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Since the beginning of this decade, several incidents report that false data in-
jection attacks targeting intelligent connected vehicles cause huge industrial
damage and loss of lives. Data Theft, Flooding, Fuzzing, Hijacking, Malware
Spoofing and Advanced Persistent Threats have been immensely growing
attack that leads to end-user conflict by abolishing trust on autonomous
vehicle. Looking after those sensitive data that contributes to measure the
localisation factors of the vehicle, conventional centralised techniques can
be misused to update the legitimate vehicular status maliciously. As investi-
gated, the existing centralized false data detection approach based on state
and likelihood estimation has a reprehensible trade-off in terms of accu-
racy, trust, cost, and efficiency. Blockchain with Fuzzy-logic Intelligence
has shown its potential to solve localisation issues, trust and false data de-
tection challenges encountered by today’s autonomous vehicular system.
The proposed Blockchain-based fuzzy solution demonstrates a novel false
data detection and reputation preservation technique. The illustrated pro-
posed model filters false and anomalous data based on the vehicles’ rules
and behaviours. Besides improving the detection accuracy and eliminating
the single point of failure, the contributions include appropriating fuzzy AI
functions within the Road-side Unit node before authorizing status data by
a Blockchain network. Finally, thorough experimental evaluation validates
the effectiveness of the proposed model.

CCSConcepts: •Computer systems organization→Embedded systems;
Redundancy; Robotics; • Networks→ Network reliability.
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1 INTRODUCTION
Theworld has experienced an appealing technological rise of intelligence-
connected vehicular cyber-physical systems (CPS). According to
the Internet Crime Complaint Center (IC3) of the United States(US)
Federal Bureau of Investigation (FBI), 95% of the recorded breaches
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targeted critical infrastructure, such as sensor-enabled CPS. In July
2020, the Texas state power grid systemwas hacked, and the attacker
tried to spoof the system’s monitoring tools to inject false data to
bully the whole system. This was not the first time; a similar attack
occurred in December 2015, when an attack on Ukraine’s power
grid caused a massive blackout. These recent incidents reveal that
the CPSs, including intelligence vehicles, are extremely vulnerable
to False Data Injection (FDI). Blockchain has immense potential
to secure the Vehicular CPS to protect it from injecting inaccu-
rate data from neighbouring vehicles. Fuzzy logic and rule-based
techniques can potentially discover data anomalies based on sys-
tem behaviours. Instead of centralised monitoring, distributed and
transparent control by the vehicle owners and roads and highways
authorities, automatic false data detection can be advantageous if
reliable techniques are involved.
An FDI attack is an unprecedented attack that often raises con-

flict against the reliable operation of the Vehicular CPS. Adding
false data or misguiding an autonomous vehicle measurement may
occur for different reasons. Any unauthorised intermediaries or
even trusted neighbouring vehicles, intentionally or mistakenly,
can inject malicious data. If the system control is maintained based
on the trust employed through a TTP (i.e., service provider), the
potential threat rises exponentially [Wollschlaeger et al. 2017]. Ac-
cordingly, preserving incorrect or vehicular measurement data can
be utterly misleading. Conventionally, the data-associated with the
IAVS is maintained by a cloud from the provider side. Autonomous
Vehicular stakeholders can see their contributions but barely have
any control authority. At this point, if any vehicle is compromised
with misleading data, the sole responsibility is on those entitled
to control the system. In addition to data forgery, negligible and
erroneous data may appear due to technical errors that deserve
proper preservation for extensive record keeping and monitoring.
In the IAVS, this status history often constructs a reputation that
is necessarily important for further decision-making, cost measur-
ing and further localisation and measurement. Figure 1 shows the
conventional network infrastructure of vehicular Cyber-physical
systems.

1.1 Challenges and Perspectives
As the existing detection approaches demand proper revision to
ensure transparency and accuracy, the research community has ex-
pressed deep concern for convincing solutions. However, blockchain
has proven its ability to preserve transparent data transmission
and sharing generated from a distributed network with the desired
anonymity and immutability. They work through adaptable con-
sensus and smart contract mechanisms [Gramoli 2020]. A false
data attack is a kind of attack targeting the autonomous vehicle
that causes different disruptions including localisation and further
estimation issues. In false data attacks, misleading information is
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Cloud Data Control UnitRoad Side Unit

Conventional Intelligent Connected Vehicular System

Fig. 1. Conventional Vehicular Data Communication Flaw. The vehicles
communicate with the nearby Roadside unit for an update. RUSU is con-
nected with a Cloud-driven data centre controlled by the Roads-highway
authority.

allegedly appended to one of the major operational modules [Wang
et al. 2019b]. Therefore, detecting infected data and assessing how
much data of IAVS is compromised should be done confidentially
and securely.
Due to its immutable, efficient, reliable and enormously acces-

sible behaviours, blockchain can be an exciting solution to this
FDI and transparency problem [Li et al. 2019]. This article pro-
posed a false data discovery and preservation technique. Beised,
a reputation-building process is proposedly integrated. To secure
status data while travelling from sensors to the blockchain ledger,
the design incorporated a customised digital signature mechanism,
fuzzy rule–based detection accuracy that works by following an
infected data detection algorithm [Mendel and Wu 2017] [Wang
2017]. Further, another functional algorithm was designed to com-
municate with the blockchain ledger. The fuzzy-based detection
methods show convincing accuracy, and the blockchain-aligned
reputation preservation process brings a transparent and secure
outlook for IAVS management [Li et al. 2017].

1.2 Contributions and Organizations
This work was motivated to address and demonstrate a blockchain
and AI-enabled false data–detection and reputation preservation
for the sensor-enabled, intelligent Cyber-physical system especially
targeting IAVS. The specific contributions of this work are as follows.

• The proposed Fuzzy logic-enabled false data–discovery tech-
nique can filter data anomalies based on the behaviour rules.
As described in the respective sections, the fuzzy-based model
has higher effectiveness in terms of cost and security.
• The proposed model incorporates a novel reputation preser-
vation mechanism based on infected vehicles that potentially
generate false or misleading data. The reputation status of
the measurement units helps other autonomous vehicles to
be aware of the devices and protect the system from being
misled.

Terms Elaboration & Description

ADAS Advanced Driver Assistance Systems
AI Artificial Intelligence
BC Blockchain
BFT Byzantine Fault Tolerance
BTC Bitcoin
CC Chaincode
CFT Crash Fault Tolerance
CPS Cyber-physical System
ETH Ethereum
FDD False Data Detection
FL Fuzzy Logic
HLF Hyperledger Fabric
IAVS Intelligence Autonomous Vehicular Systems
LiDAR Light Detection and Ranging
MF Membership Functions
MSP Membership Service Provider
ML Machine Learning
P2P Peer to Peer Network
RADAR Radio Detection And Ranging
RSU Road Side Unit
SC Smart Contract
SPOF Single-point of Failure

Table 1. Technical Terminology along with its notation entries and abbrevi-
ation in alphabetic order

• Blockchain-based transaction verification ensures collabora-
tively built trust and security rather than relying on a single
party. It eliminates PKI-driven cloud and centralised systems
to protect the IAVS.

2 BACKGROUND AND RELATED WORKS
In this section relevant background knowledge on Blockchain tech-
nology, Fuzzy AI technique, autonomous vehicular technology and
Related works are presented. Table 1 depicts the technical terms,
notations and respective abbreviations frequently used throughout
the paper.

2.1 Blockchain Technology for the Vehicular CPS
The emerging blockchain technology has immense potential to
secure and enhance autonomous driving operations and manage-
ment. Because of its self-governing smart contract protocols and
consensus-driven block verification, its integration into the IAVS
increases data and communication integrity and security [Taleb
et al. 2017]. As shown in Figure 2, blockchain is an expanding and
unchangeable list of records consisting of connected blocks using a
secure and immutable hash algorithm. The network works on the
distributed P2P network constituted by IAVS components, such as
moving vehicular sensors, LiDAR sensors etc. Unlike centralised
cloud-driven services, blockchain ensures multiparty authorisation,
which essentially eliminates SPOF [Tschorsch and Scheuermann
2016].
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(B) Blockchain
Block Structure

(A) Shared Ledger
over the P2P

distributed network

* Tx : Transaction

IAVS Network with RSU, 
Vehicles, Signals, etc.

 IAVS Data Tx 
Stored in BC Ledger

Block_N

Time_Stamp

IAVS Tx Hash 

Transaction_Root

Block_One Block_Two
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Fig. 2. Sample Blockchain Structure Consisting of IAVS Transactions (𝑇𝑥 ).
A) Peer-to-peer (P2P) network of vehicular CPS where blockchain peers
communicate and B) Blockchain block structure

Before storing a IAVS transaction in an associated ledger, it must
be consented to by the contributory peers through a special pro-
cess called the consensus mechanism. Earlier generation blockchain,
such as Bitcoin and Ethereum, incorporated the PoW type of con-
sensus, which is often criticised because of its significantly slower
transaction processing rate. Based on the joining rights, blockchain
can be either public or consortium, where only authorised users are
allowed to join and contribute. Apart from PoW, CBC like Corda,
HLF and Ripple incorporate fault tolerance consensus techniques
(e.g., BFT and crash fault tolerance [CFT]). Crash fault tolerance
excludes longer ID and transaction verification and, thus, has higher
throughput and negligible DL [Li et al. 2019]. For example, for Bit-
coin and Ethereum, the transaction processing rate (known through-
put, transactions per second) ranges from 4 to 15 transactions per
second, whereas HLF can process 3,000–20,000 transactions per sec-
ond. By excluding computation-intensive validation, it eliminates
conventional rewards or incentives, which makes CBC a great alter-
native for real-time and critical infrastructure, such as smart grids
and IAVS [Ju et al. 2020; Rahman et al. 2021; Truong et al. 2020].

2.2 FL for False Data Discovery
Fuzzy logic is a form of AI reasoning that makes decisions in the
same way as humans. Its computer-digestible logic block takes pre-
cise input and produces a definite output equivalent to real-world
reasoning. IAVS follow particular rules and behaviour that can be
logically translated into an input membership function (MF) of AI
FL [Mendel and Wu 2017]. Thus, several MFs build intelligence to-
gether for a decision required for a particular IAVS. Unlike Boolean
logic or probability theory, its decision-making process relies on
the degrees of truth factor between 𝑡𝑟𝑢𝑒 and 𝑓 𝑎𝑙𝑠𝑒 . Although FL
is based on the levels of probabilities of input variables towards
the purposeful output, it is a subset of AI that can be trained us-
ing software, hardware or both. The fundamental FL architecture
contains at least four components, including rule specification and
MFs. Where an MF for a fuzzy set 𝑓 on the universe of discourse 𝑦
is defined as 𝜇𝑓 : 𝑦 → [ 0, 1] . The advantages of FL system are as
follows [Wang 2017].

• Mathematical concepts for FL reasoning are simple to imple-
ment and can be modified easily by revising the integrated
rules.

• Fuzzy logic systems can work dynamically with imprecise,
anomalous input data. As a result, reasoning and decision-
making can be made with fewer power constraints, reducing
system deployment costs.

if

 1: true

0: false
False Data?

rules
low: normal
trivial: alert
high: detected

input

input

Boolean Logic

Fuzzy Logic

low: normal
trivial: alert

rules

output

(A)

(B)

Intelligence

(i.e. smartgrid behavior rules)

input

Fig. 3. Fuzzy logic (FL) components and salient characteristics that makes
it distinct from its counterpart name boolean logic.

Figure 3 shows the basic components of FL and how it varies
from Boolean logic. The rule can relate to any conditions or be-
haviours. For example, False data injection attack on a neighboring
vehicle is doscovered when the Error (𝐸) is larger than a thresh-
old (𝐸𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ) and the Weight (𝑊 ) for that source is lower than
a threshold (𝑊𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ). The edge node trained with these au-
tonomous vehicular behaviours can detect data status and identify
the source device if such conditions (as determined by MF) are not
met. The considered IAVS rules will be explained in the forthcoming
Section.

2.3 Related Works
False Data detection in the cyber-physical system has attracted
research community for a couple of years and a good number of
works highlighted the importance of the stealthy FDI attacks [Dey
et al. 2015; Zhao et al. 2021]. [Li and Song 2015; Petit and Shladover
2014] proposed a secure model for data attack detection. The work
above seems to have better performance as claimed through their
simulation-based evaluation. In [Biron et al. 2018] [Ju et al. 2020;
Sun et al. 2020] the authors proposed a monitoring system to de-
termine the real-time occurrence of a disturbance in the voltage
before suggesting a remedy in response. A group of researchers has
recently made a private blockchain-based approach for local power
consumption and generation without any trusted intermediaries.
Another distributed ledger-driven effort based on smart-contract
was explained by the authors to enhance the security and resilience
of the energy CPS[Mengelkamp et al. 2018]. Apart from a distributed
ledger, work done on distributing the host-based approach to de-
tect FDI attacks by proposing novel False Data Detection (FDD)
method, state estimation and performance reputation update with
maximum likelihood algorithm[Zhao et al. 2021]. In their work, the
authors have considered distributed host-based effort instead of the
distributed ledger, and the rules assumed to evaluate seem to not
exceed four host monitors. We have extracted sample from three
different rules mostly on the autonomous vehicles’s wegiht mea-
surement, particle filtering, data fusion behaviours throughout our
initial investigations, but even this number not seems to be portray-
ing an entirely complex scenario of the IAVS. In our approach, we
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also have considered distributed network and instead of centralized
monitoring. Distributed ledger both private and public blockchain
have been incorporated. Another work done based on weak data
attack arising due to stealthy and corrupted measurement seems
to be done the experiments and demonstrated theoretical analysis
before claiming their approach has less relative error [Jo et al. 2015].
A lightweight privacy-preserving technique for distributed RSU has
also claimed the authentication speed [Dinh et al. 2018].

3 DESIGN CONCEPTS AND SYSTEM MODEL
The proposed design concepts include three different components.
Firstly, a fuzzy-based false detection technique in the Roadside Unit
(RSU) end filters data before sending it to the blockchain network.
Secondly, the blockchain authenticates data and the generating
source devices through a certificateless and collaborative signing
process [Aitzhan and Svetinovic 2018a; Kumar et al. 2020]. Finally,
only the verified data are stored in the storage node. The proposed
framework was designed considering these salient features and
incorporated a permissioned blockchain and DHT mechanism for
demonstration and evaluation [Truong et al. 2020;Wang et al. 2019a].
However, it conceptually supports the public type of blockchain and
storage service. Figure 4 shows the high-level view of the proposed
detection and reputation preservation approach. The communica-
tion flow of the proposed system can be divided into three parts:
discussed as follows.

3.1 Vehcile to RSU Communication
Autonomous vehicular CPS employs Sensor Fusion such as Radars
and LiDARs. Fusion sensors are connected to the global remote ter-
minal unit via the V2R (Vehicle-to-RSU) network. Other IoT sensors
are able to send data to the destination through the constituted
edge devices, irrespective of whether sources are wired or wire-
less [Aitzhan and Svetinovic 2018b; Erwin Adi and Zeadalli 2020].
Portion A of Figure 4 shows the V2r communication where the
proposed fuzzy rules work to detect data anomalies [Mendel and
Wu 2017].

3.2 Blockhain Ensures Secure Data Transport
Instead of cloud-driven systems, the edge data are authenticated
via a blockchain network to reduce the chance of SPOF and cen-
tralised trust. The proposed solution incorporates a certificateless
multisignature-based device and data authentication over the P2P
network [Aitzhan and Svetinovic 2018a; Li et al. 2019]. The network
can be either public or restricted; however, considering the high
data processing time and DL, the proposed model constitutes CBC.
It establishes secure communication with the IAVS RSU and MEMS
and validates the transported data. Portion B of Figure 4 depicts the
secure data transport using blockchain.

3.3 Reputation Preservation and Storing
The reputation preservation algorithm works within the detection
model to update the reputation of autonomous vehicles. Once the
particular vehicle seem to be generating false data, it will update
its individual status. The reputation and the data transaction are
recorded in the blockchain ledger, and data are stored in off-chain
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Fig. 4. High-level Representation of the Proposed Blockchain and Fuzzy
Logic-aligned False Data–Detection and Reputation Preservation for the
Intelligent Autonmous Vehicular System (IAVS). A) Source Vehicles send
data through the edge gateway, B) the client vehicles submits the data
transaction to the blockchain network (i.e., key generation and distribution
[KGD] consortium) and C) upon successful verification, the data transaction
and the detection status and reputation are recorded in the ledger, and data
are stored in distributed hash table storage (e.g., interplanetary file system
[IPFS] and Kademlia).

storage. The proposed framework considered the salient features
and incorporated DHTs, such as IPFS and Kademlia [Huang et al.
2020]. Reputation preservation happens in the earlier portion; Por-
tions A and C of Figure 4 portrays the storage mechanism. However,
storing data directly in the blockchain network, even in an en-
crypted form, threatens consumer or stakeholder privacy and does
not comply with privacy standards [Rahman et al. 2021, 2022].

3.4 Threat Model
The proposed model was designed based on the considered threat
model. The decentralised blockchain ensures that an attacker cannot
corrupt the consortium network. Any unauthorised peer or adver-
sary cannot modify the blockchain ledgers, which implies that the
resource is compromised. The threat model prevents impersonation
by an unauthorised party or an adversary, as the associated multisig-
nature cannot be tempered or forged. Therefore, security threats can
be generalised into two broad categories. Firstly, an internal party or
peer disguised in a Byzantine way has probably been granted access
to IAVS data [Zamani et al. 2018]. Secondly, an honest or trusted ve-
hicle but its security credentials, such as private or decryption keys,
are disclosed to an external adversary. Thus, the external party with
the stolen access can bully the network. Blockchain smart contracts
contain a token validation technique, which is refreshingly expired
after a particular time or transaction, that protects the network
from being compromised with the latest type of threat. However,
the blockchain ledger will record the reputation of the malicious
peers and block them temporarily or permanently. The BFT or CFT
technique ensures the system runs smoothly, even after some peers
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Table 2. Overview of recent research on IDSs for IoT applications

Referral Work Crypto Efficiency Limitations Application Blockchain

[Zhao et al. 2021]
√

Low IAVS Incompatible Security ×
[Dey et al. 2015]

√
Medium Cost-intensive Small-scale IoT

√

[Petit and Shladover 2014]
√

Low Coalition attacks Security ×
[Li and Song 2015]

√
Low Chosen-text attack Security ×

[Li and Song 2015] × High Cost-intensive IoT ×
[Aazam et al. 2018] × Low Com.-Intensive Medical IoT ×
[Truong et al. 2020] × Medium High overhead Vehicular Sensor ×
[Anwar et al. 2017]

√
Medium Not efficient VANET

√

[Li and Wang 2015]
√

High Cost-intensive Critical system
√

[Liang et al. 2016]
√

Very High Com.-intensive Industrial IoT
√

have been suspended. Besides the security threats, the model con-
siders the privacy of the IAVS and their data. The encryption and
partial secret (PS) of the multisignature ensure pseudo-anonymity,
whereas CBC only allows authorised peers, meeting the privacy
challenges of the Autonomous Vehicular CPS [Gramoli 2020].

3.5 Trust Assumption
The proposed model assumes that RSU constituting the blockchain
network are honest or semi-honest. The model obviates the mem-
bership service provider (MSP) who has equivalent CA to PKI [Nix
2016]. As investigated throughout the centralised cloud-driven ap-
proaches, it increases the chance of being compromised and SPOF.
Besides, the elliptic curve–cryptographic primitives and hash func-
tion are assumed to be particularly secure. This means that attackers
cannot extract keys using reverse exponentiation, break the hash
algorithms or temper the multi-signature. In addition, the model
considers that the data transfer occurs over an insecure network or
internet. The next section discusses the proposed mechanism for
false data detection and preservation [Yang and Tan 2011].

4 FALSE DATA DISCOVERY AND REPUTATION UPDATE
As assumed that the IAVS usually operates on a normal stable status
where the associated state parameters and variables differ in an
interchangeably balanced manner. For example, the IAVS follows
specific behaviours. Thus, any variable state changes due to a system
fault cause corresponding state changes and produce anomalous
data. However, data anomaly can be identified if variables change
on one bus without affecting the parallel variables.

In this paper, IAVS communicates with the RSU servers and pub-
lishes information about itself and its neighbours with a unique
vehicle identity (ID). After the RSU server gathers the information
from all the IAVS in a platoon, neighbouring vehicles information
can be associated using the vehicle ID, and neighbouring uncon-
nected vehicles information from multiple IAVS on-board sensors
(i.e., Lidar or Radar) is assumed to be fused using a multi-source data
associationmethod so that each unconnected vehicle is also assigned
with a specific vehicle ID. Therefore, by leveraging vehicle IDs, data

Table 3. Typical behaviour of IAVS rule examples

Sl Behaviour Rules Variable Description

1 Δ𝐼𝑘 > 𝐼𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 Malicious data injected by a vehicle
2 𝑃𝐸 = 𝑃𝐹 + 𝑃𝑀 𝑃𝐸 from probability of (𝑃𝑀 ) & (𝑃𝐹 )
3 𝐸𝑡 > 𝐸𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 Error larger than threshold
4 𝑊𝑡 <𝑊𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 Weight lesser than threshold

for neighboring vehicles can be identified, and only neighbouring
IAVS information will be used in the proposed solution.
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Major
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NO NO YES

YESNONO

YESYESYES

DETECT

Fig. 5. Behavoural rule extraction and its corresponding fuzzy representa-
tion. A) Rule matrix for different status B) Rule specifications

4.1 Rule Specifications
When a IAVS is under usual operation, all of its state variables follow
particular constraints and hold desired properties.

The following Table 3 shows similar rules considered. These are
some fundamental rule specifications to detect false data due to
anomalous PMU activities.

The fuzzy rule specifications as explained in the next subsection
considers following basic rules. Behavioural rules can be similarly
specified for all other rules listed in the above Table.
• a false data injection attack on a neighbouring vehicle is iden-
tified when the error (𝐸𝑡 ) at time 𝑡 is larger than a threshold
𝐸𝑡ℎ𝑒𝑟𝑠ℎ𝑜𝑙𝑑
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• Weight at time 𝑡 for that source is lower than a threshold
(𝑊𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 )
• 𝑃𝐸 = 𝑃𝐹 + 𝑃𝑀 means that Error obtained from probability of
misdetection (𝑃𝑀 ) & the probability density function (𝑃𝐹 )

The following Figure 5 shows the rule-matrix that works to filter
the data quality. First, it needs to classify the behaviour in different
states [Li and Wang 2015]. For example, as per Rule 4 of Table 3,
the variation of Error should not be always greater than a measured
threshold. The threshold can be calculated following up the dynamic
nature of the IAVS and previous records. However, as settled that the
Weight variation at a time 𝑡 should be always less than the threshold.
Considering the severity of the difference, it Fuzzy system classify,
it as𝑚𝑖𝑛𝑜𝑟 , 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 or𝑚𝑎𝑗𝑜𝑟 . Similarly, for Error, it can be 𝑡𝑟𝑖𝑣𝑖𝑎𝑙 ,
𝑓 𝑎𝑖𝑟 or 𝑣𝑖𝑡𝑎𝑙 . Based on the rule matrix as demonstrated by Figure 5,
the corresponding fuzzy rules are listed above. For example, if Error
deviation is 𝑡𝑟𝑖𝑣𝑖𝑎𝑙 and Weight is𝑚𝑖𝑛𝑜𝑟 then the fuzzy system will
not mark it as𝑁𝑂 and will send it to the blockchain peers for further
processing. In different cases, it will either 𝑌𝐸𝑆 data as anomalous
or send it with a𝑤𝑎𝑟𝑛𝑖𝑛𝑔 flag [Mengelkamp et al. 2018; Mylrea and
Gourisetti 2017].

(a) Test 1

(b) Test 2

Fig. 6. Input MF definitions based on IAVS behavior rules

4.2 Defining Fuzzy Membership Function (MF)
The graphical representation of fuzzy membership function (MF)
shows how each point in the input space is mapped to the corre-
sponding system status. FL modelling includes at least four com-
ponents including rule specification and membership MFs. Where
an MF for a fuzzy set 𝑓 on the universe of discourse 𝑦 is defined
as 𝜇𝑓 : 𝑦 → [ 0, 1] . It quantifies the severity of MF element both
in 𝑥 and 𝑦 axis where 𝑥−axis shows the universe of discourse and
𝑦−𝑎𝑥𝑖𝑠 represents the degree such as 𝑡𝑟𝑖𝑣𝑖𝑎𝑙 ,𝑚𝑖𝑛𝑜𝑟 , 𝑓 𝑎𝑖𝑟 etc. within

the variation range. As investigated, the accuracy varies as per type
MF functions [Mendel and Wu 2017]. For example, if Error is im-
plemented with a 𝑡𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑎𝑟 function, the detection varies from
the 𝑡𝑟𝑎𝑝𝑒𝑧𝑜𝑖𝑑𝑎𝑙 MF. Targeting the maximum throughput, the pro-
posed evaluation runs with the 𝑔𝑎𝑢𝑠𝑠𝑎𝑖𝑛 and its variant 𝑆𝑃 − 𝑙𝑖𝑛𝑒
MF. In a normalized 𝑆𝑃 − 𝑙𝑖𝑛𝑒 MF 𝜇𝑚

𝑖
of order𝑚 (degree (𝑚 − 1)

for the fuzzy subset [𝑎, 𝑏] over 𝑅 (Real number range) the variation
Δ : 𝑎 = 𝑘0 < 𝑘1 < .... < 𝑘𝑛+1 = 𝑏 as 𝜇 : [𝑎, 𝑏] → [0, 1]. Here𝑚𝑖 is
the multiplicity of the knot 𝑘𝑖 .

Figure 6 depicts the respective membership of functions of based on
the degree of variation of both Error andWeight angel as mentioned
earlier. During the range selection of the demonstration, we changed
ranges to a different level. For example, the following Figure 6 shows
that if the variation exceeds about 50% then severity is classified as
𝑣𝑖𝑡𝑎𝑙 for Error and𝑚𝑎𝑗𝑜𝑟 for Wegiht deviation. However, based on
the previous record of RSU the ranges could be varied to improve
the system performance [Wang 2017].

Following a similar process, the output membership functions have
been selected. The 𝑔𝑎𝑢𝑠𝑠𝑖𝑎𝑛 and 𝑆𝑃 − 𝑙𝑖𝑛𝑒 seem to bring higher
accuracy in comparison to 𝑡𝑟𝑎𝑝𝑒𝑧𝑜𝑖𝑑𝑎𝑙 and 𝑡𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑎𝑟 MF. The
threshold basically depends on the previous record of the Vehicular
CPS, however, it has been finalized one-fourth (25%) of the system’s
overall deviation. That means it verdicts the 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 if the average
variation of Weight exceeds the Threshold. Sample false data detec-
tion after debugging the MF and its configured behaviour rules is
discussed here. Here 𝐴 and 𝐵 are the input MF configuration based
on 𝐸𝑡 as explained earlier [Wang 2017].𝐶 depicts the corresponding
output. For example, for a particular case,𝑊𝑡 becomes varies within
the Threshold then it detects the severity of the False Data is about
85%. In such a circumstance, the system as integrated in the edge
gateway, will not allow sending the corresponding data transaction
to further blockchain peers. Besides, it will update the reputation
of source PMU and will include the latest status along with data
transaction and source identities [Mendel and Wu 2017].

4.3 RSU Reputation Updating
The probability distribution function (PDF) can be applied to de-
termine the system’s reputation. For example, 𝛽 distribution seems
to be promising for a collaborative detection model. Considering
further smooth and secure preservation aligned with blockchain, the
proposed model incorporates a novel reputation updating algorithm
based on the degree of the detection level [Li et al. 2017].

4.3.1 Reputation Algorithm. The Alg. 1 takes input parameters
from the previous detection phase. Parameters include system de-
tection level and status which is either 𝑡𝑟𝑢𝑒 or 𝑓 𝑎𝑙𝑠𝑒 , identities of
the PMU or any other similar sensors or MEMS along with the
corresponding values of the membership variables,. The respective
functions or subroutine initializes the required system parameters
such as initial reputation and associated values of the RSU.

Once values are set, the algorithm checks if and only if the status is
true or false. It updates the particular RSU (identified with the ID)
status and exit process if any false data are found within the system,
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Algorithm 1: IAVS RSU reputation updating on false data
discovery.
Input :S – status either 𝑡𝑟𝑢𝑒 or 𝑓 𝑎𝑙𝑠𝑒

R – reputation level
L – RSU or sensor identities
A – Error
V – Weight
D – detection level /* received data from fuzzy system */

Output : (𝐼𝐷 ,𝑅𝑡 , 𝐷) – returns after algorithm execution

1 init := (ID, R, D, 𝐴,𝑉 ) /* initializes after fuzzy detection */

2 for ID← ID𝑖 /* for all identities 𝑛 × 𝐼𝐷𝑖 */

3 do
4 𝑅 ← getStatus (ID, 𝐷, 𝑅) /* get requisite values (𝐼𝐷) */

5 if (status == 𝑡𝑟𝑢𝑒 ) then
6 S← updateRep (R, ID): /* update PMU or sensor reputation */

7 end
8 end

as predicted by the earlier detection phase. After finalising the
detection and reputation updating process, the data are ready to be
sent to the blockchain for further verification and storage. The next
section discusses how the IAVS detection status and reputation level
are validated by the associated blockchain network and successfully
stored for future maintenance and preservation. Next, the IAVS data
and the corresponding reputation need to be transformed into a
blockchain transaction. Figure 7 shows the sample IAVS transaction
to be transported over the internet.

 
 [Couch DB] 
 World State 
 

 Ledger (L) 

Transaction (Tx) 

 Peer 
 

[Chaincode] 

Smartcontract(S) 

Key = SM001, Value = {MSN: XAC, LOC: 15X. 25Y. 19Z, FDD: 1.15 

Key = PM001, Value = {MSN: XAB, LOC: 15X. 25Y. 19Z, FDD: 14.55 

Key = PM001, Value = {MSN: XBC, LOC: 15X. 25Y. 19Z, FDD: 95.89 
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Fig. 7. Sample IAVS transaction belongs to the ledger and typical world state
database (i.e. Couch DB) with interaction with chaincode smart contract.

5 BLOCKCHAIN VERIFICATION AND DATA
PRESERVATION

In the proposed IAVS data verification and preservation process,
the Consortium blockchain plays an indispensable role. The PMU
needs to get registered with the blockchain-based key generating
and distribution (KGD) system which is built upon the agreement of

the blockchain peers [Yang and Tan 2011]. KGD are the blockchain
peers that commence the process of device registration. It starts
with system parameters and outcomes of the partial secret (𝑃𝑆). It
eliminates the requirement of a trusted third party (TTP) such as the
Certificate Authority of PKI. Before posting the transaction, IAVS
RSU or sensors obtain public-private key pairs upon the completion
of the registration process. The following part discusses how to
source devices are registered to the blockchain network. Then how
it verifies particular transactions submitted to it.

5.1 Registering RSU
At the beginning, multi-party IAVS stakeholders agree to build
and share over the consortium blockchain (BC). Suppose, several
RSUs cooperatively form the BC network that facilitates the key
generating and distribution (KGD) peers [Li et al. 2019]. Blockchain
KGC peers broadcast the system parameters (𝑌 ) all IAVS RSU have
knowledge about. KGD peers keep their individual signer’s secret
such as 𝑆1,𝑆2...𝑆𝑛 With the help of Edge computation capacity or
its own ability, interested IAVS RSU creates their own secret value
𝑋1, 𝑋2, 𝑋3 ...𝑋 𝑗 generates respective public keys using 𝑋 𝑗 and the
system parameter 𝑌 , where 𝑗 is the number of interesting devices
at particular time 𝑡 and 𝑛 is the number of co-signing blockchain
peers [Huang et al. 2020].

RSU server will contact the KGDwith their identities 𝐼𝐷1, 𝐼𝐷2, ...𝐼𝐷 𝑗 .
Upon receiving the request, KGD will generate a partial private
secret 𝑃𝑆1, 𝑃𝑆2 ...𝑃𝑆𝑖 for all requested devices and will cosign co-sign
𝐼𝐷𝑖 and 𝑃𝑆𝑖 using co-signers private key 𝑆𝑛 . KGD sends the signed
message back to the RSU Edge. The sensor device itself or edge node
(e.g. Azure IoT edge or Dell Gateway) will verify if the message
comes from the KGD, and if yes, it will generate private - private
key pairs (𝑃𝑘1, 𝑃𝑘2, ..., 𝑃𝑘𝑖 , 𝑆𝑘1, 𝑆𝑘2, ..., 𝑆𝑘𝑖 ) using (𝑃𝑆𝑖 , 𝑋𝑖 , 𝑌 . Note
that only each PMU will be able to create the private key because it
is the only entity who knows his private secrets𝑋 𝑗 .Alg. 2 illustrates
the step by process with the necessary explanations.

5.2 Transaction Verification and Preservation
Once RSUs are successfully registered to the KGDupon the certificate-
less cryptography and multi-signature-based authentication, the
RSU proceed further to send and store data. Usually, data gets trans-
action fashioned before sending it to the blockchain network. The
transaction includes the identity of the RSU along with the action
and timestamp at the time (𝑇 ) of action (𝐴𝐶𝑇 ). There can be differ-
ent types of actions such as 𝑠𝑡𝑜𝑟𝑒 data at a specific DHT address
( 𝐴𝐷𝑆), 𝑢𝑝𝑑𝑎𝑡𝑒 previously inserted data or 𝑎𝑐𝑐𝑒𝑠𝑠 permission of
the particular data. To verify a transaction 𝑇𝑥 = (𝐼𝐷 𝑗 ,𝑇 , 𝐴𝐶𝑇 ), the
blockchain peers have to meet two conditions: i) Either the public
key (𝑃𝐾𝑗 ) obtained associates with the identity (𝐼𝐷 𝑗 ), ii) or any
other public parameters can the signed transaction (𝑇𝑥 ) be verified
[Cho et al. 2020; Kumar et al. 2020].

RSA (Rivest-Shamir-Adleman) based digital signature algorithm
(DSA) or elliptic curve digital signature algorithm (ECDSA) can
be used. Considering the lesser key-size facility, we opted for the
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Algorithm 2: IAVS RSU registration with blockchain KGD.
Input : ID𝑗 – identities of the 𝑗 ′𝑡ℎ number of vehcile

Y – system parameters /* prime numbers, primitive roots etc

*/

Output : (Pk, Sk) – public and private key pairs /* for all devices

at 𝑡 */

1 setup(1𝜆 )→ (𝑌 ) /* system parameters (𝑌 ) initialization */

2 for ID← ID𝑗 do
3 porocedure keyGen (Y, ID): /* key using system 𝑌 and identities */

4 X𝑗 ← genSk (Y,𝐼𝐷 𝑗 ) /* IAVS generates own secret keys */

5 requestSend (ID𝑗 ) /* IAVS send interests to join consoritum BC */

6 PS𝑗 ← genPS (𝐼𝐷 𝑗 ) /* KGDs generates partial secret */

7 multiSig(𝑆𝑛, 𝐼𝐷 𝑗 , 𝑃𝑆 𝑗 ) /* multi-sign using 𝑆 of 𝑛 cosigners */

8 responseReceived (ID𝑗 ) /* IAVS receives 𝑃𝑆 from KGD */

9 V[0,1,⊥ ]← verify () /* verify the multisignatures */

10 if V← 1 then
11 Sk𝑗 ← genSk (Y,𝐼𝐷 𝑗 ,𝑋 𝑗 ) /* sets IAVS device private key */

12 Pk𝑗 ← genPk (Y,𝑋 𝑗 ) /* sets IAVS device public key */

13 end
14 end

ECDSA in our evaluation setup inside the apache Kafka framework
of the hyperledger Iroha framework [Li et al. 2019].

Algorithm 3: IAVS Transaction (Tx) verification and storing.
Input :T𝑥 – IAVS transactions

L – access control lists
𝜎 – signaturues of the𝑇𝑥
ID𝑗 – identities of the 𝑗 ′𝑡ℎ number of RSU Servers
Y – system parameters /* prime numbers, primitive roots etc

*/

Output : (𝑉𝐼𝑑 ,𝑉𝑇𝑥 , S) – set & return verification and storing flag
true

1 create := (ID,L,Tx,𝜎 ,ADS) /* creates 𝑇𝑥 using 𝐿 𝐼𝐷 and 𝐴𝐷𝑆 */

2 signTx (Tx, 𝑆𝑘 ) /* sign creates transactions */

3 castTx (Tx, 𝜎 ) /* broadcasts the original 𝑇𝑥 and the signed one */

4 for Tx← Tx𝑖 /* for all transaction 𝑛 × 𝑇𝑥 */

5 do
6 𝑉1 ← verID (ID, 𝑃𝑘,𝑌 ) /* verifies the identities (𝐼𝐷) */

7 𝑉2 ← verTx (Tx,ID, 𝑃𝑘, 𝜎 ) /* verifies the transactions (𝑇𝑥) */

8 if (V1 | | 𝑉2 ) then
9 S← storeDHT (Tx, ID):/* store 𝑇𝑥 into DHT and set 𝑆 true */

10 end
11 end

Here, the signature algorithm can be represented as a triple /4-tuple
of probabilistic polynoimial-time algorithms (𝐺, 𝑆,𝑉 ) or (𝐺,𝐾, 𝐸, 𝐷)
that includes generation (𝐺), 𝑠𝑖𝑔𝑛𝑖𝑛𝑔(𝑆), verification(𝑉 ), key-distribution(𝐾 ),
encryption(𝐸) and decryption(𝐷) respectively. Upon successful veri-
fication, the address (𝐴𝐷𝑆) is stored in the DHT while the pointer
belongs to the blockchain peers who verify. The following Alg. 3
shows how the mechanism happens. Besides, the identities 𝐼𝐷 𝑗 , here
the devices require the Access Control List (ACL) before Transaction

(𝑇𝑥) creation and signing (𝜎).The industry 4.0 devices along with
the RSU Gateway are solely responsible to create the ACL list (𝐿) in
addition to signature (𝜎) generation and transaction(𝑇𝑥 ) publishing.
However, the same 𝐿 will be required later to access data. The algo-
rithm as shown in Alg. 3, outcomes three different flags (𝑉1,𝑉2, 𝑆)
set after successful execution. If the identities belong to the derived
public keys, 𝑉1 := 𝑡𝑟𝑢𝑒 , while the certificateless signature meets
the condition as discussed earlier, (𝑉2 := 𝑡𝑟𝑢𝑒).The blockchain peers
do the transaction (𝑇𝑥 ) verification in response to the reception.
Interchangeable verification procedure works in case of data access.
Similarly, upon RSU data transactions (𝑇𝑥 ) are written into the DHT,
the third flag gets set,(𝑆 := 𝑡𝑟𝑢𝑒). After that, a new block is added to
the blockchain and subsequently, the ledger gets updated including
the 𝑇𝑥 Pointer (𝑇𝑝). Figure 8 shows the communication sequence
among client, consensus and smartcontract.

:CLIENT
(A)

1:	TX	Delivered	to	Pool

3:	Tx	sent	for	App

7:	Boradcast	Tx	list,				correctness	and	change

8:	Sent	Tx	Request

5:	Return		Correctness

10:	Return	Tx	block

12:	Notify	Clients

:CONSENSUS
(P1)

self	call

:SMARTCONTRACT
	(S)

:CONSENSUS
(P2)

2:Select

4:Apply

6:Orderself	call

9:Verify

11:Commit

Fig. 8. Communication sequence of a typical IAVS within the blockchain
network. It employs the cycle among client devices that submit data, con-
sensus peers and smart contact

5.3 Smart Contract and Consensus Implementation
The implementation required writing chain codes (CC, special smart
contract for Hyperledger blockchain) against the respective ledger.
The initial chain codes provide authentication, access control and
authorisation while others ensure logging besides the validation.
Being a platform-independent platform Hyperledger supports any
language to write its codes, however, because of relevant online
resources, we preferred mostly 𝐺𝑜 and in some test-cases 𝐽𝑎𝑣𝑎. To
adapt multi-signature-based certificateless environment after elimi-
nating certificate authority (CA) and membership service provider
(MSP), the dependencies of the open-source 𝑠ℎ𝑖𝑚 package needed
customization [Huang et al. 2020; Truong et al. 2020]. By default,
it provides ledger/other CC accessing APIs, state variables or (𝑇𝑥 )
context. Considering the data_pointer represents the cipher-text of
the IIoT data. Assuming an 𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛 function E with public key
(𝑃𝑘 𝑗 ):𝑑𝑎𝑡𝑎_𝑝𝑜𝑖𝑛𝑡𝑒𝑟 = E(𝑚𝑄𝐴𝑃𝑘 𝑗 , 𝑑𝑒𝑣𝑖𝑐𝑒.𝑖𝑑 𝑗 ). A third-party entity
with a shared private key (𝑆𝑘 𝑗 ) can decrypt the 𝑑𝑒𝑣𝑖𝑐𝑒.𝑖𝑑 as well us-
ing an opposite decryption functionD.𝑑𝑒𝑣𝑖𝑐𝑒.𝑖𝑑 = D(𝑆𝑘 𝑗 , 𝑑𝑎𝑡𝑎_𝑝𝑜𝑖𝑛𝑡𝑒𝑟 ).
The policy in the 𝐼 𝐼𝑜𝑇 − 𝑙𝑒𝑑𝑔𝑒𝑟1.1 is simply defined as an access
control list (ACL). Figure 9 depicts the communication among client
devices (edge gateway), smart-contract and consensus protocols.
Firstly, the transaction (𝑇𝑥 ) is submitted to the blockchain network
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as a proposal using a smart contract. The SDK of the network pro-
vides the application environment to check if it is valid. Once valid
it needs to be consented to by the consensus peers. In doing so it
broadcast the 𝑇𝑥 among all collaborating peers of the consortium
and updates the ledger [Wang et al. 2019a].
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Fig. 9. Detection deviation and accuracy of the proposed AI-enabled detec-
tion technique. It shows corresponding data for selected 30 test cases

6 EVALUATION AND RESULT ANALYSIS
The proposed model was tested on FuzzyTech simulation tool and
the detected data and its preservation were purposefully verified
on the consortium blockchain platform namely hyperledger fabric.
The following section discusses the obtained result accordingly.
To evaluate the proposed system accuracy we have implemented
Mamdani fuzzy inference system (FIS) on a Windows 10 enterprise
operating system working on Intel Core(TM) i5-7200U CPU with 8
GB RAM 2.50 and 2.71 GHz capacity.

6.1 Detection Accuracy
The built system was debugged for several cases. Among all debugs,
there were 30 test cases used to visualise the chart fuzzy system
accuracy. Figure 9 shows the detection trend of the system. The
detection was made using the fuzzy input and respective MF based
on the rules considered. The rule extraction section of the manu-
script explains the notations used for each rule. The initial portion
of Figure 9 shows the detection deviation from the original injec-
tion of false data. The latter portion presents the accuracy of the
system. Two rules were used based on the variation of Error and
Weight; therefore, the accuracy shown is only the accuracy of the se-
lected MFs, which actually differs for higher number rules. It shows
that it has higher accuracy when IAVS RSUs have fewer anomalies,
and the accuracy slightly decreases with a higher injection of false
data. Further work will be undertaken to improve this finding. The
corresponding receiver operating characteristic (ROC) curve (see
Figure 10) presents the possible cut-offs for sensitivity and speci-
ficity among the 30 test cases. It shows the system has maximum
sensitivity with fewer false data, which portrays the most usable
cut-off. The highest cut-off has the maximum true positive rate and
the minimum false positive detection.
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Fig. 10. Receiving operating characteristic (ROC) analysis of the proposed
detection technique based on the considered test cases. It marks the initial
cut-off and maximum sensitivity region of the proposed Fuzzy-enabled
model.

Table 4. The throughput (TP), success rate (SR) and delay latency (DL) for
READ and WRITE operation of the IAVS transaction (Tx). The above values
are calculated based on the workload (WL or Tx per second) as shown in
the left-most column.

READ WRITE

WL TP SR DEL TP SR DEL
100 100 9.7 0.01 100 9.7 0.01
200 220 9.6 0.01 185 9.3 0.31
300 340 9.5 0.01 175 7.8 1.48
400 390 9.3 0.02 145 6.1 4.38
500 470 8.8 0.05 85 4.9 5.25
600 370 7.5 2.26 60 3.8 6.16
700 330 6.5 5.43 40 3 7.43
800 250 5.5 6.12 30 2 8.22
900 170 4.5 6.41 20 1.1 8.94
1000 110 3.5 6.68 10 0.5 9.92

6.2 Blockchain Network Performance
The HLF benchmarking results shows the performance based on
four measurement metrics success rate (𝜌), latency (Δ t and 𝐿) and
the Throughput (𝑃 ) and the resource consumption (𝑊 ) for different
test cases. Figure 11 shows the system performance under a different
number of workloads (𝑊 ) ranging from 0.1k to 1k workload where
the HLF network occupies two (02) chain codes, four (04) peer
nodes and three (03) OSNs running on apache Kafka for practical
byzantine fault tolerance (PBFT) consensus. As seen in the figure
the𝑊𝑅𝐼𝑇𝐸 has 185 at 0.2k workload (𝑊 ) with a maximum success
rate of 93% and an average delay of 5 seconds. On the other hand,
𝑅𝐸𝐴𝐷 operation seems to have higher throughput (up to 470 at
maximum) on a similar success rate at its best. The average delay
seems to be half of the write’s delay as the write has to incorporate
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OSNs on Apache Kafka. Table 4 shows the throughput (TP), success
rate (SR) and delay (DEL) latency of the blockchain deployment
[Truong et al. 2020].
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Fig. 11. READ andWRITE performance of the deployed blockchain network
that securely record data and reputation and store data to the associated
distributed hash table (DHT)

The benchmark evaluation explicitly illustrates that the setup con-
figured has lower performance for a higher number workload (𝑊 )
though the theoretical solution proves the consortium blockchain
has significant adaptability for a higher number of nodes. As in-
vestigated deep inside, the local workload processing bottleneck
affects throughput and latency. Hyperledger𝑇𝑥 flow works demand
enough responses against the submitted 𝑇𝑥 proposals, in case the
responses are queued due to network overhead, bandwidth or pro-
cessing loads consequences of the latency raising. On top of that, the
general purpose workstation configuration slower the evaluation
for higher workloads [Wang et al. 2019a].

7 CONCLUSION
In today’s IAVS data integrity attacks like FDI are an ongoing con-
cern. If the system has inaccurate data, any activities based on that
anomalous data will be in vain and can result in operational fail-
ure, financial cost and loss of lives. The proposed blockchain and
Fuzzy-enabled false data–detection system should help filter anoma-
lous data before sending it for further processing. Communication
between the RSU and storage devices happens with collaborative
verification, which ensures the system’s security and data safety.
The system obviates the PKI-driven trusted CA and the established
centralised system. Thus, it can eliminate SPOF and single-party
dependency. The respective evaluation and results show that the
proposed model has comparatively higher accuracy. The blockchain
network’s performance justifies the proposed model’s applicability
for the RSU and Vehicles. Future scope includes improving the accu-
racy of the number of behaviour rules and justifying the scalability
for massive networks.
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