {𝐵1, 𝐵2, . . . , 𝐵𝑁 }. Butlers are miners that specialized in
generating blocks.

Unlike the butler selection in conventional PoV algorithm, in
mPoV, they are independently and randomly self-appointed based
on a function that generates a random number 𝑅𝑛 in the interval
between 0 and 1, and compares to the threshold number𝑇ℎ𝑓 𝑛 given
in Equation 8). A butler whose random number is less than or equal
to the threshold (𝑅𝑛 ≤ 𝑇ℎ𝑓 𝑛) is elected independently as a duty
butler to gather transactions, pack into a block, and sign it by the
consensus rules. The butlers are also permitted to verify blocks, and
forward both blocks and transactions. A block must collect at least
𝐶𝑁

2 + 1 signatures from different commissioners to become a valid
block within a time bound (𝑇𝑏 ). 𝐵𝑁 + 1 rounds and 𝐵𝑁 + 1 blocks
are generated in a tenure. A (𝐵𝑁 + 1)th block is a special block used
to record the information of the 𝐵𝑁 self-elected candidates. Once a
special block is generated, the current butlers are officially retired
for the next round as duty nodes.

𝑇ℎ𝑓 𝑛 =


𝑃𝑑

1−𝑃𝑑
[
𝑚𝑜𝑑

(
𝑟, 1

𝑃𝑑

)] 𝑖 𝑓 𝑓 𝑛 ∈ 𝐺 ′

0 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(8)

Where 𝑃𝑑 is the desired percentage of duty butlers depending
on the uncertainty factors of the network, 𝑟 is the current round,
and 𝐺 ′ is the set of 𝐹𝑁 that have not been duty butlers in the last
1
𝑃𝑑 rounds in a tenure.
Through ULH, and ESMH, or other ESML-nodes (as ordinary

users), create transactions with their signature and forward the
valid transactions to commissioners and butlers to store into their
local transaction pool. An elected butler 𝐵𝑁 selects transactions
from the pool, add them into a pre-block with a timestamp, and
sends the pre-block to the commissioners for verification. A com-
missioner receives a pre-block(s), verifies the earliest one according
to the piggybacked timestamp and sends pre-block back with a
signature to the selected one. The pre-block with the earliest one is
selected. Once the duty butler receives the required number of sig-
natures, it orders them based on the timestamps of the signatures,
and attaches them to the pre-header of the block. After generating
a valid block, the butler calculates the 𝑅 − 𝑣𝑎𝑙𝑢𝑒 (𝑅 = getPrevious-
BlockRandomNum()) and the block time to form the final-header
that is sent to the commissioners and other nodes. When more
than 50% commissioners confirm the receipt of the valid block, the
block receives final confirmation. After received a valid block, the
added transactions are deleted from the transaction pool. Nodes
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with limited storage are allowed to record the blocks on the IPFS.
This addresses the storage limitation of edge nodes by recording
the CID instead of storing the blockchain in conventional manner.
This method solves network scalability problems. The details of
how mPoV-based general block are generated and added into the
blockchain are provided in Algorithm 3.

Algorithm 3 Generating a valid block using mPoV
1: Input: 𝐼𝐷𝐷𝑖

/𝐺𝐼𝐷𝐷𝑖
, transaction, index, timestamp, previous has,

nonce
2: for
𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 ∈ {𝑆𝐼𝐷𝐷𝑖

, 𝑆𝐺𝐼𝐷𝐷𝑖
→ 𝑈𝐿𝐻, 𝑆𝐼𝐷𝐸𝑆𝑀𝐿𝑖 → 𝐸𝑆𝑀𝐻 }do

3: 𝑣𝑒𝑟𝑖 𝑓 𝑖𝑒𝑠 : 𝐶𝑟𝑡𝐷𝑖
/ 𝐺𝐶𝑟𝑡𝐷𝑖

& 𝑠𝑖𝑔𝐷𝑖

4: 𝑠𝑡𝑎𝑡𝑢𝑠 : (𝑠𝑢𝑐𝑒𝑠𝑠 𝑓 𝑢𝑙𝑙/𝑢𝑛𝑠𝑢𝑐𝑒𝑠𝑠 𝑓 𝑢𝑙𝑙) → (𝑆𝐼𝐷𝐷𝑖
/𝑆𝐼𝐷𝐸𝑆𝑀𝐿𝑖 )

5: if status == ‘successful’ then
6: transaction → 𝐹𝑁

7: end
8: end
9: for 𝐵𝑖 ∈ 𝐺 do
10: 𝑝𝑟𝑒𝑏𝑙𝑜𝑐𝑘 𝑖 ←
{𝑖𝑛𝑑𝑒𝑥, 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝, 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 ℎ𝑎𝑠ℎ, 𝑛𝑜𝑛𝑐𝑒, 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠}
11: 𝑝𝑟𝑒_𝑏𝑙𝑜𝑐𝑘𝑖 → 𝐶

12: 𝑐𝑜𝑢𝑛𝑡_𝑠𝑖𝑔 = 0
13 for 𝑝𝑟𝑒_𝑏𝑙𝑜𝑐𝑘𝑖 ∈ 𝐶 do
14: 𝑝𝑟𝑒_𝑏𝑙𝑜𝑐𝑘𝑖 (varified) | |𝑠𝑖𝑔𝐶𝑖

| |𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 → 𝐵𝑖
15: 𝑐𝑜𝑢𝑛𝑡 + = 1
16: if 𝑐𝑜𝑢𝑛𝑡 ≥ 𝐶𝑁

2 + 1 then
17: 𝑏𝑙𝑜𝑐𝑘𝑖 ← 𝑝𝑟𝑒_𝑏𝑙𝑜𝑐𝑘𝑖 | | 𝑠𝑜𝑟𝑡 (𝑠𝑖𝑔𝑠)
18: 𝑏𝑙𝑜𝑐𝑘𝑖 → 𝐹𝑁

19: 𝐼𝑃𝐹𝑆 ← ℎ𝑎𝑠ℎ(𝑏𝑙𝑜𝑐𝑘𝑖 )
20: else
21: continue
22: end
23: end
24: end

3.4 Intelligent Threat Detection (ITD) Module
After the successful execution of the mPoV algorithm, and the
network is in operation, the DL module (Figure 2) converts the
network flow data into a new format. The encoded data is used by
the ITD-module in two-steps: first, the network traffic information
is encoded using an AE and is then transferred to the ITD-module
for further threat detection. The AE compress the higher dimen-
sional data into a latent space 𝐷 = {𝜗𝑖 }𝑆𝑖=1, includes 𝑆 records with
𝜗 features, and decompresses the encoded data into the original one
with minimum loss 𝐿 = |𝑥 − 𝑥 |, where 𝑥 and 𝑥 are the ground truth
and predicted output, respectively. The encoded data is protected
from inference attacks and data manipulation.

The obtained encoded data is then fed into the RNN model.
The RNN is highly accurate at predicting output of sequential and
timeseries data. The proposed AE-RNN consists of input layers
(latent space of the AE), hidden layers, and output layers. The RNN
maps the 𝜗𝑖 values to a corresponding sequence of output𝑂 values.
𝐿 measures the actual output (𝑦) and the predicted output (𝑂). It
has also input to hidden layer parameterized by a weight matrix𝑈 ,

hidden to hidden layers parameterized by a weight matrix𝑊 , and
hidden to output layers parameterized by a weight matrix 𝑉 . Then
time step 𝑡 = 1 to 𝑡 = 𝑛, the following Equation 9), 10), 11), and 12)
are applied.

𝑎 (𝑡 ) = 𝑏 +𝑊ℎ (𝑡−1) +𝑈𝑥 (𝑡 ) (9)

ℎ (𝑡 ) = tanh
(
𝑎 (𝑡 )

)
(10)

𝑂 (𝑡 ) = 𝑐 +𝑉ℎ (𝑡 ) (11)

𝑦 (𝑡 ) = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑

(
𝑂 (𝑡 )

)
(12)

4 SECURITY ANALYSIS
SECBlock-IIoT resiliency against various attacks is discussed in this
section.

4.1 Authentication
The registration is conducted using two processes: registration
of ESMH through RA, and registration of IIoT-nodes and ESML-
nodes through ESMHs. In both methods, the authentications are
executed using their credentials (i.e., certificates, signatures, and
timestamps) which are encrypted using corresponding public keys.
Afterwards, the IIoT-nodes are authenticated via challenges and
responses using their shared PUF-derived secret keys 𝑆𝐷𝑖

𝑘
which are

sent confidentially (encrypted using the public key 𝑃𝑏𝑈𝐿𝐻
𝑘

during
every session). These processes ensure that the certificates cannot
be forged, that the shared secret keys of ULH and IIoT-nodes remain
hidden, and that an adversary cannot receive messages from IIoT
and ESML-nodes within the time frame.

4.2 Preserving Privacy
Messaging between participants is encrypted using public keys
of the authorities in the upper layers and PUF-based unique sym-
metric keys in the edge layer. The keys are updated frequently.
The unclonable pseudo-IDs and their single or group certificates
published on the directory do not reveal the actual identity of the
nodes, thereby preserving their privacy.

4.3 Replay Attack
A data generator node or a computing node generates a message
within a certain time-interval prescribed by the timestamp piggy-
backed in a message along with a certificate. The recipient nodes
(ULHs, ESMHs) verify the message by confirming the certificate,
digital signature, and timestamp. This process prevents sending
messages from any unauthorized nodes which thwarts replay at-
tacks.

4.4 Man-in-the-Middle Attack (MitM)
An attacker may intercept an encoded message transmitted through
an insecure channel in order to inject malicious data. To prevent
this, the public keys and secret session keys used must be revealed
which is computationally infeasible in a limited amount of time.
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Figure 2: Deep learning architecture of the proposed intelligent threat detection (ITD) model.

Table 1: Parameters and values used in the simulation

Parameter Value

No. of IIoT, ULH, ESMH and ESML-nodes 20, 2, 1, 4
No. of groups and members (IIoT-nodes) (5, random (1,20))
No. of Packets/tasks per IIoT-nodes Random (1, 50), 512 bytes
Bandwidth of IIoT, ULH, and ESMH (2, 5), (2, 10), (4, 12) Mbps
Hash Function (.) SHA512

5 EXPERIMENTAL RESULTS
We evaluated the SECBlock-IIoT framework by testing its time
complexity, energy consumption of the IIoT-nodes, average delay
of themPoV consensus algorithm, and attack detection performance
of the ITD module. We used the open-source TensorFlow and Keras
libraries to develop the ITD model. Ethereum and Solidity version
6.0 were used to build a consortium blockchain network. The IPFS
(version 0.4.19) was used to store the blockchain data off-chain,
and it was configured using AMD Phenom™ || X2 555, 3.20 GHz,
12.0 GB installed memory, and a Windows 10 (64-bit) operating
system. The ITD model was evaluated by measuring its accuracy,
precision, recall and F-Score, using original and transformed data.
The results were compared with logistic regression (LR), support
vector machine (SVM), and Gaussian naïve bayes (Gaussian NB)
classifiers. The ITD model used the IoT-Botnet dataset as a model
dataset. The other parameters used in the evaluation are shown in
Table 1.

5.1 Analysis of the Security Scheme
We analyzed the time-complexity of the proposed hybrid security
scheme including registration, verification, encryption, and decryp-
tion for each active IIoT node and compared the results with ECC
public key cryptography. The evaluated performance of the system
using two different network scenarios: P2P and group communi-
cation. In the group communication scenario, five groups with a
random number of IIoT nodes generated packets and communi-
cated with their corresponding ULHs. Figure 3(a) and (b) show the
average time-complexity of the system based on a varied number
of IIoT nodes in the network. The results show that the proposed
system generated PUF-derived secret session keys at the edge layer
around 47.32% faster than the SECBlock-IIoT: ECC. On the other
hand, when the nodes in a group communicated, the proposed
system performed approximately 34.61% faster than the SECBlock-
IIoT: ECC. These results were due to the conventional group key
distribution, using P2P communication, to share the secret key,
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(a) (b)

Figure 3: Average time-complexity of each IIoT node using the proposed hybrid security scheme vs. ECC with varied IIoT nodes
in (a) P2P communication and (b) group communication.

(a) (b)

Figure 4: Average amount of energy consumption of each IIoT node using the proposed hybrid security scheme vs. ECC in (a)
P2P communication and (b) group communication.

which added an additional communication overhead in contrast to
the proposed scheme.

Energy consumption of IIoT nodes is important as the nodes
are energy-constrained. The nodes deployed in this network often
lack an external power supply, unlike the other types of nodes (i.e.,
ULH, ESMH). Therefore, energy-consumption of IIoT nodes due
to communication was the only form of energy consumption that
was considered. Figure 4(a) and (b) show the average energy con-
sumption of the nodes in P2P and group communication scenarios,
and reveal that the proposed system can significantly reduce the
amount of energy dissipation of the nodes. We observed that the
nodes of the proposed system used around 14.63% and 45.93% less
energy than that of SECBlock: ECC in the P2P and group commu-
nication scenarios, respectively. Reduced energy consumption can
enhance network stability.

5.2 Analysis of the Blockchain Module
We evaluated the performance of the proposed consortium
blockchain featuring mPoV against a blockchain that utilized the
PoV consensus algorithm. The blocks contained data/transactions
received from IIoT nodes or data that was related to computational
tasks generated by ESMHL-nodes. Blocks were generated and veri-
fied by at least 50% of elected commissioners among the FNs. To
avoid network disruption or point of failure errors, 𝑃𝑑 = 10% of
FNs were self-elected as duty butlers in each round in the proposed
blockchain network. The duty butlers generated blocks and added
them to the blockchain. This significantly reduced broadcasting
latency of the selected butler-name and rebroadcasted a replace-
ment butler-name when a butler failed to generate a block in time
when PoV was in use. The IPFS allowed storage of CID updated
blocks on the blockchain which solved the network scalability prob-
lem, that is caused due to memory scarcity of edge nodes. Figure 5
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(a) (b)

(c) (d)

(e) (f)

Figure 5: Performance analysis of the consortium blockchain system: (a) Registration time for various IIoT nodes, (b) Execution
time of block mining with various TXs, (c) Block creation time for various TXs, (d) Block access time for various TXs, (e) Latency
of the blockchain with mPoV vs. PoV consensus, including registration, block mining time, block creation time and block
access time for TXs = 20, and (f) Storage size of CID of blocks (TXs = 20) using an IPFS-enabled node.

shows the results of the registration time of IIoT nodes, execution
time of block mining, block creation and access time, and off-chain
storage consumption of varying blocks using the IPFS. We also
compared the consortium blockchain using both mPoV and PoV.
The outcomes show that the proposed blockchain outperformed
the PoV-applied blockchain in terms registration time, block mining
time, block creation time, and block access time, which required
approximately 12.78% less time than the blockchain.

5.3 Analysis of the ITD Module
There are 1498334 anomalous and 79053 normal instances in the
IoT-Botnet dataset [20]. The labeling feature identified the network
traffic as normal or anomalous, the categorical labeling feature clas-
sified the network traffic as Normal, DDoS, DoS, Reconnaissance,
or Theft while the subcategorical labeling feature classified the
network traffic as Normal, DDoS-HTTP, DDoS-TCP, DDoS-UDP,
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Table 2: Selected network flow features of the IoT Botnet dataset

Feature Name

Src IP Flow Byts/s Flow IAT Min Subflow Bwd Pkts
Dst IP Flow Pkts/s Fwd IAT Tot Subflow Bwd Byts
Dst Port Flow IATMean Fwd IAT Mean Label
Protocol Flow IATStd Subflow Fwd Pkts Cat
Flow Duration Flow IAT Max Subflow Fwd Byts Sub Cat

Table 3: Autoencoder (AE) parameters

Settings Hyperparameters

Input Layer 17 features
Encoder Layer 1: 10 hidden nodes, activation = ‘relu’
Decoder Layer 1: 17 hidden nodes, activation = ‘relu’
AE model Loss = ‘mean_squared_error, optimizer = ‘sgd’, epochs = 20, and batch_size = 50

Table 4: RNN parameters

Settings Hyperparameters

Input Layer 18 features
Hidden Layers Layer 1: 100 hidden nodes, activation ‘relu’, and dropout rate = 0.2

Layer 2: 100 hidden nodes, activation ‘relu’, and dropout rate = 0.2
Output Layer
(Binary class)

1 unit, (classified anomaly and normal), activation = ‘sigmoid’

Compiler loss = ‘binary_crossentroppy’, optimizer = ‘Adam’, with learning rate = 0.001, epochs = 20, and batch size =
50

DoS-HTTP, DoS-TCP, DoS-UDP, OS-Fingerprint, Service-Scan, Key-
logging or Data-Exfiltration. The dataset was split into train (70%)
and test (30%). Before training the DL model, the non-numeric and
categorical features were normalized using column normalization
(MinMax normalization). We used 17 network-flow features from
the dataset as input features, as shown in Table 2.

Once the mPoV was implemented, the AE transformed the
network-flow data into an encoded format. Encoding the data pre-
vents the inference attacks that is used in the training phase of the
model. The transformed data was used to train the RNN model. The
hyper-parameters used in AE and RNN are shown in Table 3. and
Table 4.

Table 5 and 6 present the subcategorical and categorical class
threat detection performance of the ITD model with original and
transformed data. The results show that the ITD model achieved
a high level of threat detection accuracy = (99.36, 99.09)%, (99.99,
97.80)%, precision = (99.63, 99.27)%, (99.19, 98)%, recall = (99.54,
99.63)%, (99.60, 99.60)%, and F-Score = (99.54, 99.45)%, (99.39, 98.60)%
for subcategorical and categorical class threat detection with origi-
nal and transformed data, respectively. The results obtained from
transformed data are considered acceptable when compared to the
performance of the ITD model with the original data.

We compared the ITD model with higher performance classifiers
such as LR, SVM and Gaussian NB, with original and transformed
data, and the results are shown in Figure 6 and Figure 7. The ITD

model achieved an average score of (2.20, 0.82, 8.27)% accuracy, (5.0,
2.28, 7.28)%, (5.36, 0.73, 7.73)%, (5.09, 2.73, 9.73)% precision, (9.09,
2.54, 2.45)%, (0.0, 0.45, 1.54)% recall, and F-Score (9.36, 1.91, 7.45)%,
(3.0, 1.73, 7.6)% with original and transformed data for subcategor-
ical class threat detection higher compared to the LR, SVM and
Gaussian NB. The ITD model also achieved an averages of accu-
racy (4.99, 0.79, 12.5)%, (3.20, 3.0, 9.0)%, precision (6.19, 0.39, 13.9)%,
(15.20, 7.0, 12.0)%, recall (19.2, 0.2, 0.0)%, (19.4, 18.80, 1.0)% and F-
Score (18.60, 0.20, 11.0)%, (18.80, 17.40, 10.0)% with the original and
transformed data for categorical class-wise threat detection higher
compared to the other classifiers.

6 CONCLUSION
In this study, we developed a secure blockchain-enabled edge com-
puting framework for IIoT networks. To ensure secure P2P and
group communications, a hybrid security scheme was implemented
which featured robust registration, verification, and authentica-
tion processes. PUF and Lagrange interpolation were adopted to
generate and share secret keys, which reduced the communica-
tion overhead without compromising the security strength of the
network. The framework included an ITD module to detect dy-
namic threats and was capable of using transformed data to prevent
possible inference attacks. Moreover, the framework incorporated
a consortium blockchain technique to prevent data alteration, as
the data of IIoT systems are often confidential. IPFS was used to
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Figure 6: Comparison of the subcategory threat detection of the classifiers using IoT Botnet dataset with (a) original data and
(b) transformed data.

Figure 7: Comparison of the category threat detection of the classifiers using IoT Botnet dataset with (a) original data and (b)
transformed data.

Table 5: Subcategory classification (%) of RNN and AE-RNN using IoT-Botnet dataset

Data Parameters Normal DDoS-
HTTP

DDoS-
TCP

DDoS-
UDP

DoS-
HTTP

DoS-
TCP

DoS-
UDP

OS-
Fingerprint

Service
_Scan

Keylogging Data-
Exfiltration

Original Accuracy 100.00 100.00 100.00 100.00 100.00 100.00 100.00 97.00 100.00 99.00 97.00
Precision 100.00 100.00 100.00 100.00 100.00 100.00 100.00 98.00 100.00 99.00 99.00
Recall 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.00 100.00 99.00 97.00
F-Score 100.00 100.00 100.00 100.00 100.00 100.00 100.00 98.00 100.00 99.00 98.00

Transformed Accuracy 100.00 100.00 100.00 100.00 100.00 100.00 100.00 96.00 100.00 99.00 95.00
Precision 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.00 100.00 100.00 93.00
Recall 100.00 100.00 100.00 100.00 100.00 100.00 100.00 97.00 100.00 99.00 100.00
F-Score 100.00 100.00 100.00 100.00 100.00 100.00 100.00 98.00 100.00 100.00 96.00

store the blockchain at the edge node which alleviated storage and
network scalability problems.

We evaluated and analyzed the performance of the proposed
system in terms of security, energy-consumption of IIoT-nodes,

latency of the hybrid security scheme, execution time and latency
of block creation and access, and attack detection rate.We compared
the developed SECBlock-IIoT with the baseline security scheme
ECC, the blockchain consensus algorithm PoV, and ML classifiers
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Table 6: Category-wise classification (%) based on RNN and AE-RNN using IoT-Botnet dataset

Data Parameters Normal DDoS DoS Reconnaissance Theft

Original Accuracy 100.00 100.00 100.00 99.99 99.99
Precision 100.00 100.00 100.00 99.99 96.00
Recall 100.00 100.00 100.00 100.00 98.00
F-Score 100.00 100.00 100.00 99.99 97.00

Transformed Accuracy 100.00 100.00 100.00 98.00 91.00
Precision 100.00 100.00 100.00 99.00 91.00
Recall 100.00 100.00 100.00 100.00 98.00
F-Score 100.00 100.00 100.00 99.00 94.00

LR, SVM and Gaussian NB. The results show that the proposed
framework outperformed existing and conventional systems.
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