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In this article, we present a derivative-based, functional recognizer and parser generator for visibly pushdown

grammars. The generated parser accepts ambiguous grammars and produces a parse forest containing all valid

parse trees for an input string in linear time. Each parse tree in the forest can then be extracted also in linear

time. Besides the parser generator, to allow more flexible forms of the visibly pushdown grammars, we also

present a translator that converts a tagged CFG to a visibly pushdown grammar in a sound way, and the parse

trees of the tagged CFG are further produced by running the semantic actions embedded in the parse trees of

the translated visibly pushdown grammar. The performance of the parser is compared with popular parsing

tools, including ANTLR, GNU Bison, and other popular hand-crafted parsers. The correctness and the time

complexity of the core parsing algorithm are formally verified in the proof assistant Coq.

CCS Concepts: • Software and its engineering→Parsers; Software verification; • Theory of computation

→ Grammars and context-free languages;

Additional Key Words and Phrases: Parser generators, formal verification, derivative-based parsing

ACM Reference format:

Xiaodong Jia, Ashish Kumar, and Gang Tan. 2023. A Derivative-based Parser Generator for Visibly Pushdown

Grammars. ACM Trans. Program. Lang. Syst. 45, 2, Article 9 (May 2023), 68 pages.

https://doi.org/10.1145/3591472

1 INTRODUCTION

Parsing is a fundamental component in computer systems. Modern parsers used in high-
performance settings such as web browsers and network routers need to be efficient, as their per-
formance is critical to the performance of the whole system. Furthermore, high-assurance parsers
are becoming increasingly more important for security in settings such as web applications, where
their parsers are directly processing potentially adversarial inputs from the network. In these set-
tings, formally verified parsers are highly desirable.

Most parsing libraries are based on Context-Free Grammars (CFGs) or their variants. Al-
though very flexible, CFGs have limitations in terms of efficiency. Not all CFGs can be converted
to deterministic pushdown automata (PDA); the inherent nondeterminism in some CFGs causes
the worst-case running time of general CFG-based parsing algorithms to be O (n3).

To achieve efficient parsing, many parsing frameworks place restrictions on what CFGs can be
accepted, at the expense of placing the burden on users to refactor their grammars to satisfy those
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restrictions. Please see the related-work section for discussion about common kinds of restrictions,
leading to parsing frameworks such as LL(k), LR(k) [11], and so on.

This article explores an alternative angle of building parsers based on Visibly Pushdown

Grammars (VPGs) [2]. In VPGs, users explicitly partition all terminals into three kinds: plain,
call, and return symbols. This partitioning makes the conversion of a VPG to a deterministic PDA
always possible, which provides the foundation for efficient algorithms. Compared to requiring
users to refactor their grammars to resolve sophisticated conflicts during parser generation such as

shift-reduce conflicts in LR(k), asking users to specify what terminals are call and return symbols
is less of a burden.

VPGs have been used in program analysis, XML processing, and other applications [1], but
their potential in parsing has not been fully exploited. In this article, we show that VPGs bring
many benefits in parsing. First, we show an efficient, linear-time parsing algorithm for VPGs.
Second, our algorithm is amenable to formal verification. Overall, this article makes the following
contributions:

• We present a derivative-based algorithm for VPG recognition and parsing. The generated
parser accepts ambiguous grammars and produces a parse forest for the input string, where
each parse tree in the forest can be extracted in linear time.
• We mechanize the correctness proofs of the parsing algorithm in Coq. We have also formal-

ized and proved the linear-time performance guarantee of the parsing algorithm in Coq.
• We present a surface grammar called tagged CFGs to allow a more convenient use of our

parsing framework. Users can use their familiar CFGs for developing grammars and pro-
vide additional tagging information on terminals. A sound translator then converts a tagged
CFG to a VPG. We note that this validator is conservative and places some restriction on
acceptable tagged CFGs; in particular, left recursion is not allowed and users are required to
perform standard refactoring to remove left recursion.
• During the performance evaluation of VPG-based parsers on popular formats including

JSON, XML, and HTML, we discover that their performance is comparable with popular
parsing generators such as ANTLR and other hand-crafted parsers. In addition, we discover
that VPG-based parsers often require a special lexer that groups multiple tokens into one
single call/return symbol.

The remainder of this article is organized as follows: We first introduce VPGs in Section 2 and
discuss related work in Section 3. In Section 4, we provide an overview of our parsing library
and explore various usage scenarios. Section 5 presents a derivative-based VPG recognizer, which
sheds light on the parsing algorithm discussed in Section 6. The translator and tagged CFGs are
discussed in Section 7. We then evaluate the VPG parser in Section 8.

A conference version of this article was published in the ACM SIGPLAN Conference on

Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA) [22]. We
describe the differences between the conference version and this article as follows: First, we have
redesigned the VPG parsing algorithm, including changing how the parser PDA is generated and
replacing the pruner in the conference version with a set of parse-tree extraction functions. The
new algorithm enables a simpler correctness proof and, more importantly, enables us to verify
the performance guarantee: The parser is verified to have time complexity of O (kn), where k
is the number of parse trees and n is the length of the input string. Second, we provide a new
method that optimizes the parse-tree extraction functions to a more efficient extraction PDA.
Third, we rerun all experiments to evaluate our new parsing algorithm. Finally, we have revised
our translation algorithm from tagged CFGs to VPGs and added the proofs of its soundness and
termination.
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2 BACKGROUND: VPG

As a class of grammars, VPGs [2] have been used in program analysis, XML processing, and other
fields. Compared with CFGs, VPGs enjoy many good properties. Since languages of VPGs are a
subset of deterministic context-free languages, it is always possible to build a deterministic PDA
from a VPG. The terminals in a VPG are partitioned into three kinds and the stack action associated
with an input symbol is fully determined by the kind of the symbol: An action of pushing to
the stack is always performed for a call symbol, an action of popping from the stack is always
performed for a return symbol, and no stack action is performed for a plain symbol. Furthermore,
languages of VPGs enjoy appealing theoretical closure properties; e.g., the set of visibly pushdown
languages is closed under intersection, concatenation, and complement [2]. As will be shown in
this article, VPGs also enable the building of linear-time parsers, and VPG parsers are amenable to
formal verification. The expressive power of VPG is between regular grammars and CFGs and is
sufficient for describing the syntax of many practical languages, such as JSON, XML, and HTML,
with appropriated defined call/return symbols.1

We next give a formal account of VPGs. A grammar G is represented as a tuple (V , Σ, P ,L0),
where V is the set of nonterminals, Σ is the set of terminals, P is the set of production rules, and
L0 ∈ V is the start symbol. The alphabet Σ is partitioned into three sets: Σplain, Σcall, Σret, which
contain plain, call, and return symbols, respectively. Notation-wise, a terminal in Σcall is tagged
with ‹ on the left, and a terminal in Σret is tagged with › on the right. For example, ‹a is a call
symbol in Σcall, and b› is a return symbol in Σret.

We first formally define well-matched VPGs. Intuitively, a well-matched VPG generates onlywell-
matched strings in which a call symbol is always matched with a return symbol in a derived string.

Definition 2.1 (Well-matched VPGs). A grammar G = (V , Σ, P ,L0) is a well-matched VPG with
respect to the partitioning Σ = Σplain ∪ Σcall ∪ Σret if every production rule in P is in one of the
following forms:

(1) L → ϵ , where ϵ stands for the empty string;
(2) L → cL1, where c ∈ Σplain;
(3) L → ‹aL1b›L2, where ‹a ∈ Σcall and b› ∈ Σret.

Note that in L → cL1 terminal c must be a plain symbol, and in L → ‹aL1b›L2 a call symbol
must be matched with a return symbol; these requirements ensure that any derived string must
be well-matched.

The following is an example of a well-matched VPG, which is refactored from a grammar for
XML:

element→ OpenTag content CloseTag Empty | SingleTag Empty.

In this example, nonterminals start with a lowercase character, such as “element,” and terminals
start with an uppercase character, such as “OpenTag.” The special nonterminal “Empty” has a
single rule that produces the empty string. The grammar shows a typical usage of VPGs to model
a hierarchically nested matching structure of XML texts: “OpenTag” is matched with “CloseTag,”
and “content” nested in between can be “element” itself (not shown in the above snippet) and forms
an inner hierarchy.

In the main text of this article, we consider only well-matched VPGs and use the term VPGs for
well-matched VPGs.We also call rules in the form of L → ‹aL1b›L2 matching rules. Our Coq library
actually supports a broader class of VPGs, which we call general VPGs; algorithms for general

1For instance, the XML grammar is a VPG if a whole XML tag is treated as a terminal symbol; this requires a lexer that

returns XML tags as tokens.
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VPGs are put into the appendices. Intuitively, general VPGs can specify substrings of well-matched
strings; e.g., 〈/p〉〈p〉〈/p〉〈p〉 is a substring of a well-matched string. This ability enables users to
parse streaming data such as network traffic. As an extension to well-matched VPGs, general VPGs
allow the case of pending calls and returns, which means that a call/return symbol may not have its
corresponding return/call symbol in the input string. To accommodate pending symbols, general
VPGs in addition allow rules in the forms of L → ‹aL′ and L → b›L′, which we call pending

rules. Call/return symbols in pending rules are called pending call/return symbols. Further, the set
of nonterminals V is partitioned into V 0 and V 1: nonterminals in V 0 only generate well-matched
strings, while nonterminals in V 1 can generate strings with pending symbols.

Definition 2.2 (General VPGs). A grammarG = (V , Σ, P ,L0) is a general VPG with respect to the
partitioning Σ = Σplain ∪ Σcall ∪ Σret and V = V 0 ∪V 1 if every rule in P is in one of the following
forms:

(1) L → ϵ ;
(2) L → iL1, where i ∈ Σ, and if L ∈ V 0 then (1) i ∈ Σplain and (2) L1 ∈ V 0;

(3) L → ‹aL1b›L2, where ‹a ∈ Σcall, b› ∈ Σret, L1 ∈ V 0, and if L ∈ V 0, then L2 ∈ V 0.

The above definition imposes constraints on howV 0 andV 1 nonterminals can be used in a rule.
For example, in L → ‹aL1b›L2, nonterminal L1 must be a well-matched nonterminal; so P cannot
include rules such as L1 → ‹aL3, since L1 is supposed to generate only well-matched strings.

The above constraints guarantee that we can identify paired call and return symbols simply by
their locations. For example, consider the following string from a general VPG:

‹a‹acb›.

Even without knowing the rules, we can determine the pairing as follows: We begin with an empty
stack T and read symbols in order, ignoring the plain symbols. When we read a call symbol, we
push it to T ; when we read a return symbol, we match it with the top of T , and if T is empty,
then the return symbol is pending. After we read all symbols, call symbols remained in T are also
pending. For the above string, the stack T has the following transitions:

⊥ read ‹a−−−−−→ ‹a · ⊥ read ‹a−−−−−→ ‹a · ‹a · ⊥ read b›−−−−−→ ‹a · ⊥.

Therefore, the first call symbol ‹a is pending, and the second call symbol ‹a is paired with the
return symbol b›. Note that, in general VPGs, paired ‹a and b› are not necessarily generated from
the same matching rule; they could also be derived from pending rules.

The notion of a derivation in VPGs is the same as the one in CFGs. We writew → w ′ to mean a
single derivation step according to a grammar, wherew andw ′ are strings of terminals or nonter-
minals. We write L →∗ w to mean thatw can be derived from L via a sequence of derivation steps.

3 RELATED WORK

Most parser libraries rely on the formalism of Context-Free Grammars (CFGs) and user-defined
semantic actions for generating parse trees. Many CFG-based parsing algorithms have been pro-
posed in the past, including LL(k), LR(k) [11], Earley [14], CYK [7, 24, 44], amongmany others. LL(k)
and LR(k) algorithms are commonly used, but their input grammars must be unambiguous. Users
often have to change/refactor their grammars to avoid conflicts in LL(k) and LR(k) parsing tables,
a nontrivial task. Earley, CYK, and GLR parsing can handle any CFG, but their worst-case running
time is O (n3). In contrast, our VPG parsing accepts ambiguous grammars and is linear time.

Our VPG parsing algorithm relies on derivatives. One major benefit of working with deriva-
tives is that it is amenable to formal verification, as proofs related to derivatives involve algebraic
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transformations on symbolic expressions; they are easier to develop in proof assistants than it is
to reason about graphs (required when formalizing LL and LR algorithms). Brzozowski [6] first
presented the concept of derivatives and used it to build a recognizer for regular expressions. The
idea was revived by Owens et al. [34] and generalized to generate parsers for CFGs [30], with
an exponential worst-case time complexity. More recently, a symbolic approach [21] for parsing
CFGs with derivatives was presented with cubic time complexity. Derivative-based CFG parsing
is further improved with generalized zippers [9]. Danielsson [8] described a monadic parser com-
binator library, which used derivatives to run parsers; the library had a machine-checked proof in
Agda [33], a dependently typed functional programming language. Finally, Edelmann et al. [15]
presented a formally verified, derivative-based, linear-time parsing algorithm for LL(1) context-
free expressions.

Owl is an open-source project [20] that provides a parser generator for VPGs. It has the same
goal as our work, but differs in the following critical aspects: (1) Owl supports only well-matched
VPGs, while our parsing library supports general VPGs; (2) Owl adopts a different algorithm and
is implemented in an imperative way, while our parsing library is derivative-based and functional;
(3) Owl does not provide formal assurance, while our parsing library is formally verified in Coq;
(4) Owl rejects ambiguous VPGs, while our parsing library accepts ambiguous grammars and gen-
erates parse forests; and (5) Owl does not support semantic actions embedded in grammars, while
our parsing library accepts semantic actions.

Due to parsers’ importance to security, many efforts have been made to build secure and correct
parsers. One obvious approach is testing, through fuzz testing or differential testing (e.g., Petsios
et al. [37]). However, testing generally cannot show the absence of bugs. Formal verification has
also been applied to the building of high-assurance parsers. Jourdan et al. [23] applied the method-
ology of translation validation and implemented a verified parser validator for LR(1) grammars.
RockSalt [31] included a verified parser for regular expression-based DSL. Barthwal and Norrish
[4] presented a verified SLR parser. Lasser et al. [26] and Edelmann et al. [15] presented verified
LL(1) parsers but we are not aware of fully verified LL(k) parsers. Koprowski and Binsztok [25]
implemented a formally verified parser generator for Parsing Expression Grammars (PEG). Ra-
mananandro et al. [38] presented a verified parser generator for tag-length-value binary message
format descriptions. There are also verified parsers for general CFGs [5, 17, 39]. These parsers are
limited in their performance on real-world grammars, with the worst-case complexity of O (n3).
The reason is that they have to handle highly ambiguous CFGs, whose nondeterminism hinders
the parsers’ performance. Recently, Lasser et al. [27] implemented a verified ALL(*) parser, which
is the algorithm behind ANTLR4; however, it did not provide a linear-time worst-case guaran-
tee. We formalize our derivative-based, VPG parsing algorithm and its correctness and linear-time
performance proofs in Coq.

4 VPG FRONTEND OVERVIEW

The focus of this article is on VPG-based parsing. However, since users are already familiar with
CFGs, our system takes as input a CFG-based surface grammar, which is called a tagged CFG. In
this section, we will give a brief overview of tagged CFGs and some application scenarios; we also
discuss tagged CFGs’ expressiveness and limitations. In Section 7, we will discuss tagged CFGs in
detail and how to convert a tagged CFG to a VPG if the tagged CFG passes a validation process.
Once a VPG is obtained, we can use the algorithm described in Section 6 to produce a parser.

Tagged CFG overview. Roughly speaking, a tagged CFG is a CFG enhanced with tagging infor-
mation about what terminals are call and return symbols; in addition, we allow regular operators
for the convenience of specification. As examples, the two subfigures in Figure 1 present tagged
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Fig. 1. Tagged CFGs for JSON and XML. Nonterminals such as json are in lowercase and terminals such as
STRING are in uppercase. Regular operators including ?, + and the Kleene Star * are allowed. Two additional
operators, the left bracket < and the right bracket >, specify the call and return symbols. String literals such
as ’true’ are enclosed in single quotation marks ’. The lexer rules for the terminals are omitted.

CFGs for JSON and XML documents, respectively; more examples of tagged CFGs can be found in
Appendix F.

By placing a left bracket < before a terminal, the user can mark it as a call symbol; similarly, a
right bracket > after a terminal marks it as a return symbol. We mentioned in Section 2 that the
locations of call and return symbols in a VPG determine how they are matched. Similarly for a
tagged CFG, matched call and return symbols should appear in the same rule.

Expressiveness and limitations. In practice, we can make tagged CFGs more expressive by utiliz-
ing a lexer with an extended notion of call and return symbols. Take XML as an example. If in-
dividual characters were considered as terminals, then the XML grammar could not be expressed
as a tagged CFG; this is because an XML tag is complex and includes components such as the tag
name and the tag attributes. However, if a whole XML tag is treated as a token in an extended
lexer, then the XML grammar can be expressed as a tagged CFG and is convertible to a VPG, as
our evaluation shows. For instance, the call symbol for XML is the open tag, which comprises the
tag name and also possible attributes.

OpenTag = '<' Name attribute* '>'

An example open tag is as follows:

< p id = "a" >.

Since the syntax of such tags can be specified by regular expressions, we can treat it as a single
token and extend the lexer to store semantic values such as the tag name p and the attributes id
= "a", which can be performed efficiently [13].

ACM Transactions on Programming Languages and Systems, Vol. 45, No. 2, Article 9. Publication date: May 2023.
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As will be discussed in Section 7, the primary limitation of a tagged CFG is that it must pass
validation so we can convert it to a VPG. Approximately, it means that each dependency loop in
the grammar must be in at least one pair of matched call and return symbols. A dependency loop
is there when a nonterminal L can be used to generate itself via a set of rules; this notion will be
discussed formally in Definition 7.3. For example, the following grammar includes a dependency
loop, as the right-hand side of the first rule uses L itself:

L → aLLb | c .

The previous grammar would not pass the validation; however, the user can use the following tags
to make it a valid tagged CFG, by ensuring that the dependency stays within ‹a and b›:

L → ‹aLLb› | c .

In this case, we describe the dependency loop as well founded. For the JSON grammar in Figure 1,
the call-return pairs (’[’, ’]’) and (’{’, ’}’) ensure that all dependency loops are well founded.

Because of the restriction of dependency loops, left recursion is not supported by tagged
CFGs. However, in practice, we can easily remove direct left recursion by performing grammar
refactoring [36].

5 VPG-BASED RECOGNITION

Before presenting a parsing algorithm for VPGs, we first present an algorithm for converting a
well-matched VPG into a deterministic PDA for recognition using a derivative-based algorithm.
The resulting PDA recognizes the same set of strings as the input VPG.

To compute a recognizer, we utilize the notion of derivatives [6, 30, 34]. The derivative of a
language L with respect to an input symbol c is the residual set of strings of those in L that start
with c:

δc (L) = {w | cw ∈ L}.
Before giving formal derivative definitions, we first review derivatives for regular grammars [6,

34] in Example 5.1. We then extend them to VPGs in Example 5.2, where we also discuss informally
the intuition of the states, the stack, and the transition function of the PDA that is converted from
an input VPG. Throughout this section and Section 6, we use the VPG G shown in Figure 2(c),
where the start nonterminal is L, and the right-regular grammarG ′, which is based on the VPGG
by deleting the matching rules.

Example 5.1 (From Regular Grammars to DFAs). For regular grammars, we can build a deter-

ministic finite automaton (DFA) for recognition, where a state S is a set of nonterminals. When
reading a symbol c , we transfer from the current state S to the next state δc (S ), a derivative of S
with respect to the symbol c:

δc (S ) =
{
L′ | L ∈ S, (L → cL′) ∈ P }

.

We define the initial state S0 as the singleton set containing the start nonterminal. For instance,
suppose the input string is s = ccc . The derivatives for the grammarG ′ in Figure 2(a) are as follows:

S0 = {L},
S1 = δc (S0) = {A,B},
S2 = δc (S1) = {D},
S3 = δc (S2) = {L}.

ACM Transactions on Programming Languages and Systems, Vol. 45, No. 2, Article 9. Publication date: May 2023.
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Fig. 2. Figures for Examples 5.1 and 5.2.
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We accept the string if and only if the final state includes a nonterminal that can derive the empty
string. For the example input string, L is in the final state and can derive the empty string; thus,
the string ccc is accepted.

Using the notion of derivatives, we can compute derivatives for all possible input symbols and
for all states; the process terminates. This way, we can produce a DFA. Figure 2(b) shows the DFA
for the regular grammar G ′.

Example 5.2 (From VPGs to Recognizer PDAs). Based on the derivatives for regular grammars, our
first attemptwould be to retain the same kind of stateswhen producing PDA for VPGs. Considering
the grammar G in Figure 2(c) and the string s = c‹accb›, the attempt is summarized in Figure 2(d)
and detailed as follows: Our first two states would be as follows: S0 = {L}; S1 = δc (S0) = {A,B}.

Next, we would process the symbol ‹a, and try to compute the following derivative: δ‹a (S1) =
δ‹a ({A,B}). Here, we would use the nonterminals A and B to derive ‹a. At first glance, one might
assume that the derivative of {A,B} with respect to ‹a would simply be {Ab›L,Bb›L}; however, this
definition can lead to an infinite number of states, e.g., the derivative of {Ab›L,Bb›L} with respect
to ‹a would be {Ab›Lb›L,Bb›Lb›L}. Therefore, we would instead apply the two matching rules in
the grammar and produce the next state S2 = {A,B}, which only contains the nonterminals to be
parsed next. In other words, we would define the derivative function δ‹a as follows:

δ‹a (S ) = {L1 | L ∈ S, (L → ‹aL1b›L2) ∈ P }.
For the next two plain symbols c , the derivatives would be identical to those of regular grammars
and thus before readingb›, wewould have the following states: S0 = {L}; S1 = δc (S0) = {A,B}; S2 =
δ‹a (S0) = {A,B}; S3 = δc (S1) = {D}; S4 = δc (S2) = {L}.

When processing the next symbol b›, however, we would discover that the state S4 alone is
insufficient to determine which rule to apply for deriving b›, as shown in Figure 2(d). First, we
know that the state S4 includes a nonterminal L that derives the empty string ϵ . Therefore, we
should use the matching rules used last time that derive both the nonterminal L in the state S4
and the symbol b›. However, based on only the state S4, we would not know which matching rule
should be used to produce b›.

To solve this issue, we extend states to be sets of pairs of nonterminals and also use a stack. A
nonterminal pair (L1,L2) in a state tells that the rest of the input should match L2 and the current
context is L1. The context is the nonterminal that is used to derive L2 without consuming an
unmatched call symbol before getting to L2. Formally, it means that there exists a derivation se-
quence L1 →∗ ω1L2ω2, where ω1 is a sequence of terminals and does not contain an unmatched call

symbol (meaning that ifω1 contains a call symbol, then it also contains a matching return symbol),
and ω2 is a sequence of terminals or nonterminals. We define the initial state S0 as {(L,L)}, where
L is the start nonterminal. It means that the input string should match L and the context is also
L, since L can be derived from itself (in zero steps) without generating an unmatched call symbol.

For the example, we now have the following states:

S0 = {(L,L)},
S1 = δc {(L,A), (L,B)},
S2 = δ‹a (S1) = {(A,A), (B,B)},
S3 = δc (S2) = {(A,D)},
S4 = δc (S3) = {(A,L)}.

Notice that when transitioning from S1 to S2, there is a context switch from L toA or B, as there is
an unmatched call symbol ‹a that is encountered using the rulesA→ ‹aAb›L andA→ ‹aBb›L. For
this transition, we will also need to use a stack to store the old context information; in particular,

ACM Transactions on Programming Languages and Systems, Vol. 45, No. 2, Article 9. Publication date: May 2023.
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our PDA will push S1 and ‹a to the stack, so when the return symbol b› is encountered, we can
use that stack information to look up the old context and transition the PDA to state {(L,L)}.

As shown in Figure 2(f), for the grammar G, we have the following state and stack when
reading the symbol b›:

S4 = {(A,L)},
T4 = [S1, ‹a] · ⊥.

To determine which rule to apply, we first find that the nonterminal L in the current state S4
derives the empty string ϵ and has context A. Based on the context and the call symbol ‹a stored

at the top of T4, we can deduce that a rule of the form L̂ → ‹aAb›L̂2 was used to derive ‹a, where

L̂ and L̂2 are unknown nonterminals. To identify them, we use the state S1 at the top of T4 and
consider possible candidate matching rules. These rules could include:

(L̂ → ‹aAb›L̂2) ∈ P , for L̂ ∈ {L | (L′,L) ∈ S1}.

The above is enough for us to identify that A→ ‹aAb›L is the matching rule; note that in general
there may be multiple possible matching rules.

For the example input string s = c‹accb›, the final state is S5 = {(L,L)}. We finish the recognition
by accepting the string s , since L, the next nonterminal to parse, can derive the empty string ϵ .

Following the above process for all input symbols and all states, we can build the recognizer PDA
for the VPG G shown in Figure 2(e); the detailed algorithm will be presented later in this section.

Given the above discussion, we have the following PDA states and stacks:

Definition 5.1 (PDA States and Stacks). Given a VPG G = (Σ,V , P ,L0), we introduce a PDA
whose states are subsets of V × V and whose stack contains stack symbols of the form [S, ‹a],
where S is a PDA state and ‹a ∈ Σcall is a call symbol. We write⊥ for the empty stack and [S, ‹a] ·T
for a stack whose top is [S, ‹a] and the rest is T . Intuitively, the stack remembers a series of past
contexts, which are used for matching future return symbols. We call a pair (S,T ) a configuration,
with S being the state and T being the stack.

Given a VPG G = (V , Σ, P ,L0), we define three kinds of derivative functions: (1) δc is for when
the next input symbol is a plain symbol c; (2) δ‹a for when the next input symbol is a call symbol
‹a; and (3) δb› for when the next input symbol is a return symbol b›. Each function takes the
current state S and the top stack symbol and returns a new state as well as an action on the stack
(expressed as a lambda function). Note that δc and δ‹a do not need information from the stack;
therefore, we omit the top stack symbol from their parameters.

We note that previous work on derivatives [6, 30, 34] uses a direct representation of a language
(for instance, a grammar) to represent the derivative result. In this work, however, what we
compute over derivatives is configurations, which include states and stacks. A later definition
(Definition 5.3) shows that a configuration of a recognizer PDA represents a language. We
also note that the derivative functions defined below take only necessary information from a
configuration to make clear what information is needed for a particular derivative function.

Definition 5.2 (Derivative Functions).

(1) δc (S ) = (S ′, λT .T ), where

S ′ = {(L1,L3) | (L1,L2) ∈ S ∧ (L2 → cL3) ∈ P }.

For a plain symbol c ∈ Σplain, it checks each pair (L1,L2) in the current state S , and if there is
a rule L2 → c L3, then the pair (L1,L3) becomes part of the new state. In addition, the stack
is left unchanged.
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Fig. 3. An example of state transitions: Assuming there is a rule L2 → ‹aL3b›L5, (L1,L2) transfers to (L3,L3)
with symbol ‹a, and finally transfers to (L1,L5) with symbol b›.

(2) δ‹a (S ) = (S ′, λT .[S, ‹a] ·T ), where

S ′ = {(L3,L3) | (L1,L2) ∈ S ∧ (L2 → ‹aL3b›L4) ∈ P }.
For a call symbol ‹a ∈ Σcall, it checks each pair (L1,L2) in the current state S ; if there is a
rule L2 → ‹aL3b›L4, then the pair (L3,L3) becomes part of the new state; note there is a
context change, since a call symbol is encountered. In addition, the old state together with
‹a is pushed to the stack.

(3) δb› (S, [S1, ‹a]) = (S ′, tail), where tail is a function that returns the tail of the stack, and

S ′ = {(L1,L5) | (L1,L2) ∈ S1 ∧ (L3,L4) ∈ S ∧ (L4 → ϵ ) ∈ P ∧ (L2 → ‹aL3b›L5) ∈ P }.
For a return symbol b› ∈ Σret and a stack top [S1, ‹a], it checks each pair (L1,L2) in the state
S1 of the stack top symbol; if there is a pair (L3,L4) in the current state S , L4 can derive
the empty string, and there is a rule L2 → ‹aL3b› L5, then the pair (L1,L5) becomes part of
the new state; note that it checks L4 → ϵ to ensure that the current level is finished before
returning to the upper level. In addition, the stack top is popped from the stack. Figure 3
presents a drawing that depicts the situation when a return symbol is encountered.

We formalize the semantics of PDA configurations as sets of accepted strings:

Definition 5.3 (Semantics of PDA Configurations). We write (S,T ) � w to mean that a terminal
stringw can be accepted by the configuration (S,T ). It is defined as follows:

(1) (S,⊥) � w if ∃(L1,L2) ∈ S, s.t. L2 →∗ w ,
(2) (S, [S ′, ‹a] ·T ′) � w1b›w2 if ∃(L3,L4) ∈ S s.t.

(a) L4 →∗ w1, and
(b) ∃(L1,L2) ∈ S ′,∃L5, (L2 → ‹aL3b›L5) ∈ P ∧ ({(L1,L5)}, T ′) � w2.

The correctness of derivative functions is stated in the following theorem, whose correctness
proof is detailed in Appendix A. Take the case of δc as an example: The theorem states that (S,T )
matches cw iff the configuration after running δc matchesw (the string after consuming c).

Theorem 5.1 (Derivative Function Correctness).

• Assume δc (S ) = (S ′, λT .T ) for a plain symbol c . Then (S,T ) � cw iff (S ′,T ) � w .

• Assume δ‹a (S ) = (S ′, λT .[S, ‹a] · T ) for a call symbol ‹a. Then (S,T ) � ‹aw iff

(S ′, [S, ‹a] ·T ) � w .

• Assume δb› (S, [S1, ‹a]) = (S ′, tail) for a return symbol b›. Then (S, [S1, ‹a] · T ) � b›w iff

(S ′,T ) � w .
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ALGORITHM 1: Constructing the recognizer PDA.

Input :A VPG G = (V , Σ, P ,L0) where Σ = Σcall ∪ Σplain ∪ Σret, δ ;
Return : The initial state S0, the set of all produced states A, the set of acceptance states Aacc, and the

set of transitions T ;

1 S0 ← {(L0,L0)};
2 Initialize the set for new states N ← {S0};
3 Initialize the set for all produced states A← N ;

4 Initialize the set for transitions T ← {};
5 repeat

6 N ′ ← {(i, f , S, S ′) | (S ′, f ) = δi (S ), S ∈ N , and i ∈ Σcall ∪ Σplain};
7 Add edge (S, S ′) marked with (i, f ) to T , where (i, f , S, S ′) ∈ N ′;
8 Compute the set of stack elements: R ← {[S, ‹a] | S ∈ A and ‹a ∈ Σcall};
9 Compute transitions with return symbols and stack elements in R:

10 NR ← {(b›, r , f , S, S ′) | (S ′, f ) = δb› (S, r ),S ∈ A,b› ∈ Σret, r ∈ R};
11 Add edge (S, S ′) marked with (b›, r , f ) to T , where (b›, r , f , S, S ′) ∈ NR ;

12 Collect the new states N ← {S ′ | (_, _, _, S ′) ∈ N ′ ∨ (_, _, _, _, S ′) ∈ NR } −A;
13 Update the set of all produced states A← A ∪ N ;

14 until N = ∅;
15 Compute the states of acceptance configurations Aacc ← {S | (L′,L) ∈ S ∈ A, (L → ϵ ) ∈ P };

With those derivative functions, we can convert a VPA to a PDA, whose set of states is the least
solution of the following equation; it makes sure that states are closed under derivatives:

A = A ∪ {S ′ | c ∈ Σplain, S ∈ A, δc (S ) = (S ′, f )}
∪ {S ′ | ‹a ∈ Σcall, S ∈ A, δ‹a (S ) = (S ′, f )}
∪ {S ′ | b› ∈ Σret, ‹a ∈ Σcall, S ∈ A, S ′′ ∈ A, δb› (S, [S

′′, ‹a]) = (S ′, f )}.

We note that the least solution to the previous equation may include unreachable states, since
the last line of the equation considers all (S, [S ′, ‹a]) without regard for whether such a configura-
tion is possible. This may make the resulting PDA contain more states and occupy more space for
the PDA representation than necessary. However, unreachable states do not affect the linear-time
parsing guarantee of VPG parsing, as during parsing those unreachable states are not traversed;
further, during experiments, we did not experience space issues when representing PDA states and
transitions.

Algorithm 1 is an iteration-based method to solve the equation for the least solution, where the
returned S0 is the initial state, A is the set of all states, and T is the set of edges between states.
For an iteration, N is the set of states that the algorithm should perform derivatives on. Line 7
then performs derivatives using call and plain symbols, and line 10 performs derivatives using
return symbols.

At the end of each iteration, the following invariants are maintained: (1) N ⊆ A; (2) for state
S ∈ A−N and i ∈ Σcall ∪ Σplain, if δi (S ) = (S ′, f ), then S ′ ∈ A; (3) for states S, S ′ ∈ A−N , ‹a ∈ Σcall,
and b› ∈ Σret, if δb› (S, [S

′, ‹a]) = (S ′′, f ), then S ′′ ∈ A. With these invariants, when N becomes
empty, A is closed under derivatives.

Once the PDA is constructed from a VPG, it can be run on an input string in a standard way.
For completeness, we include the definition here so we can state the correctness theorem formally.
Recall that a runtime configuration of a recognizer PDA is a pair (S,T ), where S is a state andT is
a stack, denoted as T = t1 · t2 · · · tk · ⊥, where ti = [Si , ‹ai ] for i = 1..k , ‹ai ∈ Σcall is a call symbol,
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t1 the top of T , and ⊥ the empty stack. The PDA’s initial configuration is ({(L0,L0)},⊥) and its
acceptance configurations are defined as follows:

Definition 5.4 (PDA Acceptance Configurations). Given a VPG G = (V , Σ, P ,L0), a pair (S,T ) is
an acceptance configuration if T = ⊥, and ∃(L,L′) ∈ S s.t. (L′ → ϵ ) ∈ P .

Definition 5.5 (Recognizer PDA Execution). The runtime execution F of a PDA (S0,A,T ) is de-
fined as follows, where S0 is the start state, A is the set of states, and T is the set of configuration
transitions:

F : (i, S,T ) �→ (S ′,T ′),

where

(1) if i ∈ Σcall ∪ Σplain, then (S, S ′) ∈ T and is marked with (i, f ), and T ′ = f (T );
(2) if i ∈ Σret and T = t ·T ′, then (S, S ′) ∈ T and is marked with (i, t , f ), and T ′ = f (T ).

Given an input string w = w1 . . .wn , we say the PDA accepts w if there exists a sequence of
configurations (S0,T0), . . . , (Sn ,Tn ), so

(S0,T0) = ({(L0,L0)},⊥),
(Si ,Ti ) = F (wi , Si−1,Ti−1), for i ∈ [1,n], and
(Sn ,Tn ) is an acceptance configuration.

Otherwise,w is rejected.
Then PDA correctness can be stated as follows. We detail the correctness proof in Appendix A.

Theorem 5.2 (PDA Correctness). For VPG G and its start symbol L0, a string w ∈ Σ∗ can be

derived from L0 (i.e., L0 →∗ w) iff w is accepted by the corresponding PDA.

For converting general VPGs (i.e., with pending rules) to PDAs, a couple of changes need to be
made to the derivative-based approach: (1) The derivative functions need to consider also pending
rules; (2) the acceptance stackmay be nonempty because of pending call symbols. The construction
is discussed in Appendix B.

The time complexity of Algorithm 1. Algorithm 1 terminates when no new state can be produced.
Since a PDA state contains pairs of nonterminals, the number of states produced at the end |A| is
bounded byO (2 |V |

2
). For each produced state, the derivative functions are called at line 6 and line

9. The number of times they are called across all iterations is nomore than |A|× |Σcall∪Σplain |+ |A|×
|Σret |× |A|× |Σcall |, which is bounded byO ( |A|2 |Σ|2). Among the three derivative functions, the one
for return symbols has the largest time complexity. Recall that in the definition of δb› (S, [S1, ‹a]),
we consider each pair (L1,L2) in S1, find a matching rule “L2 → ‹aL3b›L5,” and check if (L3,L4) is
in S for some L4 that can derive the empty string. Therefore, the cost is bounded by |S1 | × |P | × |S |,
which is further bounded by O ( |V |4 |P |). At lines 7 and 11, at most O ( |A|2) edges are added across
all iterations. At lines 12 and 13, in one iteration collecting the states takesO ( |N ′ |+ |NR |) = O ( |A|),
and computing the difference and union of the sets takes O ( |N | + |A|); so the time complexity is

O ( |A|). Therefore, the total time complexity is O ( |A|2 |Σ|2 |V |4 |P |) +O ( |A|2)=O (22 |V |
2 |V |4 |Σ|2 |P |).

6 VPG-BASED PARSING

Parsing is a process to build the parse trees of a given string. It is equivalent to finding the rule
sequences that generate the string. To achieve this, our VPG-based parsing framework includes
two steps: We first run a parser PDA on the string, which leaves a trace of PDA states that can
be treated as a parse forest; we then execute extraction functions on the forest to extract all valid
parse trees. We further propose an optimization, which optimizes the second step to an extraction

PDA: Instead of extracting all parse trees, the extraction PDA extracts a single parse tree. In the
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following discussion, we first describe parse trees in the context of VPGs, then discuss the parser
PDA in Section 6.1, the extraction functions in Section 6.2, and the optimization of extraction
as an extraction PDA in Section 6.3. We then discuss the correctness of our parsing framework
in Section 6.4 and its time complexity in Section 6.5. Both the correctness proof and the time-
complexity proof have beenmechanized in the proof assistant Coq2; we provide more details about
the Coq mechanization in Section 6.6.

Before proceeding, we note that the parsing approach in this section is different from the
approach described in the conference version. The conference version [22] presented a parsing
method that includes a parser PDA, a pruner PDA, and an extractor. The correctness of parsing
was verified, but we were not able to formalize and verify its linear-time performance guarantee
when extracting a parse tree; the structure of the PDA states of that method made it hard to reason
about the performance (and also correctness). Our newmethod improves the parsing function and
the parser PDA so we can build a verified extraction function and verify the performance: For an
input stringw that has k valid parse trees, we verify that the time complexity of parsing with the
new approach isO (k |w |). Note that, when only one of the parse trees is needed, later in this article,
we will describe an extractor PDA that extracts just one parse tree and prove that it takes linear
time (O ( |w |)).

Given a grammar with a rule set P , we define a notion of dotted rules. A dotted rule is a rule in P
with an extra dot on the right-hand side. Intuitively, the dot tells the parsing position: To the right
of the dot there is a nonterminal, which tells what should be parsed next.

Definition 6.1 (Dotted Rules Ṗ ). Given a well-matched VPG G = (Σ,V , P ,L0), we define the set
of dotted rules as

Ṗ = {L → c .L′ | L → cL′ ∈ P }
∪ {L → ‹a.L1b›L2 | L → ‹aL1b›L2 ∈ P }
∪ {L → ‹aL1b›.L2 | L → ‹aL1b›L2 ∈ P }.

Dotted rules are similar to items in LR parsing [11], but dots in our dotted rules appear after only
a terminal, while dots in items do not have this restriction.

Parse trees. Given a grammarG = (Σ,V , P ,L0) and its dotted rules Ṗ , we define a parse tree v as

a rule sequence; i.e.,v = [r1, . . . , rn], where ri ∈ Ṗ , 1 ≤ i ≤ n; when n = 0, it is an empty parse tree.
For two parse treesv1 = [r1, . . . , rn1 ] andv2 = [r ′1, . . . , r

′
n2
], we use the notationv1+v2 to represent

their concatenation [r1, . . . , rn1 , r
′
1, . . . , r

′
n2
]. We use L ⇓ (w,v ) for the relation that v can derive a

string w starting from nonterminal L ∈ V ; its rules are in Figure 4. We call v a valid parse tree of
w if L0 ⇓ (w,v ). Note that a rule in Figure 4 produces a sequence of dotted rules. Also, the last
rule produces a sequence with L → ‹aL1b›L2 appearing twice, but with different positions for the
dot: one after the call symbol ‹a and one after the return symbol b›; this is because the call and the
return symbol are parsed independently, resulting in the need to differentiate how L → ‹aL1b›L2

is used. During parsing, when we have used a dotted rule to parse a call symbol, but have not read
the matched return symbol, we call the dotted rule unclosed.

We introduce a set of definitions to extract parts of a dotted rule. We define headNT (r ) to be
the head nonterminal of r and nextNT (r ) to be the next nonterminal after the dot in r :

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

headNT (L → c .L′) = L;

headNT (L → ‹a.L1b›L2) = L;

headNT (L → ‹aL1b›.L2) = L.

2https://bitbucket.org/psu_soslab/verifiedvpgparser/src/master/.
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Fig. 4. The big-step parse-tree derivation, assuming a well-matched VPG G = (Σ,V , P ,L0).

Fig. 5. The parser DFA for the regular grammar in Figure 2(b). The pseudo-rule L → .L appears only in the
initial state, representing a rule in which only its next nonterminal (after the dot) matters.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

nextNT (L → c .L′) = L′;

nextNT (L → ‹a.L1b›L2) = L1;

nextNT (L → ‹aL1b›.L2) = L2.

We abuse the notation and for parse tree v = [r1, . . . , rn] write headNT (v ) to be headNT (r1) and
nextNT (v ) to be nextNT (rn ). We also define firstRule(v ) to be r1 and lastRule(v ) to be rn .

6.1 The Parser PDA

Recall that in the recognizer PDA, a transition between two states for an input symbol is com-
puted based on possible rules that can derive the input symbol. As a result, a state-transition trace
that accepts an input string essentially represents the rule sequences that can possibly derive the
string. We illustrate this through the following examples, before presenting a formal algorithm for
constructing a parser PDA for a VPG:

Example 6.1 (From Recognizer DFAs to Parser DFAs). We begin with regular grammars. Recall
the DFA in Figure 2(b). Instead of taking the state as a set of nonterminals, let us replace each state
with a set of rules that can produce the last consumed symbol; we call the new automaton the
parser DFA, as shown in Figure 5. The parser DFA has more states than the recognizer DFA. First,
we introduce a pseudo-rule L → .L to construct an initial state with that rule. In the pseudo-rule,
we use a dot “.” to indicate the parsing position. Second, the recognizer state {D} is split to two
states {B → d .D} and {A → c .D} to capture the parsing rule used precisely when transitioning
from {L → c .A, L → c .B}.

Compared with the recognizer PDA, a trace of states in the parser DFA represents a parse tree.
For example, consider the input string s = ccc . Its trace in the parser DFA is as the following:

{L → .L} −→
{
L → c .A,

L → c .B

}
−→ {A→ c .D} −→ {D → c .L}.

This trace essentially represents the following parse tree vs of the string ccc:

vs = [L → c .A;A→ c .D;D → c .L].
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In fact, we can extract a parse tree from the trace as follows: We start from the last state and take
a rule r that derives the empty string ϵ for the nonterminal next to the dot and define the initial
parse tree v0 as [r ]. In this example, we have the initial parse tree being

v0 = [D → c .L].

Then, we expand the parse tree by processing states in the trace backward. In particular, for each
state S , we add a rule r ∈ S that is connected to the head rule of the current parse tree v , i.e.,

nextNT (r ) = headNT (v ) ,where r ∈ S,

and prepend r to the current parse tree v . For example, for the first step, we add A→ c .D to v0 to
have v1 as follows; similarly, v2 is built by adding L → c .A to v1:

v1 = [A→ c .D;D → c .L],

v2 = [L → c .A;A→ c .D;D → c .L].

Note that v2 is the final parse tree we desire. In general, there may be multiple parse trees for an
input string, and we need to maintain a set of parse trees during the extraction process.

The above process is essentially the same as how a parser PDA is constructed for a VPG and
how a parse tree is extracted from a trace of the parser PDA. We discuss an example next.

Example 6.2 (From Recognizer PDAs to Parser PDAs). Recall the recognizer PDA shown in Fig-
ure 2(e); we first discuss how to extend it to the parser PDA shown in Figure 6 and then illustrate
it using a concrete example.

Similar to the case of regular grammars, for each pair (L1,L2) in a recognizer PDA state, non-
terminal L2 is replaced by the rules that can produce the last consumed symbol. The context L1,
however, is replaced with the most recent unclosed dotted rule; when there is no such a rule, we
use a special context called None. The stack T could still store the parser PDA states paired with
call symbols; however, since the call symbols have already been recorded in the rules in the states,
the stack needs to store only the PDA states.

Now let us reexamine the VPG shown in Figure 2(c) and the input string s = c‹accb›. After
running the parser PDA in Figure 6 on the string s , we have the following trace, where the initial
state is omitted:{

(None,L → c .A),

(None,L → c .B)

}
−→

{
(A→ ‹a.Ab›L,A→ ‹a.Ab›L),

(A→ ‹a.Bb›L,A→ ‹a.Bb›L)

}
−→

{(A→ ‹a.Ab›L,A→ c .D)} −→ {(A→ ‹a.Ab›L,D → c .L)} −→ {(None,A→ ‹aAb›.L)}.

Similar to the trace in Example 6.1, the preceding trace includes the following parse tree of the
string s:

[L → c .A; A→ ‹a.Ab›L; A→ c .D; D → c .L; A→ ‹aAb›.L].

Let us extract the above parse tree from the trace in a way similar to the case for regular grammars.
Start from the last state, we pick a rule r that has the context None and can derive the empty string ϵ
from the next nonterminal to parse.We initialize the parse tree asv0 = [r ]. In this example, we have

v0 = [A→ ‹aAb›.L].

Now, we trace back to the state {(A → ‹a.Ab›L,D → c .L)}. Since the last symbol is a return
symbol, we begin by identifying rules with the next nonterminal that can produce the empty
string. In this case, rule D → c .L is a candidate. In addition, recall that the context rule is the most
recent unclosed dotted rule; so the following return symbol should be derived from the context
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Fig. 6. The parser PDA for the VPG shown in Figure 2(c). Each state is marked with its index; e.g., the initial
state is State 0. The stack operation “Push i” means pushing State i to the top of the stack, and “Pop i” means
removing the top of the stack when the top is State i .

rule. The context rule is A → ‹a.Ab›L, which corresponds to the current parse tree’s head rule
A→ ‹aAb›.L. Therefore, we can use the rule D → c .L to extend our parse tree.

v1 = [D → c .L; A→ ‹aAb›.L].

Then, we continue to the next state in the trace: {(A → ‹a.Ab›L,A → c .D)}. We first observe
that the rule A → c .D is connected to the head rule D → c .L. In addition, since the symbol to
match next is a plain symbol, the context rule should not change and should be A → ‹a.Ab›L.
To determine the context of the head rule efficiently, we introduce a stack T to store the current
context, as shown below.

v0 = [A→ ‹aAb›.L], T0 = (A→ ‹aAb›.L) · ⊥
v1 = [D → c .L; A→ ‹aAb›.L], T1 = (A→ ‹aAb›.L) · ⊥

Note that the stack T0 could alternatively store the rule A → ‹a.Ab›L; the difference is just about
the location of the dot. With the stack, we know that the context is the same and prepend rule
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A→ c .D to the parse tree.

v2 = [A→ c .D; D → c .L; A→ ‹aAb›.L], T2 = (A→ ‹aAb›.L) · ⊥
We continue to the next state. {

(A→ ‹a.Ab›L,A→ ‹a.Ab›L),

(A→ ‹a.Bb›L,A→ ‹a.Bb›L)

}

To extract a matching rule for the call symbol is fairly simple at this point: We just pick the rule
that corresponds to the top of the stack T ; in this case it should be A → ‹a.Ab›L. Our final parse
tree is as the following:

v3 = [A→ ‹a.Ab›L; A→ c .D; D → c .L; A→ ‹aAb›.L], T3 = ⊥.
Again, in general, there may be multiple parse trees for the input string, and we need to maintain
a set of parse trees during the extraction.

Now, we formally define parser PDA states and stacks and the derivative functions for well-
matched VPGs as follows (the definitions for general VPGs can be found in Appendix C):

Definition 6.2 (Ppln,Pcall,Pret). Given a VPG G = (Σ,V , P ,L0), based on the dotted rules in Ṗ ,

(1) we define a set of plain rules Ppln as {L → c .L1 ∈ Ṗ | c ∈ Σplain};
(2) we define a set of call rules Pcall as {L → ‹a.L1 ∈ Ṗ } ∪ {L → ‹a.L1b›L2 ∈ Ṗ };
(3) we define a set of return rules Pret as {L → b›.L1 ∈ Ṗ } ∪ {L → ‹aL1b›.L2 ∈ Ṗ }.

Definition 6.3 (Parser PDA States and Stacks). Given a VPG, we introduce a PDAwhose states are

subsets of (Pcall∪{None})× (Ṗ ∪{L0 → .L0}) and whose stack contains PDA states. Intuitively, the
stack remembers a series of past contexts, which are used for matching future return symbols. We
call a pair (m,T ) a configuration, withm being the state andT being the stack. A rule pair (r ′, r ) in
statem tells that the current rule is r and the context rule is r ′. The context rule r ′ is the rule that
generates the last unmatched call symbol; when all call symbols are matched with return symbols,
r ′ is None. Initially, since the parser PDA has not read any symbol, there is no current rule; so we

define the initial PDA state asm0 = {(None,L0 → .L0)}, where L0 → .L0 � Ṗ a special rule; they
only appear inm0.

The initial stack T0 is empty. When reading a call symbol, the parser PDA pushes the current
state to its stack; when reading a return symbol, it removes the top of the stack. For a PDA stack
T , the function head(T ) returns the top of the stack and is defined as

head(T ) =
⎧⎪⎨⎪⎩
None, if T = ⊥;
t , if ∃t T ′, T = t ·T ′.

For parser PDA construction, we define three kinds of derivative functions pc , p‹a , and pb›, sim-
ilar to the case of recognizer construction.

Definition 6.4 (The Derivative Function p for the Parser PDA). Given a VPG G = (V , Σ, P ,L0),
suppose the current state of the parser PDA ism and the current stack isT , the transition functions
pc , p‹a and pb› are defined as follows:

(1) pc (m) = (m′, λT .T ), where

m′ = {(r ′, nextNT (r ) → c .L1) | (r ′, r ) ∈m ∧ (nextNT (r ) → c .L1) ∈ Ṗ }.
For each pair (r ′, r ) in m, the new state keeps the context rule r ′ and updates the current
rule to a rule with head nextNT (r ) and that derives c .
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ALGORITHM 2: Constructing the parser PDA. Differences from Algorithm 1 are highlighted.

Input :A VPG G = (V , Σ, P ,L0) where Σ = Σcall ∪ Σplain ∪ Σret, p;
Return : The initial state S0, the set of all produced states A, the set of acceptance states Aacc, and the

set of transitions T ;

1 m0 ← {(None,L0 → .L0)};
2 Initialize the set for new states N←{m0};
3 Initialize the set for all produced states A←N ;

4 Initialize the set for transitions T←{};
5 repeat

6 N ′ ← {(i, f ,m,m′) | (m′, f ) = pi (m), m ∈ N , and i ∈ Σcall ∪ Σplain};
7 Add edge (m,m′) marked with (i, f ) to T , where (i, f ,m,m′) ∈ N ′;
8 Compute the set of stack elements: R ← A ∪ {∅};
9 Compute transitions with return symbols and stack elements in R:

10 NR ← {(b›, r , f ,m,m′) | (m′, f ) = pb› (m, r ),m ∈ A,b› ∈ Σret, r ∈ R};
11 Add edge (m,m′) marked with (b›, r , f ) to T , where (b›, r , f ,m,m′) ∈ NR ;

12 Collect the new states N ← {m′ | (_, _, _,m′) ∈ N ′ ∨ (_, _, _, _,m′) ∈ NR } −A;
13 Update the set of all produced states A← A ∪ N ;

14 until N = ∅;
15 Compute the states of acceptance configurations

Aacc ← {m | (None, r ) ∈ m ∈ A, (nextNT (r ) → ϵ ) ∈ P };

(2) p‹a (m) = (m′, λT .m ·T ), where

m′ =
{
(r1, r1) | (r ′, r ) ∈m ∧

(
r1 = (nextNT (r ) → ‹a.L1b›L2) ∈ Ṗ

)}
.

For each pair (r ′, r ) inm, the new state changes the context rule and the current rule to a
rule with head nextNT (r ) and that derives ‹a. We further push the current state m to the
stack.

(3) pb› (m,mcall) = (m′, tail), where tail is a function that returns the tail of the stack, andmcall =

head(T ), and

m′ ={(r ′, nextNT (r ) → ‹aL1b›.L2) | (r1, r2) ∈m ∧ (r ′, r ) ∈mcall ∧
r1 = (nextNT (r ) → ‹a.L1b›L2) ∧ (nextNT (r2) → ϵ ) ∈ P }.

We remove the topmcall of the stackT and, for each pair (r1, r2) inm where the context rule
is r1 = L → ‹a.L1b›L2, we match b› with ‹a and update the current rule to L → ‹aL1b›.L2.
We also require that nextNT (r2) → ϵ . Note that we must havemcall � ∅, since there is an
unmatched call symbol generated by r1. For the new state pair’s context rule, we select a
pair (r ′, r ) inmcall, where nextNT (r ) = L, and restore the context to be r ′.

With derivative functions defined, Algorithm 2 constructs the parser PDA by computing the
least solution of the following equation; it makes sure that states are closed under derivatives.

A = A ∪ {(None,L0 → .L0)} ∪ {m′ | c ∈ Σplain, m ∈ A, pc (m) = (m′, f )}
∪ {m′ | ‹a ∈ Σcall, m ∈ A, p‹a (m) = (m′, f )}
∪ {m′ | b› ∈ Σret, m ∈ A, m′′ ∈ A ∪ {∅}, pb› (m,m

′′) = (m′, f )}
Definition 6.5 (Traces of Running the Parser PDA). Given a stringw , we writewi for its ith symbol.

Suppose the sequence of transitions in a parser PDA for input w is (m0,⊥)
w1−→ (m1,T1) · · ·

w |w |−→
(m |w |,T |w | ). We define the trace of running the parser PDA forw , denoted as forest(w ), as the list
[m1,m2, . . . ,m |w |].
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Since each mi in forest(w ) is a set of possible rules at that step of parsing, forest(w ) can be
viewed as the representation of all parse trees of inputw ; that is, forest(w ) is the parse forest ofw .

Finally, we define the acceptance configuration for the parser PDA as follows:

Definition 6.6 (Parser PDA Acceptance Configurations). Given a VPG G = (V , Σ, P ,L0), a pair
(m,E) is an acceptance configuration for the parser PDA if the state m includes a pair (None, r ),
where nextNT (r ) derives the empty string ϵ , i.e., ∃r , (None, r ) ∈m ∧ (nextNT (r ) → ϵ ) ∈ P .

Note that the context None indicates that the stack E is empty. For general VPGs, however, the
contexts in the state of an acceptance configuration could also be pending rules, indicating that
the stack E is not empty, as mentioned in Definition C.2.

6.2 Extracting Parse Trees

In this section, we discuss how to extract parse trees for well-matched VPGs and put the discus-
sion for general VPGs in Appendix C. First, we explain our design choice to accomplish efficient
extraction, and then we define the extraction functions formally.

After running the parser PDA on input w , we have forest(w ) = [m1,m2, . . . ,m |w |]. Intuitively,
for each parse tree v = [r1, . . . , r |w |] of w , we have ri ∈ mi , i = 1..|w |. Our next step is to extract
the parse trees from forest(w ). In Example 6.2, we showed the backward way for extraction, where
we first extract valid rules from m |w | then extend them backward with the rules from m |w |−1 to
m1. There is also a forward way, where we first extract valid rules fromm1 and then extend them
with the rules extracted fromm2 tom |w | . Although both ways would give the same set of parse
trees, we choose the backward way for better performance. The forward extraction may maintain
invalid parse trees during extraction; it may in the worst case maintain an exponential number of
invalid parse trees and remove them in later steps, which is inefficient. The backwardway, however,
maintains only valid parse trees. For an unambiguous grammar in particular, the backward way
alwaysmaintains one parse tree and guarantees linear-time extraction.We give a concrete example
as follows:

Example 6.3. Consider the unambiguous grammar

L → ‹aLb›E | ‹aLd›E
E → ϵ

and the input string w = ‹anb›n . The parse forest of w is “mn
1 +m

n−1
2 + [m3],” where the notation

mn
1 stands for the list that contains n copies ofm1, and

m1 = {(L → ‹a.Lb›E,L → ‹a.Lb›E), (L → ‹a.Ld›E,L → ‹a.Ld›E)},
m2 = {(L → ‹a.Lb›E,L → ‹aLb›.E)},
m3 = {(None, L → ‹aLb›.E)}.

With the forward extraction, we first extract partial parse trees fromm1. There are two possible
partial parse trees [L → ‹a.Lb›E] and [L → ‹a.Ld›E] (their context rules can be ignored for now);
we have to extract both of them, although the second one will become invalid.We then extend each
partial parse tree with rules from the nextm1; e.g., a new parse tree is [L → ‹a.Lb›E, L → ‹a.Lb›E].
This process is repeated, and we get 2n partial parse trees for ‹an , since there are 2n ways to parse
‹an . However, only one of them is valid considering the following input b›n ; those invalid ones
will be removed when considering mn−1

2 + [m3]. The time complexity of this process is clearly
non-linear.

In contrast, with the backward extraction, we first extract the only partial parse tree [L →
‹a.Lb›E] from m3, then extend it with the rule L → ‹aLb›.E from m2. We also introduce a stack
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for each partial parse tree to store the rules of unmatched return symbols, so later we know how
to extend the partial parse tree with matching rules. After extracting rules fromm2

n−1 + [m3], we
have only one partial parse tree whose stack is (L → ‹aLb›.E)n · ⊥. Based on this stack and m1,
only rule L → ‹a.Lb›E can be used for valid backward extension. In this way, only one valid parse
tree is constructed in the end. We will prove that the backward extraction always generates valid
parse trees in Lemma D.16.

Now, we define a partial parse tree as a parse tree paired with a stack as follows:

Definition 6.7 (Partial Parse Trees). A partial parse tree (v,E) is a parse tree v = [r1, . . . , rn]
paired with a stack E = rn1 · · · rnk

· ⊥, where n1 < · · · < nk and rn1 , . . . , rnk
are the rules that

generate unmatched return symbols.

Formally, we use function extractinit to extract a set of partial parse treesV fromm |w | of forest(w )
and function extractoneStep to extend the current set V of partial parse trees.

V|w | ← extractinit (m |w | );

Vi ← extractoneStep (mi ,Vi+1), i goes from |w | − 1 to 1,

where V1 is the final parsing result that includes all valid parse trees ofw .
Next, we define different kinds of states and define extractinit and extractoneStep.

Definition 6.8 (Mpln,Mcall,Mret). Given a VPGG = (Σ,V , P ,L0), based on the dotted rules in Ṗ ,

(1) we define a set of plain statesMpln as (Pcall ∪ {None}) × Ppln;
(2) we define a set of call statesMcall as (Pcall ∪ {None}) × Pcall;
(3) we define a set of return statesMret as (Pcall ∪ {None}) × Pret.

Definition 6.9 (The Extraction Function extractinit). We first define extract
pre
init, which extracts all

valid rules from m, then extend extract
pre
init to extractinit, which pairs each extracted rule with a

stack.

extract
pre
init (m) = {r | (r ′, r ) ∈m, (nextNT (r ) → ϵ ) ∈ P ∧ r ′ is None}.

A pair (r ′, r ) inm corresponds to a parse tree that ends with r and whose last unmatched call
symbol is generated by r ′. This parse tree is valid if nextNT (r ) can match the empty string and r ′

is None. The context r ′ cannot be a matching rule, since a return symbol would be further needed.

extractinit (m) =
⎧⎪⎨⎪⎩

{
([r ],⊥) | r ∈ extract

pre
init (m)

}
, ifm ⊆ Mpln orm ⊆ Mcall;{

([r ], r · ⊥) | r ∈ extract
pre
init (m)

}
, ifm ⊆ Mret.

Ifm ⊆ Mret, thenwe push r to the stack so in a later step during backward extraction, we canmatch
the return symbol in this step using a matching rule. Note that from the definition of derivative
functions (Definition 6.4), we can easily show that any state in the parser PDA is a subset ofMpln,
Mcall, or Mret; it cannot be the case that a parser PDA state have mixed pairs (e.g., some from
Mcall and others fromMret).

Definition 6.10 (The One-step Extraction Function). We first define extendable, which decides
whether (r ′, r ) can be used to extend v . Based on extendable, we define extract

pre
oneStep, which

extracts rules from m and uses them to extend the partial parse trees in V . Finally, we define
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extractoneStep, which modifies the stacks of the extended trees:

extendable((r ′, r ), (v,E)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

true, if r ′ is None ∧ head(E) is None ∧
nextNT (r ) = headNT (v ) ∨

r ′ and head(E) are the same matching rule

(but with different dot positions) ∧
((firstRule(v ) ∈ Pret ∧ (nextNT (r ) → ϵ ) ∈ P ) ∨

(firstRule(v ) ∈ Ppln ∪ Pcall ∧
nextNT (r ) = headNT (v ))),

false, otherwise.

extract
pre
oneStep (m,V ) =

{
(r :: v,E) | (v,E) ∈ V ∧ (r ′, r ) ∈m ∧ extendable((r ′, r ), (v,E))

}
.

Intuitively, each valid partial parse tree v can be split into v1 and v2 so v = v1 + v2 and
(r ′, lastRule(v1)) is included inm for some r ′ and (v2,E) is included inV for some E. Therefore, if
r ′ is None, then E is empty; if r ′ is a matching rule, then the top of E should be the same matching
rule. In the first case, we require that r is connected to v , i.e., nextNT (r ) = headNT (v ). In the
second case, if firstRule(v ) is a rule that derives a return symbol, then we require nextNT (r ) can
match the empty string; otherwise, we still require that r is connected to v .

extractoneStep (m,V ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

{(v,E) | (v,E) ∈ extract
pre
oneStep (m,V )}, ifm ⊆ Mpln,

{(v, tail(E)) | (v,E) ∈ extract
pre
oneStep (m,V )}, ifm ⊆ Mcall,

{(v,firstRule(v ) :: E) | (v,E) ∈ extract
pre
oneStep (m,V )}, ifm ⊆ Mret.

extractoneStep modifies E based on the type ofm. If a rule inm derives a call symbol, then the call
symbol matches the return symbol (if exists) specified on the top of the stack and, therefore, we
remove the top of the stack. If a rule inm derives a return symbol, then we push the rule for the
return symbol to the stack so it can match a future call symbol during backward extraction.

Now, we define the extract function that extracts the set of parse trees ofw from a forest.

Definition 6.11 (The Extraction Function). Given a nonempty forest(w ) = [m1, . . . ,m |w |], define
the sequence of partial parse trees as

V|w | = extractinit (m |w | );

Vi = extractoneStep (mi ,Vi+1), i goes from |w | − 1 to 1.

Then, we define extract(forest(w )) = V1 as the set of parse trees extracted from forest(w ).

6.3 Optimizing the Extraction as a PDA

For an unambiguous grammar, there is only one parse tree for any accepted input string. Even
for an ambiguous grammar, there may be a preferred parse tree among possible parse trees for an
input string. In this section, we optimize the parse-tree extraction process to an extraction PDA;
instead of running the execution function, we can run the extraction PDA on the parse forest and
get a trace that is a valid parse tree. Running a PDA is much faster, and our evaluation in Section 8
is based on the extraction PDA.

In Lemma D.17, Appendix D, we will show that those extraction functions always extract valid
parse trees. Therefore, to extract a single parse tree, we need to pick one partial parse tree (v,E)
from extractinit (m |w | ) according to some criterion; similarly, if extractoneStep (m,V ) returns multiple
parse trees, then one needs to be picked. To see why this process can be represented as a PDA, note
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that the extraction function depends on only the first rule of the current partial parse tree v and
the top of E; so we can view (firstRule(v ),E) as a PDA configuration. We define the PDA states
and stacks as follows:

Definition 6.12 (Extraction PDA States and Stacks). Given a VPG, we introduce an extraction

PDA whose states are dotted rules in Ṗ and whose stack contains rules in Pret. Intuitively, the
stack remembers a series of contexts in terms of return rules, which are used to match call symbols
during backward extraction. We call a pair (r ,E) a configuration, with r being the state and E being
the stack.

We define extraction PDA transition functionsqinit andq based on extraction functions extractinit
and extractoneStep. In the following definition, we write pickOne(V ) for a function that returns a
rule from a list of partial parse trees V ; if V is empty, then we define pickOne(V ) to be None. In
practice, pickOne can be defined, e.g., based on priority of rules; we leave it abstract in this section.

Definition 6.13 (The Single-parse-tree Extraction Function qinit). Let r = pickOne(extract
pre
init (m)).

If r = None, then we define qinit (m) = None. Otherwise, we define

qinit (m) =
⎧⎪⎨⎪⎩

(r ,⊥), ifm ⊆ Mpln orm ⊆ Mcall;

(r , r · ⊥) ifm ⊆ Mret.

Definition 6.14 (The Transition Function q for the Extraction PDA). Given a current configuration
(r ,E), let t = headE and r ′ = pickOne(extractoneStep (m, {([r ], t · ⊥)}). If r ′ = None, then we define
q(m, r , t ) = None. Otherwise, we define

q(m, r , t ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(r ′, λE.E), ifm ⊆ Mpln;

(r ′, tail), ifm ⊆ Mcall;

(r ′, λE.r ′ · E), ifm ⊆ Mret.

Algorithm 3 constructs the PDA by computing the least solution of the following equation; it
makes sure that states are closed under derivatives.

R = R ∪ {r ′ | m ∈ A ∧ (r ′, t ) = qinit (m)}
∪ {r ′ | m ∈ A, r ∈ R ∩ (Ppln ∪ Pcall), t ∈ (R ∩ Pret) ∪ {None}, q(m, r , t ) = (r ′, f )}
∪ {r ′ | m ∈ A, r ∈ R ∩ Pret, q(m, r , r ) = (r ′, f )},

whereA is the set of all parser PDA states. Note thatwe do not need to compute the acceptance state
for an extraction PDA: For a forest with the last statem, as long as the initial state extractinit (m) is
not empty, the extraction is guaranteed to be successful; if the initial state extractinit (m) is empty,
then the input string is invalid.

6.4 Correctness Proof

In this subsection, we prove the correctness of the parse trees constructed according to Sections 6.1
and 6.2. The correctness of the optimization in Section 6.3 using an extraction PDA follows as
a corollary, since the extraction PDA extracts one parse tree out of possibly many parse trees
returned by the extraction functions in Section 6.2.

Given a VPGG = (V , Σ, P ,L0) and an input stringw , letV = extract(forest(w )).We callV correct
if it includes exactly the set of valid parse trees of w according to G, which we state formally as
the following theorem:

Theorem 6.1 (Correctness of the Parser Generator).

∀w V , V = extract(forest(w )) =⇒ (∀v, L0 ⇓ (w,v ) ⇐⇒ ∃E, (v,E) ∈ V ).
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ALGORITHM 3: Constructing the extraction PDA.

Input :A VPG G = (V , Σ, P ,L0) where Σ = Σcall ∪ Σplain ∪ Σret, A generated from Algorithm 2, qinit
and q;

Return : The set of all produced states R and the set of transitions T ;

1 Initialize the set for new states;

2 R ← {r ′ | m ∈ A ∧ (r ′, t ) = qinit (m)};
3 Initialize the set for transitions T ← {};
4 repeat

5 Compute transitions for call and plain states

R′ ← {(m, t , f , r , r ′) | m ∈ A, r ∈ R ∩ (Ppln ∪ Pcall), t ∈ (R ∩ Pret) ∪ {None}, q(m, r , t ) = (r ′, f )};
6 Compute transitions for return states

R′ ← R′ ∪ {(m, t , f , r , r ′) | m ∈ A, r ∈ (R ∩ Pret), q(m, r , r ) = (r ′, f )};
7 Add edge (r , r ′) marked with (m, t , f ) to T , where (m, t , f , r , r ′) ∈ R′;
8 Compute new states N ← {r ′ | (_, _, _, _, r ′) ∈ R′} − R;
9 Update the set of all produced states R ← R ∪ N ;

10 until N = ∅;

We provide detailed lemmas and proofs in Appendix D and describe themain steps next. Remem-
ber that the parser PDA builds a set of partial parse trees in a forward way and stores the trees
in a forest, from which the extraction functions extract a set of partial parse trees in a backward
way. Therefore, for the correctness proof, we formalize two small-step relations: one for building
forward parse trees and one for building backward parse trees. We then show that both small-step
relations are equivalent to the big-step parse-tree derivation relation under certain conditions. For
the backward direction of Theorem 6.1 (i.e., soundness), we prove that during backward extrac-
tion for an input stringw , each extracted backward partial parse treev2 has a counterpart forward
partial parse tree v1 in the rest of the forest, and v1 + v2 is a valid parse tree of w . At the end of
extraction, we have v1 = [] and v2 is a valid parse tree of w . For the forward direction of Theo-
rem 6.1 (i.e., completeness), we show that each valid parse tree v can be split as v = v1 + v2, and
there is an extraction step where v1 is in the rest of the forest and v2 is an extracted partial parse
tree. Therefore, at the end of extraction, we have v1 = [] and v = v2 is in the extracted parse trees.

6.5 Verification of Time Complexity

Next, we discuss how we verify the performance of our VPG parser. For an input string w with a
total number of k valid parse trees, we show that the VPG parser takesO (k |w |) time. When k = 1,
the time complexity becomes linear (i.e.,O ( |w |)). The verification is performed in two steps: (1) it
takes O ( |w |) time to run a parser PDA and generates a parse forest; and (2) it takes O (k |w |) time
to run the extraction function on the forest when extracting all of the k parse trees.

We first introduce our method of counting time cost in Coq. Our verification utilizes a Coq
monadic library [29], which provides a monad for tracking the time cost of computation. To pair
a value a of type A with a time cost c , we utilize a dependent type C (A, P ), defined to be

C (A, P ) = {a : A | ∃c ∈ N, P a c} ,

whereC is a type constructor and P a c is a property of a and c . In this article, the above dependent
type is written using the following notation:

{a : A | c | P a c}.
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For example, given k ∈ N, a value a′ of type {a : A | c | c = k } means it takes k time units to
compute a of type A.

To correctly count the time cost, programs must be written as a combination of the return and
bind monadic operators provided by the library [29]. We briefly introduce them as follows:

(1) The return operator, denoted as “⇐ a”, returns a value a bound with 0 time cost.
(2) The insertion operator, denoted as “+= k ; a′”, adds k time units to the monadic value a′.
(3) The bind operator, denoted as “a ← e1; e2”, first evaluates the computation e1 and binds its

value to a, which is used to evaluate e2; it further pairs the result with the sum of the time
cost of e1 and e2.

In our verification, the time cost of a function is counted by accumulating the time cost of its
components, except for three kinds of primitive functions with unit cost:

(1) eq_sym_ID, which compares the IDs of two symbols (nonterminals or terminals).
(2) andb and orb, which compute the conjunction and disjunction of two Booleans, respectively.
(3) cons a l, which constructs a list from head a and tail l , and pair a b, which makes a pair.

The insertion function we introduced earlier is used in only two ways: (1) add the time cost
cost_eq_sym_ID, cost_andb, cost_orb, cost_cons, or cost_pair to a corresponding function.
E.g., the program

+= cost_eq_sym_ID; ⇐ eq_sym_ID s1 s2;

compares two IDs s1 and s2, and returns a bool paired with cost_eq_sym_ID; and then (2) add
cost_branch, which is the number of variables and functions used in a branch, similar to the
counting method of McCarthy et al. [29]. Consider the following example:

λx . match x with

| []⇒ += 1; ⇐ None

| a :: l ⇒ += 3; ⇐ Some a.

In the above example, only one unit of cost is added, because only one name x is used; three units
of cost are added to the second branch, because three names (x , a, and l ) are used. These branch
costs are inserted manually.

With the aforementioned setup, we implemented two functions runPDA′ and extract′, where
runPDA′ runs the parser PDA to generate a forest and extract′ extracts the set of parse trees from
the forest. In particular, runPDA′ has the following type:

runPDA′ : ∀T w, {M : Forest | c | c = costrunPDA (T ,w )}
where w is a string, Forest is the type of parse forests, and T , representing the PDA, is a list of
mappings in the form of ((i, S, t ), S ′). A mapping ((i, S, t ), S ′) represents the state transition from
configuration (S,T ) to (S ′,T ′), where t = head(T ); the mapping from T to T ′ is further computed
in runPDA′. We show the upper bound of the cost function costrunPDA in Theorem 6.2.

Theorem 6.2 (The Running-time Upper Bound of the Parser PDA).

∀T , ∃b1 b2, ∀w, costrunPDA (T ,w ) ≤ b1 |w | + b2.
Theorem 6.2 shows that it takesO ( |w |) time to run the parser PDA and generates a parse forest.

The proof is straightforward and we omit its discussion.
Now, we turn our attention to the extract function. We previously introduced its definition in

Definition 6.11, which maintains a set of partial parse trees. However, it is not efficient to maintain
a set-based data structure. Inserting a partial parse tree v to a set, for example, requires us to
compare v with trees already in the set to avoid duplicates; comparing each of the |w | rules in the
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parse trees would take at least |w | steps. Even if we hash parse trees before comparison, we would
still have to perform hashing for each of the |w | rules. Therefore, if a partial parse tree is inserted
at each of the |w | steps, then the total time cost is at least quadratic (Ω( |w |2)). Getting a linear-time
algorithm is a challenge.

We next describe a linear-time algorithm that takes advantage of the locality of VPG parsing.
We replace the set structure with a list structure. But we also have to avoid duplicate partial parse
trees in the list. To see why this is a problem, notice that two different elements (r1, r ) and (r2, r )
in a statem can be used to extend the same parse tree v from a list V of partial parse trees, both
generating the same tree r :: v .

To solve this problem, our observation is that if V includes no duplicates, then for two trees

v1,v2 ∈ V , we have not only v1 � v2, but also r1 :: v1 � r2 :: v2 for r1, r2 ∈ Ṗ . Therefore, for each
v ∈ V , we can first computemv , the rules inm that can extend v , and remove the duplicates in
mv to get m′v ; we then extend v with m′v to get Vv and finally concatenate Vv for all v ∈ V . To
avoid duplicates inmv , we compare elements inmv , which takesO ( |m |2) time. Sincem belongs to
(P ∪ {None}) × P , its size |m | is at most ( |P | + 1) |P |; therefore,O ( |m |2) is independent of the input
string size and can be viewed as a constant.

Definitions 6.15, 6.16, and 6.17 implement this optimized version of the extract function. It uti-
lizes function rmDup, which removes the duplicates in a list, function list, which converts a set to
a list, and standard functions map, filter, and concat. We omit their standard definitions.

Definition 6.15 (The Optimized Implementation extract
op
init).

extract
op
init (m) = rmDup(list(extractinit (m))).

Definition 6.16 (The Optimized Implementation extract
op
oneStep). Given a VPG G = (Σ,V , P ,L0),

a set of partial parse trees V and a state m, we first define functions extractfilt, extractmap, and
extractconcat (m,V ), and then define extract

op
oneStep based on them.

extractfilt (m, (v,E)) = rmDup (map (λ(x ,y).y, (list (filter (λx . extendable(x , (v,E)),m)))))

extractmap (m, (v,E)) = map (λx .(x :: v,E), extractfilt (m, (v,E)))

extractconcat (m,V ) = concat (map (λ(v,E). extractmap (m, (v,E)),V ))

extract
op
oneStep (m,V ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[
(v,E) | (v,E) ∈ extractconcat (m,V )

]
, ifm ⊆ Mpln,[

(v, tail(E)) | (v,E) ∈ extractconcat (m,V )
]
, ifm ⊆ Mcall,[

(v,firstRule(v ) :: E) | (v,E) ∈ extractconcat (m,V )
]
, ifm ⊆ Mret.

Definition 6.17 (The Optimized Implementation extractop). Given a forest(w ) = [m1, . . . ,m |w |],
wherew � ϵ , define the sequence of partial parse trees as

V|w | = extract
op
init (m |w | );

Vi = extract
op
oneStep (mi ,Vi+1), i goes from |w | − 1 to 1.

Then, we define extractop (forest(w )) = V1 as the list of parse trees extracted from forest(w ).

Based on extractop, We implemented a version of the extract function that performs cost
counting:

extract′ : ∀w, {V : ParseTreeList | c | V = extractop (forest(w )) ∧ c = costextract (forest(w )))}
We show the upper bound of the cost function of extract′ in Theorem 6.3, which also includes the
correctness discussed in Section 6.4.
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Theorem 6.3 (The Running-time Upper Bound of Extraction). Given a VPG G =

(Σ,V , P ,L0), we have

∃k b1 b2, ∀w V1,

w � ϵ ∧ V1 = extractop (forest(w )) =⇒
NoDup(V1) ∧
costextract (forest(w )) ≤ (k ∗ |V1 | + b1) ∗ |w | + b2 ∧
∀v, (∃E, (v,E) ∈ V1) ⇐⇒ L0 ⇓ (w,v ) .

There are three properties in Theorem 6.3. The first property “NoDup(V1)” means there is no
duplicate inV1; therefore, |V1 | is the number of valid parse trees. The next property shows that the
time complexity of extract′ is O ( |V1 | |w |). The third property shows the correctness, i.e., V1 is the
set of parse trees ofw .

Proof. During the extraction, we maintain lists Vi , i = 1..|w | of partial parse trees:

V|w | ← extract
op
init (m);

Vi ← extract
op
oneStep (mi ,Vi+1), i goes from |w | − 1 to 1.

We will prove in Theorem 6.4 that Vi has no duplicates for i = 1..|w |. When i = 1, we get the first
property. To prove the second property, we show that the size of Vi increases during backward
extraction in Theorem 6.5, i.e.,

|V|w | | ≤ |V|w |−1 | ≤ · · · ≤ |V1 |.

Then, we prove that during extraction, for each (m,V ), it takes O ( |m |2 |V |) time to evaluate
extract

op
oneStep (m,V ). To do this, we implement the monadic function

extract
op
oneStep : ∀m V , {V ′ : ParseTreeList | c | c = costExtractoneStep (m,V )}

and prove in Theorem 6.6 that costExtractoneStep (m,V ) ∼ O ( |m |2 |V |). We then rewrite this bound to

O ( |V |), since |m | ∼ O ( |P |2). Finally, since extractop can be viewed as executing extract
op
oneStep for

|w | times, we have the time complexity of
∑ |w |

i=1O ( |Vi |), which is further bounded by O ( |V1 | |w |)
using Theorem 6.5. �

Theorem 6.4 (No Duplicates in Vi ).

∀w i m M, forest (wi ) = M + [m] =⇒
∀M1 M2, M = M2 +M1 =⇒

NoDup(extractop (M1 + [m])).

Proof. Let Vinit = extract
op
init (m). Prove by induction on M1. There are two cases.

When M1 = [], we have extractop (M1+[m]) = Vinit. Since we apply rmDup to get Vinit, clearly,
we have NoDup(Vinit).

WhenM1 = [m1]+M
′
1 for somem1, we have extractop (M1+[m]) = extract

op
oneStep (m1,V

′), where

V ′ = extractop (M ′1 + [m]). By the induction hypothesis, we have NoDup(V ′). Therefore, from the

definition of extract
op
oneStep, we have NoDup(extractop (M1 + [m])). �
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Theorem 6.5 (Increasing |Vi |).
∀w i m M, forest(wi ) = M + [m] =⇒

∀M1 m
′ M2, M = M2 + [m′] +M1 =⇒
| extractop (M1 + [m]) | ≤ | extractop ([m′] +M1 + [m]) |.

Proof. From the invariant in Lemma D.17 we know that eachv ∈ extractop (M1 + [m]) is a valid
partial parse tree; i.e., ∃v1,v1 +v is a parse tree ofw . Let v1 = v

′
1 + [r ] for some r ; since [r ] +v is

also a valid partial parse tree, we have [r ]+v ∈ extractop ([m′]+M1+[m]). This shows an injection
from extractop (M1+[m]) to extractop ([m′]+M1+[m]). Therefore, we have | extractop (M1+[m]) | ≤
| extractop ([m′] +M1 + [m]) |. �

Theorem 6.6 (The Running-Time Upper Bound of extract
op
oneStep). ∃k1 k2 b1 b2, ∀V m,

costExtractoneStep (m,V ) ≤ (k1 |m |2 + k2 |m | + b1) · |V | + b2.

Proof. For eachv inV , it takesO ( |m |2) time to remove the duplicates in a list of rules, therefore,
the total time is O ( |m |2 |V |). �

Note that one benefit of the monadic library is that, since the running times are embedded
in propositions, we can extract OCaml code from the Coq implementation and after extraction
propositions with running times removed.

6.6 Coq Mechanization

All definitions and theorems presented in Sections 6.4 and 6.5 are mechanized in the proof assistant
Coq. Our proof artifact consists of 19 Coq files and ∼43k lines of code. The complete verification
took ∼ 5 minutes on an Intel® Core™ i7-9700 Processor and 16 GB of memory.

Our Coq implementation includes two hypotheses, namely, A_VPG_Linear and A_VPG_Match,
corresponding to the two constraints for general VPGs we discussed in Section 2: A_VPG_Linear
requires that for each rule L → iL′ where i ∈ Σ, if the nonterminal L belongs to V 0, then the
nonterminal L′must also belong toV 0; and A_VPG_Match requires that for each matching rule L →
‹aL1b›L2, the nonterminal L1 belongs to V 0, and if the nonterminal L belongs to V 0, then so does
the nonterminal L2. These two hypotheses guarantee that our Coq implementation accepts valid
general VPGs. In Appendix E, we summarize the correspondence between theorems discussed in
this section and our open-sourced Coq formalization and proofs.

We discuss some key differences between the definitions as well as theorems presented in Sec-
tions 6.4 and 6.5 and their Coq implementation as follows: First, the big-step parse-tree derivation
in Figure 4 includes three rules; its Coq mechanization includes two additional rules for deriving
pending call and return symbols, respectively. Second, we formalized the semantics of running the
parser PDA in Coq as the relation “ForestM T w ,” whereM is the trace for the stringw , andT is
the terminal stack. Recall that in Definition 6.5, we denote the trace as forest(w ). In Coq, the func-
tion forest is verified to generate a trace that satisfies the relation Forest. Further, in the theorems
for extraction PDAs, such as Theorems 6.3 and 6.4, the trace forest(w ) is replaced with a trace M
that satisfies the Forest relation.

7 DESIGNING A SURFACE GRAMMAR

The format of rules allowed in VPGs is designed for easy studying of its meta-theory but is in-
convenient for expressing practical grammars. First, no user-defined semantic actions are allowed.
Second, each VPG rule allows at most four terminals/nonterminals on the right-hand side. In this
section, we present a surface grammar that is more user-friendly for writing grammars. We first
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discuss embedding semantic actions. Then, we introduce tagged CFGs, which are CFGs paired with
information about how to separate terminals to plain, call, and return symbols. We then describe
a translator from tagged CFGs to VPGs. During the conversion, the translator also generates se-
mantic actions that convert the parse trees of VPGs back to the ones of tagged CFGs.

7.1 Embedding Semantic Actions

Semantic actions transform parsing results to user-preferred formats. In a rule L → s1 · · · sk , where
sk ∈ Σ∪V , we treat L as a default action that takesk arguments, which are semantic values returned
by s1 to sk , and returns a tree with a root node and s1 to sk as children. The prefix notation of a
parse tree gives

[L,vs1 , . . . ,vsk
],

where vsi
is the semantic value for si . The above notation can be naturally viewed as a stack

machine, where L is an action and vsi
are the values that get pushed to the stack before the action.

The VPG parse tree can be converted to the prefix notation in a straightforward way. If we then
replace each nonterminal in the tree with its semantic action, then the parse tree becomes a stack
machine.

The default action for a nonterminal can be replaced by a user-defined action appended to each
rule in the grammar. For example, consider the grammar L = cL | ‹aLb›L | ϵ . Suppose we want
to count the number of the symbol c in an input string; we can specify semantic actions in the
grammar as follows:

L → cL @{let f1 v1 v2 = 1 +v2}
| ‹aLb›L @{let f2 v1 v2 v3 v4 = v2 +v4}
| ϵ @{let f3 () = 0}.

In the above example, a semantic action is specified after each rule, e.g., “@{let f1 v1 v2 = 1+v2}.”
In the actions, v1, v2, v3, and v4 represent the semantic values returned by the right-hand side
symbols of the rule. For example, the first semantic action f1 v1 v2 = 1+v2 accepts two semantic
values v1 and v2, where v1 is returned by c and v2 is returned by L. Specially, the definition “@{let
f3 () = 0}” defines a function that does not take any argument.

As an application, the next subsection shows how to use semantic actions to convert the parse
trees of a VPG to the parse trees of its original tagged CFG.

7.2 Translating from Tagged CFGs to VPGs

Grammar writers are already familiar with CFGs, the basis of many parsing libraries. We define
tagged CFGs to be CFGs paired with information about how to partition terminals into plain, call,
and return symbols (Σ = Σplain ∪ Σcall ∪ Σret)

3; that is, in a tagged CFG, a terminal is tagged with
information about what kind of symbols it is. Compared to a regular CFG, the only additional
information in a tagged CFG is the tagging information; therefore, tagged CFGs provide a conve-
nient mechanism for reusing existing CFGs and developing new grammars in a mechanism that
grammar writers are familiar with.

Not all tagged CFGs can be converted to VPGs. We use a conservative validator to determine if
a tagged CFG can be converted to a VPG and, if the validator passes, translate the tagged CFG to a
VPG.Without loss of generality, we assume that in each rule of the input tagged CFG a call symbol
is matched with a return symbol. In the general case, we need two additional steps: (1) We first

3We note that our implementation of tagged CFGs additionally supports regular operators in the rules; these regular oper-

ators can be easily desugared and we omit their discussion.
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Fig. 7. An example of converting a tagged CFG to a VPG.

assure that pending call and return symbols are not nested in well-matched call/return symbols;
(2) we then change the tags of the pending call and return symbols to plain, making the resulting
grammar ready for the validator.

The translation steps are summarized as follows:

A tagged CFG→ Simple form
If valid
−−−−−→ Linear form→ VPG.

At a high level, a tagged CFG is first translated to a simple form, upon which validation is per-
formed. If validation passes, then the simple-form CFG is translated to a linear-form CFG, which
is finally translated to a VPG. We next detail these steps. These steps will be illustrated with a run-
ning example in Figure 7. In the example, the left-most column lists the original tagged CFG; note
that in the grammar semantic actions are after the @ symbol (e.g., L6) and they will be discussed
later in the section.

Definition 7.1 (Simple Forms). A rule is in the simple form if it is of the form L → ϵ or of the
form L → q1 · · ·qk , where either qi ∈ Σplain ∪V or qi = ‹aLib› for some ‹a, b›, L′, where i = 1..k
and k ≥ 1, and L′ is a nonterminal. A tagged CFG G = (V , Σ, P ,L0) is in the simple form if every
rule in P is in the simple form.

Compared to a tagged CFG, a simple-form CFG requires that there must be a nonterminal be-
tween a call symbol and its matching return symbol. The conversion from a tagged CFG to a
simple-form CFG is straightforward: For each rule, we replace every string ‹asb›, where ‹a is
matched with b› and s ∈ (Σ ∪ V )∗, with ‹aLsb› and generate a new nonterminal Ls and a new
rule Ls → s . After this conversion, a string in the form of ‹aLb› can be viewed as a “plain sym-
bol”; this is a key intuition for the following steps. We call ‹aLb› a matched token in the following
discussion. For the running example, this step of translation extracts AE from the first rule and
assigns it to a new nonterminal LAE .

The validation can then be performed on the simple form, using its dependency graph.

Definition 7.2 (Dependency Graph). The dependency graph of a grammar G = (V , Σ, P ,L0) is
(V ,EG ), where

EG = {(L,L′, (s1, s2)) | s1, s2 ∈ (Σ ∪V )∗, (L → s1L
′s2) ∈ P }.

Note that an edge from L to L′ is labeled with a pair of strings.

Definition 7.3 (Dependency Loop). Let G = (V , Σ, P ,L0) be a grammar with its associated depen-
dency graph (V ,EG ). A dependency loop is defined as a loop present in the dependency graph such
that at least one edge in the loop is labeled with (s1, s2), where s2 can derive a nonempty string
(i.e., s2 →∗ w for some nonempty stringw).

The validator’s main task is to make sure each dependency loop is well founded. Additionally,
for non-dependency loops, the validator ensures they are not solely labeled with (ϵ, ϵ ) to prevent
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dead loops. Specifically, the validator verifies that for each loop in the dependency graph, either
(1) in the loop there is an edge (L,L′) that is labeled with (s1‹a,b›s2), where ‹a is matched with b›
in a rule L → s1‹aL

′b›s2; or (2) every edge (L,L′) in the loop is labeled with (s, ϵ ) for some string
s ∈ (Σ ∪ V )∗, and at least one such s satisfies s �→∗ ϵ . For the running example, the dependency
graph of the simple form of the grammar does not have any loops and thus validation passes
trivially.

Once the validation passes, the translation converts a simple-form CFG to a linear-form CFG.

Definition 7.4 (Linear Forms). A rule is in the linear form if it is in one of the following forms:
(1) L → ϵ ; (2) L → t1 · · · tk ; (3) L → t1 · · · tkL′; where ti ∈ Σplain or ∃‹a,b›,Li , s.t. ti = ‹aLib›,
i = 1..k , k ≥ 1. A tagged CFG G = (V , Σ, P ,L0) is in the linear form if every rule in P is in the
linear form.

Note that in a linear-form rule, ti cannot be a nonterminal, while in a simple-form rule qi can
be a nonterminal. Further, the linear form allows rules of the form L → t1 · · · tkL′, where ti is a
terminal or a matched token. The main job of the translator is to convert simple-form rules to
linear-form rules by strategically replacing nonterminals with the right-hand sides of their rules.
Appendix G shows the translation algorithm and its termination proof. Compared to the confer-
ence version where no termination proof was provided, this version of the translation algorithm
has a new reformulation, which enables the termination proof to go through. Figure 7 shows the
conversion result of the running example. For this example, the conversion is simple: Nonterminal
A is replaced by cE and eventually replaced by c in the first two rules.

The translation from a linear-form CFG to a VPG is simple. E.g., for a rule of the form L →
t1 · · · tk , it is translated to L → t1L1;L1 → t2L2; . . . ;Lk → tkLk ;Lk → ϵ , where L1 to Lk are a set
of new nonterminals. For the running example, the first rule in the linear form of the grammar is
split into two rules, as shown in the last column in Figure 7.

All transformations are local rewriting of rules, and as a result it is easy to show that each
transformation step preserves the set of strings the grammar accepts; further, for an input string
there should be a one-to-one correspondence between parse trees produced by the grammar before
transformation and parse trees produced by the grammar after transformation. We further note
that not all tagged CFGs can be converted to VPGs. For example, grammar “L → cLc |ϵ” cannot
be converted, since its terminals cannot be suitably tagged: Intuitively, c has to be both a call and
a return symbol. Further, since our validation algorithm is conservative, it rejects some tagged
CFGs that have VPG counterparts. For example, grammar “L → Lc |ϵ” is rejected by the validator,
since it is left recursive. However, it can be first refactored to “L → cL|ϵ”, which is accepted by our
validator.

Generating semantic actions. During the conversion, each time the translator rewrites a rule, a
corresponding semantic action is attached to the rule. Initially, every rule is attached with one
default semantic action. For example, the rule L → AbCd is attached with L4, written as L →
AbCd @L4. As mentioned in Section 7.1, L4 is the default semantic action for constructing a tree
with a root node and children nodes that are constructed from semantic values from the right-
hand side of the rule. The superscript 4 is its arity. During conversion, every time we rewrite a
nonterminal L in a rule R with the right-hand side of rule L → s , the semantic values for s are first
combined to produce a semantic value for L, which is then used to produce the semantic value for
the left-hand nonterminal of R. If a helper nonterminal Ls is introduced during conversion and a
rule Ls → s is generated, then we do not generate a semantic value for Ls but leave the semantic
values for s on the stack so any rule that uses Ls can use those semantic values directly. In this
way, we can convert a parse tree of a VPG to the parse tree of its corresponding tagged CFG.
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Back to the example in Figure 7, during the conversion to the simple form, the semantic action of
the first rule does not change, since the rule for LAE has no semantic actions; the semantic values
of A and E are left on the stack. Thus, L6 still expects six values on the stack. The translation step
to the linear form expands A in the first rule with A → cE@A2. Then, cE‹aLAEb›E is simplified
to c‹aLAEb›E, and that is why A1 is applied instead of A2: A1 accepts the value for c . The same
transformation is applied to the second rule. The translation step to the VPG is straightforward.

As a concrete example of parsing using the VPG in Figure 7, for the input string c‹acb›, the
parser will generate the following parse tree:

[L → cL1; L1 → ‹a.LAEb›E; LAE → cE; L1 → ‹aLAEb›.E].

Each rule in the above parse tree is then replaced with its attached action and the semantic values
of the terminals.

[L6 ◦A1, c, ‹a,A1, c,E0,b›,E0]

And the evaluation result of the above stack machine is the following parse tree of the tagged
CFG:

[(L, [(A, [c]), ‹a, (A, [c]),E,b›,E])].

The above tree can be visualized as follows:

8 EVALUATION

As discussed earlier, we implemented in Coq our VPG parsing library and mechanized its proofs;
we also introduced two optimizations so parsing is performed by running two PDAs (the parser
and the extraction PDAs). To evaluate performance, we extracted OCaml code from the Coq library
and used it to construct the parser and extraction PDAs by Algorithms 2 and 3 and stored the PDA
transitions in hashtables for constant-time look-ups. We evaluated our implementation for the
following questions: (1) how applicable VPG parsing is in practice? (2) what is the performance of
VPG parsing compared with other parsing approaches?

We performed a preliminary analysis for a set of ANTLR4 grammars in a grammar repository
[3]. Among all 239 grammars, 136 (56.9%) grammars could be converted to VPGs by our tagged-
CFG-to-VPG translation after wemanuallymarked the call and return symbols for those grammars.
Note that it does not mean the rest cannot be converted; e.g., 34 grammars cannot be converted,
because they have left recursion and the conversion may become possible if the left recursion is
removed. We left a further analysis for future work.

For performance evaluation, we compared our VPG parsers with two representative LL and LR
parsers, namely, ANTLR 4 [35] and GNU Bison [18], using their Java backends. ANTLR 4 is a
popular parser generator that implements an efficient parsing algorithm called ALL(*) [36]. The
ALL(*) algorithm can perform an unlimited number of lookaheads to resolve ambiguity, and it has a
worst-case complexity ofO (n4); however, it exhibits linear behavior on many practical grammars.
GNU Bison is a well-known parser generator that implements a class of linear-time LR parsing
algorithms [11]. We utilized GNU Bison’s default configuration to build LALR(1) parsers [10] in
conjunction with JFlex [41], a Java lexical analyzer generator. We also compared the VPG parsers
with a few hand-crafted parsers specialized for parsing JSON and XML documents, including four
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mainstream JavaScript engines and four popular XML parsers. Before presenting the performance
evaluation, we list some general setups:

(1) During evaluation, we adapted the grammars for JSON, XML, and HTML from ANTLR4 [3]
to tagged CFGs, from which we generated VPG parsers. Appendix F shows the tagged CFGs
for JSON, XML, and HTML.We also adapted these grammars to LR grammars and generated
LR parsers using Bison. We then compared VPG parsers with ANTLR and Bison parsers in
terms of performance.

(2) When comparing our VPG parsers with ANTLR parsers, we omitted the lexing time. This is
because we used ANTLR’s lexers to generate the tokens for both VPG parsers and ANTLR
parsers.

(3) Since ANTLR generates CFG parse trees, for an end-to-end comparison, we used semantic
actions to convert the parsing results of VPG parsers and Bison parsers to CFG parse trees
and measured the conversion time.

We note that the performance of the parsing algorithms presented in this article is very similar
to the performance of the algorithms in the conference version, since both utilize two PDAs and the
difference in lookup time between PDA transitions is negligible. We adopted the new algorithms
primarily to simplify the verification of both correctness and performance.

8.1 Parsing JSON Files

The JSON format allows objects to be nestedwithin objects and arrays; therefore, a JSON object has
a hierarchically nesting structure, which can be naturally captured by a VPG. In particular, since
in JSON an object is enclosed within “{” and “}” and arrays within “[” and “]”, its VPG grammar
treats “{” and “[” as call symbols and “}” and “]” as return symbols.

When building a VPG parser for JSON, we reused ANTLR’s lexer. Therefore, the evaluation
steps are as follows:

Input file
ANTLR Lexer−−−−−−−−−→ ANTLR tokens

ANTLR/VPG Parser−−−−−−−−−−−−−−→ Results.

A downstream application that uses the ANTLR’s JSON parser maywish to keep working on the
same parsing result produced by ANTLR’s parser. Therefore, we implemented a converter to con-
vert the parse forest produced by our VPG parser to ANTLR’s parse tree for the input files. When
the grammar is unambiguous, which is the case for the JSON grammar and the XML grammar,
the parse forest is really the encoding of a single parse tree. The algorithm of converting a VPG
parse tree to a stack machine and evaluating the stack machine has been discussed in Section 7.
The result of the evaluation is a structure that can be directly printed out and compared with; the
same applies to the parse trees produced by ANTLR and Bison parsers. The conversion steps are
summarized as follows:

VPG parse tree
Embed actions−−−−−−−−−−→ Stack machine

Evaluate−−−−−−→ ANTLR parse tree.

Note that in practice this conversion may not be necessary. A downstream application can directly
work on the VPG parse tree or associate semantic actions with the VPG parse tree to convert the
tree to desired semantic values. We include the conversion time for our VPG parser so the parsing
result can be compatible with legacy downstream applications.

For evaluation, we collected 23 real-world JSON files from the Awesome JSON Datasets [12],
the Native JSON Benchmark [43], and the JSON.parse benchmark [19], where the sizes of the files
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Table 1. Parsing and Lexing Times of JSON Files

Name #Token
ANTLR

Parse

Bison

Parse

VPG

Parse +

Extract

VPG

Conv

VPG

Total

ANTLR

Lex
JFlex

catalog 135,991 54 ms 20 ms 7 ms 17 ms 24 ms 40 ms 39 ms
canada 334,374 104 ms 50 ms 17 ms 52 ms 69 ms 47 ms 39 ms
educativos 426,398 92 ms 41 ms 20 ms 48 ms 69 ms 109 ms 75 ms
airlines 555,410 107 ms 58 ms 30 ms 68 ms 98 ms 88 ms 91 ms
JSON.parse 1,288,350 225 ms 128 ms 72 ms 162 ms 234 ms 142 ms 141 ms

Fig. 8. Parsing times of JSON files (in log scale). “Guide Line” indicates the slope for linear time complexity.

range from 14 KB to 7 MB.4 Figure 8 shows the parsing time of the ANTLR and Bison parsers, as
well as the VPG parser’s parsing plus extraction time, conversion time, and the total (parsing plus
extraction plus conversion) time; note that both the x-axis and the y-axis of the figure (and other
figures in this section) are in the log scale for better visualization; Table 1 shows the parsing time
for the five largest files in our test set, as well as the lexing time; Appendix H shows the results
for the full test set. All parsers exhibit linear-time performance when parsing JSON files. As can
be seen, the VPG parsing time (“VPG Parse + Extract”) is less than the time by ANTLR and Bison
parsers; the total time is in general also less than the ANTLR parser and comparable to the Bison
parser. For larger files, we observe that the conversion time dominates; we think the time is largely
influenced by the OCaml garbage collector and defer optimizing the conversion for future work.

8.2 Parsing XML Files

XML also has a well-matched nesting structure with explicit start-tags such as <p> and matching
end-tags such as </p>. However, compared to JSON, there is an additional complexity for the XML
grammar, which makes it necessary to adapt the XML grammar provided by ANTLR. In particular,
the XML lexer in ANTLR treats an XML tag as separate tokens; e.g., <p> is converted into three

4Our JSON benchmarks and benchmarks for testing XML andHTML parsers are hosted at https://bitbucket.org/psu_soslab/

verifiedvpgparser/.
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Table 2. Parsing and Lexing Times of XML Files

Name #Token
ANTLR

Parse

Bison

Parse

VPG

Parse +

Extract

VPG

Conv

VPG

Total

ANTLR

Lex
JFlex

ORTCA 39,072 30 ms 8 ms 3 ms 6 ms 10 ms 54 ms 71 ms
SUAS 118,446 54 ms 31 ms 6 ms 21 ms 27 ms 88 ms 131 ms
address 1,437,142 254 ms 232 ms 74 ms 283 ms 357 ms 201 ms 250 ms
cd 4,198,694 721 ms 735 ms 204 ms 704 ms 908 ms 416 ms 509 ms
po 9,266,526 1,360 ms 1,835 ms 461 ms 1,528 ms 1,989 ms 854 ms 1,617 ms

tokens: <, p, and >. Those tokens then appear in the ANTLR XML grammar. Part of the reason
for this design is that the XML format allows additional attributes within a tag; e.g., <p id=1>
is a start-tag with an attribute with name id and value 1. Below is a snippet of the related XML
grammar in ANTLR.

element : '<' Name attribute* '>' content '<' '/' Name '>'

| '<' Name attribute* '/>' ;

Note that the attribute information can be specified by regular expressions and therefore be pro-
vided by lexers. To compare VPG parsers with ANTLR and Bison parsers and to expose the nest-
ing structure within XML, we modified the grammar by grouping tag components. The following
shows a snippet of our adapted XML grammar:

element : <OpenTag content CloseTag> | SingleTag ;

The above snippet introduces three new tokens, as declared below.

OpenTag : '<' Name attribute* '>' ;

CloseTag : '<' '/' Name '>' ;

SingleTag : '<' Name attribute* '/>' ;

Note that the above grammar is used for ANTLR, Bison, and our VPG parser generator, and we do
not need the VPG lexer used in the conference version of this article.

For evaluation, we used the real-world XML files provided by the VTD-XML benchmarks [42],
which consist of a wide selection of 23 files ranging from 1 K to 73 MB. The parsing times are
presented in Figure 9; the times of the largest 5 files are presented in Table 2; the conversion times
are shown in the “VPG Conv” column. Appendix H shows the results for the full test set. Similar
to JSON, VPG parsing (“VPG Parse + Extract”) on XML files is in general faster than ANTLR and
Bison parsing; the total time is also less for smaller files.

8.3 Parsing HTML Files

A snippet of the HTML grammar in ANTLR is listed below:

htmlElement : '<' TAG_NAME htmlAttribute*

('>' (htmlContent '<' '/' TAG_NAME '>')? | '/' '>' ) ;

htmlContent : htmlChardata?

((htmlElement | CDATA | htmlComment ) htmlChardata?)* ;

Similar to the XML grammar, the HTML grammar allows self-closing tags such as <br/>. How-
ever, the HTML grammar in addition allows optional end tags, which is not allowed in XML. For
example, the HTML tag <input type="submit" value="Ok"> cannot have a matching end tag
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Fig. 9. Parsing times of XML files (in log scale). “Guide Line” indicates the slope for linear time complexity.

Fig. 10. Parsing times of HTML files (in log scale). Fig. 11. Parsing times of HTML files (in log scale).
“Guide Line” indicates the slope for linear time
complexity.

according to the HTML standard. Although this kind of tag is also “self-closing,” we will use the
terminology of optional end tags, since that is how the official HTML5 standard describes it.

In the conference version of this article, we used the HTML grammar included in ANTLR. To
adapt the grammar for VPGs, we combined the components of an HTML tag into a single token
and tag it as a call or return symbol for our VPG parser. The performance comparison between
the ANTLR parser and the VPG parser is presented in Figure 10. As can be seen, our VPG parser
outperformed the ANTLR parser by more than four orders of magnitude.

We performed an investigation and identified the reason for the huge performance gap. The
HTML grammar included in ANTLR does not distinguish different kinds of tags at the grammar
level; all tags aremodeled by a single nonterminal. The grammar by itself is not practical and causes
nondeterminism at the grammar level. As a result, the ANTLR parser cannot determine how tags
are matched until all tags have been read, which significantly slows down its parsing. For the same
reason, this HTML grammar cannot be refactored to an LR grammar, which is required by Bison.
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To address this issue, we changed the grammar to reduce nondeterminism by explicitly model-
ing 10 most common tags at the grammar level and requiring their correct matching. The most
essential part of the updated HTML grammar is as follows:

htmlElement = <OpenTag_h1 htmlElement * CloseTag_h1 >

| ...

| <OpenTag_table htmlElement * CloseTag_table >

| OpenTag

| CloseTag

| SingleTag ;

For example, we require that table and paragraph tags be correctlymatched; other tags are captured
by OpenTag and CloseTag. The new tokens are declared as follows:

OpenTag_h1 : '<' 'h1' htmlAttribute* '>' ;

CloseTag_h1 : '<' '/' 'h1' '>' ;

...

OpenTag_table : '<' 'table ' htmlAttribute* '>' ;

CloseTag_table : '<' '/' 'table ' '>' ;

OpenTag : '<' TAG_NAME htmlAttribute* '>' ;

CloseTag : '<' '/' TAG_NAME '>' ;

SingleTag : '<' TAG_NAME htmlAttribute* '/' '>' ;

Similar to XML, the above grammar is used for all parser generators.
Another point is that the HTML grammar is ambiguous. For example, the first rule

htmlDocument: scriptletOrSeaWs * XML?

scriptletOrSeaWs * DTD? scriptletOrSeaWs * htmlElements* ;

can parse a string of scriptletOrSeaWs in different ways. ANTLR’s HTML parser returns the
parse tree that prioritizes earlier rules in the grammar; our VPG parser returns the same parse
tree as ANTLR’s with a special pickOne function that always picks the first element in the list of
partial parse trees.

For evaluation, we used the 19 real-world HTML files provided in ANTLR’s repository [3]; the
sizes of these files are smaller than the JSON and XML documents we used. The parsing time
is presented in Figure 11 and Table 3. The conversion times of the parse trees are shown in the
“VPG Conv” column. As can be seen, our VPG parser outperforms ANTLR and Bison, which is
particularly evident for smaller file sizes. Furthermore, the performance gap between the ANTLR
parser and the VPG parser is much narrower after the reduction of grammar nondeterminism,
confirming our hypothesis that the ANTLR’s parser struggled with the nondeterminism in the
original HTML grammar.

Summary of comparison with ANTLR and Bison. Our performance evaluation shows that our
VPG parsing library generates parsers that in general run faster than those generated by ANTLR,
and have comparable performance as the parsers generated by Bison, on grammars that can be
converted to VPGs, such as JSON, XML, and HTML.

8.4 Comparison with Hand-crafted Parsers

We also compared VPG parsers with hand-crafted parsers for JSON and XML documents. For
JSON, we compared with four mainstream JavaScript engines (V8, Chakra, JavaScriptCore, and
SpiderMonkey) and evaluated them on the JSON files discussed in Section 8.1. The four JavaScript
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Table 3. Parsing and Lexing Times of HTML Files

Name #Token
ANTLR

Parse

Bison

Parse

VPG

Parse +

Extract

VPG

Conv

VPG

Total

ANTLR

Lex
JFlex

cnn1 4,974 90 ms 7 ms 0.29 ms 1.02 ms 1.31 ms 42 ms 34 ms
reddit2 4,976 32 ms 7 ms 0.28 ms 1.11 ms 1.39 ms 54 ms 42 ms
reddit 4,989 31 ms 7 ms 0.27 ms 1.10 ms 1.37 ms 53 ms 38 ms
digg 6,250 127 ms 9 ms 0.51 ms 1.34 ms 1.85 ms 52 ms 38 ms
youtube 16,316 49 ms 12 ms 1.05 ms 5.92 ms 6.97 ms 55 ms 59 ms

Table 4. Parsing Times of Five Largest JSON Files

Name #Token
ANTLR

Lex

VPG

Parse +

Extract

VPG

Total

ANTLR
Lex

+ VPG
Total

SpiderM JSCore V8 Chakra

catalog 135,991 40 ms 7 ms 24 ms 64 ms 34 ms 71 ms 28 ms 25 ms

canada 334,374 47 ms 17 ms 69 ms 115 ms 57 ms 68 ms 34 ms 44 ms

educativos 426,398 109 ms 20 ms 69 ms 177 ms 71 ms 421 ms 45 ms 49 ms

airlines 555,410 88 ms 30 ms 98 ms 186 ms 74 ms 95 ms 42 ms 56 ms

JSON.parse 1,288,350 142 ms 72 ms 234 ms 376 ms 118 ms 139 ms 76 ms 88 ms

“SpiderM” stands for “SpiderMonkey,” and “JSCore” for “JavaScriptCore.”

engines invoke the JavaScript built-in method JSON.parse to convert a JSON string to a JSON
object. For XML, we compared with four popular XML parsers (fast-xml-parser [32], libxmljs
[28], sax-js [40], and htmlparser2 [16]) and evaluated them with the XML files discussed in
Section 8.2. One caveat of this comparison is that these parsers generate different parsing results.
Fast-xml-parser transforms an XML document into a JSON object; libxmljs transforms an XML
document into a custom object that represents the tree structure of XML documents. Sax-js and
htmlparser2 parse an XML document and execute user-supplied semantic actions; no semantic
actions were used in our evaluation. Additionally, for XML documents, the time required to
analyze tag components is not included in the VPG parsing time but is included in the ANTLR
lexing time; for better comparison, we reported the combined lexing and parsing times.

The evaluation results for the largest files are shown in Tables 4 and 5; the full results are in
Appendix H. Note that the hand-crafted parsers can process raw texts directly, while our VPG
parsers process the tokens generated by ANTLR’s lexers. Therefore, we show separately the lexing
time of ANTLR (column “ANTLR Lex”), the parsing time of VPG parsing (column “VPG Parse +
Extract”), the total time (column “VPG Total”), and the combined time (column “ANTLR Lex +
VPG Total”). From the results, we can see that although the total time of VPG parsing is not the
shortest among all parsers, the parsing time (“VPG Parse + Extract”) alone is. Thus, VPG parsers
show promising potential in performance, in addition to verified correctness over hand-crafted
parsers. The total parsing time can be reduced by replacing ANTLR’s lexer with a faster, custom
lexer, since the parsing time of VPG parsers is shorter than the lexing time.

9 FUTURE WORK

As noted earlier, the correctness of our VPG-based parser generator is verified in Coq. Correctness
means that if the generated parser constructs a parse tree, it must be a valid parse tree according
to the input VPG and vice versa. However, there are gaps between our VPG parser generator’s
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Table 5. Parsing Times of Five Largest XML Files

Name #Token
ANTLR

Lex

VPG

Parse +

Extract

VPG

Total

ANTLR
Lex

+ VPG
Total

Fast-XML Libxmljs SAX-JS HTMLP2

ORTCA 39,072 54 ms 3 ms 10 ms 64 ms 138 ms 91 ms 665 ms 89 ms

SUAS 118,446 88 ms 6 ms 27 ms 115 ms 254 ms 182 ms 1,214 ms 169 ms

address 1,437,142 201 ms 74 ms 357 ms 558 ms 584 ms 196 ms 1,012 ms 331 ms

cd 4,198,694 416 ms 204 ms 908 ms 1,324 ms 1,298 ms 419 ms 2,103 ms 735 ms

po 9,266,526 854 ms 461 ms 1,989 ms 2,843 ms 3,278 ms 897 ms 6,618 ms 1,827 ms

“HTMLP2” stands for “HTMLParser2.”

Coq formalization of and its implementation in OCaml. First, the implementation takes tagged
CFGs as input and translates tagged CFGs to VPGs; the translation algorithm’s correctness and
termination have not been formally modeled and verified in Coq. The verification effort would be
a challenge, as it depends on a global dependency graph; we leave this substantial effort to future
work. Second, the implementation uses efficient data structures for performance, while their Coq
models use equivalent data structures that are slower but easier for reasoning. For example, the
OCaml implementation uses hash tables for storing transition tables of the two PDAs to have
efficient search (with O (1) search complexity), while the Coq counterpart uses a balanced tree
(with O (log(n)) search complexity) provided as a Coq library. Therefore, we extracted OCaml
code from the Coq implementation of the parser generator and used it to generate offline parser
and extraction PDAs with Algorithms 2 and 3.

Our parsing algorithm requires a VPG as the input grammar. Compared to a CFG, a VPG re-
quires partitioning terminals into plain, call, and return symbols. Some CFGs may not admit such
a partitioning; the same terminal may require different stack actions for different input strings. In
particular, all languages recognized by VPGs belong to the set of deterministic context-free lan-
guages, which is a strict subset of context-free languages (the classic example that separates CFL
from DCFL is {aib jck | i � j ∨ j � k }). We plan to extend our preliminary study on ANTLR gram-
mars to understand how much of the syntax of practical computer languages (e.g., programming
languages and file formats) can be described by VPGs.

Our framework requires two kinds of refactoring. First, as discussed in Section 8, we refactored
the XML and HTML grammars by grouping the components of a tag as a single token. In general,
given a grammar, we can combine tokens in the grammar as long as the combined token follows
a regular expression pattern. This refactoring can be easily achieved by a lexer generator such as
JFlex [41]. To reduce user burden, we intend to provide an additional operator in tagged CFGs for
grouping tokens; the user can furthermark a combined token as a call or return symbol. Second, we
must eliminate left recursion because it is disallowed by our validator for tagged CFGs. Eliminating
the commonly used direct left recursion is simple [36] and should be supported by tagged CFGs.
In general, we believe that the refactoring effort required by our framework is less than the LR(k)
refactoring effort required to resolve shift-reduce and reduce-reduce conflicts. We plan to compare
refactoring efforts in future work.

Error information is essential for assisting users in identifying errors in grammars and input
strings. When a parsing error occurs, our VPG parser outputs the current configuration, which
includes the parser PDA’s state and stack. The user is able to view the most recently used rules as
well as their context rules, which we frequently found helpful in locating the issue. Furthermore,
with the default “pickOne” function, we verified that the extraction PDA should run without
error. For custom “pickOne” functions, users can provide their own error information. In future
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work, we plan to evaluate the error reporting of VPG parsers and compare them to LL and
LR parsers.

The translation algorithm from tagged CFGs to VPGs is sound but not complete. In general, it
is an open problem to determine whether a CFG can be translated to a VPG, and to infer the call
and return symbols automatically.

10 CONCLUSIONS

In this article, we present a recognizer and a parser generator for visibly pushdown grammars with
formally verified correctness and time complexity, where the parsing algorithm is largely enlight-
ened by the recognizer. We also provide a surface grammar called tagged CFGs and a translator
from tagged CFGs to VPGs. We show that when a format can be modeled by a VPG and its call and
return symbols can be identified, VPG parsing provides competitive performance and sometimes
a significant speedup.

APPENDICES

A CORRECTNESS PROOFS OF THE RECOGNIZER

Lemma A.1. If (S1,T ) � w ∧ S1 ⊆ S2, then (S2,T ) � w .

Proof. By definition, if T = ⊥, then
(S1,T ) � w ⇒ ∃(L1,L2) ∈ S1,L2 →∗ w .

Since S1 ⊆ S2, we have (L1,L2) ∈ S2, so (S2,T ) � w .
Otherwise, T = [S ′, ‹a] ·T ′, thenw = w1b›w2, and ∃(L3,L4) ∈ S1 s.t.

(1) L4 →∗ w1 and
(2) ∃(L1,L2) ∈ S ′,∃L5,L2 → ‹aL3b›L5 ∧ ({(L1,L5)}, T ′) � w2.

Again, since S1 ⊆ S2, we have (L3,L4) ∈ S2, so (S2,T ) � w . �

Lemma A.2. If L2 →∗ w1L3 and ({(L1,L3)},T ) � w , then ({(L1,L2)},T ) � w1w .

Proof. By definition, if T = ⊥, then
({(L1,L3)},⊥) � w implies L3 →∗ w .

Thus, L2 →∗ w1L3 implies L2 →∗ w1w . By definition, ({(L1,L2)}⊥) � w1w .
Otherwise, T = [S ′, ‹a] ·T ′, thenw = w ′b›w ′′,

(1) L3 →∗ w ′ and
(2) ∃(L′,L′′) ∈ S ′,∃L5,L

′′ → ‹aL1b›L5 ∧ ({(L′,L5)}, T ′) � w ′′.

Thus, L2 →∗ w1L3 implies L2 →∗ w1w
′. By definition, ({(L1,L2)},T ) � w1w . �

Lemma A.3. If (S,T ) � w , then ∃(L1,L2) ∈ S , s.t. ({(L1,L2)},T ) � w .

Proof. By definition, if T = ⊥, then
(S,T ) � w ⇒ ∃(L1,L2) ∈ S,L2 →∗ w .

Then, by definition, again we have the lemma.
Otherwise, T = [S ′, ‹a] ·T ′ andw = w1b›w2. By definition, again we have the lemma. �

Theorem A.4. Assume δc (S ) = (S ′, λT .T ) for a plain symbol c . Then (S,T ) � cw iff (S ′,T ) � w .

Proof. ⇒. By case over (S,T ) � cw .
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(1) T = ⊥ and (S,⊥) � cw . By definition, ∃(L1,L2) ∈ S ∧L2 →∗ cw . By the forms of VPG rules,
we must have

∃L3,L2 → cL3 ∧ L3 →∗ w .
Since (L1,L2) ∈ S ∧ L2 → cL3, by the definition of δc , and we have (L1,L3) ∈ S ′, thus, since
L3 →∗ w , we have (S ′,⊥) � w .

(2) T = [S1, ‹a] ·T ′ and (S, [S1, ‹a] ·T ′) � cw . By definition,w = w1b›w2, and ∃(L3,L4) ∈ S s.t.
(a) L4 →∗ cw1 and
(b) ∃(L1,L2) ∈ S1,∃L5,L2 → ‹aL3b›L5 ∧ ({(L1,L5)}, T ′) � w2.
Since L4 →∗ cw1, we have ∃L′4, L4 → cL′4 ∧ L′4 →∗ w1, thus (L3,L

′
4) ∈ S ′, and (S ′,T ) �

w1b›w2 = w .

⇐.
By Lemma A.3,

∃(L1,L3) ∈ S ′ s.t. ({(L1,L3)},T ) � w .

Thus, by the definition of derivatives,∃L2, (L1,L2) ∈ S∧L2 → cL3. By LemmaA.2, ({(L1,L2)},T ) �
cw . By Lemma A.1, (S,T ) � cw . �

Theorem A.5. Assume δ‹aS = (S ′, λT .[S, ‹a] · T ) for a call symbol ‹a. Then (S,T ) � ‹aw iff

(S ′, [S, ‹a] ·T ) � w .

Proof. ⇒. By case over (S,T ) � ‹aw .

(1) T = ⊥ and (S,⊥) � ‹aw . By definition, ∃(L1,L2) ∈ S ∧ L2 →∗ ‹aw . Thus, from the forms of
VPG rules, we have

∃L3,L4,b› s.t. L2 → ‹aL3b›L4 →∗ ‹aw .

Thus, ∃w1,w2, s.t. L3 →∗ w1 ∧ L4 →∗ w2 ∧w = w1b›w2.
By definition,

({(L1,L4),⊥}) � w2,

thus ({(L3,L3)}, [S, ‹a] · ⊥) � w1b›w2. Since (L3,L3) ∈ δ‹aS , we have (δ‹aS, [S, ‹a] · ⊥) �
w1b›w2 = w .

(2) T = [S1, ‹c] ·T ′ and (S, [S1, ‹c] ·T ′) � ‹aw . Then, by definition, we havew = w1d›w2, and
∃(L3,L4) ∈ S s.t.

(a) L4 →∗ ‹aw1 and
(b) ∃(L1,L2) ∈ S1,∃L5,L2 → ‹cL3d›L5 ∧ ({(L1,L5)}, T ′) � w2.
Thus, ∃L6,L7 s.t. L4 → ‹aL6b›L7, L6 →∗ w11, L7 →∗ w12 and w1 = w11b›w12. Thus, by
definition, (L6,L6) ∈ δ‹aS , so

(δ‹aS, [S, ‹a] · [S1, ‹c] ·T ′) � w11b›w
′,

where w ′ satisfies ({(L3,L7)}, [S1, ‹c] · T ′) � w ′. From ({(L1,L5)},T ′) � w2, we know w ′

can bew12d›w2, so we have

(δ‹aS, [S, ‹a] ·T ) � w11b›w12d›w2 = w .

⇐. By definition, ∃(L3,L3) ∈ S ′, s.t.w = w1b›w2, and

(1) ∃(L1,L2) ∈ S s.t. L3 →∗ w1 ∧ L2 → ‹aL3b›L5.
(2) ({(L1,L5)},T ) � w2.

Since L2 → ‹aL3b›L5∧ ({(L1,L5)},T ) � w2, by LemmaA.2, we have ({L1,L2},T ) � ‹aw1b›w2 =

‹aw , thus (S,T ) � ‹aw . �
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Theorem A.6. Assume δb› (S, [S1, ‹a]) = (S ′, tail) for a return symbol b›. Then (S, [S1, ‹a] ·T ) �
b›w iff (S ′,T ) � w .

Proof. ⇒. By definition, ∃(L3,L4) ∈ S and (L1,L2) ∈ S1, and we must have L4 →∗ ϵ , L2 →
‹aL3b›L5 and ({(L1,L5)},T ) � w . From L4 →∗ ϵ and the forms of allowed VPG rules, we must
have L4 → ϵ ; therefore, (L1,L5) ∈ S ′. By Lemma A.1, we have (S ′,T ) � w .
⇐. By Lemma A.3, we have (L1,L5) ∈ S ′ ∧ ({(L1,L5)},T ) � w , thus ∃(L1,L2) ∈ S1 ∧ (L3,L4) ∈

S ∧ L4 → ϵ ∧ L2 → ‹aL3b›L5, by definition, we have (S, [S1, ‹a] ·T ) � b›w . �

Lemma A.7. Given a VPG G = (V , Σ, P ,L0), suppose a PDA is generated according to Algorithm 1.

Then, for a string w ∈ Σ∗, ({(L0,L0)},⊥) � w iff w is accepted by the PDA.

Proof. ⇐ . If w of length k is accepted by the PDA, then there exists a sequence of configura-
tions (Si ,Ti ), i ∈ [0..k], s.t. (1) S0 = {(L0,L0)}, T0 = ⊥; (2) (Si ,Ti ) = F (wi , Si−1,Ti−1), i ∈ [1..k],
wherewi is the ith symbol inw and F is the PDA transition function; and (3) (Sk ,Tk ) is an accep-
tance configuration.

For each i , perform case analysis overwi . Supposewi is a plain symbol, denoted as c . By (Si ,Ti ) =
F (wi , Si−1,Ti−1) and the PDA construction, we must have δc (Si−1) = (Si , λT .T ). By Theorem A.4,
we get (Si−1,Ti−1) � wi . . .wk iff (Si ,Ti ) � wi+1 . . .wk . The cases for when wi is ‹a or b› are
similar, with the help of Theorems A.5 and A.6.

Combining all steps, we have (S0,T0) � w iff (Sk ,Tk ) � ϵ . Since (Sk ,Tk ) is an acceptance
configuration, we have (Sk ,Tk ) � ϵ . Therefore, we get (S0,T0) � w .
⇒ .We prove amore general lemma: If (S0,T0) is a PDA runtime configuration and (S0,T0) � w ,

thenw is accepted by the PDA. Prove it by induction over the length ofw .
When the length is zero, we must have T0 = ⊥ and there exists (L1,L2) ∈ S0 such that L0 → ϵ .

Therefore, (S0,T0) is an acceptance configuration of the PDA.
For the inductive case, suppose w = w1 . . .wk+1. Perform case analysis over w1, and first show

that there exists (S1,T1) s.t. (S1,T1) = F (w1, S0,T0).

(1) Suppose w1 is a plain symbol c and δc (S0) = (S1, λT ,T ). Since Algorithm 1 is closed under
derivatives, we have that S1 is a PDA state. LetT1 = T0. Thus, F (w1, S0,T0) = (S1,T1) by the
definition of F .

(2) The case ofw1 being a call symbol is similarly to the previous case.
(3) Suppose w1 is a return symbol b›. By (S0,T0) � b›w2 . . .wk+1, we have T0 is not the

empty stack and has a top symbol [S, ‹a]. Suppose δb› (S0, [S, ‹a]) = (S1, tail). Since Algo-
rithm 1 is closed under derivatives, we have that S1 is a PDA state. Let T1 = tail(T0). Thus,
F (w1, S0,T0) = (S1,T1) by the definition of F .

By Theorems A.4, A.5, and A.6, we get (S1,T1) � w2 . . .wk+1. By the induction hypothesis,
w2 . . .wk+1 is accepted by the PDA. Therefore, the original stringw1 . . .wk+1 is also accepted. �

Theorem A.8. For VPGG and its start symbol L0, a stringw ∈ Σ∗ is derived from L0, i.e., L0 →∗ w ,

iff w is accepted by the corresponding PDA.

Proof. By Lemma A.7,w is accepted by the PDA iff ({(L0,L0)},⊥) � w , and by definition, we
have ({(L0,L0)},⊥) � w iff L0 →∗ w . �

B RECOGNIZING STRINGS WITH PENDING CALLS/RETURNS

In this section, we extend the work in Section 5 to build PDAs for recognizing VPG with pending
call or return symbols. In general VPGs, nonterminals are classified to two categories:V 0 for match-
ing well-matched strings andV 1 for strings with pending calls/returns. We writeV = V 0 ∪V 1 for
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the set of all nonterminals.V 0 should be disjoint fromV 1. The definition also imposes constraints
on howV 0 andV 1 nonterminals can be used. E.g., in L → ‹aL1b›L2, L1 must be in a well-matched
nonterminal (i.e., in V 0). This constraint excludes a grammar like L1 → ‹aL2b›L3;L2 → ‹cL4.

Another major difference is that in L → aL1, the symbol a can be a call/return symbol in addition
to being a plain symbol. This makes matching calls and returns more complicated. For example,
suppose we have rules: L1 → ‹aL2; L2 → b›L3 |ϵ ; L3 → ϵ . Then the string ‹ab› is accepted, in which
case b› from L2 → b›L3 matches ‹a from L1 → ‹aL2. String ‹a is also accepted, in which case ‹a is
a pending call. So, depending on the input string, ‹a from L1 → ‹aL2 may be a matching call or a
pending call.

Here is an example grammar:

(1) L1 → ‹aL2b›L3

(2) L2 → ‹aL2b›L4 | ϵ
(3) L3 → ‹aL1 | ϵ
(4) L4 → ϵ .

And L1,L3 ∈ V 1,L2,L4 ∈ V 0. For example, ‹ab›‹a‹a‹ab›b› is in the language recognized by the
grammar.

General VPGs to PDAs. The PDA states and stack symbols are the same as before. We generalize
the notion of the top of the stack to return the top stack symbol when the stack is non-empty and
return None when the stack is empty.

A derivative-based transition function takes the current state and the top of the stack (which
can be None) and returns a new state and a stack action. As before, since δc and δ‹a do not use the
top of the stack, we omit it from their parameters.

Definition B.1 (Derivative Functions for General VPGs). Given a general VPG G = (V , Σ, P ,L0),
the transition functions δ are defined as follows: For c ∈ Σplain, ‹a ∈ Σcall and b› ∈ Σret,

(1) δc is the same as the well-matched case.
δc (S ) = (S ′, λT .T ), where

S ′ = {(L1,L3) | (L1,L2) ∈ S ∧ (L2 → cL3) ∈ P };
(2) For call symbols, we have δ‹a (S ) = (S ′ ∪ Sp , λT .[S, ‹a] ·T ), where

S ′ = {(L3,L3) | (L1,L2) ∈ S ∧ ∃L4, (L2 → ‹aL3b›L4) ∈ P },
Sp = {(L3,L3) | (L1,L2) ∈ S ∧ (L2 → ‹aL3) ∈ P }.

Compared to the well-matched case, an additional Sp is introduced for the case when ‹a
appears in a rule like L2 → ‹aL3.

(3) For a return symbol b›, if t is the top of the stack, then

δb› (S, t ) =

{
(S ′ ∪ Sp1, tail) if t = [S1, ‹a]
(Sp2, λT .T ) if t = None,

where
S ′ = {(L1,L5) | (L1,L2) ∈ S1 ∧ (L3,L4) ∈ S ∧

(L4 → ϵ ) ∈ P ∧ (L2 → ‹aL3b›L5) ∈ P }
Sp1 = {(L1,L5) | (L1,L2) ∈ S1 ∧ (L3,L4) ∈ S ∧

(L2 → ‹aL3) ∈ P ∧ (L4 → b›L5) ∈ P }
Sp2 = {(L3,L3) | (L1,L2) ∈ S ∧ (L2 → b›L3) ∈ P }.

S ′ is as before and deals with the case when there is a rule L2 → ‹aL3b›L5 with a proper top
stack symbol. Sp1 deals with the case when there are rules L2 → ‹aL3 and L4 → b›L5; in this

ACM Transactions on Programming Languages and Systems, Vol. 45, No. 2, Article 9. Publication date: May 2023.



9:44 X. Jia et al.

case, we match b› with ‹a. Finally, Sp2 deals with the case when the stack is empty; then b›
is treated as a pending return symbol (not matched with a call symbol).

For the well-matched case, the stack should be empty after all input symbols are consumed;
in the case with pending calls/returns, however, the stack is not necessarily empty at the end.
For example, with the grammar L → ‹aL | ϵ and the valid input string ‹a, the terminal stack is
[{(L,L)}, ‹a] · ⊥.

Definition B.2 (The Acceptance Configuration for Words with Pending Calls/returns). Given a gen-
eral VPG G = (V , Σ, P ,L0), the pair (S,T ) is called an acceptance configuration if the following are
satisfied:

(1) ∃(L1,L2) ∈ S s.t. (L2 → ϵ ) ∈ P ,
(2) either (i) T = ⊥ or (ii) T = [S ′, ‹a] ·T ′ and ∃(L3,L4) ∈ S ′ ∧ (L4 → ‹aL1) ∈ P for some L1.

In the following correctness proof, we use predicate well-matched(w ) to mean that w , a string
of terminals, is a well-matched string; that is, every call/return symbol is matched with a corre-
sponding return/call symbol. We use predicate matched-rets(w ) to mean that any return symbol
in w is matched with a call symbol; however, a call symbol may not be matched with a return
symbol. E.g., we have matched-rets(‹a‹ab›), but not well-matched(‹a‹ab›).

Definition B.3 (Semantics of PDA Configurations). We will write (S,T ) � w to mean thatw can
be accepted by the configuration (S,T ). It is defined as follows:

(1) (S,⊥) � w if ∃(L1,L2) ∈ S, s.t. L2 →∗ w ,
(2) (S, [S ′, ‹a] ·T ′) � w1b›w2 if ∃(L3,L4) ∈ S s.t.

(a) L4 →∗ w1 and well-matched(w1) and
(b) ∃(L1,L2) ∈ S ′,∃L5,L2 → ‹aL3b›L5 ∧ ({(L1,L5)}, T ′) � w2.

(3) (S, [S ′, ‹a] ·T ′) � w1b›w2 if ∃(L3,L4) ∈ S s.t. ∃L5

(a) L4 →∗ w1b›L5 and well-matched(w1) and
(b) ∃(L1,L2) ∈ S ′,L2 → ‹aL3 ∧ ({(L1,L5)}, T ′) � w2.

(4) (S, [S ′, ‹a] ·T ′) � w1 if ∃(L3,L4) ∈ S s.t.
(a) L4 →∗ w1 and matched-rets(w1)
(b) ∃(L1,L2) ∈ S ′,L2 → ‹aL3.

In the above definition, the third case handles when the call symbol ‹a in rule L2 → ‹aL3 matches
b› in w1b›L5 produced by L4. The last case handles when ‹a in rule L2 → ‹aL3 does not have a
matched return; that is, it is a pending call.

The following three lemmas and their proofs are the same as before (except that Lemma B.2
requires well-matched strings):

Lemma B.1. If (S1,T ) � w ∧ S1 ⊆ S2, then (S2,T ) � w .

Lemma B.2. If L2 →∗ w1L3, well-matched(w1), and ({(L1,L3)},T ) � w , then ({(L1,L2)},T ) �
w1w .

Lemma B.3. If (S,T ) � w , then ∃(L1,L2) ∈ S , s.t. ({(L1,L2)},T ) � w .

In addition, we need the following lemma:

Lemma B.4. IF L →∗ wδ , where δ is a string of terminals or nonterminals, then we have either

(1) matched-rets(w ), or (2) exists w1,b›,w2, so w = w1b›w2 and well-matched(w1) and exists L1 so

L →∗ w1b›L1 and L1 →∗ w2δ .

Proof. Sketch: Ifw = ϵ , then matched-rets(ϵ ). Otherwise, prove it by induction over the length
of the derivation of L →∗ wδ and then perform case analysis over the first derivation step. �
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Theorem B.5. For a plain symbol c , (S,T ) � cw iff δc (S ) = (S ′, f ), and (S ′, f (T )) � w .

The proof is similar to the proof before, except the⇒ direction has more cases to consider.

Theorem B.6. For ‹a ∈ Σcall, (S,T ) � ‹aw iff δ‹aS = (S ′, f ), and (S ′, f (T )) � w .

The proof is similar to the proof before, except with more cases to consider. The ⇒ direction
requires the use of Lemma B.4.

Theorem B.7. [(1)]

(1) If δb› (S, [S1, ‹a]) = (S ′, tail), then (S, [S1, ‹a] ·T ) � b›w iff (S ′,T ) � w .

(2) If δb› (S,None) = (S ′, λT .T ), then (S,⊥) � b›w iff (S ′,⊥) � w .

Part (1)’s proof is similar to before, except with more cases and sometimes need to use
Lemma B.4. Part(2)’s proof is straightforward.

ALGORITHM 4: Constructing the recognizer PDA. Differences from Algorithm 1 are highlighted.

Input :A VPG G = (V , Σ, P ,L0) where Σ = Σcall ∪ Σplain ∪ Σret, δ ;
Return : The initial state S0, the set of all produced states A, the set of acceptance states Aacc, and the

set of transitions T ;

1 S0 ← {(L0,L0)};
2 Initialize the set for new states N←{S0};
3 Initialize the set for all produced states A←N ;

4 Initialize the set for transitions T←{};
5 repeat

6 N ′ ← {(i, f , S, S ′) | (S ′, f ) = δi (S ), S ∈ N , and i ∈ Σcall ∪ Σplain};
7 Add edge (S, S ′) marked with (i, f ) to T , where (i, f , S, S ′) ∈ N ′;
8 Compute the set of stack elements: R ← {[S, ‹a] | S ∈ A and ‹a ∈ Σcall};
9 Compute transitions with return symbols and stack elements in R:

10 NR ← {(b›, r , f , S, S ′) | (S ′, f ) = δb› (S, r ),S ∈ A,b› ∈ Σret, r ∈ R ∪ None};
11 Add edge (S, S ′) marked with (b›, r , f ) to T , where (b›, r , f , S, S ′) ∈ NR ;

12 Collect the new states N ← {S ′ | (_, _, _, S ′) ∈ N ′ ∨ (_, _, _, _, S ′) ∈ NR } −A;
13 Update the set of all produced states A← A ∪ N ;

14 until N = ∅;
15 Compute the states of acceptance configurations Aacc ← {S | (L′,L) ∈ S ∈ A, (L → ϵ ) ∈ P }

Lemma B.8. Given a VPG G = (V , Σ, P ,L0), suppose a PDA is generated according to Algorithm 4.

Then, for a string w ∈ Σ∗, ({(L0,L0)},⊥) � w iff w is accepted by the PDA.

The lemma can be proved as before, except with more cases.

Theorem B.9. For VPG G and its start nonterminal L0, a string w ∈ Σ∗ is derived from L0, i.e.,

L0 →∗ w , iff w is accepted by the corresponding PDA.

The proof is as before.

C PARSER AND EXTRACTION PDAS FOR GENERAL VPGS

In this section, we discuss the parser PDA and the extraction PDA for general VPGs. For general
VPGs, the definitions of headNT (), nextNT () , and dotted rules of well-matched VPGs also apply;
the definition for plain symbols generalize for pending call and return symbols naturally.We define
the derivative functions of the parser PDA as follows:

Definition C.1 (The Derivative Function p for the Parser PDA). Given a VPG G = (V , Σ, P ,L0),
suppose the current state of the parser PDA ism and the current stack isT , the transition functions
pc , p‹a , and pb› are defined as follows:
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(1) For plain symbols, the derivative function of general VPGs is the same as that for well-
matched VPGs; we restate the function here: pc (m) = (m′, λT .T ), where

m′ = {(r ′, nextNT (r ) → c .L1) | (r ′, r ) ∈m ∧ (nextNT (r ) → c .L1) ∈ Ṗ }.

For each pair (r ′, r ) in m, the new state keeps the context rule r ′ and updates the current
rule to a rule with head nextNT (r ) and that derives c .

(2) For call symbols, the derivative function of general VPGs is similar to that for well-matched
VPGs; we only need to introduce a new condition for pending rules: p‹a (m) = (m′, λT .m ·T ),
where

m′ ={(r1, r1) | ∃r ′ r , (r ′, r ) ∈m ∧(
∃L1 b› L2, r1 = (nextNT (r ) → ‹a.L1b›L2) ∈ Ṗ ∨ ∃L1, r1 = (nextNT (r ) → ‹a.L1) ∈ Ṗ

)
}.

(3) For return symbols, we have two more cases to consider: pb› (m,mcall) = (m′, tail), where tail
is the function that removes the top of a stack and returns the rest of stack (for empty stacks,
tail return empty stacks), andmcall = head(T ) if T � ⊥, andmcall = ∅ if T = ⊥, and

m′ ={(r ′, nextNT (r ) → ‹aL1b›.L2) | ∃r1 r2, (r1, r2) ∈ m ∧ (r ′, r ) ∈mcall ∧
∃‹a L1 b› L2, r1 = (nextNT (r ) → ‹a.L1b›L2) ∧ (nextNT (r2) → ϵ ) ∈ P } ∪

{(r ′, r3) | ∃r1 r2, (r1, r2) ∈m ∧ (r ′, r ) ∈mcall ∧
∃‹a L2, r1 = (nextNT (r ) → ‹a.L2) ∧ ∃b› L1, r3 = (nextNT (r2) → b›.L1) ∈ Ṗ } ∪

{(None, r3) | ∃r2, (None, r2) ∈m ∧ ∃b› L1, r3 = (nextNT (r2) → b›.L1) ∈ Ṗ }.

We remove the top of the stack and construct the new state in three cases, depending on
the context rule r1 for a pair (r1, r2) inm. We have already discussed the case where r1 is a
matching rule in Definition 6.4. Below are the two new cases for pending rules.
If the context r1 is a pending rule, then the new state updates the current rule to a rule that
rewrites nextNT (r2) and generates b›. Similar to the first case, we havemcall � ∅; the update
of the context rule in the new state is similar.
Otherwise, if there is no context rule, then no call symbol is pending, and the b› symbol is
an unmatched return symbol. In this case, we must have mcall = ∅. We construct the new
state in a way similar to the second case, except that the context rule is None.

The acceptance configurations for general VPGs also allow the contexts to be pending rules, as
shown below.

Definition C.2 (Parser PDA Acceptance Configurations). Given a VPG G = (V , Σ, P ,L0), a pair
(m,E) is an acceptance configuration for the parser PDA if the statem includes a pair (r ′, r ), where
r ′ is either None or a pending rule, and nextNT (r ) derives the empty string ϵ , i.e., ∃r , (None, r ) ∈
m ∧ (nextNT (r ) → ϵ ) ∈ P .

Definition C.3 (The Extraction Function extractinit). We only need to add one more condition to
the function extract

pre
init to allow a pending rule as the context; the rest are the same as those of

well-matched VPGs.

extract
pre
init (m) = {r | (r ′, r ) ∈m, (nextNT (r ) → ϵ ) ∈ P ∧ r ′ is None or a pending rule}.

Note that this also implies that the stack of a acceptance configuration for general VPGs is not
necessarily empty.
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Definition C.4 (The One-step Extraction Function). Similar to the case of the function extract
pre
init,

we only need to add some additional conditions to the function extendable; the rest are the same
as those of well-matched VPGs.

extendable((r ′, r ), (v,E)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

true, if r ′ is None or a pending rule ∧
head(E) is None or a pending rule ∧
nextNT (r ) = headNT (v ) ∨

r ′ and head(E) are the same matching rule

(but with different dot positions) ∧
((firstRule(v ) ∈ Pret ∧

(nextNT (r ) → ϵ ) ∈ P ) ∨
(firstRule(v ) ∈ Ppln ∪ Pcall ∧

nextNT (r ) = headNT (v ))),

false, otherwise.

Compared with the case of well-matched VPGs, the only difference is that the context r ′ can
not only be None, but also be a pending rule, and, in accordance, the stack should be either empty
or have a pending rule as the stack top.

D CORRECTNESS PROOF OF VPG-BASED PARSING

Given a VPGG = (V , Σ, P ,L0) and an input stringw , let V = extract(forest(w )). We call V correct
if it includes exactly the set of valid parse trees ofw according to G; i.e.,

∀v, L0 ⇓ (w,v ) ⇐⇒ ∃E, (v,E) ∈ V .

To prove the above, we first state and prove the invariants of p and extractoneStep; the correctness
follows as a corollary.

We first discuss the invariants of the parser derivative function p. Intuitively, a rule sequence
[r1, . . . , r |w |] that derivesw should be included in forest(w ) = [m1,m2, . . . ,m |w |]; i.e., there exists
r ′i such that (r ′i , ri ) ∈ mi for i = 1..|w |. To formalize a rule sequence, we introduce a forward

small-step relation in Figure 12. Judgment (v,E)
i→ (v + [r ],E ′) means that the rule sequence v

can be extended with a rule r , which generates the input symbol i . Here, “forward” means that the
relation generates the input from left to right and “small-step” means that the relation generates
one symbol at a time, as opposed to the big-step relation in Figure 4. Figure 13 further defines

the transitive closure of the small-step relation; consequently, ([],⊥)
w

−→∗ (v,E) means that v
generatesw in multiple steps.

The forward small-step relation is flexible in that it allows combining and splitting parse trees.
We introduce a series of lemmas to formalize those operations: Lemma D.1 shows we can con-
catenate two forward small-step relations, assuming the first one has an empty stack; the cases of
nonempty stacks are covered in Lemmas D.2 and D.3. Lemma D.4 shows that we can split a for-
ward small-step relation into two parts and replace the first part with another small-step relation.
Lemma D.5 shows we can split a forward small-step relation into two parts, and the first part is
also a small-step relation. The proofs of these lemmas are directly by induction over the length of
w ; we omit them here.
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Fig. 12. The forward small-step parse-tree derivation relation, given a VPG G = (Σ,V , P ,L0).

Fig. 13. The transitive closure of the forward small-step parse-tree derivation relation.

Lemma D.1 (Concatenating Forward Small-step Relations).

∀v1 v2 w1 w2 E, ([],⊥)
w1

−→∗ (v1,⊥) ∧ ([],⊥)
w2

−→∗ (v2,E) ∧ nextNT (v1) = headNT (v2) =⇒

([],⊥)
w1w2

−→∗ (v1 +v2,E).

Lemma D.2 (Concatenation with a Pending Call Rule).

∀L ‹a L1, ([],⊥)
‹a

−→∗ ([L → ‹a.L1], (L → ‹a.L1) · ⊥) =⇒

∀v E w, ([],⊥)
w

−→∗ (v,E) ∧ headNT (v ) = L1 =⇒

([],⊥)
‹aw

−→∗ ([L → ‹a.L1] +v,E) ∨ ([],⊥)
‹aw

−→∗ ([L → ‹a.L1] +v,E · (L → ‹a.L1) · ⊥).

Lemma D.3 (Concatenation with a Matching Call Rule).

∀L ‹a L1 b› L2, ([],⊥)
‹a

−→∗ ([L → ‹a.L1b›L2], (L → ‹a.L1b›L2) · ⊥) =⇒

∀v E w, ([],⊥)
w

−→∗ (v,E) ∧ headNT (v ) = L1 =⇒

([],⊥)
‹aw

−→∗ ([L → ‹a.L1b›L2] +v,E · (L → ‹a.L1b›L2) · ⊥).

Lemma D.4 (Replacing Forward Small-steps).

∀v v1 r E w1, ([],⊥)
w1

−→∗ (v + [r ],E) ∧ ([],⊥)
w1

−→∗ (v1 + [r ],E) =⇒

∀v2 E2 w2, ([],⊥)
w1w2

−→∗ (v + [r ] +v2,E2) =⇒ ([],⊥)
w1w2

−→∗ (v1 + [r ] +v2,E2).
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Lemma D.5 (Splitting Forward Small-steps).

∀v1 v2 E w, ([],⊥)
w

−→∗ (v1 +v2,E) ∧ v1 � [] =⇒

∃E1 w1, ([],⊥)
w1

−→∗ (v1,E1) ∧ ∃w2,w = w1w2.

The forward small-step relation is equivalent to the big-step relation under certain conditions;
we state the equivalence in Lemma D.7. To prove the equivalence, we first introduce the invariant
of the forward small-step relation in Lemma D.6, which splits a forward small-step relation into
two parts based on the last unmatched rule and considers them separately.

Lemma D.6 (Invariant of the Forward Small-step Relation).

∀v E w, ([],⊥)
w

−→∗ (v,E) ∧ w � ϵ =⇒
(head(E) is None or a pending rule ∧

∀ŵ v̂, nextNT (v ) ⇓ (ŵ, v̂ ) =⇒ headNT (v ) ⇓ (wŵ,v + v̂ )) ∨
∃‹a r‹a Ê, E = r‹a · Ê ∧ r‹a is a matching rule ∧

∃v1 v2, v = v1 + [r‹a] +v2 ∧ ∃w1 w2, w = w1‹aw2 ∧(
w1 = ϵ ∧v1 = [] ∧ Ê = ⊥ ∨ w1 � ϵ ∧ ([],⊥)

w1

−→∗ (v1, Ê)

)
∧

(∀ŵ v̂, nextNT (v ) ⇓ (ŵ, v̂ ) =⇒ nextNT (r‹a ) ⇓ (w2ŵ,v2 + v̂ )) .

Proof. Prove it by induction over the length of w . There are two cases of w : If w = i ∈ Σ,
then the lemma is straightforward to show; so assume w = w ′i and w ′ � ϵ . By the definition of

the small-step relation, we have ∃v ′ r , v = v ′ + [r ] and ∃E ′, ([],⊥)
w ′

−→∗ (v ′,E ′); we apply the
induction hypothesis to the small-step relation ofw ′ and have two cases of E ′.

In the first case, E ′ = ⊥ or head(E ′) is a pending rule. There are two cases of i .

(1) i ∈ Σplain ∪ Σret. We have E = E ′ when i ∈ Σplain, and E = tail(E ′) when i ∈ Σret. In both

cases, either E = ⊥ or head(E) is a pending rule.5 For any big-step nextNT (v ) ⇓ (ŵ, v̂ ), we
extend it to nextNT (v ′) ⇓ (iŵ, [r ] + v̂ ) by definition, and by the induction hypothesis, we
have headNT (v ) ⇓ (w ′iŵ,v ′ + [r ] + v̂ ).

(2) i ∈ Σcall. Then, we have E = r · E ′. There are two cases of r .
(a) If r is a pending rule, then for any big-step nextNT (v ) ⇓ (ŵ, v̂ ), we first extend it to

nextNT (v ′) ⇓ (iŵ, [r ] + v̂ ) by definition, then we have headNT (v ) ⇓ (w ′iŵ,v ′ + [r ] + v̂ )
by the induction hypothesis.

(b) If r is a matching rule, then we construct v1 = v ′, r‹a = r , v2 = [] and w1 = w ′, ‹a = i ,

w2 = ϵ .We already have ([],⊥)
w1

−→∗ (v1,E
′). Since bothv2 andw2 are empty, nextNT (v ) ⇓

(ŵ, v̂ ) =⇒ nextNT (r‹a ) ⇓ (w2ŵ,v2 + v̂ ) is trivial to show.

In the second case, head(E ′) is a matching rule, and we have

∃‹a′ v ′1 r‹a′ v ′2 w ′1 w ′2, v ′ = v ′1 + [r‹a′] +v
′
2 ∧ w ′ = w ′1‹a

′w ′2.

There are three cases of i .

(1) i ∈ Σplain. Then, we have

v = v ′1 + [r‹a′] + (v ′2 + [r ]) ∧ w = w ′1‹a
′(w ′2i ).

5Note that in VPGs, a pending rule cannot be used inside a matching rule.
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We construct v1 = v ′1, r‹a = r‹a′ , v2 = v ′2 + [r ], and w1 = w ′1, ‹a = ‹a′, w2 = w ′2i . We
only need to prove the last clause. For any big-step nextNT (v ) ⇓ (ŵ, v̂ ), we extend it
to nextNT (v ′) ⇓ (iŵ, [r ] + v̂ ) by definition, and by the induction hypothesis, we have

nextNT (r‹a′ ) ⇓
(
w ′2iŵ,v

′
2 + [r ] +v ′

)
.

(2) i ∈ Σcall. Then, we have

v = v ′ + [r ] ∧ w = w ′i .

We construct v1 = v ′, r‹a = r , v2 = [], and w1 = w ′, ‹a = i , w2 = ϵ . The rest of the proof is
straightforward.

(3) i ∈ Σret. Then, we have E ′ = r‹a′ · E. For any big-step nextNT (v ) ⇓ (ŵ, v̂ ), we first construct

the big-step headNT (r‹a′ ) ⇓
(
‹a′w ′2iŵ, [r‹a′] +v

′
2 + [r ] + v̂

)
by definition. Now, there are

two cases of E.
(a) E = ⊥ or head(E) is a pending rule. If w ′1 = ϵ , then we are done. Otherwise, we apply

the induction hypothesis to the small-step relation ofw ′1 and use it to extend the big-step
relation to

headNT (v ) ⇓ (
w ′1‹a

′w ′2iŵ,v
′
1 + [r‹a′] +v

′
2 + [r ] + v̂

)
.

(b) head(E) is a matching rule. We apply the induction hypothesis to the small-step relation
ofw ′1, and have

∃‹a′′ v ′′1 r‹a′′ v
′′
2 w ′′1 w2,

′′ v ′1 = v
′′
1 + [r‹a′′] +v

′′
2 ∧ w ′1 = w

′′
1 ‹a

′′w ′′2 .

So, we have

v = v ′′1 + [r‹a′′] + (v ′′2 + [r‹a′] +v
′
2 + [r ]) ∧ w = w ′′1 ‹a

′′(w ′′2 ‹a
′w ′2i ).

By the induction hypothesis, we extend the big-step relation to

nextNT (r‹a′′ ) ⇓
(
w ′′2 ‹a

′w ′2iŵ,v
′′
2 + [r‹a′] +v

′ + [r ] + v̂
)
. �

Lemma D.7 (Relating Small-step and Big-step Relations).

∀L w v, w � ϵ =⇒

L ⇓ (w,v ) ⇐⇒ ∃E, ([],⊥)
w

−→∗ (v,E) ∧ (nextNT (v ) → ϵ ) ∈ P ∧
(L ∈ V 0 =⇒ E = ⊥) ∧ head(E) is None or a pending rule.

Proof. =⇒ . Prove it by induction over the big-step relation L ⇓ (w,v ).

(1) w = iw ′, v = [r ] + v ′, and nextNT (r ) ⇓ (w ′,v ′). The case of w ′ = ϵ is trivial, so assume
w ′ � ϵ . Apply the induction hypothesis tow ′ and we have

∃E ′, ([],⊥)
w ′

−→∗ (v ′,E ′) ∧ (nextNT (v ′) → ϵ ) ∈ P ∧
(nextNT (r ) ∈ V 0 =⇒ E ′ = ⊥) ∧ head(E ′) is None or a pending rule.

There are two cases of i .

(a) i ∈ Σcall. We construct the small-step relation ([],⊥)
i

−→∗ ([r ], r · ⊥) by definition, and by

Lemma D.2, we append v ′ to [r ] and have ([],⊥)
iw ′

−→∗ ([r ] +v ′,E ′ · [r ]) or ([],⊥)
iw ′

−→∗
([r ] +v ′,E ′).

(b) i ∈ Σplain ∪ Σret. We construct the small-step relation ([],⊥)
i

−→∗ ([r ],⊥) by definition,

and by Lemma D.1, we append v ′ to [r ] and have ([],⊥)
iw ′

−→∗ ([r ] +v ′,E ′).
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(2) w = ‹aw1b›w2, v = [r1] + v1 + [r2] + v2, and nextNT (ri ) ⇓ (wi ,vi ), i = 1, 2. We first

construct the small-step relation ([],⊥)
‹a

−→∗ ([r1], r1 · ⊥). If w1 � ϵ , then we apply the

induction hypothesis to w1 and have the small-step relation ([],⊥)
w1

−→∗ (v1,⊥) (note that

headNT (v1) ∈ V 0). Then, by Lemma D.3, we have ([],⊥)
‹aw1

−→∗ ([r1] +v1, r1 · ⊥); we extend

it to ([],⊥)
‹aw1b›

−→∗ ([r1] +v1 + [r2],⊥) by definition. Finally, if w2 � ϵ, then we apply the
induction hypothesis to w2 and have the small-step relation of w2. By Lemma D.4, we have

([],⊥)
w

−→∗ ([r1] +v1 + [r2] +v2,⊥).

⇐= . This is a corollary of Lemma D.6. �

We describe the specification of the parser derivative functions in Lemma D.8.

Lemma D.8 (Specification of Parser Derivative Functions).

∀c m r1 r , (r1, r ) ∈ pc (m) ⇐⇒
∃r ′ L′, (r1, r ′) ∈m ∧ r = (nextNT (r ′) → c .L′) ∈ Ṗ ;

∀‹a m r1 r , (r1, r ) ∈ p‹a (m) ⇐⇒
∃r2 r ′, (r2, r

′) ∈m ∧
((r2 = None ∨ ∃L1 ‹a2 L2, r2 = (L1 → ‹a2.L2) ∈ Ṗ ) ∧

(∃L′, r1 = r = (nextNT (r ′) → ‹a.L′) ∈ Ṗ ∨
∃L′ b› L3, r1 = r = (nextNT (r ′) → ‹a.L′b›L3) ∈ Ṗ ) ∨

∃L1 ‹a2 L2 b2› L3, r2 = (L1 → ‹a2.L2b2›L3) ∈ Ṗ ∧
∃L′ b› L4, r1 = r = (L → ‹a.L′b›L4) ∈ Ṗ );

∀b›m t r1 r , (r1, r ) ∈ pb› (m, t ) ⇐⇒
(t = None ∧ r1 = None ∧ ∃(r2, r

′) ∈ m ∧ ∃L, r = (nextNT (r ′) → b›.L′) ∈ Ṗ ) ∨
(∃r2 r ′, (r2, r

′) ∈m ∧ ∃r ′′, (r1, r ′′) ∈ t ∧ nextNT (r ′′) = headNT (r2) ∧
(∃L ‹a L1 L

′, r2 = L → ‹a.L1 ∈ Ṗ ∧ r = (nextNT (r ′) → b›.L′) ∈ Ṗ ∨
∃‹a L L1 L

′, r2 = (L → ‹a.L1b›L′) ∈ Ṗ ∧ r = (L → ‹aL1b›.L′) ∈ Ṗ ∧
(nextNT (r ′) → ϵ ) ∈ P )).

Now, we give the invariants of the parser PDA. Lemma D.9 states that the forward small-step re-
lation for input w1 . . .wi is represented in mi , for all i ∈ [1..|w |], where mi is the parser PDA
state after processing wi . Lemma D.10 states that each pair in mi represents a forward small-
step relation. In these lemmas, we write P for the transitive closure of the parser transition
function (Definition D.1) and use a helper function split(v,E,w ) = (v1,v2,w1,w2), which splits
v into v = v1 + [r‹a] + v2 and w into w = w1‹aw2, where r‹a is the rule that generates the
last unmatched call symbol ‹a. Specially, if w does not include unmatched call symbols, then
split(v,E,w ) = ([],v, [],w ).

Definition D.1 (Transition Closure of the Parser PDA). Given a string w , we define the relation
P (m0,⊥,w ) = (m,T ), meaning that starting from (m0,⊥), running the parser PDA on w and the
last configuration is (m,T ).
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Lemma D.9 (Invariants of the Parser PDA, Part 1).

∀w m T , P (m0,⊥,w ) = (m,T ) ∧ ([],⊥)
w

−→∗ (v,E) =⇒
∀v E v1 v2 w1 w2, (v1,v2,w1,w2) = split(v,E,w ) =⇒

(head(E), lastRule(v )) ∈m ∧
(head(E) = None ∧T = ⊥ ∨

head(E) � None ∧ ∃t T ′,T = t :: T ′ ∧ P (m0,⊥,w1) = (t ,T ′)).

Proof. Prove it by induction over the length ofw .
There are two cases of w : If w = i ∈ Σ, then we can check the lemma straightforwardly. Next,

assume w = w ′i and w ′ � ϵ . Then, we have v = v ′ + [r ]. We invert ([],⊥)
w→ (v,E) and have

([],⊥)
w ′→ (v ′,E ′). There are three cases of i .

(1) i ∈ Σplain. Then E = E ′. By the induction hypothesis, we have (head(E ′), lastRule(v ′)) ∈ m′,
where (m′,T ) = pw ′ (m0,⊥). By Lemma D.8, we have (head(E), lastRule(v )) ∈ m. If
head(E) = None, i.e., E = ⊥, we are done. Otherwise, let split(v ′,E ′,w ′) = (v ′1,v

′
2,w

′
1,w

′
2).

Clearly, we have v1 = v
′
1 andw1 = w

′
1, so we have ∃t T ′, T = t :: T ′ ∧ P (m0,⊥,w1) = (t ,T ′).

(2) i ∈ Σcall. Then E = r · E ′, w1 = w ′ and v1 = v ′. By Lemma D.8, (r , r ) ∈ m and
∃T ′, T =m′ :: T ′ ∧ P (m0,⊥,w1) = (m′,T ′).

(3) i ∈ Σret. Let split(v
′,E ′,w ′) = (v ′1,v

′
2,w

′
1,w

′
2). There are two cases of E ′.

(a) E ′ = ⊥. Then, we have E = ⊥, and by Lemma D.8 and the induction hypothesis, we have
(None, lastRule(v )) ∈m.

(b) ∃r‹a ,E ′ = r‹a ·E. Then, we have r‹a ∈ E ′, and by Lemma D.8 and the induction hypothesis,
we have (head(E), lastRule(v )) ∈ m. If head(E) = None, then we are done. Otherwise, we
havew ′1 � ϵ . We apply the induction hypothesis tow ′1 and finish the proof. �

Lemma D.10 (Invariants of the Parser PDA, Part 2).

∀mT w, P (m0,⊥,w ) = (m,T ) ∧ w � ϵ =⇒
∀r1 r , (r1, r ) ∈m =⇒

(r1 = None ∧ ∃v, ([],⊥)
w

−→∗ (v + [r ],⊥) ∨

r1 � None ∧ ∃v H , ([],⊥)
w

−→∗ (v + [r ], r1 :: H )).

Proof. Prove it by induction over the length ofw .
There are two cases of w : If w = i ∈ Σ, then we can check the lemma straightforwardly. Next,

assumew = w ′i andw ′ � ϵ . Let P (m0,⊥,w ′) = (m′,T ′).
There are three cases of i .

(1) i ∈ Σplain. For each (r1, r ) in m, we have ∃r ′, (r1, r ′) ∈ m′ and nextNT (r ′) = headNT (r ).
The lemma is then directly from the definition and the induction hypothesis applied tow ′.

(2) i ∈ Σcall. For each (r1, r ) in m, we have ∃r ′, (r2, r ′) ∈ m′ and nextNT (r ′) = headNT (r ).
By Lemma D.8, r1 = r and (r1, r1) ∈ m; by the induction hypothesis applied to w ′,

∃H , ([],⊥)
w

−→∗ (v ′ + [r1], r1 :: H ).
(3) i ∈ Σret. There are two cases of r1.

(a) r1 = None. Then T = ⊥ and by Lemma D.8 and the induction hypothesis, we have

([],⊥)
w

−→∗ (v + [r ],⊥).
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(b) r1 � None. Then ∃t , T = t · T ′, ∃r3, (r1, r3) ∈ t , ∃r4 r5, (r4, r5) ∈ m′, and

nextNT (r3) = headNT (r4). By LemmaD.8, we have∃H , ([],⊥)
w

−→∗ (v ′ + [r ], r1 :: H ). �

Our next step is to introduce the invariants of extraction functions, which build parse trees in a
backward way. To formalize the parse trees built by the backward extraction process, we introduce
the backward small-step relation in Figure 14. This relation is similar to the forward one, only in
the reverse direction. The corresponding transitive closure is defined in Figure 15.

Fig. 14. The backward small-step parse-tree derivation, given a VPG G = (Σ,V , P ,L0).
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Fig. 15. The transitive closure of the backward small-step relation.

Similar to the forward small-step relation, the backward small-step relation is equivalent to the
big-step relation under some conditions. We state the equivalence in Lemma D.13. To prove the
lemma, we first give the invariants of the backward small-step relation in Lemma D.11.

Lemma D.11 (Invariants of the Backward Small-step Relation).

∀v E w, ([],⊥)
w

�∗ (v,E) =⇒
head(E) is None or a pending rule ∧ headNT (v ) ⇓ (w,v ) ∨
∃L1 ‹a L2 b› L3 r E

′, E = r · E ′ ∧ r = (L1 → ‹aL2b›.L3) ∈ P ∧
(v = [r ] ∧w = b› ∧ (L3 → ϵ ) ∈ P ∨

∃v2 w2, v = [r ] +v2 ∧w = b›w2 ∧ ([],⊥)
w2

�∗ (v2,E
′) ∧

((∃L4 ‹a2 L5 b2› L6 w3 v3,

v2 = [L4 → ‹a2L5b2›.L6] +v3 ∧w2 = b2›w3 ∧ (L3 → ϵ ∈ P )) ∨
(firstRule(v2) is not a matching return rule ∧ L3 = headNT (v2))) ∨

∃v1 w1,v = v1 + [r ] ∧w = w1b› ∧ headNT (v1) ⇓ (w1,v1) ∧ (L3 → ϵ ) ∈ P ∧ E ′ = ⊥ ∧
firstRule(v1) is not a matching return rule ∧

(∀v̂ Ê ŵ, ([],⊥)
ŵ

−→∗ (v̂, Ê) =⇒ nextNT (v̂ ) = headNT (v1) =⇒

([],⊥)
ŵw1

−→∗ (v̂ +v1, Ê)) ∨
∃v1 v2 w1 w2, v = v1 + [r ] +v2 ∧w = w1b›w2 ∧

firstRule(v1) is not a matching return rule ∧

headNT (v1) ⇓ (w1,v1) ∧ ([],⊥)
w2

−→∗ (v2,E
′) ∧

(∀v̂ Ê ŵ, ([],⊥)
ŵ

−→∗ (v̂, Ê) =⇒ nextNT (v̂ ) = headNT (v1) =⇒

([],⊥)
ŵw1

−→∗ (v̂ +v1, Ê)) ∧
(∃L4 a2 L5 b2› L6 v3 w3,v2 = [L4 → ‹a2L5b2›.L6] +v3∧

w2 = b2›w3 ∧ (L3 → ϵ ) ∈ P ∨
firstRule(v2) is not a matching return rule ∧ L3 = headNT (v2)))).

Proof. Prove it by induction over the length ofw .
There are two cases of w : If w = i ∈ Σ, then we can prove the lemma straightforwardly;

so assume w = iw ′ and w ′ � ϵ and we have v = [e] + v ′. From ([],⊥)
w

�∗ (v,E), we have

∃E ′, ([],⊥)
w ′

�∗ (v ′,E ′). There are three cases of i .

(1) i ∈ Σplain. Then, we have E = E ′. If head(E) is None or a pending rule, then we prove the
lemma by extending headNT (v ′) ⇓ (w ′,v ′) to headNT (v ) ⇓ (iw ′, [e] +v ′). So, assume
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head(E) is a matching rule. Let v ′ = v1 + [r ] + v2, we prove the lemma by extending
headNT (v1) ⇓ (w1,v1) to headNT (v ) ⇓ (iw1, [r ] +v1).

(2) i ∈ Σcall. If head(E) is None or a pending rule, then we prove the lemma by extend-
ing the big-step relation of v ′ to headNT (v ) ⇓ (iw ′, [e] +v ′). So, assume head(E) is
a matching rule. Let v ′ = v ′1 + [r ′] + v ′2 and w ′ = w ′1b

′›w ′2. By induction, we have

∃E2, ([],⊥)
w ′2
� (v ′2,E2). If head(E) is None or a pending rule, then we can directly

construct headNT (v ) ⇓
(
w, [e] +v ′1 + [r ′] +v ′2

)
. If head(E) is a matching rule, then we

have v ′2 = v ′′1 + [r ′′] + v ′′2 and w ′2 = w ′′1 b
′′›w ′′2 . We prove the lemma by combining the

big-step of v ′1 and v ′′1 to headNT (v ) ⇓
(
iw ′1b

′›w ′′1 , [e] +v
′
1 + [r ′] +v ′′1

)
.

(3) i ∈ Σret. This case is trivial. �

Just as the case for the forward small-step relation, we can combine two backward small-step
relations. We state it in Lemma D.12.

Lemma D.12 (Combining Backward Small-step Relations).

∀L w v, L ⇓ (w,v )

=⇒ (L ∈ V 0 ∧ w � ϵ )

=⇒ ([],⊥)
w

�∗ (v,⊥) ∧

(∀v2 E2 w2 L1 ‹a L2 b› L3, ([],⊥)
w2

�∗ ([L1 → ‹aL2b›.L3] +v2,E2)

=⇒ ([],⊥)
ww2

�∗ (v + [L1 → ‹aL2b›.L3] +v2,E2)).

Proof. Prove it by induction over the big-step relation L ⇓ (w,v ). Since L ∈ V 0, there are two
cases.

(1) w = cw ′ and v = [r ] + v ′. If w ′ = ϵ , then we can prove the lemma straightforwardly;
so, assume w ′ � ϵ and apply the induction hypothesis to headNT (v ′) ⇓ (w ′,v ′). We

can directly extend the backward small-step relation of v ′ with [r ]. For any ([],⊥)
w2

�∗

([L1 → ‹aL2b›.L3] +v2,E2), we first extend it with the small-step relation ofv ′ by the induc-
tion hypothesis, then further extend the small-step relation with [r ] by definition.

(2) w = ‹a′w ′1b
′›w ′2 and v = [r‹a′] + v ′1 + [rb′›] + v ′2. Note that, since L ∈ V 0, we have

headNT
(
v ′2

)
∈ V 0. For any ([],⊥)

w2

�∗ ([L1 → ‹aL2b›.L3] +v2,E2), by the induction hy-

pothesis of v ′2 and the definition of the backward small-step, we extend it with v ′2, rb′›, v
′
1,

and r‹a′ in order. �

Lemma D.13 (Correctness of the Backward Small-step Relation).

∀L w v, L ⇓ (w,v ) ⇐⇒ ∃E, ([],⊥)
w

�∗ (v,E) ∧ head(E) is None or a pending rule.

Proof. =⇒ . Prove it by induction over the big-step relation L ⇓ (w,v ).

(1) w = iw ′, v = [r ] + v ′, and nextNT (r ) ⇓ (w ′,v ′), where r is not a matching rule. The case
of w ′ = ϵ is trivial; so, assume w ′ � ϵ . Apply the induction hypothesis to w ′ and we have

∃E ′, ([],⊥)
w ′

�∗ (v ′,E ′). We can directly extend this backward small-step relation with [r ].
(2) w = ‹aw1b›w2,v = [r1]+v1+ [r2]+v2, and nextNT (ri ) ⇓ (wi ,vi ), i = 1, 2. Ifw2 � ϵ , then we

apply the induction hypothesis to headNT (v2) ⇓ (w2,v2) and have the small-step relation of
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w2. We extend it to ([],⊥)
b›w2

�∗ ([r2] +v2, r2 · ⊥) by definition. Ifw2 = ϵ , then we havev2 = []
and this small-step also holds. Then, if w1 � ϵ , then we apply the induction hypothesis to
headNT (v1) ⇓ (w1,v1) and have the small-step relation ofw1. By Lemma D.12, we construct

([],⊥)
w1b›w2

�∗ (v1 + [r2] +v2,⊥). Ifw1 = ϵ , then this small-step also holds. Finally, we extend

the small-step relation to ([],⊥)
w

�∗ ([r1] +v1 + [r2] +v2,⊥) by definition.

⇐= . This is a corollary of Lemma D.11. �

We give the specification of extractinit and extractoneStep in Lemmas D.14, D.15, and D.16. The
proofs are directly based on the definitions, and we omit them here.

Lemma D.14 (The Specification of extractinit).

∀m M w i, forest(wi ) = M + [m] =⇒
∀v E, (v,E) ∈ extractinit (m) ⇐⇒

([],⊥)
i
� (v,E) ∧ ∃r , v = [r ] ∧ ((None, r ) ∈m ∨ ∃L1 ‹a L2, (L1 → ‹a.L2, r ) ∈m).

Lemma D.15 shows that ifm is a state andV includes partial parse trees in backward small-step
relations, then extractoneStep extends the relations; Lemma D.16 further shows that the relations
are extended by rules inm and trees in V .

Lemma D.15 (The Specification of extractoneStep, Part I).

∀m V i w, (∃M w ′, forest(w ′i ) = M + [m]) ∧
(
∀v̂ Ê, (v̂, Ê) ∈ V =⇒ ([],⊥)

w

�∗ (v̂, Ê)

)
=⇒

∀v E, (v,E) ∈ (extractoneStep (m,V )) =⇒ ([],⊥)
iw

�∗ (v,E).

Lemma D.16 (The Specification of extractoneStep, Part II).

∀m V v E, (∃M w ′, forest(w ′i ) = M + [m]) ∧ (v,E) ∈ extractoneStep (m,V ) =⇒
∃v ′ E ′, (v ′,E ′) ∈ V ∧ ∃r , (r ,firstRule(v )) ∈m ∧

((E ′ = ⊥ ∧ (r = None ∨ ∃L1 ‹a L2, r = (L1 → ‹a.L2))) ∨
∃L′1 b› L′2 E

′′, head(E ′) = (L′1 → b›.L′2) ∧
(r = None ∨ ∃L1 ‹a L2, r = (L1 → ‹a.L2)) ∨

∃L1 ‹a L2 b› L3, head(E) = (L1 → ‹aL2b›.L3) ∧ r = (L1 → ‹a.L2b›L3)).

Now, we introduce the invariants of the extraction function.

Lemma D.17 (Invariants of the Extraction Function). Given a VPG G = (Σ,V , P ,L0), we

have

∀m M1 M2 w1 w2 i V ,

forest(w1w2i ) = M1 +M2 + [m] ∧ |M2 | = |w2 | ∧ V = extract(M2 + [m]) =⇒

∀v E, (v,E) ∈ V ⇐⇒ ([],⊥)
w2i

�∗ (v,E) ∧
(w1 = ϵ ∧ L0 ⇓ (w2i,v ) ∨ ∃v1 E1, headNT (v1) = L0∧

([],⊥)
w1

−→∗ (v1,E1) ∧ L0 ⇓ (w1w2i,v1 +v )).
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Proof. Prove it by induction overw2.
Whenw2 = ϵ , we have V = extractinit (m).

=⇒ . For each (v,E) ∈ extractinit (m), by Lemma D.14, we have ([],⊥)
i
� (v,E) and ∃r ,v = [r ].

By Lemma D.10, we have

∃v1 E1, ([],⊥)
w1w2i

−→∗ (v1 + [r ],E1).

By Lemmas D.7 and D.14, the above small-step relation can be converted to a big-step relation; i.e.,
L0 ⇓ (w1w2i,v1 +v ). If w1 = ϵ , then v1 = [] and w1w2i = i , so L0 ⇓ (i,v ). If w1 � ϵ , then we can

invert the above small-step relation to get ∃E1, ([],⊥)
w1

−→∗ (v1,E1).

⇐= . For (v,E) that satisfy ([],⊥)
w1w2i

�∗ (v,E), if w1 = ϵ and L0 ⇓ (w2i,v ), then we first
convert the big-step relation to a small-step relation by Lemma D.7, then, by Lemma D.9, we have
(head(E),v ) ∈m. Then, by Lemma D.14, we have (v,E) ∈ V . Ifw1 � ϵ and L0 ⇓ (w1i,v1 +v ), then
we can similarly show that (head(E),v ) ∈m and (v,E) ∈ V .

When w2 � ϵ , let w2 = i ′w3 and M2 = [m′2] +M
′
2, we have V = extractoneStep (m′2, extract(M

′
2 +

[m])).
=⇒ . For each (v,E) ∈ V , by Lemma D.16, we have

∃r v ′ r1 E ′,v = [r ] +v ′ ∧ (r1, r ) ∈m′2 ∧ (v ′,E ′) ∈ extract(M ′2 + [m]).

By Lemma D.10, we have

∃vr Er , ([],⊥)
w1i′

−→∗ (vr + [r ],Er ).

By the induction hypothesis, we have

([],⊥)
w3i

�∗ (v ′,E ′) ∧ ∃v1 E1, ([],⊥)
w1i′

−→∗ (v1,E1) ∧ L0 ⇓ (w1i
′w3i,v1 +v

′) .

As an overview, we will try to use vr and v1 to construct the counterpart of v . In the simplest
case, r1 = None and vr can be directly used. In a more complex case, r1 is a matching rule, and we
need to combine vr and v1 to construct the counterpart. There are two cases of r1.

(1) r1 = None or a pending rule. We will prove L0 ⇓ (w,vr +v ). We first convert the backward

small-step ([],⊥)
w3i

�∗ (v ′,E ′) to a forward small-step. There are two cases of E ′.

(a) E ′ = ⊥ or head(E ′) is a pending rule. We convert ([],⊥)
w3i

�∗ (v ′,E ′) to a big-step by
Lemma D.13 and then convert the big-step to a forward small-step by Lemma D.7.

(b) head(E ′) is a matching rule. This is not possible by Lemma D.16.
Then, we combinevr +[r ] andv

′ tovr +[r ]+v
′ by LemmaD.1. Finally, we convertvr +[r ]+v

′

to a big-step by Lemma D.7 and finish the proof.
(2) r1 is a matching rule. There are two cases of E ′.

(a) E ′ = ⊥ or head(E ′) is a pending rule. This is not possible by Lemma D.16.
(b) head(E ′) is a matching rule. We use the split function to split v1 into v1,1 + [r1,‹a] + v1,2

and split vr + [r ] into vr,1 + [rr,‹a] + vr,2. Then, we construct a new forward small-step

([],⊥)
w1w2i
→ (v1,1 + [r1,‹a] +vr,2,E

′′) for some E ′′. Then, we extend this small-step with
firstRule(v ′) and use Lemma D.4 to further extend the small-step relation tov1,1+ [r1,‹a]+
vr,2 +v

′. Finally, we convert the small-step relation to a big-step by Lemma D.7.

⇐= . For each (v,E) that satisfies ([],⊥)
w1w2i

�∗ (v,E), let v = [r ] + v ′ for some v ′ and r , and

w2 = i
′w3 for some i ′ andw3.We invert the backward small-step ofw2i and have ([],⊥)

w3i

�∗ (v ′,E ′)
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for some E ′. Then, we convert L0 ⇓ (w1w2i,v1 +v ) to a forward small-step ([],⊥)
w1w2i

−→∗ (v1 +v,E)

for some E, and by Lemma D.5, we have the forward small-step ([],⊥)
w1i′

−→∗ (v1 + [r ],Er ) for some
Er .With these small-steps, we apply the induction hypothesis and have (v ′,E ′) ∈ extract(M ′2+[m]),
whereM2 = [m′2]+M

′
2 for somem′2. Then, by the definition of extractoneStep, we have (v,E) ∈ V . �

By Lemma D.17, whenw1 = ϵ , we have the correctness of the parser generator.

Theorem D.18 (Correctness of the Parser Generator).

∀w V , V = extract(forest(w )) =⇒ (∀v, L0 ⇓ (w,v ) ⇐⇒ ∃E, (v,E) ∈ V ).

E CORRESPONDENCE BETWEEN THE THEOREMS AND THE COQ PROOFS

Table 6 shows the theorems discussed in this article, the files that include the corresponding Coq
theorems and their proofs, and the names of the Coq theorems.

Table 6. The Correspondence between the Theorems and the Mechanized Proofs

Theorem File Name

Theorem D.1 ForwardSmallStep L4_1
Theorem D.2 ForwardSmallStep L4_3
Theorem D.3 ForwardSmallStep L4_4
Theorem D.4 ForwardSmallStep L_DF_Local
Theorem D.5 ForwardSmallStep DF_SPLIT2
Theorem D.6 ForwardSmallStep L4_2
Theorem D.7 ForwardSmallStep SoundV
Theorem D.8 GenForest L_m2PlainM, L_m2CallM, L_m2RetM
Theorem D.9 GenForest PForest1
Theorem D.10 GenForest PForest2
Theorem D.11 BackwardSmallStep BreakDV
Theorem D.12 BackwardSmallStep L4_3
Theorem D.13 BackwardSmallStep CompleteM, SoundV
Theorem D.14 Transducer L_f_init
Theorem D.15 Transducer L_f_b
Theorem D.16 Transducer pg2
Theorem D.17 Transducer L_extract
Theorems 6.1, Theorems 6.3 TimedExtraction Property_VPG_Parser_Generator
Theorem 6.2 TimedRunPDA bound_cost_run_PDA

F EXAMPLES OF TAGGED CFGS

The following is a tagged CFG for JSON [3], where nonterminals start with lowercase characters,
such as json, and terminals start with uppercase characters, such as “STRING.” Also, call and
return symbols are tagged with “<” or “>”, respectively. The declarations of terminals are omitted.

json = value ;
obj = <'{' pair (',' pair)* '}'> | <'{' '}'> ;
pair = STRING ':' value ;
arr = <'[' value (',' value)* ']'> | <'[' ']'> ;
value = STRING | NUMBER | obj | arr | 'true' | 'false' | 'null' ;
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The following is a tagged CFG for HTML, which is adapted from the HTML grammar from the
repository of ANTLR [3]:

htmlDocument = scriptletOrSeaWs* XML? scriptletOrSeaWs* DTD?
scriptletOrSeaWs* htmlElements* ;

scriptletOrSeaWs = SCRIPTLET | SEA_WS ;
htmlElements = htmlMisc* htmlElement htmlMisc* ;
htmlElement = TagOpen | <TagOpen htmlContent TagClose>

| TagSingle | SCRIPTLET | script | style ;
htmlContent = htmlChardata?

((htmlElement | CDATA | htmlComment) htmlChardata?)* ;
htmlAttribute = TAG_NAME (TAG_EQUALS ATTVALUE_VALUE)? ;
htmlChardata = HTML_TEXT | SEA_WS ;
htmlMisc = htmlComment | SEA_WS ;
htmlComment = HTML_COMMENT | HTML_CONDITIONAL_COMMENT ;
script = SCRIPT_OPEN (SCRIPT_BODY | SCRIPT_SHORT_BODY) ;
style = STYLE_OPEN (STYLE_BODY | STYLE_SHORT_BODY) ;
htmlElement =

| <TAG_OPEN_h1 htmlElement* TAG_CLOSE_h1>
| <TAG_OPEN_h2 htmlElement* TAG_CLOSE_h2>
| <TAG_OPEN_h3 htmlElement* TAG_CLOSE_h3>
| <TAG_OPEN_h4 htmlElement* TAG_CLOSE_h4>
| <TAG_OPEN_div htmlElement* TAG_CLOSE_div>
| <TAG_OPEN_b htmlElement* TAG_CLOSE_b>
| <TAG_OPEN_i htmlElement* TAG_CLOSE_i>
| <TAG_OPEN_ul htmlElement* TAG_CLOSE_ul>
| <TAG_OPEN_ol htmlElement* TAG_CLOSE_ol>
| <TAG_OPEN_table htmlElement* TAG_CLOSE_table>
| TAG_OPEN
| TAG_CLOSE
| TAG_SCLOSE
| CDATA
| SCRIPTLET
| htmlChardata
| htmlComment
| script
| style

The following is a tagged CFG for XML adapted from ANTLR [3]:

document = prolog? misc* element misc*;
prolog = XMLDeclOpen attribute* SPECIAL_CLOSE ;
content = chardata? ((element | reference | CDATA | PI | COMMENT)

chardata?)* ;
element = < OpenTag content CloseTag > | SingleTag ;
reference = EntityRef | CharRef ;
attribute = Name '=' STRING ;
chardata = TEXT | SEA_WS ;
misc = COMMENT | PI | SEA_WS ;
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G THE TRANSLATION ALGORITHM

Translating simple forms to linear forms. The translation algorithm is based on the dependency
graph G. We start by removing from G any dependency edge (L,L′) that is labeled with (s1, s2);
intuitively, a matched token ‹aL′b› can be conceptually viewed as a “plain symbol” and its presence
does not affect the following translation.We use the symbol t for either a plain symbol or amatched
token. Further, a rule whose head is L is called a rule of L.

We find all strongly connected components (SCCs) in the dependency graphG and collapse
each SCC into a single node; the resulting condensation graph is written as GSCC , which is a di-

rected acyclic graph (DAG). For a nonterminal L, we write GSCC[L] for the nonterminals in its
SCC. Because the validator passes G, we know that any edge between nonterminals L1 and L2 in
GSCC[L] must be labeled with (s, ϵ ).

We write allDep(GSCC ,L) for all nonterminals that L may (transitively) depend on according to
GSCC ; that is,

allDep(GSCC ,L) = {L′ | GSCC[L] transitively depends on GSCC[L′]}.

The translation algorithm maintains a set of processed nonterminals Vdone, a map T , and a set
P of the current set of rules. Set Vdone is used to track the set of nonterminals whose rules have
been processed, meaning those rules are in the linear form; it is initialized to be the empty set. The
algorithm uses T to keep track of new nonterminals created during translation. It is initialized to
the empty map. During translation, a new nonterminal L1 may be created for a string of the form
Ls , where L is a nonterminal and s ∈ (Σ ∪V )+; the algorithm then adds the mapping (Ls,L1) to T .
Finally, P is initialized to be the set of rules in the input grammar; during translation, new rules
may be added to P and some rules may be removed.

At each iteration, if Vdone contains all nonterminals in G, then the algorithm terminates (which
implies that all rules are already in linear forms). Otherwise, pick a nonterminal L � Vdone so
allDep(GSCC ,L) ⊆ Vdone; that is, nonterminals that GSCC[L] depend on (transitively) have only
linear-form rules. SinceGSCC is a DAG, we can always find such an L.

If all rules of L are in the linear form, then add L to Vdone and move to the next iteration. Oth-
erwise, pick a non-linear form rule of L → t1 . . . tkL1s , where each ti is either a plain symbol or
a matched token, L1 is the left-most nonterminal (outside any matched token) in the rule, and
s ∈ (Σ ∪V )+. We must have that L1 � GSCC[L], since otherwise it would violate the conditions im-
posed by the validator. So the rules of L1 (as well as rules of those nonterminals that L1 transitively
depends on) must already be in the linear form.

With the non-linear form rule L → t1 . . . tkL1s , the algorithm performs multiple rounds to trans-
form it to a set of linear-form rules.

• The goal of the first round is to invoke linearizeFirstNT(L→ t1 . . . tkL1s), defined in Algo-
rithm 5, to remove the dependency from L to L1. When k > 0, what the procedure does is
to introduce a new nonterminal L′1 (if L1s is not in the translation table already), change
the rule to L → t1 . . . tkL

′
1, and add the map (L1s,L

′
1) to the translation table T ; if fur-

ther recursively invokes linearizeFirstNT(L′1 → L1s) to remove the dependency from L′1 to
L1. When k = 0, the rule becomes L → L1s and the procedure in Algorithm 5 uses the
rules of L1 to rewrite L1s; note that in this case L1 can have only linear-form rules. After
linearizeFirstNT(L→ t1 . . . tkL1s) is finished, this round removes rule L → t1 . . . tkL1s from
P , updates the dependency graphG (as new nonterminals are added and rules are changed).
• It is easy to see from Algorithm 5 that all non-linear form rules added in the first round have

the form of Lu → �ts , where Lu can be L or a newly generated nonterminal, �t is a sequence
of plain symbols or matched tokens, and s is the string in the original rule L → t1 . . . tkL1s .
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ALGORITHM 5: linearizeFirstNT(L→ t1 . . . tkL1s)

1 Global G is the dependency graph and GSCC isG’s condensation graph;

2 Global Vdone is the set of already processed terminals;

3 Global T is the translation table;

4 Global P is the current set of rules;

5 if k > 0 then

6 if L1s ∈ dom(T ) then

7 L′1 ← T (L1s );

8 else

9 L′1 ← newNonterminal();

10 Add (L1s,L
′
1) to T ;

11 linearizeFirstNT(L′1 → L1s);

12 end

13 Add L → t1 . . . tkL
′
1 to P;

14 else

15 k = 0

16 end

17 for rule r of L1 do

18 if r is L1 → t ′1 . . . t
′
j then

19 Add rule L → t ′1 . . . t
′
js to P ;

20 else

21 r is L1 → t ′1 . . . t
′
jL2

22 end

23 if L2s ∈ dom(T ) then

24 L′2 ← T (L2s );

25 else

26 L′2 ← newNonterminal();

27 Add (L2s,L
′
2) to T ;

28 linearizeFirstNT(L′2 → L2s);

29 end

30 Add L → t ′1 . . . t
′
jL
′
2 to P;

31 end

Compared to the original rule, progress has been made, since the size of s is less than the
size of L1s .
In the next round, the algorithm then takes rules of form Lu → �ts and feeds those non-linear
ones to linearizeFirstNT(−) to remove the dependency from Lu to the first nonterminal in s .
We continue these rounds until the original rule L → t1 . . . tkL1s is completely linearized.

After L → t1 . . . tkL1s is completely linearized, the algorithm continues to the next iteration.
We have now finished the discussion of the translation algorithm. For its correctness, we can

prove that the algorithm produces an equivalent grammar as the input grammar by showing that
each rewriting step creates an equivalent grammar.

For termination, the following lemma shows that linearizeFirstNT(−) terminates:

Lemma G.1. linearizeFirstNT(L→ t1 . . . tkL1s) terminates, if L1 and terminals in allDep
(GSCC ,L1) have only linear-form rules.

Proof. Inspecting Algorithm 5, we know that a recursive call to linearizeFirstNT(L′u → Lus)
is made only when Lu ∈ {L1} ∪ allDep(GSCC ,L1) and Lus is not in T . Since the set {L1} ∪
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allDep(GSCC ,L1) is finite and Lus is added toT when a recursive call linearizeFirstNT(L′u → Lus) is
made, only a finite number of recursive calls can bemade. Therefore, the procedure terminates. �

Further, as mentioned earlier, all generated rules when calling linearizeFirstNT(L→ t1 . . . tkL1s)
have the form of Lu → �ts , from which we know that the distance from the first nonterminal in
�ts to the end is shorter than the distance from L1 to the end in t1 . . . tkL1s . Moreover, it is easy
to show only a finite number of rules of the form Lu → �ts are generated. In summary, at each
round of linearizing the rule L → t1 . . . tkL1s , the number of invocations to linearizeFirstNT(−) is
finite and round j + 1 is simpler than round j in the sense that a rule in round j + 1 has a shorter
distance from the first nonterminal to the end of the rule. Therefore, the process of linearizing rule
L → t1 . . . tkL1s terminates.

Finally, since the number of rules in the input grammar is finite, there is only a finite number
of iterations. Therefore, the translation algorithm terminates.

H THE FULL EVALUATION

The full evaluation results are shown in Tables 7–11.

Table 7. The Parsing Times of JSON

Name #Token
ANTLR

Parse

Bison

Parse

VPG

Parse +

Extract

VPG

Conv

VPG

Total

ANTLR

Lex
JFlex

blog_entries 1,402 11.2 ms 0.8 ms 0.08 ms 0.1 ms 0.2 ms 11.0 ms 5.5 ms

gists 6,302 15.1 ms 1.9 ms 0.36 ms 0.5 ms 0.9 ms 12.3 ms 3.9 ms

emojis 7,198 14.7 ms 2.0 ms 0.40 ms 0.5 ms 0.9 ms 12.8 ms 4.6 ms

github 11,680 17.2 ms 2.7 ms 0.77 ms 1.4 ms 2.2 ms 15.9 ms 6.8 ms

poked 12,916 18.4 ms 3.4 ms 0.88 ms 1.5 ms 2.4 ms 14.6 ms 5.6 ms

Members 13,226 17.8 ms 4.3 ms 0.87 ms 1.3 ms 2.2 ms 13.0 ms 3.9 ms

senator 17,932 19.4 ms 4.2 ms 1.19 ms 1.8 ms 3.0 ms 17.4 ms 6.4 ms

AskReddit 18,975 20.1 ms 3.7 ms 1.33 ms 2.0 ms 3.4 ms 16.8 ms 8.1 ms

parliament 27,182 21.6 ms 4.8 ms 1.98 ms 3.3 ms 5.3 ms 16.5 ms 12.0 ms

prize 30,210 22.1 ms 5.8 ms 2.24 ms 3.2 ms 5.4 ms 17.2 ms 10.6 ms

municipis 39,292 27.2 ms 5.6 ms 3.06 ms 3.8 ms 6.8 ms 23.8 ms 11.6 ms

reddit_all 52,941 26.5 ms 8.0 ms 4.14 ms 7.0 ms 11.1 ms 26.1 ms 15.1 ms

y77d_th95 54,666 27.2 ms 8.3 ms 4.04 ms 5.6 ms 9.6 ms 23.8 ms 12.5 ms

twitter 55,264 23.9 ms 6.8 ms 4.37 ms 5.5 ms 9.9 ms 104.9 ms 24.3 ms

representative 70,750 28.7 ms 7.7 ms 4.92 ms 7.6 ms 12.5 ms 29.2 ms 24.8 ms

transactions 71,744 30.5 ms 9.5 ms 5.54 ms 8.1 ms 13.6 ms 24.2 ms 19.5 ms

laureate 79,953 31.6 ms 11.0 ms 4.90 ms 11.3 ms 16.2 ms 25.2 ms 12.9 ms

catalog 135,991 53.5 ms 20.2 ms 7.33 ms 17.0 ms 24.3 ms 39.8 ms 39.1 ms

canada 334,374 103.7 ms 49.9 ms 17.02 ms 51.5 ms 68.6 ms 46.7 ms 39.5 ms

educativos 426,398 92.3 ms 40.5 ms 20.47 ms 48.2 ms 68.7 ms 108.5 ms 75.3 ms

airlines 555,410 106.5 ms 58.0 ms 30.01 ms 68.2 ms 98.2 ms 87.8 ms 91.3 ms

movies 751,917 171.2 ms 81.9 ms 39.40 ms 125.1 ms 164.5 ms 87.9 ms 97.9 ms

js 1,288,350 224.5 ms 127.5 ms 72.14 ms 161.9 ms 234.0 ms 141.6 ms 141.4 ms
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Table 8. The Parsing Time (ms) of XML

Name #Token
ANTLR

Parse

Bison

Parse

VPG

Parse +

Extract

VPG

Conv

VPG

Total

ANTLR

Lex
JFlex

nav_63_0 351 10.18 1.40 0.02 0.01 0.03 10.56 0.76
nav_78_0 354 8.90 1.32 0.02 0.02 0.04 10.44 0.74
nav_50_0 523 9.87 1.74 0.03 0.02 0.05 11.06 0.98
cd_catalog 733 9.71 1.58 0.04 0.03 0.07 9.41 0.67
form 740 10.50 1.68 0.04 0.03 0.07 14.47 1.35
OfficeOrder 898 10.58 1.89 0.05 0.04 0.09 13.40 1.17
book-order 2,723 12.73 2.73 0.14 0.28 0.42 12.69 1.80
book 2,723 13.38 2.96 0.14 0.28 0.41 12.69 1.76
bioinfo 3,165 13.51 2.80 0.17 0.27 0.44 15.93 2.36
soap_small 3,415 13.24 3.27 0.17 0.37 0.54 14.40 2.04
cd_big 4,829 14.69 3.24 0.26 0.60 0.87 13.36 2.49
soap_mid 17,015 20.26 7.34 1.17 2.92 4.09 18.89 10.89
ORTCA 39,072 30.02 8.30 3.22 6.31 9.53 54.09 71.00
blog 43,000 24.52 11.35 3.38 6.92 10.30 55.60 35.01
SUAS 118,446 54.32 30.51 6.37 20.56 26.93 88.16 130.68
po1m 128,742 65.65 28.18 6.54 20.74 27.28 48.21 30.79
soap 340,015 125.32 58.69 16.15 55.71 71.86 67.39 52.75
bioinfo_big 406,493 107.50 67.30 20.85 72.30 93.15 89.64 74.09
address 1,437,142 253.83 231.90 74.04 283.35 357.40 200.98 250.01
cd 4,198,694 720.94 734.56 204.18 704.03 908.21 415.73 508.57
po 9,266,526 1,359.55 1,834.59 461.16 1,527.52 1,988.69 854.08 1,617.16
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Table 9. The Parsing Time (ms) of HTML

Name #Token
ANTLR

Parse

Bison

Parse

VPG

Parse +

Extract

VPG

Conv

VPG

Total

ANTLR

Lex
JFlex

uglylink 13 14.28 2.03 0.00 0.00 0.00 9.77 0.14
script1 26 14.88 2.20 0.00 0.00 0.00 8.18 0.20
style1 26 15.42 2.20 0.00 0.00 0.00 7.89 0.22
attvalues 27 35.70 2.14 0.00 0.00 0.01 11.50 0.21
html4 38 16.42 2.21 0.00 0.00 0.01 10.85 0.31
antlr 545 37.14 4.75 0.04 0.23 0.26 22.49 2.63
google 659 24.08 3.77 0.04 0.27 0.30 31.78 33.82
gnu 1,013 38.58 5.40 0.06 0.10 0.16 19.86 2.95
freebsd 1,521 49.51 5.74 0.09 0.21 0.29 19.29 2.54
abc.com 1,524 43.20 4.83 0.09 0.21 0.30 30.64 15.06
github 2,547 46.82 6.83 0.21 0.26 0.47 26.12 4.71
metafilter 2,615 50.94 5.49 0.21 0.45 0.66 33.13 30.18
wikipedia 2,750 37.49 6.46 0.24 0.37 0.61 33.93 10.71
nbc.com 3,821 94.82 7.37 0.32 0.59 0.92 46.21 14.79
bbc 3,883 88.48 5.62 0.32 0.80 1.12 95.48 51.55
cnn1 4,974 89.63 6.84 0.29 1.02 1.31 42.38 34.00
reddit2 4,976 31.97 6.85 0.28 1.11 1.39 53.65 41.84
reddit 4,989 31.37 7.41 0.27 1.10 1.37 53.29 38.30
digg 6,250 126.95 8.53 0.51 1.34 1.85 52.07 38.00
youtube 16,316 49.35 11.56 1.05 5.92 6.97 54.83 58.53
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Table 10. Comparison with Hand-crafted Parsers (ms) of Parsing JSON

Name #Token
ANTLR

Lex

VPG

Parse +

Extract

VPG

Total

ANTLR
Lex

+ VPG
Total

SpiderM JSCore V8 Chakra

Members 1,402 13.03 0.87 2.24 15.27 15.06 45.33 8.80 13.05

poked 6,302 14.61 0.88 2.40 17.00 14.82 50.83 8.72 12.68

gists 7,198 12.38 0.36 0.90 13.28 16.29 85.23 9.21 13.72

senator 11,680 17.49 1.19 3.07 20.57 16.01 55.43 9.98 13.87

AskReddit 12,916 16.81 1.33 3.42 20.24 14.67 51.59 9.28 13.42

blog_entries 13,226 11.03 0.08 0.26 11.28 14.51 51.90 8.85 13.21

github 17,932 15.99 0.77 2.21 18.20 15.78 66.17 9.99 12.43

emojis 18,975 12.83 0.40 0.98 13.82 15.40 46.53 9.19 14.14

parliament 27,182 16.53 1.98 5.35 21.88 16.36 70.35 10.38 13.69

prize 30,210 17.25 2.24 5.45 22.71 16.76 134.30 9.98 13.15

y77d_th95 39,292 23.87 4.04 9.63 33.50 20.72 178.03 12.53 16.35

municipis 52,941 23.89 3.06 6.89 30.78 20.02 60.20 11.48 16.54

laureate 54,666 25.26 4.90 16.22 41.47 17.41 105.22 11.96 15.37

reddit_all 55,264 26.15 4.14 11.15 37.30 22.00 92.54 15.61 17.44

transactions 70,750 24.23 5.54 13.65 37.87 22.27 132.86 15.21 16.19

twitter 71,744 104.96 4.37 9.91 114.88 21.09 78.90 11.78 18.35

representative 79,953 29.22 4.92 12.56 41.78 20.72 178.03 12.53 16.35

catalog 135,991 39.83 7.33 24.36 64.19 33.81 70.64 27.59 24.77

canada 334,374 46.74 17.02 68.61 115.35 57.14 67.51 33.95 43.83

educativos 426,398 108.58 20.47 68.75 177.34 70.78 420.99 44.53 48.64

airlines 555,410 87.82 30.01 98.26 186.08 73.86 95.12 41.93 55.52

movies 751,917 87.92 39.40 164.58 252.51 70.93 106.41 68.00 50.85

JSON.parse 1,288,350 141.64 72.14 234.07 375.71 118.11 139.21 76.36 87.81
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Table 11. Comparison with Hand-crafted Parsers (ms) of Parsing XML

Name #Token
ANTLR

Lex

VPG

Parse +

Extract

VPG

Total

ANTLR
Lex

+ VPG
Total

Fast-XML Libxmljs SAX-JS HTMLP2

nav_63_0 351 10.56 0.02 0.03 10.59 0.14 0.13 0.67 0.20

nav_78_0 354 10.44 0.02 0.04 10.47 0.12 0.12 0.68 0.20

nav_50_0 523 11.06 0.03 0.05 11.11 0.21 0.17 0.99 0.30

cd_catalog 733 9.41 0.04 0.07 9.48 0.22 0.09 0.36 0.16

form 740 14.47 0.04 0.07 14.54 0.38 0.17 0.93 0.27

OfficeOrder 898 13.40 0.05 0.09 13.49 0.37 0.14 0.88 0.35

book-order 2,723 12.69 0.14 0.42 13.11 0.69 0.26 1.41 0.54

book 2,723 12.69 0.14 0.41 13.10 0.64 0.26 1.41 0.54

bioinfo 3,165 15.93 0.17 0.44 16.37 0.99 0.38 2.16 0.90

soap_small 3,415 14.40 0.17 0.54 14.94 0.85 0.40 2.42 0.78

cd_big 4,829 13.36 0.26 0.87 14.23 1.17 0.44 2.20 0.88

soap_mid 17,015 18.89 1.17 4.09 22.98 4.11 1.95 11.74 3.81

ORTCA 39,072 54.09 3.22 9.53 63.62 138.49 91.25 664.62 88.79

blog 43,000 55.60 3.38 10.30 65.91 29.57 6.56 48.07 17.83

SUAS 118,446 88.16 6.37 26.93 115.09 254.39 182.43 1,213.67 168.74

po1m 128,742 48.21 6.54 27.28 75.49 33.51 11.56 95.22 27.11

soap 340,015 67.39 16.15 71.86 139.25 110.14 38.13 260.88 76.24

bioinfo_big 406,493 89.64 20.85 93.15 182.79 116.93 42.74 276.96 82.29

address 1,437,142 200.98 74.04 357.40 558.37 584.40 196.12 1,012.01 330.51

cd 4,198,694 415.73 204.18 908.21 1,323.94 1,298.48 419.07 2,102.58 734.97

po 9,266,526 854.08 461.16 1,988.69 2,842.77 3,278.30 897.30 6,617.60 1,826.90
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