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ABSTRACT
In this paper, we present a robust and low complexity deep learning
model for Remote Sensing Image Classification (RSIC), the task
of identifying the scene of a remote sensing image. In particular,
we firstly evaluate different low complexity and benchmark deep
neural networks: MobileNetV1, MobileNetV2, NASNetMobile, and
EfficientNetB0, which present the number of trainable parameters
lower than 5 Million (M). After indicating best network architec-
ture, we further improve the network performance by applying
attention schemes to multiple feature maps extracted from middle
layers of the network. To deal with the issue of increasing the model
footprint as using attention schemes, we apply the quantization
technique to satisfy the maximum of 20 MB memory occupation.
By conducting extensive experiments on the benchmark datasets
NWPU-RESISC45, we achieve a robust and low-complexity model,
which is very competitive to the state-of-the-art systems and po-
tential for real-life applications on edge devices.
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1 INTRODUCTION
As the task of remote sensing image classification (RSIC) is consid-
ered as an important component in various real-life applications
such as urban planning [22, 36], natural hazards detection [27, 39],
environmental monitoring [39], vegetation mapping or geospatial
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object detection [11], it has attracted much research attention in
recent years. Indeed, the research community, which focuses on
RSIC tasks, has published diverse datasets of remote sensing image
as well as proposed a wide range of classification models. The most
early dataset of remote sensing image, UCM [52], was publish in
2010. In next years, various remote sensing image datasets were pub-
lished such asWHU-RS19 [48] in 2012, NWPUVHR-10 [5], SAT6 [1]
and RSSCN7 [65] in 2015, SIRI-WHU [59] in 2016, AID [46] and
NWPU-RESISC45 [3] in 2017, and OPTIMAL [42] in 2018. Among
these datasets, NWPU-RESISC45 [3] presents the largest number
of 45 different image scenes and balanced number of 700 images
per class. Regarding RSIC systems, they can be separated into two
approaches. The first approach mainly focuses on image processing
techniques and machine learning based classification. While the im-
age processing techniques are used to extract distinct features from
the original image data, the traditional machine learning methods
are used to classify these extracted features into certain classes.
Regarding image processing based feature extraction, a wide range
of methods were proposed such as Texture Descriptors (TD), Color
Histogram (CH), Scale-Invariant Feature Transformation (SIFT)
[51], wavelet transformation with Gabor/Haar filters [9, 10], bag-
of-visual-words (BoVW) based techniques [31, 52]. These methods
make effort to transform the original image into a new and con-
dense feature space, likely vector, which is suitable for traditional
machine learning classification such as Support Vector Machine
(SVM) [9, 52], K-means Clustering [63], or Decision Tree and Neu-
ral Network[8]. In the second approach, RSIC research community
focuses on deep learning based models, mainly using variants of
Deep Convolutional Neural Network (DCNN) such as VGG [53],
ResNet [29], DenseNet [38], EfficientNet[55], or Transformer [56].
To train these networks, there are 3 typical strategies[23]: direct
training, fine tuning, and using DCNN as a feature extractor. While
the first strategy directly trains a network architecture on a RSIC
dataset [25], the other two methods make use of pre-trained models
on large-scale image datasets to finetune [13, 29, 41] or extract
features [17, 18, 20, 25, 58, 61] on a RSIC dataset (i.e. Leveraging a
pre-trained models in these two training strategies is considered
as the transfer learning technique). As most of datasets of RSIC
present a limitation of data compared with natural image datasets
such as ImageNet [7], training a network from scratch shows high
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cost and present ineffective compared with fine tuning methods or
using DCNN as a feature extractor.

Compare between two approaches, the second approach leverag-
ing deep learning based systems proves robust and outperforms the
traditional machine learning based approach [19]. However, com-
plicated deep neural networks in the second approach commonly
presents very high model complexity which causes challenging
for applying RSIC on edge devices. In this paper, we address the
problems of those two approaches, aim to develop a robust and
low-complexity deep learning model for RSIC task. We mainly
contribute:

(1) Firstly, we evaluate and compare current benchmark and low-
complexity network architectures: MobileNet, MobileNetV2,
NASNetMobile, EfficientB0. Our experimental results indi-
cate that the EfficientNetB0 architecture using the transfer
learning technique is more effective for RSIC task.

(2) Secondly, we propose a Multihead attention based layer
which is applied to multiple feature maps for improving
EfficientNetB0 network performance. To deal with the issue
of increasing model complexity using the attention layers,
we apply the quantization technique to meet the require-
ment: The proposed model occupies a maximum of 20 MB
which is potential for applying to a wide range of edge de-
vices surveyed in [33].

(3) Finally, we evaluate our best model (EfficientNetB0 network
architecture using the transfer learning technique, the pro-
posed Multihead attention based layer, and the quantization
technique) on the largest and benchmark dataset of NWPU-
RESISC45 [3]. The experimental results show that our pro-
posed RSIC system is competitive to the state of the art, but
presents significantly lower model footprint.

2 BACKGROUND
As our proposed deep learningmodel leverages the parameter-based
transfer learning technique and attention schemes, the background
of these two techniques is comprehensively presented below.

2.1 The parameter-based transfer learning
applied for deep neural network

Humans can be aware that it is easy to transfer knowledge from
one domain or task to another. For an instance, it will be easier for
a person to learn a second programming language if he/she had
experience on a programming language before. In other words, a
person can encounter a new task without starting from scratch
by leveraging previous experience to learn and adapt to a new
task. Inspired by the human capability to transfer knowledge, the
machine learning research community has recently focused on
the transfer learning techniques and made effort to apply on the
computers [44, 64].

In this paper, we apply the parameter-based transfer learning
technique, which is very popular and effective for deep neural net-
work network [26]. Given a model of neural network architecture,
we firstly define the term of ‘pre-trained model’: A model was

trained on a particular large-scale dataset for a certain task in ad-
vance, referred to as the up-stream task. Then, transfer learning is
a term that points out the action of applying the pre-trained model
for a new task but related in some aspect of the up-stream task.
The new task is referred to as the down-stream task. Commonly,
the up-stream task is more challenging than the down-stream task
(e.g., more objects in tasks of object detection or more categories in
classification tasks) and the dataset used in the down-stream task is
normally smaller or more specific than the large-scale and general
dataset for the up-stream task. The idea and advantages behind
the parameter-based transfer learning technique for deep neural
network is that utilizing the information gained while solving a
challenging up-stream task (i.e. The trainable parameters and the
network architecture of the pre-trained model) may not only save
time but also enhance the performance on a more simple down-
stream task. Regarding the mathematical perspective behind the
classification task and deep neural network based model in this
paper, it is basically an optimization task which makes gradient
descent find the minimum point. Therefore, the starting point of
gradient is a very important factor. Indeed, if the starting point of
gradient is near the global optimum point, it significantly helps to
save the training time as well as avoid the gradient to converse at
unexpected local optimization points. By applying the parameter-
based transfer learning technique, the distribution of trainable pa-
rameters, which is reused from a pre-trained model on an up-stream
task, is likely to be near the golden distribution of trainable param-
eters in a down-stream task rather than random initialization. As
the start distribution of trainable parameters is likely same as the
golden distribution of trainable parameters, the gradient feasibly
converse at very near the global optimal point.

In this paper, we aim to classify remote sensing image into senti-
ment categories, which is considered as the task of remote sensing
image classification (RSIC). As we leverage the parameter-based
transfer learning technique, our task of RSIC is referred to as the
down-stream task. To solve our down-stream task of RSIC, we there
need to define the up-stream task of image classification as well
as indicate a pre-trained model with a large-scale dataset. As Im-
ageNet is considered as the benchmark dataset [28] to evaluate
a wide range of network architectures on the task of image clas-
sification, published pre-trained models on ImageNet from Keras
library [6] are considered as the up-stream tasks and leveraged for
our down-stream task of RSIC.

2.2 Attention schemes in computer vision
Humans can easily find the important regions in an image. In other
words, there are some regions on a image containing specific and
distinct features which help humans distinguish from other images.
This inspires the computer vision research community focuses on
attention mechanisms which help deep learning models know and
learn which valuable features. An attention mechanism can be
formulated by a function 𝑔(X) where X is the input feature map
and 𝑔(X) represents a way to create the guidance based on the
importance of input feature map X. In other words, the output of
𝑔(X) is attention weights which present which region of the input
feature map is more important. The attention weights are then
element-wise multiplied with the input feature map X [14, 45] as
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described by Eq.1

𝑓 (X) = 𝑔(X) ⊙ X (1)

where 𝑓 () is the attention layer applied on the input feature map
X to generate a new feature map which better presents distinct
features, but still retain the original feature map size.

The current attentionmechanisms applied to the computer vision
research field and deep learning models can be divided into some
main groups described in detail below.

Squeeze-and-excitation networks (SE) [14]. It is a channel-
based attention mechanism, SE layer focuses on the particular fea-
tures on the channel dimension. Moreover, SE uses global average
pooling (GAP) before feeding to a multi layers perceptron neural
network with a sigmoid function at the last layer. Then, it further
applies a channel-wise multiplication between the input feature
map X and the output of activation layer. The SE is formulated by
Eq. 2

𝑓𝑆𝐸 = 𝑔(𝑚𝑙𝑝 (𝐺𝐴𝑃 (X))) ⊙ X (2)

where 𝑔() is sigmoid function,𝑚𝑙𝑝 () stands for multi-layers per-
ceptron neural network and GAP is a channel wise global average
pooling layer.

Channel attention (CA) layer: CA layer is a variant of SE
and it is also a channel-based attention method which has been
popularly used in convolutional neural networks [12, 60]. Similar
to SE layer, the idea behind the channel attention layer is guiding
the model to focus on some particular features on the channel. But
it seems to be more powerful as it utilize information from both
global max and average pooling layer.

In particular, given three-dimensional input feature map X ∈
𝑅𝑊 ×𝐻×𝐶 where𝑊,𝐻, and𝐶 are width, height, and channel dimen-
sions, the channel attention (CA) applied to the feature map X can
be formulated by:

𝑓𝐶𝐴 = 𝑔(𝑚𝑙𝑝 (𝐺𝐴𝑃 (X)) +𝑚𝑙𝑝 (𝐺𝑀𝑃 (X))) ⊙ X (3)

where 𝑔() is sigmoid function,𝑚𝑙𝑝 () is a sharing neural layer (e.g.
normally use multi-layers perceptron). GAP and GMP are global
average pooling and global max pooling of channel wise, respec-
tively.

Spatial attention (SA) layer: enables the deep neural network
focus on distinct features on both width and height dimensions
rather than the channel dimension as CA or SE mechanisms. As
focusing on the spatial features on width and height dimensions,
the channel dimension of a three-dimensional input feature maps
X is firstly reduced by using average pooling and max pooling,
create two-dimension feature maps of XA,XM∈ 𝑅𝑊 ×𝐻 , respec-
tively. Then, a network layer (e.g., normally a convolutional layer),
described by 𝑐𝑜𝑛𝑣 () is applied and followed by a Sigmoid function.
The SA layer is formulated as Eq. 4

𝑓𝑆𝐴 = 𝑔(𝑐𝑜𝑛𝑣 ( [XA,XM])) ⊙ X (4)

where𝑔() is sigmoid function, 𝑐𝑜𝑛𝑣 () represents for a convolutional
layer.

Convolutional BlockAttentionModule (CBAM):While SE/CA
and SA mechanisms only focus on either channel features or spatial
features, CBAM [45], combines both these attention methods, cre-
ates a robust guidance for network to process important regions of

a certain feature map. This attention mechanism can be described
by formulas: Eq.5 and Eq.6:

X′ = 𝑓𝐶𝐴 (X) (5)
𝑓𝐶𝐵𝐴𝑀 = 𝑓𝑆𝐴 (X′) (6)

Multihead self attention (MSA):Unlike above methods which
make effort to enhance important regions of a feature map, this
attention scheme [40] helps to indicates the similarity score, the
dependency between regions in the feature map. In other worlds,
Multihead self attention is effective to represent the relation be-
tween two regions of a feature map which are closed or far from
each others. Regarding the mathematical intuition behind the Multi-
head self attention, each attention head can be described asmapping
a query (Q) and a set of key(K)-value(V) pairs to an output, where
Q, K, V obtained through a linear transformation of the input
feature map X as shown in Eq.7, 8, and 9. Then, the output of an
attention head can be calculated using Eq. 10.

Q = X ·Wq (7)
K = X ·Wk (8)
V = X ·Wv (9)

𝑔𝑛 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (QKT√︁
dk

)V (10)

where 𝑔𝑛 is the 𝑛𝑡ℎ attention head, Wq,Wk,Wv are weight matri-
ces,KT is the transpose ofK and dk is the number of key dimension
which is one of the dimension of the weight matrices.

As each attention head learns a different set of weight matrices,
they will be different from each others. Therefore, when joining
many self attention heads together followed by a linear transfor-
mation or an addition operation as an ensemble of multiple heads,
it forms a Multihead self attention layer which helps to learn an
input feature map better. A Multihead self attention layer with 𝑁

heads which is applied on the input feature map X is described by

𝑓𝑀𝐴 =

𝑁∑︁
𝑛=1

𝑔𝑛 ⊙ X (11)

3 PROPOSED DEEP LEARNING BASED
SYSTEM FOR RSIC TASK

Overall, the high-level architecture of our proposed deep learning
based system for RSIC task is presented in Figure 1. As Figure 1
shows, the proposed RSIC system is separated into two main parts:
data augmentation methods and a deep neural network for classifi-
cation.

3.1 Data augmentation methods
In this paper, we apply five data augmentation methods: Image
Rotation (IR) [30], Random Cropping (RC) [30], Random Erasing
(RE) [34], Random Noise Addition (RNA), and Mixup (Mi) [37, 50]
to the remote sensing image input data. As Random Cropping
(RC) [30], RandomErasing (RE) [34], RandomNoise Addition (RNA),
and Mixup (Mi) [37, 50] are used on batches of images during the
training process, they are referred to as the online data augmenta-
tion methods. Meanwhile, Image Rotation (IR) [30] is referred to



ICIIT, February 24–26, 2023, Danang, Viet Nam Cam Le et al.

….

Remote 
Sensing Images

CNN-based 
Backbone

MLP-based
Classification

Augmentations
Data

Deep Neural 
Network for Classification

….

Augmented 
Images

Bach of
Images

Figure 1: The high level architecture of proposed RSIC sys-
tem
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a. Original airplane b. Airplane 
after rotation

c. Airplane 
after cropping

d. Airplane 
after erasing

e. Airplane 
after adding noise

f. Airplane after mixing 
with beach scene

Figure 2: Data augmentation methods: Rotation, Random
Cropping, RandomErasing, Adding Noise, andMixup in the
order.

as the offline data augmentation as this method is applied on the
original dataset before the training process.

Initially, all images in the original dataset are rotated using three
different angles: 90, 180, and 270, respectively. This data augmenta-
tion method is referred to as Image Rotation (IR) and an example of
IR method with an angle of 90 degree is shown in Figure 2 (b). As
three angles mentioned are used, we obtain a new dataset which is
four times larger than the original dataset (i.e. the original images
and three new images generated by Image Rotation method with
three angles). Next, batches of 60 images are randomly selected
from the new dataset. For each batch, we apply Random Cropping
(RC) [30], RandomErasing (RE) [34], RandomNoise Addition (RNA),
and Mixup (Mi) [37, 50] methods, respectively. Firstly, images in a
batch are randomly cropped with a reduction of 10 pixels on both
of width and height dimensions as shown in Figure 2 (c) (i.e., The
channel dimension is retained), referred to as Random Cropping
(RC). Next, on both width and height dimensions of each image,
20 random and continuous pixels are erased as shown in Figure 2
(d), referred to as Random Erasing (RE). The cropped and erased
images are then added by a random noise which is generated from
Gaussian distribution as shown in Figure 2 (e), referred to as Ran-
dom Noise Addition (RNA). Finally, the images are mixed together
with random ratios as shown in Figure 2 (f), referred to as Mixup
(Mi). As both Uniform and Beta distributions are used to generate
the mixup ratios as well as we use both the original image and the
new mixup images, the batch size increases three times from 60 to
180 images.

Augmented 
Remote Sensing Images

CNN-based 
Backbone

MLP-based
Classification

Dense Layers

….

ImageNet 

Reused
Trainable 
Parameters

Down-stream Task

Up-stream Task

Layers Settings Outputs

Dense Layer 01
Dense Layer 02

FC (512) – ReLU – Dr (0.2)
FC (C) - Softmax

512
C

First Layer to Global 
Pooling Layer

….

MobileNet
MobileNetV2

NASNetMobile
EfficientNetB0

Figure 3: Apply the transfer learning technique for the pro-
posed deep neural network classification

3.2 Apply the transfer learning technique for
our proposed deep neural network
classification

As Figure 1 shows, our proposed deep learning model for classi-
fication can be separated into two main parts: The convolutional
neural network based backbone (CNN based backbone) and the
multilayer perceptron based classification (MLP-based classifica-
tion). While the CNN based backbone helps to transfer the input
images to condensed feature maps, the MLP based classification
classifies these condensed feature maps into certain categories.

To indicate which CNN based backbone is effective for RSIC task,
we evaluate different benchmark deep neural network architectures
which are available in Keras library [6]. As we aim to achieve a
low-complexity model for RSIC which is lower than 5 M of train-
able parameters, only four network architectures of MobileNetV1,
MobileNetV2, NASNetMobile, and EfficientNetB0 from Keras li-
brary [6] are evaluated. To leverage these network architectures,
we apply the parameter-based transfer learning technique which is
mentioned in Section 2.1. The transfer learning process is mainly
described in Figure 3. In particular, the benchmark networks of
MobileNetV1, MobileNetV2, NASNetMobile, and EfficientNetB0
as described in the higher part of Figure 3 are firstly trained with
the large scale dataset of ImageNet, referred to as the up-stream
task. Next, only the first layer to the global pooling layer of these
pre-trained models are re-used and considered as the CNN-based
backbone. The CNN based backbone is then connected with a MLP-
based classification, create an end-to-end neural network model for
the down-stream task on the target RSIC dataset.

The MLP-based classification as shown in the bottom-right part
in Figure 3 performs two dense layers (Dense Layer 01 and 02). The
first dense layer comprises one fully connected layer (FC(channel
number=512)) followed by a rectified linear unit (ReLU) [21] and a
dropout (Dr(drop ratio)) [32]. Meanwhile, the second dense layer
uses Softmax layer after the fully connected layer. Notably, the
number of channels at the second fully connected layer is set to 𝐶
that presents the number of categories in the target RSIC dataset.
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Figure 4: Apply attentions schemes to further improve the
proposed deep neural network classification

3.3 Apply attention schemes and explore
multiple feature maps to further improve
the proposed RSIC system

To further improve the proposed RSIC system, we apply different
attention schemes mentioned in Section 2.2 to feature maps ex-
tracted from middle layers of the CNN based backbone as shown
in Figure 4. The feature maps are the final outputs of convolutional
blocks of the CNN based backbone. For an example, EfficientB0
based backbone presents 7 convolutional blocks, namely block 1
to block 7 [35]. Regarding the attention layer used in Figure 4, we
evaluate three types of attention schemes: SE, CBAM, and Multi-
head attention. The first two attention layers of SE and CBAM are
constructed basing on the formulations mentioned Section 2.2. For
the Multihead attention scheme, we propose a Multihead attention
based layer as shown in Figure 5 which addresses drawbacks of
SE or SA (i.e. SE and SA focus on either channel feature or spatial
feature). In particular, given an input feature map X with a size of
[W×H×C] where𝑊 , 𝐻 , and 𝐶 presents width, height, and chan-
nel dimensions, we reduce the size of feature map X across three
dimensions using both max and average pooling layers. We then
generate 3 matrices: [W× H], [H× C], [W×C]. Next we feed all
generated matrices into thee Multihead attention to obtain atten-
tion score matrices. Then, we reshape the attention score matrices
into the sizes of [W×H×1], [1×H×C],[W×1×C] respectively and
element-wise multiply each of them with the input feature map X.
Finally, we conduct an average of three results of multiplications,
generate the output tensor Y with the size of [W×H×C] which is
same size as the input feature map X. Notably, we set the number

+

+

+

X

X

X

X
[HxC]

[WxC]

[WxH]

[WxHxC]

[WxH]

[WxC]

[HxC]

[WxHx1]

[Wx1xC]

[1xHxC]

Avg

Y [WxHxC]

Average & 
Max Pooling

Multihead
Attention

Expand 
Dimension Transfer 

[WxHxC]

[WxHxC]

[WxHxC]

Figure 5: Proposed Multihead attention based layer.

of heads to 32 and set the key dimension to 8 for each Multihead
attention. By applying our proposed Multihead attention based
layer, both channel feature (feature maps with sizes of [H× C],
[W×C]) and spatial feature (feature map with size of [W× H]) are
focused, which help the network learn distinct features from the
input feature map better.

As SE, CBAM, or our proposed Multihead attention base layers
only transforms an input feature map X to an output feature map
Y and retains the size of the input feature maps, we then apply a
global average pooling layer after each attention layer to scale down
the feature maps to vectors which is suitable for the MLP-based
classifier for classification as shown in Figure 3.

4 EXPERIMENTAL RESULTS AND
DISCUSSION

4.1 Dataset
In this paper, we evaluate the benchmark dataset NWPU-RESISC45[4].
NWPU-RESISC45 dataset was collected from more than 100 coun-
tries and regions in the world, consists of 31,500 remote sensing
images. The remote sensing images are separated into 45 scene
classes, each of which 700 images in RGB color format with resolu-
tion of 256× 256× 3 To compare with the state-of-the-art systems,
we obey the original settings mentioned in [4]. We then split the
NWPU-RESISC45 dataset into Training and Testing subsets with
two different ratios: 20%-80% and 10%-90%, respectively.

4.2 Evaluation Metrics
To compare with the state-of-the-art systems, Accuracy (Acc.%) is
used as the main metric, which was proposed in almost benchmark
datasets of AID[47], UCM[52], or NWPU-RESISC45[4].

4.3 Model implementation and settings
As the data augmentation method of Mixup [37] is applied, the
ground truth are not in one-hot encoding format. We therefore
apply Kullback-Leibler divergence (KL) loss [16] instead of Entropy
loss.

𝐿𝑜𝑠𝑠𝐾𝐿 (Θ) =
𝑁∑︁
𝑛=1

y𝑛 log

{
y𝑛
ŷ𝑛

}
+ 𝜆

2
| |Θ| |22 , (12)

whereΘ presents trainable parameters, the constant 𝜆 is empirically
set to 0.0001, the batch size𝑁 is set to 60, yi and ŷi denote expected
and predicted results, respectively. We construct proposed deep
learning networks with Tensorflow framework using Adam [15] for
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Table 1: Performance (Acc.%) of EfficientNetB0 with the
proposed Multihead attention applied for feature maps ex-
tracted from different convolutional blocks on the bench-
mark NWPU-RESISC45 dataset using 20%-80% splitting set-
tings.

Convolutinal Blocks Accuracy (%) Parameters (M)
Block 7 93.1 6.0

Blocks 6 to 7 93.0 7.5
Blocks 5 to 7 93.8 9.4
Blocks 4 to 7 92.8 11.2
Blocks 3 to 7 92.5 13.3

Table 2: Performance comparison among benchmark net-
work architectures, with the transfer learning technique
and without attention scheme, on the benchmark NWPU-
RESISC45 dataset using 20%-80% splitting settings.

Network Accuracy (%) Parameters (M)
MobileNet 90.2 3.7
MobileNetV2 90.9 2.9
NASNetMobile 91.7 4.8
EfficientNetB0 92.0 4.6

optimization. The training and evaluating processes are conducted
on two GPU Titan RTX 24GB. The training process is stopped after
60 epoches. While the first 50 epoches uses the learning rate of
0.0001 and all data augmentation methods mentioned in Section 3.1,
the remaining 10 epoches uses the lower learning rate of 0.000001
with only the offline Random Rotation data augmentation method

4.4 Experimental results
According to the results shown in Table 2, the proposed RSIC sys-
tem using the transfer learning technique and EfficientNetB0 and
NASNetMobile based architectures are competitive and outperform
MobileNet and MobileNetV2. As EfficientNetB0 accuracy (92.0%)
is not only better than NASNetMobile (91.7%) but EfficientNetB0
footprint (4.6 M) is also smaller than NASNetMobile (4.8 M), we
select EfficientNetB0 architecture for further experiments.

Given EfficientNetB0 backbone, we evaluate our proposed RSIC
system applying three types of attention layers: SE, CBAM, and
the proposed Multihead attention. In this experiment, only thee
feature maps which are extracted from the final three convolutional
bocks (block 5 to block 7) in the EfficientNetB0 backbone are used.
As Table 3 shows, applying attention layers helps to improve the
system performance by 0.1%, 0.3%, and 1.8% with SE, CBAM, and
the proposed Multihead attention, respectively.

As the proposed Multihead attention layer outperforms SE and
CBAM layers, we then evaluate the proposed Multihead attention
with different number of feature maps. As the results are shown in
Table 1, using three feature maps still achieves the best performance.
Regarding the model complexity, using the proposed Multihead
attention layer with three feature maps increases the model foot-
print from 4.6 M to 9.4 M parameters. To meet the constraints of
maximum 20 MB of memory occupation, we apply the quantization

Table 3: Performance comparison of EfficientB0 with the
transfer learning and different attention schemes on the
benchmark NWPU-RESISC45 dataset using 20%-80% split-
ting settings.

Attention SE CBAM Proposed Multihead
Accuracy (%) 92.1 92.3 93.8
Parameters (M) 10.4 6.7 9.4

Table 4: Performance (Acc.%) comparison to the state-of-
the-art systems on the benchmarkNWPU-RESISC45 dataset
with two splitting settings.

Methods 10% training 20% training
MG-CAP (Log-E) (55.99 M) [43] 89.4 91.7
MG-CAP (Bilinear) (55.99 M) [43] 89.4 93.0
MG-CAP (Sqrt-E) (55.99 M) [43] 90.8 93.0
EfficientNet-B0-aux (≈ 5.3𝑀) [2] 90.0 92.9
EfficientNet-B3-aux (≈ 13𝑀) [2] 91.1 93.8
VGG-16 + MTL (≈ 138.4 M) [62] - 91.5
ResNeXt-50 + MTL (≈ 25 M) [62] - 93.8
ResNeXt-101 + MTL (≈ 88.79 M) [62] 91.9 94.2
SE-MDPMNet (5.17 M) [54] 91.8 94.1
LGRIN (4.63 M) [49] 91.9 94.4
Transformer (46.3 M) [57] 93.1 95.6
Our systems (9.4 M / 9.4 MB) 91.0 93.8

technique which helps to reduce the model complexity to 9.4 MB
(i.e. The quantization technique help to quantize a 32-bit floating
point to 8-bit integer, then reduce the model footprint to 1/4 of the
original footprint). Notably, although the pruning techniques can
help to significantly reduce a deep learning model to 1/10 of the
original size [24], pruning parameters considered as zero still oc-
cupy the memorize of edge devices and cost the same computation
as the non-pruning parameters. Therefore, the pruning technique
is not applied in this paper.

By using EfficientNetB0 as CNN-based backbone, the transfer
learning, the proposed Multihead attention layer for three feature
maps and the quantization technique, we achieve a low-complexity
RISC model (9.4 MB). We evaluate this model on NWPU-RESISC45
with two splitting settings as mentioned in Section 4.1 and compare
with the state-of-the-art systems. As Table 4 shows, we can see that
our results are very competitive compared with the state-of-the-
art systems. We achieve accuracy scores of 91.0% and 93.8% with
training proportions of 10% and 20% respectively. Compared with
the system also using EfficientNetB0 in [2], our proposed RSIC not
only outperforms but also presents a lower model footprint. Our
proposed system performs lower than 2% compared with the best
model using a Transformer based architecture [57]. However, our
model presents a significantly low memory occupation (9.4 M/9.4
MB) compared with the Transformer based model.

5 CONCLUSION
This paper has presented a deep learning based model for remote
sensing image classification (RSIC). By conducting extensive exper-
iments, we indicate that applying multiple techniques of transfer
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learning, Multihead attention on multiple feature maps, and quanti-
zation to EfficientNetB0 based network architecture helps to achieve
a high-performance and low-complexity RSIC system. The experi-
mental results prove our proposed RSIC system competitive to the
state-of-the-art systems and potential to apply on a wide range of
edge devices.
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