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ABSTRACT
This paper considers the problem of balancing traceability and

anonymity in designated verifier signatures (DVS), which are a

kind of group-oriented signatures. That is, we propose claimable

designated verifier signatures (CDVS), where a signer is able to

claim that he/she indeed created a signature later. Ordinal DVS

does not provide any traceability, which could indicate too strong

anonymity. Thus, adding claimability, which can be seen as a sort

of traceability, moderates anonymity. We demonstrate two generic

constructions of CDVS from (i) ring signatures, (non-ring) signa-

tures, pseudorandom function, and commitment scheme, and (ii)

claimable ring signatures (by Park and Sealfon, CRYPTO’19).
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1 INTRODUCTION
Group-oriented signature schemes, such as ring signatures [27]

and group signatures [9], are equipped with a functionality that

a signer can create a signature on behalf of a group of users, but

verifiers cannot identify the signer. Specifically, in both schemes, the

signer forms a group of other users, i.e., potential signers, and signs

messages. The verifier is only convinced that the messages were
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signed by the group. By virtue of such an anonymity notion, these

signature schemes can be used in applications such as e-commerce

systems or e-voting potentially.

One of the major differences between group and ring signatures

is that, when necessary, the former has the functionality to trace

who the signer is. The functionality called traceability stems from

the existence of a trusted third party; it has a secret key to trace

the signer. On the other hand, there are only users but no authority

to trace the signer in ring signatures. Therefore, the signers cannot

claim ownership of their signed messages even if they want to claim

it later. To make ring signatures claimable, Park and Sealfon [25]

proposed claimable ring signatures, which enable the signer to gen-

erate a proof for a signature that the signer indeed generated it.

As such, cryptographic protocols that provide a sort of anonymity

sometimes lead to an ownership problem, and it is important in

practice to consider traceability or claimability in group-oriented

signatures.

In this paper, we focus on designated verifier signatures (DVS) [8,

17], which is a kind of group-oriented signature. In DVS, a signer

can designate a verifier and create a signature so that they can only

verify the signature. Off-the-record (OTR)
1
[6], a sort of anonymity

notion for DVS, guarantees that a designated verifier has the ability

to produce the signature (designating the verifier) from any signer ;

therefore, no third party is convinced of who generates the signa-

ture. DVS also has an ownership problem due to OTR. Consider

that the signer wants to sign a non-disclosure agreement (NDA).

OTR forces the verifier not to disclose the NDA. However, if the

signer wants to make it public (e.g., due to waiver of NDA), there

is no means of convincing any third party. Thus, it is preferable for

the signer to be able to claim the ownership of signatures.

1.1 Our Contribution
In this paper, we introduce claimable DVS (CDVS), where claima-

bility is a property that a signer is able to claim that he indeed cre-

ated the signature. We give a formal definition of claimability, and

demonstrate two generic constructions of CDVS. One is from stan-

dard ring signature, (non-ring, standard) signature, pseudorandom

function, and commitment schemes. We note that this construction

is based on the existing claimable ring signature scheme [25]. The

1
OTR property is also known as so hiding property.
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other is from claimable ring signatures. Although claimable ring

signatures can be obtained from the same primitives as our first

construction, we claim that the second construction is important

as well. That is, if claimable ring signature is constructed from

other primitives in the future, it immediately implies a new CDVS

construction.

1.2 Related Work
DVS is proposed by Chaum [8], and by Jakobsson et al. [17] inde-

pendently in 1996. Desmedt opens the question if it is possible to

construct a multi-designated verifier signature (MDVS) scheme at

CRYPTO’03 ramp session, and Laguillaumie and Vergnaud [20] an-

swer this question positively. They construct MDVS based on ring

signature scheme [5, 27]. (We note that Rivest et al. [27] mention

that MDVS can be constructed from ring signature, before [20].)

Follow-up works [2, 10, 21, 31] propose variants of (M)DVS from

ring signature scheme.

We argue that such a construction is widely employed be-

cause (M)DVS is highly compatible with ring signatures. That is,

anonymity in ring signature is similar to OTR. Anonymity in ring

signature requires that a signer among a particular set of parties

(called a “ring”) signs on a message, but verifiers cannot distinguish

who created the signature. In other words, every member in the

ring is able to create a signature with respect to the ring. Recall

that OTR requires that designated verifiers can simulate a signature.

Thus, we can obtain (M)DVS from ring signature by regarding a

ring as a set of a signer and designated verifiers.

Park and Sealfon [25] demonstrate that claimable ring signature

can be obtained from any ring signature. It is known that ring signa-

ture can be constructed from both generic and specific assumptions

as follows; the existence of trapdoor permutation in the random or-

acle model [27], public key encryption, signature, and ZAP [4], the

discrete logarithm assumption [1, 15], and the RSA assumption [12].

Therefore, CDVS can be obtained from these assumptions for free.

The problem of balancing anonymity and traceability in group-

oriented signatures is discussed in [22, 26]. That is, traceability in

group signature obviously decreases anonymity. In particular, if a

tracer is corrupted, then anonymity is completely compromised. On

the other hand, anonymity in ring signature benefits malicious sign-

ers. As demonstrated in [26], a lot of methods have been proposed

to solve these problems; regarding group signature, user dependent

opening [18], decentralized tracing [24], message-dependent open-

ing [29], distributed tracing [14], and accountable tracing [19], and

regarding ring signature, accountable ring signature [32], linkable

ring signature [23], traceable ring signature [13], and claimable

ring signature [25].

Recently, designated verifier linkable ring signature has been pro-

posed [3]. Linkability is a property that, given two signatures, we

can decide if they are created by the same signer, without disclosing

the signer. As mentioned in [26], linkability is a variant of trace-

ability. Therefore, while linkability is incomparable to claimability,

we argue that they tackle the problem of balancing traceability and

anonymity of DVS.

There are variants of signature schemes that relate to DVS, such

as designated confirmer signature scheme [7], strong DVS [28],

or universal DVS [16, 30]. Thus, it might be possible to combine

claimability with these variants.

Paper Organization. Section 2 introduces basic notation. In Sec-

tion 3, we define CDVS. Section 4 and Section 5 present the first

and the second generic constructions of CDVS, respectively. Finally,

Section 6 concludes the paper.

2 PRELIMINARIES
Throughout this paper, we let poly() be a polynomial function,

and negl() be a negligible function. For any 𝑛 ∈ N, let [𝑛] =

{1, 2, · · · , 𝑛}. Let _ ∈ N be a security parameter.

A probabilistic polynomial time is abbreviated as PPT. When an

algorithm Π has a subroutine 𝑋 , we denote it by Π.𝑋 . We assume

that every algorithm is given a security parameter 1
_
as an input.

If a probabilistic algorithm 𝐴 takes an input 𝑥 and a randomness

𝑟 , we denote it by𝐴(𝑥 ; 𝑟 ). For simplicity, we sometimes omit 𝑟 from

its interface to denote 𝐴(𝑥).
Security of primitives is defined by an experiment (or a game)

between a challenger and an adversary. The adversary might be

able to ask the challenger to call an oracle to obtain some value.

We implicitly assume that when the challenger calls an oracle, the

challenger chooses randomness that is given to the oracle, if the

oracle runs a probabilistic algorithm inside.

2.1 Primitives
Definition 1 (Pseudorandom Function). A pseudorandom

function is a pair of polynomial time algorithms (KG, Eval) that work
as follows:

• KG(1_) → 𝑘 : Given a security parameter 1
_
, it outputs a key

𝑘 .

• Eval(𝑘, 𝑥) = 𝑟 : Given a key 𝑘 , and a string 𝑥 ∈ {0, 1}∗, it
outputs a string 𝑟 ∈ {0, 1}_ .

A PRF should satisfy the following condition. For any sufficiently

large security parameter 1
_
, any 𝑘 ← KG(1_), any truly random

function 𝐹 whose range is the same as Eval(𝑘, ·), and any PPT algo-

rithm 𝐷 , it holds that

| Pr[1← 𝐷Eval(𝑘,· ) (1_)] − Pr[1← 𝐷𝐹 ( ·) (1_)] | ≤ 1/2 + negl(_) .

Definition 2 (Commitment). A commitment scheme consists of

two polynomial time algorithms (Com,Open) that works as follows:
• Com(m; 𝑟 ) → 𝑐 : Given a message m, and a randomness 𝑟 , it

outputs a commitment 𝑐 .

• Open(𝑐) = 𝑟 : Given 𝑐 , it outputs a randomness 𝑟 .

For convenience, we define the input of PRF to be an arbitrary

polynomial length string.

A commitment scheme should satisfy the following conditions.

Definition 3 (Binding). A commitment scheme (Com,Open)
is binding if for any sufficiently large security parameter _, and any

PPT adversary A, it holds that

Pr

[
(𝑐,m, 𝑟 ,m′, 𝑟 ′) ← A(1_) :

m ≠ m′∧
Com(m; 𝑟 ) = 𝑐 = Com(m′; 𝑟 ′)

]
≤ negl(_).
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Definition 4 (Hiding). A commitment scheme (Com,Open) is
hiding if for any sufficiently large security parameter _, and any

stateful PPT adversary A, it holds that

Pr


(m0,m1) ← A(1_)

𝑏 ← {0, 1}; 𝑟 ← {0, 1}poly(_) ;
𝑐 ← Com(m𝑏 ; 𝑟 );𝑏′ ← A(𝑐)

: 𝑏′ = 𝑏

 ≤ 1/2 + negl(_).

Definition 5 (Signature). A signature scheme consists of three

polynomial time algorithms (KG, Sig,Verify) that work as follows:
• KG(1_) → (pk, sk) : Given a security parameter 1

_
, it outputs

a public key pk and a secret key sk.
• Sig(sk,m) → 𝜎 : Given a secret key sk and a message m, it

outputs a signature 𝜎 .

• Verify(pk,m, 𝜎) = 1/0 : Given a public key pk, a message m,

and a signature 𝜎 , it outputs 1 (meaning valid) or 0 (meaning

invalid).

A signature scheme (KG, Sig,Verify) is correct if for any sufficiently

large security parameter _, any (pk, sk) ← KG(1_), and anymessage

m, it holds that Verify(pk,m, Sig(sk,m)) = 1.

Definition 6 (EUF-CMA). A signature scheme Π = (KG, Sig,
Verify) is existentially unforgeable under an adaptive chosen-message

attack (EUF-CMA) if for any sufficiently large security parameter _,

and any PPT adversary A, it holds that Pr[ExpEUFSigΠ,A (1_) =
1] ≤ negl(_), where ExpEUFSig is defined as follows:

ExpEUFSigΠ,A (1_)
𝐿 B ∅; (pk, sk) ← KG(1_);
(m∗, 𝜎∗) ← AOSig (pk) :
output 1 if Verify(pk,m∗, 𝜎∗) = 1 ∧m∗ ∉ 𝐿, otherwise 0

whereOSig works as follows: Given a messagem, it returns 𝜎 ifm ∈ 𝐿.
Otherwise, it returns 𝜎 ← Sig(sk,m), and updates 𝐿 B 𝐿 ∪ {m}.

2.2 Ring Signatures
We introduce standard ring signature and claimable ring signature.

2.2.1 Ring Signature.

Definition 7 (Ring Signature). A ring signature scheme con-

sists of four polynomial time algorithms (Set,KG,RSig,Verify) that
work as follows:

• Set(1_) → pp: Given a security parameter 1
_
, it outputs a

public parameter pp.
• KG(pp) → (pk, sk): Given a public parameter pp, it outputs
a public key pk and a secret key sk.
• RSig(pp, sk, {pk𝑖 }𝑖∈[𝑛] ,m) → 𝜎 : Given a public parameter

pp, a secret key sk, a set of public keys (or a ring) {pk𝑖 }𝑖∈[𝑛]
where 𝑛 = poly(_), and a message m, it outputs a signature 𝜎 .

If there is no 𝑖 ∈ [𝑛] s.t. (pk𝑖 , sk) ← Set(pp), then it returns

⊥.
• Verify(pp, {pk𝑖 }𝑖∈[𝑛] ,m, 𝜎) = 1/0: Given a public parameter

pp, a set of public keys {pk𝑖 }𝑖∈[𝑛] where 𝑛 = poly(_), a mes-

sage m, and a signature 𝜎 , it outputs 1 (meaning valid) or 0

(meaning invalid).

A ring signature scheme (Set,KG,RSig,Verify) satisfies correctness
if for any security parameter _, any pp← Set(1_), and any message

m, it holds that

Verify(pp, {pk𝑖 }𝑖∈[𝑛] ,m,RSig(pp, sk, {pk𝑖 }𝑖∈[𝑛] ,m)) = 1,

where for any 𝑖 ∈ [𝑛], pk𝑖 is generated by KG, and in particular, there
exists 𝑖 ∈ [𝑛] s.t. (pk𝑖 , sk) ← KG(pp).

Definition 8 (EUF-CMA). A ring signature scheme Πrs = (Set,
KG,RSig,Verify) is existentially unforgeable under an adaptive

chosen-message attack (EUF-CMA) if for any sufficiently large secu-

rity parameter _ and any PPT adversaryA who is allowed to make at

most 𝑞 queries to an oracle, Pr[ExpEUFRSO
Πrs,A (1

_) = 1] ≤ negl(_)
where the experiment ExpEUFRSO

Πrs,A (1
_) is defined as follows:

ExpEUFRSO
Πrs,A (1

_)
𝐿PK B ∅;𝐿SK B ∅;𝐿Sign B ∅; pp← Set(1_);
({pk∗𝑖 }𝑖∈[𝑛] ,m

∗, 𝜎∗) ← AOPK,OSK,ORSig,O (pp) :
Output 1 if (Verify(pp, {pk∗𝑖 }𝑖∈[𝑛] ,m

∗, 𝜎∗) = 1)
∧(∀𝑖 ∈ [𝑛], (pk∗𝑖 , sk

∗
𝑖 ) ∈ 𝐿PK)

∧(∀𝑖 ∈ [𝑛], (pk∗𝑖 , sk
∗
𝑖 ) ∉ 𝐿SK)

∧(∀𝑗 ∈ [𝑛], (pk∗𝑗 , {pk
∗
𝑖 }𝑖∈[𝑛]\{ 𝑗 } ,m

∗, 𝜎∗) ∉ 𝐿Sign),
otherwise 0

where 𝑛 = poly(_) s.t. 𝑛 ≤ 𝑞 and O is some additional oracle (if

necessary), and OPK,OSK, and ORSig work as follows:

OPK: Given pp, it computes (pk, sk) ← KG(pp), returns pk,
and updates 𝐿PK B 𝐿PK ∪ {(pk, sk)}.
OSK: Given pk, if (pk, sk) ∈ 𝐿PK, then it returns sk, and up-

dates 𝐿SK B 𝐿SK ∪ {(pk, sk)}. Otherwise, it returns ⊥. Note
that we regard 𝐿SK as a set of corrupted entities.

ORSig: Given a signer’s public key pk, a set of public keys

{pk𝑖 }𝑖∈[𝑛′ ] where 𝑛′ = poly(_), and a message m, it does the

followings:

• If (pk, sk) ∉ 𝐿PK, then returns ⊥.
• If (pk, {pk𝑖 }𝑖∈[𝑛′ ] ,m, 𝜎) ∈ 𝐿Sign, then returns 𝜎 .

• Returns 𝜎 ← RSig(pp, sk, {pk}∪{pk𝑖 }𝑖∈[𝑛′ ] ,m) and updates
𝐿Sign B 𝐿Sign ∪ {(pk, {pk𝑖 }𝑖∈[𝑛′ ] ,m, 𝜎)}.

For EUF-CMA of ring signature, we set O B 𝜙 .

We define anonymity with respect to adversarially chosen keys

as follows.

Definition 9 (Anonymity). A ring signature scheme Πrs = (Set,
KG,RSig,Verify) satisfies anonymity if for any sufficiently large se-

curity parameter _, and any PPT adversaryA who is allowed to make

at most 𝑞 queries to oracles, | Pr[ExpAnoO
Πrs,A (1

_) = 1] − 1/2| ≤
negl(_), where ExpAnoO

Πrs,A (1
_) is defined as follows:

ExpAnoO
Πrs,A (1

_)
𝐿PK B ∅;𝐿SK B ∅;𝐿Sign B ∅;
(m∗, pk

0
, pk

1
, {pk∗𝑖 }𝑖∈[𝑛] ) ← A

OPK,OSK,ORSig,O (pp);
𝑏 ← {0, 1};𝜎𝑏 ← RSig(pp, sk𝑏 , {pk0, pk1} ∪ {pk∗𝑖 }𝑖∈[𝑛] ,m

∗);
𝑏′ ← AOPK,OSK,ORSig,O (𝜎𝑏 ) :
output 1 if (𝑏′ = 𝑏)
∧((pk

0
, sk0), (pk1, sk1) ∈ 𝐿PK) ∧ ((pk0, sk0), (pk1, sk1) ∉ 𝐿SK)

otherwise 0.

where 𝑛 = poly(_) s.t. 𝑛 ≤ 𝑞 and O is some additional oracle (if

necessary), and the oracles OPK,OSK, and ORSig are defines as in

Definition 8. For anonymity of ring signature, we set O B 𝜙 .
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2.2.2 Claimable Ring Signature. We recall claimable ring signa-

ture proposed by Park and Sealfon [25]. Compared to ordinal ring

signature, claimable ring signature has two additional algorithms

Claim and ClmVrf. A signer runs Claim when he wants to claim

the ownership of a signature. (Thus, Claim takes a secret key of a

signer as an input.) We note that ClmVrf can be run by any party

for checking the validity of a claim.

Definition 10 (Claimable Ring Signature). Claimable ring

signature is ring signature with two additional algorithms Claim and

ClmVrf that work as follows:
• Claim(pp, sk, {pk𝑖 }𝑖∈[𝑛] , 𝜎) → 𝜋 : Given a public parameter

pp, a secret key sk, a set of public keys {pk𝑖 }𝑖∈[𝑛] where 𝑛 =

poly(_), and a signature 𝜎 , it outputs a claim 𝜋 . If there is no

𝑖 ∈ [𝑛] s.t. (pk𝑖 , sk) ← Set(pp), then it returns ⊥.
• ClmVrf (pp, pk, {pk𝑖 }𝑖∈[𝑛] , 𝜎, 𝜋) = 1/0 : Given a public pa-

rameter pp, a public key pk, a set of public keys {pk𝑖 }𝑖∈[𝑛]
where 𝑛 = poly(_), a signature 𝜎 , and a claim 𝜋 , it outputs 1

(meaning valid) or 0 (meaning invalid).

Correctness of CDVS is defined as in Definition 7.

Definition 11 (EUF-CMA). A claimable ring signature scheme

Πcrsig is existentially unforgeable under an adaptive chosen-message

attack (EUF-CMA) if for any sufficiently large security parameter _,

and a PPT adversary A who is allowed to make at most 𝑞 queries

to oracles, it holds that Pr[ExpEUFRSOCRSClm
Πcrsig,A (1

_) = 1] ≤ negl(_)
where the experiment ExpEUFRSOCRSClm

Πcrsig,A (1
_) is defined as in Defini-

tion 8, apart from it additionally sets 𝐿Clm B 𝜙 at the beginning and

OCRSClm is defined as follows:

• OCRSClm: Given a signer’s public key pk, a set of public keys
{pk𝑖 }𝑖∈[𝑛′ ] where 𝑛′ = poly(_), and a signature 𝜎 , it does the
followings:

– If (pk, sk) ∉ 𝐿PK, then returns ⊥.
– If (pk, {pk𝑖 }𝑖∈[𝑛′ ] , 𝜎, 𝜋) ∈ 𝐿Clm, then returns 𝜋 .

– Returns 𝜋 ← Claim(pp, sk, {pk}∪{pk𝑖 }𝑖∈[𝑛′ ] , 𝜎) where𝑛′ ≤
𝑞 and updates 𝐿Clm B 𝐿Clm ∪ {pk, {pk𝑖 }𝑖∈[𝑛′ ] , 𝜎, 𝜋}.

Definition 12 (Anonymity). A claimable ring signature scheme

Πcrsig = (Set,KG,RSig,Verify,Claim,ClmVrf) satisfies anonymity

if for any sufficiently large security parameter _, and any PPT ad-

versary A that is allowed to make at most 𝑞 queries to oracles, it

holds that | Pr[ExpAnoOCRSClm
Πcrsig,A (1

_) = 1] − 1/2| ≤ negl(_), where
OCRSClm is defined as in Definition 11, and ExpAnoOCRSClm

Πcrsig,A (1
_) is

defined as in Definition 9 and Definition 11 with the modification so

that it sets 𝐿Clm B 𝜙 at the beginning of the experiment.

Now, we recall the definition of claimability. Intuitively, claima-

bility is the ability of signers to claim the ownership of a signature.

At the same time, we should deal with security issues that arise

due to this additional property. That is, a malicious party might

claim the ownership of a signature that is not created by him, or

frames an honest party for creating a signature that is not created

by the party. We require that such events occur only with negligible

probability as security properties.

Definition 13 (Claimability). A claimable ring signature

scheme Πcrsig = (Set,KG,RSig,Verify,Claim,ClmVrf) satisfies
claimability if the following three conditions hold:

(Honest signer can claim.) For any security parameter

_, any 𝑛 = poly(_), any m, any pp ← Πcrsig .Set(1_),
any (pk, sk), (pk

1
, sk1), · · · , (pk𝑛, sk𝑛) ← Πcrsig .KG(pp),

any 𝜎 ← Πcrsig .RSig(pp, sk, {pk𝑖 }𝑖∈[𝑛] ,m), and any 𝜋 ←
Πcrsig .Claim(pp, sk, {pk} ∪ {pk𝑖 }𝑖∈[𝑛] , 𝜎,m), it holds that

Πcrsig .ClmVrf(pp, pk, {pk𝑖 }𝑖∈[𝑛] , 𝜎, 𝜋) = 1.

(Non-signer cannot claim.) For any sufficiently large se-

curity parameter _, and any stateful PPT adversary A that

is allowed to make at most 𝑞 = poly(()_) queries to oracles,
it holds that Pr[ExpFlsClmRSΠcrsig,A (1

_) = 1] ≤ negl(_)
where the experiment ExpFlsClmRSΠcrsig,A (1

_) is defined as
follows:

ExpFlsClmRSΠcrsig,A (1
_)

𝐿PK B ∅;𝐿SK B ∅;𝐿Sign B ∅;𝐿Clm B ∅;
pp← Πcrsig .Set(1_); (pk, sk) ← Πcrsig .KG(pp);
(m∗, {pk∗𝑖 }𝑖∈[𝑛] ) ← A

OPK,OSK,O
pk,sk
RSig ,O

pk,sk
CRSClm (pp, pk);

𝜎 ← Πcrsig .RSig(pp, sk, {pk} ∪ {pk∗𝑖 }𝑖∈[𝑛] ,m
∗);

(𝑖′ ∈ [𝑛], 𝜋∗) ← AOPK,OSK,O
pk,sk
RSig ,O

pk,sk
CRSClm (𝜎);

𝑏 = Πcrsig .ClmVrf (pp, pk∗
𝑖′ , {pk} ∪ {pk

∗
𝑖 }𝑖∈[𝑛] , 𝜎, 𝜋

∗);
𝑏′ = Πcrsig .Verify(pp, {pk} ∪ {pk∗𝑖 }𝑖∈[𝑛] ,m

∗, 𝜎) :
output 1 if 𝑏 = 1 ∧ 𝑏′ = 1 ∧ pk ≠ pk∗

𝑖′

otherwise 0

where 𝑛 = poly(_) s.t. 𝑛 ≤ 𝑞 and OPK and OSK are defined as

in Definition 8, and Opk,sk
RSig and Opk,sk

CRSClm work as follows:

Opk,sk
RSig : It works as ORSig when given (pk′, {pk𝑖 }𝑖∈[𝑛] ,m). In

addition, given ({pk𝑖 }𝑖∈[𝑛] ,m), it returns 𝜎 if (pk, {pk𝑖 }𝑖∈[𝑛] ,
m, 𝜎) ∈ 𝐿Sign. Otherwise, it returns 𝜎 ← Πcrsig .RSig(pp, sk,
{pk} ∪ {pk𝑖 }𝑖∈[𝑛] ,m), and updates 𝐿Sign B 𝐿Sign ∪ {(pk,
{pk𝑖 }𝑖∈[𝑛] ,m, 𝜎)}.
Opk,sk
CRSClm : It works as OCRSClm when given (pk′, {pk𝑖 }𝑖∈[𝑛] ,

𝜎). In addition, given ({pk𝑖 }𝑖∈[𝑛] , 𝜎), it returns 𝜋 if (pk,
{pk𝑖 }𝑖∈[𝑛] , 𝜎, 𝜋) ∈ 𝐿Clm. Otherwise, it returns 𝜋 ← Πcrsig .

Claim(pp, sk, {pk} ∪ {pk𝑖 }𝑖∈[𝑛] , 𝜎), and updates 𝐿Clm B
𝐿Clm ∪ {(pk, {pk𝑖 }𝑖∈[𝑛] , 𝜎, 𝜋)}.
(Malicious signer cannot frame an honest party): For
any sufficiently large security parameter _, and any PPT ad-

versary A, it holds that Pr[ExpFrmRSΠcrsig,A (1
_) = 1] ≤

negl(_) where ExpFrmRSΠcrsig,A (1
_) is defined as follows:

ExpFrmRSΠcrsig,A (1
_)

𝐿PK B ∅;𝐿SK B ∅;𝐿Sign B ∅;𝐿Clm B ∅;
pp← Set(1_); (pk, sk) ← Πcrsig .KG(pp);
(m∗, {pk∗𝑖 }𝑖∈[𝑛] , 𝜎

∗, 𝜋∗) ← AOPK,OSK,O
pk,sk
RSig ,O

pk,sk
CRSClm (pp, pk);

𝑏 = Πcrsig .ClmVrf (pp, pk, {pk∗𝑖 }𝑖∈[𝑛] , 𝜎
∗);

𝑏′ = Πcrsig .Verify(pp, {pk} ∪ {pk∗𝑖 }𝑖∈[𝑛] ,m
∗, 𝜎∗) :

output 1 if 𝑏 = 1 ∧ 𝑏′ = 1 ∧ (·, ·, 𝜎∗, ·) ∉ 𝐿Clm
otherwise 0

where 𝑛 = poly(_) s.t. 𝑛 ≤ 𝑞.

We call the second condition claim unforgeability, and the third

condition non-frameability.
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3 CLAIMABLE DESIGNATED VERIFIER
SIGNATURES

We formalize claimable designated verifier signature (CDVS).

Namely, our definition of claimability is very similar to that of

in Section 2.2.

3.1 Syntax
Definition 14 (CDVS). A claimable designated verifier signa-

ture (CDVS) scheme consists of the following eight polynomial time

algorithms (Set, SKG,VKG,DVSign,Vrf, Sim,Claim,ClmVrf):

• Set(1_) → (pp,msk): Given a security parameter 1
_
, it out-

puts a public parameter pp and a master secret key msk.
• SKG(pp,msk) → (spk, ssk): Given a public parameter pp,
and a master secret key msk, it outputs a signer’s public key
spk and secret key ssk.
• VKG(pp,msk) → (vpk, vsk): Given a public parameter pp,
and a master secret key msk, it outputs a verifier’s public key
vpk and secret key vsk.
• DVSign(pp, spk, ssk, vpk,m) → 𝜎 : Given a public parameter

pp, a signer’s public key spk and secret key ssk, a verifier’s

public key vpk, and a message m, it outputs a signature 𝜎 .

• Vrf (pp, vpk, vsk, spk,m, 𝜎) → 1/0: Given a public parameter

pp, a verifier’s public and secret keys vpk and vsk, a signer’s
public key spk, a message m, and a signature 𝜎 , it outputs 1

(meaning valid) or 0 (meaning invalid).

• Sim(pp, vpk, vsk, spk,m) → 𝜎 : Given a public parameter pp,
a verifier’s public key vpk and secret key vsk, a signer’s public
key spk, and a message m, it outputs a simulated signature 𝜎 .

• Claim(pp, spk, ssk, vpk, 𝜎) → 𝜋 : Given a public parameter

pp, a signer’s public key spk and secret key ssk, a verifier’s

public key vpk, and a signature 𝜎 , it outputs a claim 𝜋 .

• ClmVrf (pp, spk, vpk, 𝜎, 𝜋) = 1/0: Given a public parameter

pp, a signer’s public key spk, a verifier’s public key vpk, a
signature 𝜎 , and a claim 𝜋 , it outputs 1 (meaning valid) or 0

(meaning invalid).

A CDVS scheme (Set, SKG,VKG,DVSign,Vrf, Sim,Claim,ClmVrf)
satisfies correctness if for any security parameter _, any (pp,msk) ←
Set(1_), any (spk, ssk) ← SKG(pp,msk), any (vpk, vsk) ← VKG
(pp,msk), any message m, and any 𝜎 ← DVSign(pp, spk, ssk, vpk,
m), it holds that Vrf (pp, vpk, vsk, spk,m, 𝜎) = 1.

We note that in [11], key generation algorithms take an identifier

as part of an input, just to make the ownership of keys explicit.

As we consider single designated verifier setting in this paper, we

do not require an identifier as an input. The key generation algo-

rithms are separated for generality. However, it is possible that both

signer’s and verifier’s keys are generated by the same algorithm.

3.2 Requirements
Definition 15 (EUF-CMA). A CDVS scheme Πcdvs = (Set, SKG,

VKG,DVSign,Vrf, Sim,Claim,ClmVrf) is existentially unforgeable
under an adaptive chosen-message attack (EUF-CMA) if for any suf-

ficiently large security parameter _, and any PPT adversary A, it

holds that Pr[ExpEUFDVSΠcdvs,A (1
_) = 1] ≤ negl(_) where the

experiment ExpEUFDVSΠcdvs,A (1
_) is defined as follows:

ExpEUFDVSΠcdvs .,A (1
_)

𝐿VPK B ∅;𝐿SPK B ∅;𝐿VSK B ∅;𝐿SSK B ∅;𝐿Sign B ∅;𝐿Clm B ∅;
(pp,msk) ← Πcdvs .Set(1_);
(spk∗, vpk∗,m∗, 𝜎∗) ← AOSPK,OSSK,OVPK,OVSK,ODVSig,OVrf ,OClm (pp) :
output 1 if ((spk∗, ·) ∈ 𝐿SPK) ∧ ((vpk∗, vsk∗) ∈ 𝐿VPK)
∧((spk∗, ·) ∉ 𝐿SSK) ∧ ((vpk∗, vsk∗) ∉ 𝐿VSK)
∧((vpk∗, spk∗,m∗, 𝜎∗) ∉ 𝐿Sign)
∧(Πcdvs .Vrf (pp, vpk∗, vsk∗, spk∗,𝑚∗, 𝜎∗) = 1)

otherwise 0

where OSPK,OSSK,OVPK,OVSK,ODVSig,OVrf and OClm work as fol-

lows:

OSPK: It computes (spk, ssk) ← Πcdvs .SKG(pp,msk), returns
spk and updates 𝐿SPK B 𝐿SPK ∪ {(spk, ssk)}.
OSSK: Given spk, if (spk, ssk) ∈ 𝐿SPK, then it returns ssk and

updates 𝐿SSK B 𝐿SSK ∪ {(spk, ssk)}. Otherwise, return ⊥. Note
that we regard the signer corresponding to (spk, ssk) ∈ 𝐿SSK as a

corrupted one.

OVPK: It computes (vpk, vsk) ← Πcdvs .VKG(pp,msk), returns
vpk, and updates 𝐿VPK B 𝐿VPK ∪ {(vpk, vsk)}.
OVSK: Given vpk, if (vpk, vsk) ∈ 𝐿VPK, then it returns vsk, and
updates 𝐿VSK B 𝐿VSK ∪ {(vpk, vsk)}. Otherwise, return ⊥. Note
that we regard the verifier corresponding to (vpk, vsk) ∈ 𝐿VSK as

a corrupted one.

ODVSig: Given vpk, spk, and m, it does the followings:

• If (vpk, ·) ∉ 𝐿VPK or (spk, ssk) ∉ 𝐿SPK, then returns ⊥.
• If (vpk, spk,m, 𝜎) ∈ 𝐿Sign, then returns 𝜎 .

• Returns 𝜎 ← Πcdvs .DVSign(pp, spk, ssk, vpk,m), and up-
date 𝐿Sign B 𝐿Sign ∪ {(vpk, spk,m, 𝜎)}.

OVrf : Given vpk, spk,m and 𝜎 , it does the followings:

• If (vpk, ·) ∉ 𝐿VPK or (spk, ·) ∉ 𝐿SPK, then returns ⊥.
• Returns 𝑏 = Πcdvs .Vrf (pp, vpk, vsk, spk,m, 𝜎).

OClm: Given vpk, spk, and 𝜎 , it does the followings:
• If (vpk, ·) ∉ 𝐿VPK, (spk, ssk) ∉ 𝐿SPK, or (vpk, spk, ·, 𝜎)
∉ 𝐿Sign then returns ⊥.
• If (vpk, spk, 𝜎, 𝜋) ∈ 𝐿Clm, then returns 𝜋 .

• Returns 𝜋 ← Πcdvs .Claim(pp, spk, ssk, vpk, 𝜎), and up-

dates 𝐿Clm B 𝐿Clm ∪ {(vpk, spk, 𝜎, 𝜋)}.

OTR is a fundamental security requirement for DVS, which guar-

antees that a designated verifier can simulate a signature. Namely,

a non-designated verifier might be able to verify a signature, but it

is useless thanks to OTR property.

Definition 16 (OTR). A CDVS scheme Πcdvs = (Set, SKG,VKG,
DVSign,Vrf, Sim,Claim,ClmVrf) is off-the-record (OTR) if for any
security parameter _, and a stateful PPT adversary A, it holds that

| Pr[ExpOTRΠcdvs,A (1
_) = 1]−1/2| ≤ negl(_) where the experiment
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ExpOTRΠcdvs,A (1
_) is defined as follows:

ExpOTRΠcdvs,A (1
_)

𝐿VPK B ∅;𝐿SPK B ∅;𝐿VSK B ∅;𝐿SSK B ∅;𝐿Sign B ∅;𝐿Clm B ∅;
(pp,msk) ← Πcdvs .Set(1_);
(vpk∗, spk∗,m∗) ← AOSPK,OSSK,OVPK,OVSK,ODVSig,OVrf ,OClm (pp);
return⊥ if (vpk∗, vsk∗) ∉ 𝐿VPK ∨ (spk∗, ssk∗) ∉ 𝐿SPK;

𝜎0 ← Πcdvs .DVSign(pp, spk∗, ssk∗, vpk∗,m∗);
𝜎1 ← Πcdvs .Sim(pp, vpk∗, vsk∗, spk∗,m∗);𝑏 ← {0, 1};
𝑏′ ← AOSPK,OSSK,OVPK,OVSK,ODVSig,OVrf ,OClm (𝜎𝑏 ) :
output 1 if

(𝑏′ = 𝑏) ∧ ((vpk∗, vsk∗) ∉ 𝐿VSK) ∧ ((spk∗, ssk∗) ∉ 𝐿SSK)
∧((·, ·, ·, 𝜎𝑏 ) ∉ 𝐿Vrf) ∧ ((·, ·, 𝜎𝑏 , ·) ∉ 𝐿Clm)

otherwise 0

where oracles are defines as in Definition 15.

In what follows, we introduce claimability of CDVS, by follow-

ing [25]. That is, similar to anonymity in claimable ring signature,

we require the following conditions:

• A genuine signer can claim the ownership of a signature.

• Non-signer cannot claim the ownership of a signature.

• No one is able to frame other parties as a signer.

Definition 17 (Claimability). A CDVS scheme Πcdvs = (Set,
SKG,VKG,DVSign,Vrf, Sim,Claim,ClmVrf) satisfies claimability if

the following three conditions hold:

(Honest signer can claim.) For any security parameter _, any

𝑛 = poly(_), anym, any (pp,msk) ← Πcdvs .Set(1_), any (spk,
ssk) ← Πcdvs .SKG(pp,msk), any (vpk, vsk) ← Πcdvs .VKG
(pp,msk), any 𝜎 ← Πcdvs .DVSign(pp, spk, ssk, vpk,m), and
any 𝜋 ← Πcdvs .Claim(pp, spk, ssk, vpk, 𝜎,m),

Πcdvs .ClmVrf (pp, spk, vpk, 𝜎, 𝜋) = 1.

(Non-signer cannot claim.) For any sufficiently large security

parameter _, and any stateful PPT adversary A, it holds that

Pr[ExpFlsClmDVSΠcdvs,A (1
_) = 1] ≤ negl(_) where the exper-

iment ExpFlsClmDVSΠcdvs,A (1
_) is defined as follows:

ExpFlsClmDVSΠcdvs,A (1
_)

𝐿VPK B ∅;𝐿SPK B ∅;𝐿VSK B ∅;𝐿SSK B ∅;𝐿Sign B ∅;𝐿Clm B ∅;
(pp,msk) ← Πcdvs .Set(1_); (spk, ssk) ← Πcdvs .SKG(pp);
(m∗, vpk∗, vsk∗) ←

AOSPK,OSSK,OVPK,OVSK,O
spk,ssk
DVSig ,OVrf ,O

spk,ssk
Clm (pp, spk);

𝜎 ← Πcdvs .DVSign(pp, spk, ssk, vpk∗,m∗);

𝜋∗ ← AOSPK,OSSK,OVPK,OVSK,O
spk,ssk
DVSig ,OVrf ,O

spk,ssk
Clm (𝜎);

𝑏 = Πcdvs .ClmVrf (pp, vpk∗, spk, 𝜎, 𝜋∗);
𝑏′ = Πcdvs .Verify(pp, vpk∗, vsk∗, spk,m∗, 𝜎) :
output 1 if 𝑏 = 1 ∧ 𝑏′ = 1 ∧ vpk∗ ≠ spk
otherwise 0

where OSPK,OSSK,OVPK,OVSK and OVrf are defined as in Defi-

nition 15, and others are defined as follows:

Ospk,ssk
DVSig : It works as ODVSig when given (vpk′, spk′,m).

In addition, given (vpk′,m), it returns 𝜎 if (vpk′, spk,m, 𝜎)
∈ 𝐿Sign. Otherwise, it returns 𝜎 ← Πcdvs .DVSign(pp, spk,
ssk, vpk′,m), and updates 𝐿Sign B 𝐿Sign∪{(vpk′, spk,m, 𝜎)}.

Ospk,ssk
Clm : It works as OClm when given (vpk′, spk′, 𝜎). In ad-

dition, given (vpk′, 𝜎), it returns 𝜋 if (vpk′, spk, 𝜎, 𝜋) ∈ 𝐿Clm.
Otherwise, it returns 𝜋 ← Πcdvs .Claim(pp, spk, ssk, vpk′, 𝜎)
and updates 𝐿Clm B 𝐿Clm ∪ {(vpk′, spk, 𝜎, 𝜋)}.

(Malicious signer cannot frame an honest party): For any
sufficiently large security parameter _, and any PPT adversary

A, it holds that Pr[ExpFrmΠcdvs,A (1
_) = 1] ≤ negl(_) where

ExpFrmΠcdvs,A (1
_) is defined as follows:

ExpFrmΠcdvs,A (1
_)

𝐿VPK B ∅;𝐿SPK B ∅;𝐿VSK B ∅;𝐿SSK B ∅;𝐿Sign B ∅;𝐿Clm B ∅;
(pp,msk) ← Πcdvs .Set(1_); (spk, ssk) ← Πcdvs .SKG(pp,msk);
(m∗, vpk∗, vsk∗, 𝜎∗, 𝜋∗) ←

AOSPK,OSSK,OVPK,OVSK,O
spk,ssk
DVSig ,OVrf ,O

spk,ssk
Clm (pp, spk);

𝑏 = Πcdvs .ClmVrf (pp, spk, vpk∗, 𝜎∗, 𝜋∗);
𝑏′ = Πcdvs .Verify(pp, vpk∗, vsk∗, spk,m∗, 𝜎∗) :
output 1 if 𝑏 = 1 ∧ 𝑏′ = 1 ∧ (·, ·, 𝜎∗, ·) ∉ 𝐿Clm
otherwise 0

We call the second condition as claim unforgeability, and the third

condition as non-frameability.

4 THE FIRST CONSTRUCTION
We provide a generic construction of CDVS from ring signature,

(non-ring) signature, PRF, and commitment scheme. We remark

that our construction and its proof are based on those of in [25].

4.1 Construction
Let Πrs = (Set,KG,RSig,Verify) be a ring signature scheme, Σ =

(KG, Sig,Verify) a signature scheme, PRF = (KG, Eval) a PRF, and
Πcom = (Com,Open) a commitment scheme. For simplicity, we as-

sume without loss of generality that the random coins inΠcom .Com
and Σ.Sig and the output of PRF.Eval are the same lengths. We

demonstrate our construction Πcdvs = (Set, SKG,VKG,DVSign,
Vrf, Sim,Claim,ClmVrf) of a CDVS scheme from them.

We remark that our CDVS scheme does not exactly follow the

syntax of CDVS given by Definition 14 as follows:

• It does not require a master secret key.

• The verification algorithm does not take a secret key of a

designated verifier.

Note that the syntax given by Definition 14 is just a general form.

Furthermore, even if the verification algorithm does not take a

designated verifier’s secret key, our scheme is still secure. That

is, thanks to OTR property, it is still useless for non-designated

verifiers to verify a signature.

We overview the signing algorithm and the claiming algorithm

before the formal descriptions. The signing algorithm outputs a

signature 𝜎RS generated byΠrs .RSig and a commitment 𝑐 generated

by Πcom .Com. Namely, 𝑐 commits to a signature 𝜎Σ generated by

using the signer’s secret key. Thus, it is sufficient for claiming the

ownership of 𝜎 to open 𝜎Σ and the randomness that is used to

compute 𝑐 , because verifiers can check the validity of the claim

by verifying 𝜎Σ through the signer’s public key pkΣ. The formal

description is as follows:
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Πcdvs .Set(1_): Given a security parameter 1
_
, it outputs pp←

Πrs .Set(1_), andmsk B 𝜙 . (In what follows, we omitmsk from
interfaces for readability.)

Πcdvs .SKG(pp): Given a public parameter pp, it com-

putes 𝑘
(𝑠 )
PRF ← PRF.KG(1_), (pk(𝑠 )Σ , sk(𝑠 )Σ ) ← Σ.KG(1_),

and (pk(𝑠 )
RS

, sk(𝑠 )
RS
) ← Πrs .KG(pp), and outputs spk B

(pk(𝑠 )Σ , pk(𝑠 )
RS
) and ssk B (pk(𝑠 )Σ , pk(𝑠 )

RS
, 𝑘
(𝑠 )
PRF, sk

(𝑠 )
Σ , sk(𝑠 )

RS
). Note

that “(𝑠)” stands for a signer’s identity.
Πcdvs .VKG(pp): (The same as Πcdvs .SKG.) Given a public pa-

rameter pp, it computes 𝑘
(𝑣)
PRF ← PRF.KG(1_), (pk(𝑣)Σ , sk(𝑣)Σ ) ←

Σ.KG(1_), and (pk(𝑣)
RS

, sk(𝑣)
RS
) ← Πrs .KG(pp), and outputs

vpk B (pk(𝑣)Σ , pk(𝑣)
RS
) and vsk B (pk(𝑣)Σ , pk(𝑣)

RS
, 𝑘
(𝑣)
PRF, sk

(𝑣)
Σ ,

sk(𝑣)
RS
). Note that “(𝑣)” stands for a verifier’s identity.

Πcdvs .DVSign(pp, spk, ssk, vpk,m): Given a public parameter

pp, a signer’s public key spk and secret key ssk = (pk(𝑠 )Σ , pk(𝑠 )
RS

,

𝑘
(𝑠 )
PRF, sk

(𝑠 )
Σ , sk(𝑠 )

RS
), a verifier’s public key vpk = (pk(𝑣)Σ , pk(𝑣)

RS
),

and a message m, it first computes the followings:

(1) 𝜎RS ← Πrs (pp, sk(𝑠 )
RS

, {pk(𝑠 )
RS
} ∪ {pk(𝑣)

RS
},m)

(2) 𝑟Σ = PRF.Eval(𝑘 (𝑠 )PRF, (spk, 𝜎RS, 0))
(3) 𝜎Σ = Σ.Sig(sk(𝑠 )Σ , (spk, 𝜎RS); 𝑟Σ)
(4) 𝑟Com = PRF.Eval(𝑘 (𝑠 )PRF, (spk, 𝜎RS, 1))
(5) 𝑐 = Πcom .Com((spk, 𝜎Σ); 𝑟Com)

If it holds that Πcdvs .ClmVrf (pp, spk, vpk, 𝜎, 𝜋) = 1 where 𝜎 =

(𝜎RS, 𝑐) and 𝜋 = Πcdvs .Claim(pp, spk, ssk, vpk, 𝜎), then returns
𝜎 , otherwise ⊥. Note that the condition on 𝜋 is just needed for

proving claimability, and thus it does not play any essential role

in terms of signing functionality.

Πcdvs .Verify(pp, vpk, spk,m, 𝜎): Given a public parameter pp,

a verifier’s pubic key vpk = (pk(𝑣)Σ , pk(𝑣)
RS
), a signer’s public key

spk = (pk(𝑠 )Σ , pk(𝑠 )
RS
) a message m, and a signature 𝜎 = (𝜎RS, 𝑐),

it outputs 𝑏 = Πrs .Verify(pp, {pk(𝑠 )
RS
} ∪ {pk(𝑣)

RS
},m, 𝜎RS).

Πcdvs .Sim(pp, vpk, vsk, spk,m) : Given a public parameter pp,

a verifier’s pubic and secret keys vpk = (pk(𝑣)Σ , pk(𝑣)
RS
) and

vsk = (pk(𝑣)Σ , pk(𝑣)
RS

, 𝑘
(𝑣)
PRF, sk

(𝑣)
Σ , sk(𝑣)

RS
), a signer’s public key

spk = (pk(𝑠 )Σ , pk(𝑠 )
RS
), and a message m, it does the same as

Πcdvs .DVSign by using the verifier’s secret key:

(1) 𝜎RS ← Πrs (pp, sk(𝑣)
RS

, {pk(𝑠 )
RS
} ∪ {pk(𝑣)

RS
},m)

(2) 𝑟Σ = PRF.Eval(𝑘 (𝑣)PRF, (spk, 𝜎RS, 0))
(3) 𝜎Σ = Σ.Sig(sk(𝑣)Σ , (spk, 𝜎RS); 𝑟Σ)
(4) 𝑟Com = PRF.Eval(𝑘 (𝑣)PRF, (spk, 𝜎RS, 1))
(5) 𝑐 = Πcom .Com((spk, 𝜎Σ); 𝑟Com)

If it holds that Πcdvs .ClmVrf (pp, spk, vpk, 𝜎, 𝜋) = 1 where 𝜎 =

(𝜎RS, 𝑐) and 𝜋 = Πcdvs .Claim(pp, spk, ssk, vpk, 𝜎), then returns
𝜎 , otherwise ⊥.
Πcdvs .Claim(pp, spk, ssk, vpk, 𝜎) : Given a public parameter

pp, a signer’s public and secret keys spk and ssk = (pk(𝑠 )Σ ,

pk(𝑠 )
RS

, 𝑘
(𝑠 )
PRF, sk

(𝑠 )
Σ , sk(𝑠 )

RS
), a verifier’s public key vpk, and a

signature 𝜎 = (𝜎RS, 𝑐), it computes 𝑟Σ = PRF.Eval(𝑘 (𝑠 )PRF,

(spk, 𝜎RS, 0)), 𝑟Com = PRF.Eval(𝑘 (𝑠 )PRF, (spk, 𝜎RS, 1)), and 𝜎Σ =

Σ.Sig(sk(𝑠 )Σ , (spk, 𝜎RS); 𝑟Σ). If 𝑐 ≠ Πcom .Com((spk, 𝜎Σ); 𝑟Com),
then outputs ⊥, otherwise returns 𝜋 = (𝑟Com, 𝜎Σ).
Πcdvs .ClmVrf (pp, spk, vpk, 𝜎, 𝜋) : Given a public parameter pp,

a signer’s public key spk = (pk(𝑠 )Σ , pk(𝑠 )
RS
), a verifier’s public key

vpk B (pk(𝑣)Σ , pk(𝑣)
RS
), a signature 𝜎 = (𝜎RS, 𝑐), and a claim 𝜋 =

(𝑟Com, 𝜎Σ), it first computes 𝑐′ = Πcom .Com((spk, 𝜎Σ); 𝑟Com).
Then, it returns 1 if 𝑐′ = 𝑐 and Σ.Verify(pk(𝑠 )Σ , (spk, 𝜎RS), 𝜎Σ) =
1, otherwise 0.

4.2 Security Proof
We prove correctness, EUF-CMA, OTR, and claimability of Πcdvs.

Correctness is immediate. Thus, we focus on the remaining proper-

ties. We remark that the proofs of EUF-CMA and claimability are

similar to those of in [25], but OTR is totally new.

Lemma 1. The CDVS scheme Πcdvs satisfies EUF-CMA if the un-

derlying ring signature scheme Πrs satisfies EUF-CMA.

Proof. Suppose for contradiction that there is a PPT adversary

A that breaks EUF-CMA of Πcdvs with non-negligible probability.

We provide another PPT adversary A′ that violates EUF-CMA of

Πrs with non-negligible probability by simulating A inside. We

describe how A′ works in ExpEUFRSΠrs,A′ (1
_) by simulating the

experiment ExpEUFDVSΠcdvs,A (1
_).

Setup phase. Given a public parameter pp, the adversaryA′ sets
𝐿′VPK, 𝐿

′
SPK, 𝐿

′
VSK, 𝐿

′
SSK, 𝐿

′
Sign, and 𝐿

′
Clm as ∅. Then A′ gives pp and

msk B ∅ toA. Given a query fromA, the adversaryA′ simulates

the answer as follows (without loss of generality, we assume that

A does not make queries to OVrf , because verification can be done

only by public keys):

OSPK: Given pp, it computes 𝑘
(𝑠 )
PRF ← PRF.KG(1_), and (pk(𝑠 )Σ ,

sk(𝑠 )Σ ) ← Σ.KG(1_). It asks the challenger of ExpEUFRSΠrs,A′

to call OPK on pp to receive pk(𝑠 )
RS

. It sets spk B (pk(𝑠 )Σ , pk(𝑠 )
RS
),

and ssk B (pk(𝑠 )Σ , pk(𝑠 )
RS

, 𝑘
(𝑠 )
PRF, sk

(𝑠 )
Σ , 𝜙), returns spk to A, and

updates 𝐿SPK B 𝐿SPK ∪ {(spk, ssk)}.
OSSK: Given spk = (pk(𝑠 )Σ , pk(𝑠 )

RS
), it returns ⊥ if (spk, ssk) ∉

𝐿′SPK. Otherwise, it asks the challenger of ExpEUFRSΠrs,A′ to

call OSK on pk(𝑠 )
RS

to receive sk(𝑠 )
RS

. It updates ssk B (pk(𝑠 )Σ ,

pk(𝑠 )
RS

, 𝑘
(𝑠 )
PRF, sk

(𝑠 )
Σ , sk(𝑠 )

RS
) and 𝐿SSK B 𝐿SSK ∪ {(spk, ssk)}, and

returns ssk.
OVPK: The same as OSPK. It returns vpk B (pk(𝑣)Σ , pk(𝑣)

RS
), and

updates 𝐿VPK B 𝐿VPK ∪ {(vpk, vsk)}.
OVSK: The same as OSSK. It returns vsk B (pk(𝑣)Σ , pk(𝑣)

RS
, 𝑘
(𝑣)
PRF,

sk(𝑣)Σ , sk(𝑣)
RS
), and updates 𝐿VSK B 𝐿VSK ∪ {(vpk, vsk)}.

ODVSig: Given spk = (pk(𝑠 )Σ , pk(𝑠 )
RS
), vpk = (pk(𝑣)Σ , pk(𝑣)

RS
), and

m, it returns ⊥ if (vpk, ·) ∉ 𝐿′VPK or (spk, ssk) ∉ 𝐿′SPK. Other-

wise,A′ does the followings (note thatA′ knows ssk = (pk(𝑠 )Σ ,

pk(𝑠 )
RS

, 𝑘
(𝑠 )
PRF, sk

(𝑠 )
Σ , 𝜙) as (spk, ssk) ∈ 𝐿′SPK):

(1) If {(vpk, spk,m, 𝜎)} ∈ 𝐿Sign, then returns 𝜎 .

(2) Asks the challenger of ExpEUFRSΠrs,A′ (1
_) to call ORSig

on spk, vpk and m to receive 𝜎RS

(3) 𝑟Σ = PRF.Eval(𝑘 (𝑠 )PRF, (spk, 𝜎RS, 0))
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(4) 𝜎Σ = Σ.Sig(sk(𝑠 )Σ , (spk, 𝜎RS); 𝑟Σ)
(5) 𝑟Com = PRF.Eval(𝑘 (𝑠 )PRF, (spk, 𝜎RS, 1))
(6) 𝑐 = Πcom .Com((spk, 𝜎Σ); 𝑟Com)

If Πcdvs .ClmVrf (pp, spk, vpk, 𝜎, 𝜋) = 1 where 𝜋 ← Πcdvs .

Claim(pp, spk, ssk, vpk, 𝜎), then it returns 𝜎 B (𝜎RS, 𝑐), and
updates 𝐿Sign B 𝐿Sign ∪ {(vpk, spk,m, 𝜎)}, otherwise ⊥.
OClm: Given vpk, spk, and 𝜎 = (𝜎RS, 𝑐), it returns⊥ if (vpk, ·) ∉
𝐿′VPK, (spk, ssk) ∉ 𝐿′SPK for some ssk = (pk(𝑠 )Σ , pk(𝑠 )

RS
, 𝑘
(𝑠 )
PRF,

sk(𝑠 )Σ , 𝜙), or (vpk, spk, ·, 𝜎) ∉ 𝐿′Sign. Outputs 𝜋 if {(vpk, vsk,

𝜎, 𝜋)} ∈ 𝐿Clm. Otherwise, it computes 𝑟Σ = PRF.Eval(𝑘 (𝑠 )PRF,

(spk, 𝜎RS, 0)), 𝑟Com = PRF.Eval(𝑘 (𝑠 )PRF, (spk, 𝜎RS, 1)), and 𝜎Σ =

Σ.Sig(sk(𝑠 ) , (spk, 𝜎RS); 𝑟Σ). If 𝑐 ≠ Πcom .Com((spk, 𝜎Σ); 𝑟Com),
then it outputs ⊥, otherwise outputs 𝜋 B (𝑟Com, 𝜎Σ), and up-

dates 𝐿Clm B 𝐿Clm ∪ {(vpk, vsk, 𝜎, 𝜋)}.

Challenge phase. When A outputs (spk∗, vpk∗,m∗, 𝜎∗) where
vpk∗ = (pk(𝑣)Σ , pk(𝑣)

RS
) and spk∗ = (pk(𝑠 )Σ , pk(𝑠 )

RS
), A′ outputs

({pk(𝑠 )
RS
} ∪ {pk(𝑣)

RS
},m∗, 𝜎∗) as a challenge.

Analysis. Suppose that the output (spk∗, vpk∗,m∗, 𝜎∗) by A re-

sults in ExpEUFDVSΠcdvs,A (1
_) = 1 (i.e., A violates EUF-CMA of

Πcdvs). Namely, Πcdvs .Verify(pp, vpk∗, spk∗,m∗, 𝜎∗) = 1 indicates

Πrs .Verify(pp, {pk(𝑠 )
RS
} ∪ {pk(𝑣)

RS
},m∗, 𝜎∗) = 1. Further, (spk∗, ·) ∈

𝐿′SPK, (vpk
∗, vsk∗) ∈ 𝐿′VPK, (spk

∗, ·) ∉ 𝐿′SSK, (vpk
∗, vsk∗) ∉

𝐿′VSK, and (vpk
∗, spk∗,m∗, 𝜎∗) ∉ 𝐿′Sign means (pk(𝑠 )

RS
, sk(𝑠 )

RS
) ∈

𝐿PK, (pk(𝑣)
RS

, sk(𝑣)
RS
) ∈ 𝐿PK, (pk(𝑣)

RS
, sk(𝑣)

RS
) ∉ 𝐿SK, (pk(𝑠 )

RS
, sk(𝑠 )

RS
) ∈

𝐿PK, and (pk(𝑠 )
RS

, pk(𝑣)
RS

,m∗, 𝜎∗) ∉ 𝐿Sign, respectively. That is, when

A breaks EUF-CMA of Πcdvs, A′ breaks EUF-CMA of Πrs as well.

Therefore, the existence of A that breaks EUF-CMA of Πcdvs with

non-negligible probability conflicts EUF-CMA of Πrs. □

Lemma 2. The CDVS scheme Πcdvs satisfies OTR if the underlying

ring signature scheme Πrs satisfies anonymity.

Proof. We assume for contradiction that there is a PPT adver-

sary A that breaks OTR of Πcdvs with non-negligible probability.

We show that we can construct a PPT adversary A′ that breaks
anonymity of Πrs with non-negligible probability by simulatingA
inside. We describe how A′ works in ExpAnoΠrs,A′ (1

_) by simu-

lating the experiment ExpOTRΠcdvs,A (1
_). (Namely, A′ simulates

ExpOTRΠcdvs,A (1
_) as a challenger.)

Setup phase. Given a public parameter pp, the adversaryA′ sets
𝐿′VPK, 𝐿

′
SPK, 𝐿

′
VSK, 𝐿

′
SSK, 𝐿

′
Sign, and 𝐿

′
Clm as ∅. Then A′ gives pp and

msk B ∅ to A. Queries from A are handled in the same way as

in the proof of Lemma 1. When A outputs spk∗ = (pk(𝑠 )Σ , pk(𝑠 )
RS
),

vpk∗ = (pk(𝑣)Σ , pk(𝑣)
RS
), and m∗, A′ sets pk

0
B pk(𝑠 )

RS
and pk

1
B

pk(𝑣)
RS

, and outputs (m∗, pk
0
, pk

1
) to receive a signature 𝜎

RS,𝑏 where

𝑏 ∈ {0, 1}. (Note thatA′ does not output another set of public keys,
and we regard {pk

0
} ∪ {pk

1
} as a ring.)

Guessing phase. Given a signature 𝜎
RS,𝑏 from the challenger

of ExpAnoΠrs,A′ (1
_), A′ continues to simulate ExpOTRΠcdvs,A .

Namely, A′ should return a signature 𝜎𝑏† that contains 𝜎RS,𝑏 to A

where 𝑏† ∈ {0, 1} is a challenge bit for A. However, A′ does not
know which secret key that corresponds to pk

0
or pk

1
is used to

create 𝜎𝑅𝑆,𝑏 . ThusA′ flips a coin to decide which secret key to use.

This obviously halves the success probability of A′, but it is still
sufficient for our purpose. Formally, A′ does the followings:

(1) Randomly chooses a randomness 𝑏† ∈ {0, 1}. If 𝑏† = 0,

then sets 𝑘
†
PRF B 𝑘

(𝑠 )
PRF and 𝑠𝑘

†
Σ B sk(𝑠 )Σ , otherwise sets

𝑘
†
PRF B 𝑘

(𝑣)
PRF and 𝑠𝑘

†
Σ B sk(𝑣)Σ .

(2) 𝑟Σ = PRF.Eval(𝑘†PRF, (spk
∗, 𝜎

RS,𝑏 , 0))
(3) 𝜎Σ = Σ.Sig(sk†Σ, (spk

∗, 𝜎RS); 𝑟Σ)
(4) 𝑟Com = PRF.Eval(𝑘†PRF, (spk

∗, 𝜎
RS,𝑏 , 1))

(5) 𝑐 = Πcom .Com((spk∗, 𝜎Σ); 𝑟Com)
After these computations, A′ gives 𝜎𝑏† = (𝜎RS, 𝑐) to A. Again,

queries from A are handled in the same way as in the proof of

Lemma 1. WhenA outputs a guessing bit 𝑏′,A′ outputs 𝑏′ as well.

Analysis. Suppose that the probability that A guesses correctly

is 1/2 + 𝜖 where 𝜖 is non-negligible. In other words, if 𝑏† = 𝑏, then

it holds that 𝑏′ = 𝑏 with probability 1/2 + 𝜖 . As this event happens
with probability 1/2, the probability that A′ guesses correctly is at

least 1/2 + 𝜖/2, which violates the anonymity of Πrs. □

Lemma 3. The CDVS scheme Πcdvs is claimable.

Proof. The first condition of claimability is trivial from correct-

ness of Σ and pseudorandomness of PRF. Thus, we focus on claim

unforgeability and non-frameability. □

Claim 1. If there is a PPT adversary A that violates the claim

unforgeability of Πcdvs with non-negligible probability, then we can

construct a PPT adversary A′ that violates binding property of Πcom

with non-negligible probability.

Proof. Suppose that A outputs (𝑟Com, 𝜎Σ) that results in 1 in

the following experiment with non-negligible probability.

ExpFlsClmDVSΠcdvs,A (1
_)

𝐿VPK B ∅;𝐿SPK B ∅;𝐿VSK B ∅;𝐿SSK B ∅;𝐿Sign B ∅;𝐿Clm B ∅;
(pp,msk) ← Πcdvs .Set(1_);
(spk, ssk) = ((pk(𝑠 )Σ , pk(𝑠 )

RS
), (pk(𝑠 )Σ , pk(𝑠 )

RS
, 𝑘
(𝑠 )
PRF, sk

(𝑠 )
Σ , sk(𝑠 )

RS
)) ←

Πcdvs .SKG(pp);
(m∗, vpk∗, vsk∗)
= (m∗, (pk(𝑣)Σ , pk(𝑣)

RS
), (pk(𝑣)Σ , pk(𝑣)

RS
, 𝑘
(𝑣)
PRF, sk

(𝑣)
Σ , sk(𝑣)

RS
))

← AOSPK,OSSK,OVPK,OVSK,O
spk,ssk
DVSig ,OVrf ,O

spk,ssk
Clm (pp, spk);

𝜎 = (𝜎RS, 𝑐) ← Πcdvs .DVSign(pp, spk, ssk, vpk∗,m);

𝜋∗ = (𝑟Com, 𝜎Σ) ← A
OSPK,OSSK,OVPK,OVSK,O

spk,ssk
DVSig ,OVrf ,O

spk,ssk
Clm (𝜎);

𝑏 = Πcdvs .ClmVrf (pp, vpk∗, spk, 𝜎, 𝜋∗);
𝑏′ = Πcdvs .Verify(pp, vpk∗, vsk∗, spk,m∗, 𝜎) :
output 1 if 𝑏 = 1 ∧ 𝑏′ = 1 ∧ vpk∗ ≠ spk
otherwise 0

We provide a PPT adversary A′ against binding property of

Πcom that simulates the above experiment as a challenger. In the

simulation, A′ firstly computes (spk, ssk) by itself, and thus it can

answer any oracle queries made by A by using ssk.
When A′ receives 𝜋∗ = (𝑟Com, 𝜎Σ) from A, it checks if 𝑏 =

Πcdvs .ClmVrf (pp, spk, vpk∗, 𝜎, 𝜋∗) = 1, where 𝜎 = (𝜎RS, 𝑐) is the
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signature thatA′ creates. Observe that 𝑏 = 1 indicates Πcom .Com(
(vpk∗, 𝜎Σ); 𝑟Com) = 𝑐 by the construction of Πcdvs .ClmVrf. Fur-
ther, suppose that 𝑏′ = Πcdvs .Verify(pp, vpk∗, vsk∗, spk,m∗, 𝜎) = 1.

That is, as 𝜎 is a valid signature, it holds that Πcom .Com((spk,
𝜎′Σ); 𝑟

′
Com) = 𝑐 where 𝜎′Σ and 𝑟 ′Com are computed during the com-

putation of 𝜎 ← Πcdvs .DVSign(pp, spk, ssk, vpk∗,m∗). However,
as spk ≠ vpk∗, this violates binding property of Πcom .Com. As A
breaks claim unforgeability with non-negligible probability,A′ can
also violate binding property of Πcom with non-negligible probabil-

ity by outputting (vpk∗, 𝜋∗, spk, 𝜋 ′) where 𝜋 ′ = (𝜎′Σ, 𝑟
′
Com). □

Claim 2. If there is a PPT adversary that violates non-frameability

of Πcdvs with non-negligible probability, then we can construct an-

other PPT adversary that violates EUF-CMA of Σ with non-negligible

probability.

Due to space limitation, we prove Claim 2 in Appendix A. To

summarize the discussion, we have proved Lemma 3.

5 THE SECOND CONSTRUCTION
Let Πcrsig = (Set,KG,RSig,Verify,Claim,ClmVrf) be a claimable

ring signature scheme. We demonstrate that we can construct a

CDVS scheme Πcdvs = (Set, SKG,VKG,DVSign,Vrf, Sim,Claim,

ClmVrf) based on Πcrsig in a generic manner. The second construc-

tion also does not require a master secret key, and the verification

algorithm does not take a secret key of a designated verifier.

5.1 Construction
The construction Πcdvs is as follows:

Πcdvs .Set(1_) : Given a security parameter 1
_
, it outputs pp←

Πcrsig .Set(1_), and msk B 𝜙 .

Πcdvs .SKG(pp) : Given a public parameter pp, it outputs (spk,
ssk) B (pk, sk) ← Πcrsig .(pp).
Πcdvs .VKG(pp) : Given a public parameter pp, it outputs (vpk,
vsk) B (pk, sk) ← Πcrsig .(pp).
Πcdvs .DVSign(pp, spk, ssk, vpk,m) : Given a public parameter

pp, a signer’s public key spk and secret key ssk, a verifier’s pub-
lic key vpk, and a message m, it outputs 𝜎 ← Πcrsig .RSig(pp,
ssk, {spk} ∪ {vpk},m).
Πcdvs .Vrf (pp, vpk, spk,m, 𝜎) : Given a public parameter pp, a
verifier’s public key vpk, a signer’s public key spk, a message

m, and a signature 𝜎 , it outputs 𝑏 = Πcrsig .Vrf (pp, {spk} ∪
{vpk},m, 𝜎).
Πcdvs .Sim(pp, vpk, vsk, spk,m) : Given a public parameter pp,
a verifier’s public key vpk and secret key vsk, a signer’s public
key spk, and a message m, it outputs 𝜎 ← Πcrsig .RSig(pp, vsk,
vpk, spk,m).
Πcdvs .Claim(pp, spk, ssk, vpk, 𝜎) :Given a public parameter pp,
a signer’s public key spk and secret key ssk, a verifier’s public
key vpk, and a signature 𝜎 , it outputs 𝜋 ← Πcrsig .Claim(pp,
ssk, {spk} ∪ {vpk}, 𝜎).
Πcdvs .ClmVrf (pp, spk, vpk, 𝜎, 𝜋) : Given a public parameter pp,
a signer’s public key spk, a verifier’s public key vpk, a signature
𝜎 , and a claim 𝜋 , it outputs 𝑏 = Πcrsig .ClmVrf (pp, spk, {spk}
∪ {vpk}, 𝜎, 𝜋).

5.2 Security Proof
We prove that Πcdvs is a CDVS scheme. Correctness is immediate,

and thus we show EUF-CMA, OTR, and claimability, respectively.

Lemma 4. If Πcrsig satisfies EUF-CMA, then Πcdvs also satisfies

EUF-CMA.

Proof. Suppose that there exists a PPT adversary Acdvs that

breaks EUF-CMA of Πcdvs with non-negligible probability. Then,

we show that we can construct a PPT adversary ARS that breaks

EUF-CMA of Πcrsig with non-negligible probability by simulating

ExpEUFDVSΠcdvs,Acdvs

(1_). In what follows, we demonstrate how

ARS works in ExpEUFRSOCRSClm
Πcrsig,ARS

(1_).

Setup phase. Given pp, the adversaryARS sets 𝐿
′
VPK, 𝐿

′
SPK, 𝐿

′
VSK,

𝐿′SSK, 𝐿
′
Sign, and 𝐿′Clm as ∅. Then, ARS simulates Acdvs by giving

pp. Namely, each oracle query is dealt with as follows (without loss

of generality, we assume that Acdvs does not call OVrf , because

Πcdvs .Vrf does not require a secret key of a designated verifier):

OSPK: Given pp from Acdvs, the adversary ARS asks the chal-

lenger of ExpEUFRSOCRSClm
Πcrsig,ARS

(1_) to call OPK, returns the an-

swer spk to Acdvs, and updates 𝐿′SPK B 𝐿′SPK ∪ {(spk, ·)}.
OSSK : Given spk from Acdvs, the adversary ARS returns ⊥ if

(spk, ·) ∉ 𝐿SPK. Otherwise, it asks the challenger of the experi-

ment ExpEUFRSOCRSClm
Πcrsig,ARS

(1_) to call OSK, returns the answer

ssk to Acdvs, and updates 𝐿′SSK B 𝐿′SSK ∪ {(spk, ssk)}.
OVPK: The same as OSPK. The adversary ARS returns vpk to

Acdvs and updates 𝐿′VPK B 𝐿′VPK ∪ {(vpk, ·)}.
OVSK: The same as OSSK. The adversary ARS returns vsk to

Acdvs and updates 𝐿′VSK B 𝐿′VSK ∪ {(vpk, vsk)}.
ODVSig : Given vpk, spk, and m, output 𝜎 if {(vpk, spk,m,

𝜎)} ∈ 𝐿Sign. Otherwise, the adversary ARS asks the challenger

of ExpEUFRSOCRSClm
Πcrsig,ARS

to call ORSig, returns the answer 𝜎 to

Acdvs, and updates 𝐿′Sign B 𝐿′Sign ∪ {(vpk, spk,m, 𝜎)}.
OClm : Given vpk, spk, and 𝜎 , output 𝜋 if {(vpk, vsk,
𝜎, 𝜋)} ∈ 𝐿Clm. Otherwise, ARS asks the challenger of

ExpEUFRSOCRSClm
Πcrsig,ARS

to call OCRSClm, returns the answer 𝜋 to

Acdvs, and updates 𝐿′Clm B 𝐿′Clm ∪ {(vpk, spk, 𝜎, 𝜋)}.

Challenge phase. When Acdvs outputs (spk∗, vpk∗,m∗, 𝜎∗), the
adversaryARS outputs ({spk∗} ∪ {vpk∗},m∗, 𝜎∗) to the challenger.

Analysis. Given ({spk∗} ∪ {vpk∗},m∗, 𝜎∗), if all the following
conditions are satisfied, the challenger outputs 1 as the result of

ExpEUFRSOCRSClm
Πcrsig,ARS

(1_):
(1) Both spk∗ and vpk∗ are created by OPK.

(2) Both spk∗ and vpk∗ are not queried to OSK.

(3) Both (spk∗, vpk∗,m∗) and (vpk∗, spk∗,m∗) are not queried
to ORSig.

(4) Πcrsig .Vrf (pp, {spk∗} ∪ {vpk∗},m∗, 𝜎∗) = 1.

Suppose that the output (spk∗, vpk∗,m∗, 𝜎∗) by Acdvs results in

ExpEUFDVSΠcdvs,Acdvs

(1_) = 1. Then, conditions (1), (2), and

(3) are satisfied. Observe that Πcdvs .Vrf is exactly the same as

Πcrsig .Vrf. Thus, Πcdvs .Vrf (pp, spk∗, vpk∗,m∗, 𝜎∗) = 1 implies

Πcrsig .Vrf (pp, {spk∗} ∪ {vpk∗},m∗, 𝜎∗) = 1, which means con-

dition (4). As we are assuming that Acdvs breaks EUF-CMA of
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Πcdvs with non-negligible probability, ARS also breaks EUF-CMA

of Πcrsig with non-negligible probability, which is a contradic-

tion. □

Lemma 5. If Πcrsig satisfies anonymity, then Πcdvs satisfies OTR.

Proof. Suppose that there exists a PPT adversary Acdvs that

breaks OTR of Πcdvs with non-negligible probability. Then, we

show that we can construct a PPT adversary ARS that breaks

anonymity of Πcrsig by simulatingAcdvs in ExpAnoOClm
Πcrsig,ARS

(1_).
We demonstrate how ARS works in ExpAnoOClm

Πcrsig,ARS

(1_).

Setup phase. Given pp, the adversaryARS sets 𝐿
′
VPK, 𝐿

′
SPK, 𝐿

′
VSK,

𝐿′SSK, 𝐿
′
Sign, and 𝐿′Clm as ∅. Then, ARS simulates Acdvs by giving

pp. Each oracle query is dealt with as the proof of Lemma 4.

Challenge phase. WhenAcdvs outputs (m∗, spk∗, vpk∗),ARS re-

turns (m∗, pk∗
0
, pk∗

1
, {pk∗}) B (m∗, spk∗, vpk∗, 𝜙) to the challenger.

Note that ARS does not return a set of public keys. Hence, the

challenger will use a ring {pk∗
0
} ∪ {pk∗

1
}.

Guessing phase. Given 𝜎𝑏 where 𝑏 ∈ {0, 1}, the adversary ARS

gives 𝜎𝑏 to Acdvs. When Acdvs outputs a guessing bit 𝑏′, ARS

returns 𝑏′ to the challenger. Note that oracle queries from Acdvs

are treated as in the setup phase.

Analysis. Given 𝑏′, the challenger outputs 1 as the result of

ExpAnoOClm
Πcrsig,ARS

(1_) if the following conditions are satisfied:
(1) Both pk∗

0
(= spk∗) and pk∗

1
(= vpk∗) are created by OPK.

(2) Both pk∗
0
(= spk∗) and pk∗

1
(= vpk∗) are not queried to OSK.

(3) The signature 𝜎𝑏 is not queried to OClm.

(4) 𝑏′ = 𝑏.

Observe that ExpOTRΠcdvs,Acdvs

(1_) = 1, indicates

ExpAnoOClm
Πcrsig,ARS

(1_) = 1. Thus, the existence of the adver-

sary Acdvs that results in ExpOTRΠcdvs,Acdvs

(1_) = 1 with

non-negligible probability better than 1/2 contradicts the

anonymity of Πcrsig. □

Lemma 6. If Πcrsig satisfies claimability, then Πcdvs also satisfies

claimability.

Proof. The property denoted by “Honest signer can claim” is

immediate. Thus, we show the remaining two properties. □

Claim 3. If Πcrsig satisfies claim unforgeability, then Πcdvs also

satisfies claim unforgeability.

Proof. Now we prove Claim 3. Assume for contradiction that

there exists a PPT adversary Acdvs that breaks claim unforge-

ability of Πcdvs. Then we demonstrate a PPT adversary ARS that

breaks claim unforgeability of Πcrsig by simulating the experiment

ExpFlsClmDVSΠcdvs,Acdvs

(1_) in ExpFlsClmRSΠcrsig,ARS

(1_).

Setup phase. Given pp and pk from the challenger, ARS sets

spk B pk and gives (pp, spk) to Acdvs. Queries from Acdvs to

OSPK,OVPK,OSSK, andOVSK are handled as in the proof of Lemma 4

(without loss of generality, we assume that Acdvs does not make

queries to OVrf ). Queries to Ospk,ssk
DVSig and Ospk,ssk

Clm are also dealt

with as in the proof of Lemma 4, but with the following additional

queries: Given (vpk′,m) (resp., (vpk′, 𝜎)), ARS asks the challenger

to call ORSig (resp., OCRSClm) and returns the answer to Acdvs.

Challenge phase. WhenAcdvs outputs (m∗, vpk∗), the adversary
ARS sets pk∗ B vpk∗ and sends (m∗, pk∗) to the challenger. (Recall
thatΠcdvs does not require a verifier’s secret key for the verification

algorithm. Thus, Acdvs does not output vsk∗.)

Claim forgery phase. On receiving a proof 𝜎 from the challenger,

the adversaryARS gives 𝜎 toAcdvs. WhenAcdvs outputs a forgery

claim 𝜋∗, the adversary ARS sends it to the challenger. Note that

oracle queries from Acdvs are handled as in the setup phase.

Analysis. The output of ExpFlsClmRSΠcrsig,ARS

(1_) is 1 if

𝑏 = Πcrsig .ClmVrf (pp, pk∗, {pk} ∪ {pk∗}, 𝜎, 𝜋∗) = 1, 𝑏′ =

Πcrsig .Vrf (pp, {pk} ∪ {pk∗},m∗, 𝜎) = 1, and pk∗ ≠ pk.
Considering the fact that Πcdvs .Vrf (resp., Πcdvs .ClmVrf) and
Πcrsig .Vrf (resp., Πcrsig .ClmVrf) are the same, the condition

that ExpFlsClmDVSΠcdvs,Acdvs

(1_) = 1 is the same as that of

ExpFlsClmRSΠcrsig,ARS

(1_) = 1. Thus, the existence of Acdvs con-

tradicts the claim unforgeability of Πcrsig. □

Claim 4. If Πcrsig is non-frameable, then Πcdvs is also non-

frameable.

Proof. We assume for contradiction that there exists a PPT

adversary Acdvs that breaks non-frameability of Πcdvs with non-

negligible probability. Then we demonstrate that we can construct

a PPT adversary ARS that breaks non-frameability of Πcrsig with

non-negligible probability by simulating ExpFrmΠcdvs,Acdvs

(1_) as
a challenger. In what follows, we show how ARS works in the

experiment ExpFrmRSΠcrsig,ARS

(1_).

Setup phase. Given pp and pk from the challenger, ARS sets

spk B pk and gives (pp, spk) to Acdvs. Queries from Acdvs to

oracles are handled as in the proof of Claim 3.

Challenge phase. When Acdvs outputs (m∗, vpk∗, 𝜎∗, 𝜋∗), the
adversaryARS sets pk∗ B vpk∗ and returns (m∗, pk∗, 𝜎∗, 𝜋∗) to the
challenger. Note thatAcdvs does not output vsk∗, as the verification
algorithm does not take the verifier’s secret key.

Analysis. The output of ExpFrmRSΠcrsig,ARS

(1_) is 1 if 𝑏 =

Πcrsig .ClmVrf (pp, pk∗, {pk} ∪ {pk∗}, 𝜎∗, 𝜋∗) = 1, 𝑏′ =

Πcrsig .Vrf (pp, {pk} ∪ {pk∗},m∗, 𝜎∗) = 1, and 𝜎∗ is not queried
to OCRSClm. By the same discussion as in the proof of Claim 3, we

conclude that the existence of Acdvs conflicts non-frameability of

Πcrsig. □

We conclude that Lemma 6 holds, by Claim 3 and Claim 4.

6 CONCLUSION
In this work, we introduce claimable designated verifier signature

(CDVS). Then, we propose two generic constructions of CDVS. The

first construction is based on (standard) ring signature, (non-ring,

standard) signature, pseudorandom function, and commitment. The

second construction is based solely on claimable ring signature.
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A PROOF OF CLAIM 2
Claim 2 states that if there is a PPT adversary A that violates non-

frameability of Πcdvs with non-negligible probability, then we can

construct a PPT adversary A′′ that violates EUF-CMA of Σ with

non-negligible probability.

Proof. Toward showing the adversaryA′′, we first consider an
intermediate PPT adversaryA′ that outputs (𝑚∗, 𝜎∗Σ) in the experi-

ment ExpEUFSigΣ,A′ s.t. Σ.Verify(pk,m∗, 𝜎∗Σ) = 1, but it is not clear

if it results in ExpEUFSigΣ,A′ (1_) = 1. Then, we demonstrate a PPT

adversary A′′ whose distribution of output is close to that of A′,
but certainly results in ExpEUFSigΣ,A′′ (1_) = 1. We demonstrate

how A′ works in ExpEUFSigΣ,A′ by simulating ExpFrmΠcdvs,A as

a challenger.

Setup phase. Given a public key pkΣ from the challenger,A′ sets
𝐿′VPK, 𝐿

′
SPK, 𝐿

′
VSK, 𝐿

′
SSK, 𝐿

′
Sign, and 𝐿′Clm as ∅. Then, A′ computes

pp ← Πcdvs .Set(1_), and (spk†, ssk†) = ((pk(𝑠 )Σ , pk(𝑠 )
RS
), (pk(𝑠 )Σ ,

pk(𝑠 )
RS

, 𝑘
(𝑠 )
PRF, sk

(𝑠 )
Σ , sk(𝑠 )

RS
)) ← Πcdvs .SKG(pp). It sets spk′ B (pkΣ,

pk(𝑠 )
RS
), and ssk′ B (pk(𝑠 )Σ , pk(𝑠 )

RS
, 𝑘
(𝑠 )
PRF,⊥, sk

(𝑠 )
RS
), and gives spk′ to

A.

Forgery phase. Given a query from A, the adversary A′ simu-

lates the answer as follows (without loss of generality, we assume

that Acdvs does not call OVrf , because Πcdvs .Vrf does not require
a secret key of a designated verifier):

OSPK: Given a public parameter pp, it computes 𝑘PRF ←
PRF.KG(1_), (pkΣ, skΣ) ← Σ.KG(1_), and (pk

RS
, skRS) ←

Πrs .KG(pp). It sets spk B (pkΣ, pkRS), and ssk B (pkΣ, pkRS,
𝑘PRF, skΣ, skRS), returns spk toA, and updates 𝐿SPK B 𝐿SPK ∪
{(spk, ssk)}.
OSSK: Given spk, it returns ⊥ if (spk, ssk) ∉ 𝐿′SPK for some

ssk. Otherwise, it returns ssk, and updates 𝐿SSK B 𝐿SSK ∪
{(spk, ssk)}.
OVPK: The same as OSPK except that it returns vpk B
(pkΣ, pkRS), and updates 𝐿VPK B 𝐿VPK ∪ {(vpk, vsk)}.
OVSK: The same as OSSK except that it returns vsk, and updates
𝐿VSK B 𝐿VSK ∪ {(vpk, vsk)}.
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ODVSig: Given spk = (pkΣ, pkRS), vpk = (pk′Σ, pk
′
RS
), and m, it

returns ⊥ if neither of the following conditions are satisfied: (i)

(vpk, ·) ∈ 𝐿′VPK ∧ (spk, ssk) ∈ 𝐿
′
SPK, nor (ii) (vpk, ·) ∈ 𝐿

′
VPK ∧

spk = spk′. Otherwise, let A′ does the followings (in what

follows, we let ssk = (pkΣ, pkRS, 𝑘PRF, skΣ, skRS)):
(1) If {(vpk, spk,m, 𝜎)} ∈ 𝐿Sign, then returns 𝜎 .

(2) 𝜎RS ← Πrs .RSig(pp, skRS, {pkRS} ∪ {pk′RS},m)
(3) If spk = spk′, then A′ asks the challenger to call OSig

on m′ = (spk, 𝜎RS) to obtain a signature 𝜎Σ. Otherwise,

A′ computes 𝑟Σ = PRF.Eval(𝑘PRF, (spk, 𝜎RS, 0)) and 𝜎Σ =

Σ.Sig(skΣ, (spk, 𝜎RS); 𝑟Σ).
(4) 𝑟Com = PRF.Eval(𝑘PRF, (spk, 𝜎RS, 1))
(5) 𝑐 = Πcom .Com((spk, 𝜎Σ); 𝑟Com)

If Πcdvs .ClmVrf (pp, spk, vpk, 𝜎, 𝜋) = 1 where 𝜋 =

Πcdvs .Claim(pp, spk, ssk, vpk, 𝜎), then it returns 𝜎 B (𝜎RS, 𝑐),
and updates 𝐿Sign B 𝐿Sign ∪ {(vpk, spk,m, 𝜎)}, otherwise ⊥.
OClm: Given vpk, spk, and 𝜎 = (𝜎RS, 𝑐), it returns ⊥ if neither

of the following conditions is satisfied: (i) (vpk, ·) ∈ 𝐿′VPK ∧
(spk, ssk) ∈ 𝐿′SPK ∧ (vpk, spk, ·, 𝜎) ∉ 𝐿′Sign, nor (ii) (vpk, ·) ∈
𝐿′VPK ∧ spk = spk′ ∧ (vpk, spk, ·, 𝜎) ∉ 𝐿′Sign. If {(vpk, vsk, 𝜎,
𝜋)} ∈ 𝐿Clm, then returns 𝜋 . Otherwise, it computes 𝑟Σ = PRF.
Eval(𝑘PRF, (spk, 𝜎RS, 0)), and 𝑟Com = PRF.Eval(𝑘PRF, (spk, 𝜎RS,
1)). If spk = spk′, then the adversary A′ asks the challenger
to call OSig on m′ = (spk, 𝜎RS) to obtain 𝜎Σ. Otherwise, A′
computes 𝜎Σ = Σ.Sig(skΣ, (spk, 𝜎RS); 𝑟Σ). If 𝑐 ≠ Πcom .Com
((spk, 𝜎Σ); 𝑟Com), then it outputs ⊥, otherwise outputs 𝜋 =

(𝑟Com, 𝜎Σ), and updates 𝐿Clm B 𝐿Clm ∪ {(vpk, vsk, 𝜎, 𝜋)}.
When A outputs (m∗, vpk∗, vsk∗, 𝜎∗, 𝜋∗) where 𝜋∗ = (𝜎∗Σ, 𝑟

∗
Com),

the adversary A′ outputs (m∗, 𝜎∗Σ).

Analysis. We show that the signature output by A′ should
satisfy the requirements by the challenger, by the following hybrid

argument.

Hybrid 0: The above experiment.

Hybrid 1:When the challenger in ExpEUFSigΠrs,A′ calls OSig, it

uses PRF for the randomness instead of using a true randomness.

That is, when the challenger receives a query (spk, 𝜎RS), it
computes 𝑟 = PRF.Eval(𝑘PRF, (spk, 𝜎RS, 0)) for randomness.

Hybrid 2: Instead of asking the challenger to call OSig in the sim-

ulation of ODVSig and OClm, the adversary A′ runs Σ.Sig by us-

ing the secret key sk(𝑠 )Σ generated by A′ itself. That is, A′ uses
(spk†, ssk†) = ((pk(𝑠 )Σ , pk(𝑠 )

RS
), (pk(𝑠 )Σ , pk(𝑠 )

RS
, 𝑘
(𝑠 )
PRF, sk

(𝑠 )
Σ , sk(𝑠 )

RS
)) in-

stead of (spk′, ssk′). Namely, when given spk = spk†, A′ does the
followings:

ODVSig: Given spk†, vpk = (pk′Σ, pk
′
RS
), and m, it returns ⊥ if

(vpk, ·) ∈ 𝐿′VPK. Otherwise, A
′
does the followings:

(1) If {(vpk, spk†,m, 𝜎)} ∈ 𝐿Sign, then return 𝜎 .

(2) 𝜎RS ← Πrs .RSig(pp, sk(𝑠 )
RS

, {pk(𝑠 )
RS
} ∪ {pk′

RS
},m).

(3) 𝑟Σ = PRF.Eval(𝑘 (𝑠 )PRF, (spk
†, 𝜎RS, 0)) and 𝜎Σ = Σ.Sig(sk(𝑠 )Σ ,

(spk†, 𝜎RS); 𝑟Σ).
(4) 𝑟Com = PRF.Eval(𝑘 (𝑠 )PRF, (spk

†, 𝜎RS, 1)).
(5) 𝑐 = Πcom .Com((spk(𝑠 ) , 𝜎Σ); 𝑟Com).

If Πcdvs .ClmVrf (pp, spk†, vpk, 𝜎, 𝜋) = 1 where 𝜋 =

Πcdvs .Claim(pp, spk†, ssk†, vpk, 𝜎), then it returns

𝜎 B (𝜎RS, 𝑐), and updates 𝐿Sign B 𝐿Sign ∪ {(vpk, spk†,m, 𝜎)},
otherwise ⊥.
OClm: Given vpk, spk†, and 𝜎 = (𝜎RS, 𝑐), it returns

⊥ if (vpk, ·) ∉ 𝐿′VPK or (vpk, spk, ·, 𝜎) ∉ 𝐿′Sign. If

{(vpk, vsk†, 𝜎, 𝜋)} ∈ 𝐿Clm, then returns 𝜋 . Computes 𝑟Σ = PRF.

Eval(𝑘 (𝑠 )PRF, (spk
†, 𝜎RS, 0)), and 𝑟Com = PRF.Eval(𝑘 (𝑠 )PRF, (spk,

𝜎RS, 1)). Then, A′ computes 𝜎Σ = Σ.Sig(sk(𝑠 )Σ , (spk†, 𝜎RS); 𝑟Σ).
If 𝑐 ≠ Πcom .Com((spk†, 𝜎Σ); 𝑟Com), then outputs ⊥, other-
wise outputs 𝜋 = (𝑟Com, 𝜎Σ), and updates 𝐿Clm B 𝐿Clm ∪
{(vpk, vsk†, 𝜎, 𝜋)}.
Hybrid 0 and Hybrid 1 are computationally close due to pseu-

dorandomness of PRF. We argue that Hybrid 1 and Hybrid 2 are

identical, because A′ completely simulates the oracle OSig.

It remains to prove that the pair of the message m∗ and the

signature 𝜎∗Σ that is contained in the claim 𝜋∗ = (𝑟∗Com, 𝜎
∗
Σ) out-

put by A in Hybrid 2 results in ExpEUFSigΣ,A′ (1_) = 1. Ob-

serve that Hybrid 2 is exactly the experiment ExpFrmΠcdvs,A (1
_).

By assumption, 𝜋∗ passes the verification by Πcdvs .ClmVrf with
non-negligible probability. If this event happens, it implies that

Σ.Verify(pkΣ,m∗, 𝜎∗Σ) = 1. Thus, the adversaryA′ in Hybrid 0 also

outputs such (m∗, 𝜎∗Σ) with non-negligible probability.

However, considering the condition for ExpEUFSigΣ,A′ (1_) = 1,

we should show thatm∗ is not queried toOSig, which is not a direct

implication by the conditions for ExpFrmΠcdvs,A (1
_) = 1. To deal

with this problem, we introduce another PPT adversary A′′ that
certainly results in ExpEUFSigΣ,A′′ (1_) = 1.

Let 𝑞 be the maximum number of queries that A′ can make to

OSig. The adversary A′′ is almost the same as A′, but chooses
𝑖 ∈ [𝑞] uniformly at random and does the following on the 𝑖-

th query to OSig: Instead of calling OSig on a message m∗, it
chooses 𝜎∗Σ uniformly at random and computes a commitment

𝑐∗ with respect to 𝜎∗Σ. Thanks to hiding property of Πcom, the

distribution of the output by A′′ is computationally close to

that of A′ unless 𝑐∗ is not queried to OClm. Here, if A′ queries
to OSig on m∗ in the 𝑖-th query, m∗ is not queried to OClm

due to the condition for ExpFrmΠcdvs,A (1
_) = 1. Therefore, if

Pr[ExpEUFSigΣ,A′ (1_) = 1] = 𝜖 where 𝜖 is non-negligible, it holds

that Pr[ExpEUFSigΣ,A′′ (1_) = 1] = 𝜖/𝑞 − negl(_), which is still

non-negligible. □
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