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Fig. 1. Plausible and diverse shapes generated by our LAS-Diffusion model. Left: Our sketch-conditioned model supports freehand sketches (top), and is able
to generate novel 3D shapes such as a flying car and a chair with a wing (bottom), which have not been seen in the training data. Right: a shape gallery
generated by our category-conditioned model.

Although the recent rapid evolution of 3D generative neural networks greatly
improves 3D shape generation, it is still not convenient for ordinary users
to create 3D shapes and control the local geometry of generated shapes.
To address these challenges, we propose a diffusion-based 3D generation
framework — locally attentional SDF diffusion, to model plausible 3D shapes,
via 2D sketch image input. Ourmethod is built on a two-stage diffusionmodel.
The first stage, named occupancy-diffusion, aims to generate a low-resolution
occupancy field to approximate the shape shell. The second stage, named
SDF-diffusion, synthesizes a high-resolution signed distance field within the
occupied voxels determined by the first stage to extract fine geometry. Our
model is empowered by a novel view-aware local attention mechanism for
image-conditioned shape generation, which takes advantage of 2D image
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patch features to guide 3D voxel feature learning, greatly improving local
controllability and model generalizability. Through extensive experiments in
sketch-conditioned and category-conditioned 3D shape generation tasks, we
validate and demonstrate the ability of our method to provide plausible and
diverse 3D shapes, as well as its superior controllability and generalizability
over existing work.
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1 INTRODUCTION
Easily creating 3D shapes to fit human’s fabulous imaginations and
match the designer’s creative ideas is one of the ultimate goals in
computer graphics. The rapid development of generative neural net-
works, such as generative adversarial networks (GAN) [Goodfellow
et al. 2014], diffusion models [Ho et al. 2020], autoregressive net-
works [Van Oord et al. 2016], and flow-based models [Rezende and
Mohamed 2015], achieves great progress in text, image, and video
generation. These techniques have been adopted for generating 3D
shapes with different kinds of 3D representations and greatly reduce
the workload of 3D generation. However, there exists a large quality
gap between the synthesized shapes and the dataset the generator
was trained on. Moreover, existing approaches lack intuitive control
and convenient ways to control the shape generation process to
satisfy users’ intentions.
For the quality gap, our key observation is that it is due to two

factors. First, the underlying 3D representation affects the generated
geometry quality. Previous methods focus mainly on generating
3D shapes with discrete point cloud or voxel representations. The
discretization error caused by the limited output resolution degrades
the output quality. Furthermore, an explicit conversion step is usu-
ally required to convert the discrete results into continuous shape
geometry, which is fragile to reconstruct high-quality geometry.
Second, the capability of the chosen generative technique may be
limited for modeling 3D shapes with complex structures. As ob-
served in image synthesis [Dhariwal and Nichol 2021], GAN-based
generation tends to have less diversity than diffusion models. We
also found that 3D shapes with complex structures are difficult to
be learned and generated by 3D GANs.
For intuitive control, many existing 3D shape generation works

focus on unconditional shape generation. It becomes difficult for
normal users to embed their creative ideas into the generation pro-
cess. Using text as conditions to guide 3D generation [Chen et al.
2018; Sanghi et al. 2022a] is a promising way to loop humans in
content generation. Despite rapid progress in text-to-image and text-
to-3D development, users still need to spend considerable time in
prompt engineering to seek satisfying results, and the diversity and
the amount of paired 3D-text datasets for training and fine-tuning
deep generative techniques are very limited. On the contrary, 2D
sketching is a natural interface for people with diverse backgrounds
to depict, explore, and exchange creative ideas [Eitz et al. 2012;
Olsen et al. 2009], without suffering language barriers. However,
existing sketch-based generation techniques do not provide local
controllability and have limited generalizability to unseen shapes,
as they often encode a whole sketch as a global feature for use.

In this work, we propose a novel diffusion-based 3D shape gener-
ation approach to address the above challenges. To overcome the
quality gap, our approach utilizes the SDF representation and the
powerful diffusion model for 3D shape generation. The main chal-
lenge is that a naïve high-resolution SDF diffusion in the 3D space
is costly due to high memory consumption and heavy computation.
Thus, we perform two-stage diffusion to minimize memory and com-
putational cost. The first stage is called occupancy-diffusion, which
transforms random noises to a coarse occupancy field to model the
shell of a 3D shape surface; the second step, called SDF-diffusion,

plays an upsampler role that generates a high-resolution SDF within
the occupied region determined in the first stage. For local control,
our method takes sketches as input to achieve local controllability
and better generalizability in 3D shape generation. To this end, we
introduce a view-aware local attention mechanism that takes 2D
sketches as input and interacts with the 3D diffusion models with
learned attention. We name our approach — locally attentional SDF
diffusion, dubbed LAS-Diffusion.

Our model produces good-quality shapes to match the user’s in-
put sketch and is robust to both synthetic sketches extracted from 2D
images and free-hand sketches. We validate our model design via ex-
tensive evaluations and demonstrate the superiority of our approach
over other existing shape synthesis works, in terms of local con-
trollability and model generalizability for sketch-conditioned shape
generation, shape quality and diversity for category-conditioned
shape generation. Our code and pre-trained models are available at:
https://zhengxinyang.github.io/projects/LAS-Diffusion.html.

2 RELATED WORK
Shape representations in 3D generation. Early 3D generationworks

adopt low-resolution occupancy fields [Wu et al. 2016], and fixed-
number points [Achlioptas et al. 2018] as shape representations.
Their representation ability is limited by their discrete nature, and
further refinements [Chen et al. 2021; Hui et al. 2020] are needed.
Polygonal meshes are also used for 3D generation [Gao et al. 2022a;
Khalid et al. 2022; Nash et al. 2020; Wang et al. 2018] as they are suit-
able for many downstream tasks. Recently, implicit representations
such as implicit occupancy fields, signed distance functions (SDF)
and neural radiance fields (NeRF) are preferable for 3D shape gener-
ation [Chen and Zhang 2019; Jiang et al. 2017; Kleineberg et al. 2020;
Schwarz et al. 2020], due to their great capability in modeling varied
shape geometry, even appearance. In our work, we choose voxel-
based SDFs as our 3D representation and enable high-resolution
SDF generation via two-stage diffusion. In the following, we briefly
review the most relevant works to our approach.

GAN-based 3D generation. The works of [Chen and Zhang 2019;
Ibing et al. 2021b] trained an implicit autoencoder that encodes
shape collection in a latent space, then applied latent-GAN to sample
latent codes and decode them as implicit occupancy fields. Kleineberg
et al. [2020] and Zheng et al. [2022] directly discriminated the 3D
output, and the latter method combined local and global discrimi-
nators to improve shape quality. Some recent methods [Chan et al.
2022, 2021; Deng et al. 2022; Gao et al. 2022a; Niemeyer and Geiger
2021; Or-El et al. 2022] directly use adversarial losses built on image
rendering to guide network training, without 3D supervision.

Autoregressive-based 3D generation. Ibing et al. [2021a] sequen-
tially generated an octree structure that hierarchically represents
the 3D occupancy. The work of AutoSDF [Mittal et al. 2022] and
ShapeFormer [Yan et al. 2022] used VQ-VAE [Van Den Oord et al.
2017] or its variants on implicit functions to encode regular voxel
patches into a latent space, then learn a transformer-based autore-
gressive model over the latent space. Zhang et al. [2022] avoided
encoding empty voxels and defined latents on irregular grids, further
improving the power of autoregressive-based 3D models.
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Diffusion-based 3D generation. The success of diffusion models in
image generation inspiresmany 3D point cloud generationwork [Cai
et al. 2020; Kong et al. 2022; Luo and Hu 2021; Lyu et al. 2021; Zeng
et al. 2022; Zhou et al. 2021]. However, additional and nontrivial
efforts are needed to convert point clouds to continuous shapes.
To directly leverage SDF representation, Hui et al. [2022] devel-
oped diffusion-based generators to produce coarse and detailed
coefficient volumes, which can be transformed back into truncated
SDFs. Latent diffusion models for SDF and occupancy generation are
also explored in recent concurrent work [Cheng et al. 2023; Chou
et al. 2022; Li et al. 2023; Nam et al. 2022]: an SDF autoencoder is
first trained to build the latent space, similar to latent-GAN; and a
diffusion model is trained to generate the latent code that can be
transformed to SDF by the pre-trained decoder. Shue et al. [2022]
used triplane features to further improve latent expressiveness and
allowed using high-resolution occupancy fields for training. Unlike
these approaches, our diffusion model operates on the 3D SDF space
directly to easily incorporate local features from conditional inputs
to achieve better controllability and generalizability.

Conditional 3D generation. Various input conditions, such as texts,
images, coarse voxels, sparse points, and bounding volumes, have
been used for 3D generation to assist content creation and improve
downstream tasks like voxel super-resolution, shape reconstruction,
and completion [Chen et al. 2018; Cheng et al. 2022; Fu et al. 2022].
Some recent works [Alex et al. 2022; Gao et al. 2022a; Hong et al.
2022; Jain et al. 2022; Khalid et al. 2022; Lin et al. 2023; Liu et al. 2023;
Michel et al. 2022; Poole et al. 2023; Sanghi et al. 2022a,b] show that
shape generation and mesh stylization can be benefited from pre-
trained large-scale language-image models such as CLIP [Radford
et al. 2021] or pre-trained text-to-image models, by leveraging ren-
dered images of shapes as bridges. We notice that in many existing
works, text or image inputs are converted to a single feature vector
by the CLIP model; thus, it is hard to offer more local control on 3D
synthesis. Our locally conditional mechanism is designed to remedy
this issue for image conditioning.

Sketch-based shape reconstruction and generation. Many deep learn-
ing methods formulate sketch-to-3D task as shape reconstruction
from single or multiple images [Fan et al. 2017; Li et al. 2018; Lun
et al. 2017; Mescheder et al. 2019; Saito et al. 2019; Xu et al. 2019],
using 3D reconstruction losses [Zhong et al. 2020a] for training.
With additional view information and 2D projection losses, some
methods [Guillard et al. 2021; Liu et al. 2019; Wang et al. 2021; Xiang
et al. 2020; Zhang et al. 2021; Zhong et al. 2022] show more promis-
ing reconstruction results. However, these deterministic approaches
suffer from the ambiguity problem caused by single-view input. On
the contrary, probabilistic generative methods can provide plausible
outputs, as shown in [Chou et al. 2022; Mittal et al. 2022; Zhang et al.
2022], but they usually encode the input image as a global feature,
and thus are difficult to provide local controllability and offer good
generalizability to unseen shape variations. SketchSampler [Gao
et al. 2022b] used the predicted density map as a proxy to improve
reconstruction fidelity and combine noise sampling to predict depth
values in a probabilistic generation way. However, it makes a strong
assumption that input sketches are under orthogonal projection, and
it is not easy to use their point cloud outputs for other applications.

3 VIEW-AWARE LOCALLY ATTENTIONAL SDF
DIFFUSION

3.1 Method Overview
Discrete signed distance function. We choose discrete signed dis-

tance functions (SDF) as our 3D representation. A discrete signed
distance function 𝑔 : z ∈ Z ↦→ R is defined on a regular 3D grid Z
or a subset of Z. 𝑔(z) records the signed distance from the centers
of the grid cells to a closed manifold surface S. Its zero isosurface
in polygonal mesh format can be extracted from the dual grid of Z
using the Marching Cube algorithm [Lorensen and Cline 1987].

Discrete surface-occupancy function. A discrete signed distance
function 𝑔 can be converted into a discrete surface occupancy func-
tion 𝑜 : z ∈ Z ↦→ {0, 1} as follows: 𝑜 (z) = 1 if |𝑔(z) | ≤ 𝛿 ; other-
wise, 𝑜 (z) = 0. Here, 𝛿 > 0 is the predefined threshold. The set of
Ω𝑜 := {z ∈ Z : 𝑜 (z) = 1} collects the grid cells whose shortest
distance from their centers to the surface is no more than 𝛿 . Here,
note that Ω𝑜 approximates the thin shell of a 3D shape only.

Two-stage diffusion. To represent the details and small features of
3D shapes in discrete SDF format, a high-resolution grid is needed.
However, it is not practical to generate a high-resolution and full-
grid discrete SDF due to its cubic complexity in memory storage and
computational cost. To overcome this issue, we designed a two-stage
generation framework based on a self-conditioning continuous dif-
fusion model (Section 3.2): The first stage generates a low-resolution
discrete surface-occupancy function to approximate the shell of the
shape (Section 3.3), and the second stage focuses on generating
fine-grained discrete SDF values inside the occupied region (Sec-
tion 3.4). We name these two stages by occupancy-diffusion and
SDF-diffusion, respectively. In our implementation, the low resolu-
tion of the discrete surface-occupancy function is set to 643, and
the fine resolution of the discrete SDF is 1283.

Sketch-conditioned generation. To incorporate 2D sketches as guid-
ance, we use the local patch features of the sketch image to assist
network learning in a view-aware and cross-attention manner (Sec-
tion 3.5). This mechanism is called view-aware local attention. Com-
pared to using a global image feature as guidance, view-aware local
attention provides better local controllability and makes the model
generalizable to unseen sketches.

Fig. 2 illustrates the pipeline of our two-stage diffusion. Each diffu-
sion module is trained individually, and their network architectures
are presented in the following subsections.

3.2 Self-conditioning Continuous Diffusion Model
Continuous denoising diffusion. A typical continuous denoising

diffusion model [Ho et al. 2020; Kingma et al. 2021; Sohl-Dickstein
et al. 2015] consists of the forward process and the reverse process.
The forward process introduces a sequence of increasing (Gaussian)
noise to a data point 𝒙0, such that it ends up at 𝒙𝑡 that follows
the predefined Gaussian distribution. Here, 𝑡 runs from 0 to 1 in a
continuous way. The reverse process maps a noise 𝝐 sampled from
a Gaussian distribution to a data point 𝒙0 through a series of state
transitions. The forward process from 𝒙0 to 𝒙𝑡 can be defined as
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ViT backbone

occupancy-diffusion

view-aware local attentionview-aware local attention

SDF-diffusion
sketch input

subdiv

U-Net

U-Net

Fig. 2. Our LAS-Diffusion model includes two stages: occupancy-diffusion and SDF-diffusion. Occupancy-diffusion takes a noisy 643 voxel grid as input, and uses
a 3D U-Net to transform the volume to an occupancy volume. The occupied voxels are subdivided into a 1283 sparse voxel grid and filled with random noise.
SDF-diffusion takes this noisy sparse voxel grid as input, and transforms noise signals to SDF values via a 3D sparse-voxel-based U-Net. For sketch-conditional
inputs, the local image patch features obtained from a pretrained ViT backbone interact with U-Net voxel features via a view-aware local attention mechanism,
to offer local controllability and better generalizability.

follows.
𝒙𝑡 =

√︁
𝛾 (𝑡)𝒙0 +

√︁
1 − 𝛾 (𝑡)𝝐, (1)

where 𝝐 ∼ N (0, 𝑰 ) , 𝑡 ∼ U(0, 1), and 𝛾 (𝑡) is a monotonically de-
creasing function from 1 to 0.N andU denote Gaussian distribution
and uniform distribution, respectively. In our implementation, we
follow [Kingma et al. 2021] to set 𝛾 (𝑡) = 𝑒−10𝑡2−10−4 .

The prediction from 𝒙𝑡 to 𝒙0 can be modeled by a neural network
𝑓 (𝒙𝑡 , 𝑡). The network training is based on the following denoising
loss:

L𝒙0 = E𝝐∼N(0,𝑰 ),𝑡∼U(0,1) ∥ 𝑓 (𝒙𝑡 , 𝑡) − 𝒙0∥22 . (2)
Here, 𝒙𝑡 is sampled via Eq. (1). 𝑓 is usually implemented as a U-
Net architecture. The sampling methods such as DDPM [Ho et al.
2020] and DDIM [Song et al. 2020] strategy can be used for sample
generation. For conditioned 3D generation, we adopt the classifier-
free guidance [Ho and Salimans 2021] technique.

Self-conditioning. Recently, Chen et al. [2023] introduced the
self-conditioning mechanism, which uses the previously generated
samples as conditioning to significantly improve diffusion models.
This mechanism is simple: a neural network 𝑓 (𝒙𝑡 , 𝒙0, 𝑡) is trained
to map 𝒙𝑡 to 𝒙0, where 𝒙0 is an estimated 𝒙0 from the previous
prediction. The loss function Eq. (2) is revised as follows.

L𝒙0 = E𝝐∼N(0,𝑰 ),𝑡∼U(0,1) ∥ 𝑓 (𝒙𝑡 , 𝒙0, 𝑡) − 𝒙0∥22 . (3)
As suggested by [Chen et al. 2023], during network training, 𝒙0 is
set to 𝑓 (𝒙𝑡 , 0, 𝑡) with probability 𝑝 , and 0with probability 1−𝑝 , i.e. ,
without self-conditioning. Here, 𝑝 is set to 0.5 by default. Gradient
backpropagation on 𝒙0 is disabled to reduce the total training time.

3.3 Occupancy-diffusion Module
Our occupancy-diffusion module is designed to transfer a noisy
coarse grid to a discrete surface-occupancy function of a 3D shape.
In the following, we introduce the creation of ground-truth discrete
surface-occupancy functions and the network architecture.

Data preparation. For each 3D shape in the dataset, we normalize
it to fit in a [−0.8, 0.8]3 box, and compute the discrete SDF function
with resolution 1283 in [−1, 1]3 using the algorithm of [Xu and
Barbič 2014]. This step is similar to [Zheng et al. 2022]. Based on
the fact that any voxel in a 643 grid contains 8 subvoxels of the
1283 grid. We create a discrete surface-occupancy function 𝑜 in 643

resolution as follows: 𝑜 (z) = 1 if there exists a subvoxel of z whose
stored SDF value 𝑣 satisfies |𝑣 | ≤ 1

32 ; otherwise, 𝑜 (z) is set to 0.

Network architecture. The U-Net structure in the module is built
on the standard 3D convolutional neural network. The U-Net has 5
levels: 643, 323, 163, 83, 43, and the feature dimensions are 32, 64,
128, 256, and 256, respectively. Each level is made up of a ResNet
block that contains two convolution layers with kernel size 3. In the
bottleneck of U-Net, we add two ResNet blocks. A convolution layer
is attached at the end of the network to map the voxel features at
the finest level to a surface-occupancy value.

Network training. Eq. (3) is used for network training. More specif-
ically, 𝒙0 is the tensor that stores the ground-truth discrete surface-
occupancy values of the grid. As we use the self-conditioning con-
tinuous diffusion model, the estimated 𝒙0 is treated as an additional
input channel to the U-Net.

Network inference. The 643 grid is first initialized with Gaussian
noise, then we denoise it in a finite number of steps, using the
DDPM sampling strategy [Ho et al. 2020]. We reserve the voxels
whose predicted surface-occupancy values are larger than 0.5, and
subdivide them once to obtain a set of subvoxels in 1283 resolution.

3.4 SDF-diffusion Module
For a set of sparse voxels with noisy SDF values, our SDF-diffusion
module is designed to map it to the discrete SDF function that
represents a real shape. We use the 1283 discrete SDF functions as
described in Section 3.3 for training. The U-Net structure is similar
to the one used for occupancy-diffusion except that (1) we use octree-
based convolution neural network [Wang et al. 2017, 2020] as the
SDF data is stored in sparse voxel format; (2) the U-Net has 4 levels:
1283, 643, 323, 163, and the feature dimensions are 32, 64, 128, 256,
respectively. The network training is similar to occupancy-diffusion,
and 𝒙0 in the loss function corresponds to the SDF values stored at
the finest octree nodes.

Network inference. The subdivided voxels from occupancy-diffusion
are initialized with Gaussian noise, we denoise it through the DDPM
sampling strategy and apply theMarching Cube algorithm [Lorensen
and Cline 1987] on the dual grids of the resulting discrete SDF func-
tion to obtain the mesh output.
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𝑉

𝑈

p

N𝑉

q N𝑈

image plane

voxel grid

Fig. 3. Illustration of our view-aware local attention mechanism. For voxel
𝑉 , its voxel center is projected onto the image plane at p, via a known
perspective projection. We use the image patch features of the local patches
around p (in yellow color), to interact with voxel feature at𝑉 in the U-Net,
via cross-attention. For other voxels such as𝑈 , the operation is similar.

3.5 View-aware Local Attention
Our approach supports sketch-conditioned shape generation by a
novel view-aware local attention mechanism. For a sketch image
input, we assume that the view information of the sketch is known,
i.e. , camera position and orientation with respect to the shape in
a canonical pose. Thus, we can align the image and the 3D grid
volume according to the view projection. Inspired by the works of
[Wang et al. 2018; Xu et al. 2019] that leverage pixel-level image
features for shape reconstruction, we propose to use local image
patch features to guide surface-occupancy generation, via feature
cross-attention, as follows.

Patch feature extractor. We choose the vision-transformer (ViT)
backbone pre-trained on a large volume of images as our sketch im-
age feature extractor. The ViT backbone represents an input image
as a series of non-overlapped image patches, denoted by 𝑃1, 𝑃2, · · · ,
and encodes the image into a set of patch-wise features [Dosovitskiy
et al. 2021].

View-aware local attention. We let the voxel features in the U-Net
of the occupancy-diffusion module interact with the image patch
features according to their view-projection-based relationship. For
any voxel 𝑉 in the grid, we project its center onto the sketch image
and obtain the projected coordinate p. Neighboring image patches
close to p are selected to interact with 𝑉 because their features
are highly likely to affect local geometry controlled by 𝑉 . The set
of neighborhood image patches is denoted by N𝑉 , and selected as
follows: patch 𝑃 𝑗 belongs to N𝑉 if the distance between p and the
center of 𝑃 𝑗 is less than a distance threshold 𝑑𝛿 . Fig. 3 illustrates the
relationship between a voxel and its related image patches.

We use one-layer multi-head cross-attention [Vaswani et al. 2017]
to model feature interaction between the voxel feature 𝑓𝑉 at 𝑉 and
the set of image patch features 𝑓𝐼 that belongs to the patches inN𝑉 ,
as follows.

𝑄 = 𝑓𝑉W
𝑄 , 𝐾 = 𝑓NW𝐾 ,𝑉 = 𝑓NW𝑉 ;

𝑓 new𝑉 = MH-Attention (𝑄,𝐾,𝑉 ,M) .
(4)

Here, MH-Attention(·) is the standard multi-head attention oper-
ation, M is the mask for attention calculation induced by view
projection, and we use absolute positional encoding for both voxels
and image patches.

Fig. 4. Left: Camera setup. Right: Shading images and sketches under the
predefined views.

Due to the use of patch features, our view-aware local attention
is not sensitive to small errors of projection views, as a small view
perturbation may still result in similar local patch sets. Therefore,
our design is friendly to sketch-conditioned 3D generation, and the
user only needs to provide a rough guess of view information, either
by a manual way or with the aid of a view prediction network.

Implementation. We use a huge ViTmodel pre-trained on Laion2B
dataset [lai 2022] as our ViT backbone. Its default input image reso-
lution is 224 × 224 and the patch_width is 14. The default value
of 𝑑𝛿 is set to 4 × patch_width. The weights of the ViT backbone
are frozen for our use. To reduce computational cost, only the vox-
els at 83 and 43 levels are involved in view-aware local attention.
We also experienced using view-aware local attention in our SDF-
diffusion module, but found that it has limited improvement to
local geometry; thus we introduce view-aware local attention to
occupancy-diffusion only.

4 SKETCH-CONDITIONED SHAPE GENERATION
In this section, we exhibit and validate the capability of LAS-Diffusion
for sketch-conditioned shape generation.

4.1 Model Training
Training dataset. We choose 5 categories from ShapeNetV1 [Chang

et al. 2015]: chair, car, airplane, table, and rifle for training
our sketch-conditioned model.

Predefined perspective views. To make our model convenient to
use, we provide five perspective views for user selection and prepare
the corresponding sketch data for training. For a normalized shape
in its canonical pose, we place five cameras on the scaled bounding
sphere of the shape, as shown in Fig. 4-left. These five perspective
views are chosen because the sketches under these views are in-
formative and normal users tend to use these view directions or
their nearby view directions to draw sketches. The user can pick
one of the predefined views that best matches the input sketches for
model inference. For convenience, we denote these views by left,
side-left, front, side-right, and right. Fig. 4 illustrates shad-
ing images and sketches of a chair model under these predefined
views.

Data preparation. For each shape in the dataset, we render its
shading images from different views and extract their edges via
Canny edge detector [Canny 1986], as 2D sketches. Note that other
kinds of sketch synthesis techniques can be used, and we use Canny
edge for simplicity. We restrict the rendered views to the predefined
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views with random perturbation to improve the robustness of the
network. The random perturbation is implemented by perturbing
the azimuth angle by a noise within ±22.5° and the elevation angle
by a noise within ±5°. For each predefined view, we perturb 10
times. In total, there are 50 sketches for a shape. During training,
the corresponding views of these sketches are grouped into their
predefined perspective views. To enhance local prior learning, we
also augmented shape data by simply uniting two randomly selected
shapes for occupancy-diffusion module training, where the shapes
are also translated randomly. The number of augmented shapes
is the same as the number of original shapes. We trained a single
sketch-conditioned LAS-Diffusion model on the five chosen shape
categories.

Training details. We trained the occupancy-diffusion module us-
ing Adam optimizer [Kingma and Ba 2014] with a fixed learning rate
of 2 × 10−4 over 300 epochs. For the training of the SDF-diffusion
module, we used AdamW optimizer [Loshchilov and Hutter 2019]
with a fixed learning rate of 10−4 over 500 epochs, and its training
split follows [Chen and Zhang 2019].

Inference efficiency. The inference time of our model on a machine
with an Nvidia 1080 Ti GPU takes around 10 seconds, using a 50-step
DDPM sampling strategy.

Competingmethods. We choose the following representative sketch-
to-3D methods for comparison: Sketch2Model [Zhang et al. 2021],
Sketch2Mesh [Guillard et al. 2021] and SketchSampler [Gao et al.
2022b]. Sketch2Model has trained its category-specific models on
13 ShapeNet categories and Sketch2Mesh has trained its category-
specific models on car and chair categories. SketchSampler has
trained a single model on 13 ShapeNet categories. As SketchSam-
pler is only capable of producing point clouds, we convert them
to meshes using SAP [Peng et al. 2021] for quantitative evaluation.
For all the above methods, we use their pre-trained models for
comparison.

Evaluation metrics. Since there is no previous work designing
evaluation metrics for sketch-conditioned probabilistic generative
methods, we adapt CLIP score [Hessel et al. 2021] to evaluate per-
ception difference as follows. For a generated 3D shape conditioned
on a sketch 𝐼 , we render its sketch 𝐺 under the same view of the
input sketch by our data preparation pipeline, then compute the
cosine similarity between the clip features of these two sketches:

CLIPScore(𝐼 ,𝐺) = 100 × ⟨𝐸𝐼 , 𝐸𝐺 ⟩. (5)
Here, 𝐸𝐼 and 𝐸𝐺 are the normalized CLIP features of 𝐼 and𝐺 , respec-
tively, and ⟨·, ·⟩ is inner product. The score is averaged over all test
data. We also treat the non-white pixels of sketches as 2D points
and measure the 2D Chamfer distance between 𝐼 and 𝐺 , denoted
by Sketch-CD. The reconstruction metrics such as CD, EMD, and
Voxel-IOU from SketchSampler [Gao et al. 2022b] are also adopted
to evaluate the 3D quality of the generated or reconstructed shapes
with respect to the shapes that the sketches correspond to.

4.2 Model Evaluation
Quantitative and qualitative evaluation. We choose IKEA [Lim

et al. 2013] chair dataset as the test bed, which contains 35 chairs.

Table 1. Quantitative evaluations on IKEA chairs. The units of Sketch-CD,
CD, EMD and Voxel-IOU are 10−4, 10−3, 10−2 and 10−2, respectively.
SketchSampler𝑚 denotes the version that the point cloud outputs of Sketch-
Sampler is converted to polygonal meshes.

Method CLIPScore↑ Sketch-CD↓ CD↓ EMD↓ Voxel-IOU↑
Sketch2Model 88.77 101.0 49.38 20.31 22.76
Sketch2Mesh 93.46 37.64 19.16 16.39 32.40
SketchSampler N/A N/A 32.51 20.24 33.82
SketchSampler𝑚 90.43 42.94 33.41 21.24 26.67
LAS-Diffusion 96.92 10.33 06.48 08.85 49.83

Sketch2Model Sketch2Mesh SketchSampler LAS-Diffusion GT
Fig. 5. Sketch-conditioned shape generation on IKEA chairs.

Each chair is rendered from a random view to generate a sketch. For
our model, we use one of the predefined views that best matches the
input sketch for model inference. We provide accurate view infor-
mation to Sketch2Model and Sketch2Mesh, and use suggestive [De-
Carlo et al. 2003] algorithm to prepare sketches for Sketch2Mesh to
match its training style. Compared with other methods, our LAS-
Diffusion achieves significantly better performance, as reported in
Table 1. Fig. 5 visualizes the results of different methods. The results
of LAS-Diffusion are the most plausible and possess better geometry
quality. We also render the synthetic sketches of their results in
Fig. 6, and find that our results match better with the input sketch. In
the supplemental material, we provide all of our generation results.
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Fig. 6. The sketches of the results shown in Fig. 5. From left to right:
Sketch2Model, Sketch2Mesh, SketchSampler, LAS-Diffusion and GT.

Fig. 7. View robustness test. The views for model inference are side-left
(top row) and side-right (bottom row).

Fig. 8. Stress test on view robustness. The view for model inference is
side-right.

View robustness. Although only predefined views can be used in
our model inference, our model is robust to small view perturbation
due to the use of image patch features and random view perturbation
during training. In Fig. 7, we illustrate model robustness on two test
cases. For each case, we provide 5 different input sketches and we
use their most similar view for model inference. We can see that the
generated shapes have consistent and good geometry. We also add
a stress test in which the input sketches are very different from the
predefined side-right view (see Fig. 8), our model is still capable
of producing chair-like shapes although some parts are distorted
and incomplete due to the use of wrong view information.

Local controllability. The view-aware local attention mechanism
of our LAS-Diffusionmodel offers nice local controllability, as demon-
strated by the example shown in Fig. 9, where a table sketch is mod-
ified to have different numbers of horizontal bars. LAS-Diffusion
captures local changes well and has a high probability of generating
structurally correct and geometry-plausible results. In contrast, the
reconstruction-based approach — Sketch2Model [Zhang et al. 2021]
cannot handle these structural changes well.

Sketch2Model LAS-Diffusion Sketch2Model LAS-Diffusion

Fig. 9. The six input sketches have different numbers of horizontal bars.
LAS-Diffusion has a high probability to generate 3D shapes that match the
sketch inputs.

Fig. 10. Shape generation conditioned on a creative sketch input.

Model generalizability. We evaluate our model generalizability
from the following four aspects.
1. Unseen structural variations. As LAS-Diffusion utilizes local

image priors, it is well suited to generate 3D shapes with unseen
structural variations. Fig. 10 demonstrates this model generaliz-
ability by using a creative sketch input where a chair is attached
with a wing-like part. We generate four results using LAS-Diffusion
with different noises. The wing part appears in all the results, with
some geometry variations. Fig. 11 shows two more examples condi-
tioned by creatively designed sketches.We also tested Sketch2Model,
Sketch2Mesh, and SketchSampler on them. Both Sketch2Model and
Sketch2Mesh fail to reconstruct the geometry unseen by their train-
ing set. SketchSampler has better generalizability due to the use of
view-dependent depth sampling, but its predicted depth values do
not meet the expectation and the quality of its output point clouds
is low.

2. Unseen shape categories. In Fig. 12, we tested sketches of some
objects that do not belong to the categorieswe trained. LAS-Diffusion
can generate meaningful results. We attribute its success to local
prior learning enabled by our view-aware local attention mecha-
nism, and speculate that the local geometry shown in these examples
may exist in the training data.
3. Freehand sketches. Due to our local attention mechanism and

the use of the pre-trained ViT image encoder, our model is tolerant
of imprecise sketches and varied stroke widths that are different
from our rendering setting, thus supporting freehand sketch input.
In Fig. 13, we provide some freehand-sketch-conditioned results.
4. Professional sketches. Sketch styles from professional artists

are different from our synthetic sketches. We tested the robust-
ness of our model to professional sketches using the ProSketch-3D
dataset [Zhong et al. 2020b] which contains 500 chairs and 1500
sketches drawn by artists. As the elevation angle of the sketch view
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Sketch2Model Sketch2Mesh SketchSampler LAS-Diffusion

Fig. 11. Comparisons of model generalizability. The results of SketchSam-
pler [Gao et al. 2022b] are rendered from two different views, for better
visualization.

Fig. 12. Our LAS-Diffusion model exhibits good generalizability to the
sketches beyond the training categories.

Fig. 13. Our LAS-Diffusion model is capable of supporting freehand
sketches.

of ProSketch-3D data has a 20° difference from our predefined view,
we re-trained our model by adjusting the elevation angle of our de-
fault views with 20° in our synthetic training data. This new model
is denoted by LAS-Diffusion★. Table 2 reports the performance of
our method and other competing methods. We can see that LAS-
Diffusion★ achieves the best performance. Fig. 14 illustrates our
results.

Model scalability. Our LAS-Diffusion model is scalable to more
diverse sketch data and random views. We trained a single LAS-
Diffusion model on the whole ShapeNetV1 dataset, without restrict-
ing views to predefined views. During training, each shape is ren-
dered from random views to generate sketches. Fig. 15 visualizes
the sketch-conditioned generative results by this model.

Shape generation via ViT feature manipulation. Our model sup-
ports a new way to generate novel shapes by swapping ViT patch

Table 2. Quantitative evaluations on the ProSketch dataset. The units of
Sketch-CD, CD, EMD and Voxel-IOU are the same as in Table 1.

Method CLIPScore↑ Sketch-CD↓ CD↓ EMD↓ Voxel-IOU↑
Sketch2Model 86.52 214.8 105.0 30.10 12.76
Sketch2Mesh 89.84 43.29 21.39 17.13 28.75
SketchSampler N/A N/A 58.25 24.04 21.81
SketchSampler𝑚 89.40 59.88 55.24 24.47 19.64
LAS-Diffusion 93.36 55.62 26.04 16.07 33.43
LAS-Diffusion★ 93.70 39.75 19.56 14.73 34.97

Fig. 14. Our model supports sketches drawn by professional artists and
generates plausible results. The sketches are from the ProSketch-3D dataset.

Fig. 15. We trained our LAS-Diffusion model on the whole ShapeNetV1
dataset. Some randomly picked results are visualized.

features of two existing sketches. For instance, we can replace the
top-half patch features of a sketch with the bottom-half features of
another sketch, to mimic a shape assembled by the top-half part of
the first shape and the bottom-half of another shape. In Fig. 16, we
present two novel shapes generated in this way. These interesting
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Fig. 16. Shape generation via ViT feature manipulation. Left: The bottom
half patch features of the swivel chair and the top half patch features of the
four-legged chair are stitched together.Right: The left half-patch features of
the car and the right half-patch features of the airplane are stitched together.
In both cases, novel and meaningful shapes are generated by LAS-Diffusion,
without drawing new sketches.

results indicate that ViT feature manipulation can be a novel and
promising way of controlling shape generation.

4.3 Ablation Studies
We designed two alternative attention mechanisms to replace our
view-aware local attention.
- Global attention. Instead of using local patch features, we directly
use the global image feature to guide voxel feature learning. The
global feature is from the classification token of the pre-trained
ViT backbone. It is projected via MLP to align with the U-Net
feature dimension, and associate with the U-Net feature vectors
of the occupancy diffusionmodule at each level via element-wise
multiplication.

- View-agnostic attention. We let the voxel features in the U-Net
of the occupancy-diffusion module interact with all the image
patch features via cross-attention, i.e. , the mask M in Eq. (4) is
None. In this way, no view information is required. The involved
levels remain unchanged.

We trained LAS-Diffusion using the above attention mechanisms
and found that: (1) Global attention has very limited generalizability,
and cannot process unseen shape structures; (2) View-agnostic at-
tention responds to sketch variations but often yields additional and
wrong geometry, due to loss of local attention. Fig. 17 illustrates
these issues.

Ablation study on neighborhood size. As seen in the above ab-
lation study, view-agnostic attention does not yield satisfying re-
sults, because the attention region is too large and makes feature
learning harder. As the local attention plays an important role,
we examine how the neighborhood size 𝑑𝛿 affects our model, by
varying 𝑑𝛿 from the default 4 × patch_width to 2 × patch_width
and 6 × patch_width and retraining our model. We found that
the models with these small neighborhood sizes have similar per-
formance. Our default setting has the best CLIP scores on IKEA
chairs: 96.63 (2×patch_width), 96.92 (4×patch_width), and 96.67
(6 × patch_width).

5 CATEGORY-CONDITIONED SHAPE GENERATION
In this section, we conducted extensive experiments and evaluations
on the task of category-conditioned shape generation.

global view-agnostic default

Fig. 17. Ablation studies on different attention mechanisms. From left to
right: global attention, view-agnostic attention, and our default attention —
view-aware local attention.

Dataset. We also use the five shape categories from ShapeNetV1:
chair, car, airplane, table, and rifle, to verify the generation
capability and quality of LAS-Diffusion without sketch input. We
follow the train/val/test split of [Chen and Zhang 2019].

Training configurations. We have two training configurations,
depending on whether a single category is used for training.
- Single-category generation: we train ourmodel in a single-category
manner, i.e. , there are 5 LAS-Diffusion models in total. This per-
category model is setup for a fair comparison with other existing
3D shape generative models.

- Multi-category-conditioned generation: we train a single LAS-
Diffusion model on 5 categories to evaluate model scalability. We
encode the class name, such as “a chair”, by a pre-trained CLIP
network [Radford et al. 2021].We associate the CLIP feature with
the U-Net feature vectors of the occupancy diffusion module, as
conditions, similar to global attention in Section 4.3. We found
empirically that it is not necessary to add CLIP features into the
SDF-diffusion stage.

Training details. For both configurations, we trained the occupancy-
diffusion module using AdamW optimizer with a fixed learning rate
of 10−4 over 4000 epochs; and reused the trained SDF-diffusion
module from Section 4.

Evaluation metric. To evaluate the quality and diversity of gener-
ated shapes, we adopt the metric proposed by [Zheng et al. 2022]:
shading-image-based FID, which avoids the drawback of existing
metrics built on light-field-distance (LFD) or 3D mesh distances.
To compute this metric, each generated shape was rendered from
20 uniformly distributed views, and its shading images are used
to compute FID scores, on the rendered image set of the original
training dataset. The metric formula is defined as follows.

𝐹𝐼𝐷 =
1

20

[
20∑︁
𝑖=1

∥`𝑖𝑔 − `𝑖𝑟 ∥2 +Tr

(
Σ𝑖𝑔 + Σ𝑖𝑟 − 2

(
Σ𝑖𝑟Σ

𝑖
𝑔

)1/2)]
, (6)
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Fig. 18. Single-category generation results. Our models were trained on five shape categories: airplane, car, chair, rifle, and table. We selected ten
generated shapes from each category to demonstrate shape diversity and high-quality geometry.

where 𝑔 and 𝑟 denote the features of the generated data set and the
training set, `𝑖 , Σ𝑖 denote the mean and covariance matrices of the
shading images rendered from the 𝑖-th view, respectively. A lower
FID indicates better generation quality and diversity.

Evaluation and comparisons. Fig. 18 illustrates high-quality and
diverse generation results by our single-category LAS-Diffusion
model. The results show that our model can generate structurally
complex shapes with fine geometry. More uncurated generated
results including intermediate occupancy generation are provided
in the supplemental material.
We compared our approach with four representative 3D gener-

ation models, including two GAN-based models: IM-GAN [Chen
and Zhang 2019] and SDF-StyleGAN [Zheng et al. 2022], a 3D dif-
fusion model: Wavelet-Diffusion [Hui et al. 2022] and an autore-
gressive model: 3DILG [Zhang et al. 2022]. We use their pre-trained
models for evaluation. Except for 3DILG which was trained on all
ShapeNetV2 data and our multi-category-conditioned model, other
methods were trained on a single category. Here, IM-GAN and
Wavelet-Diffusion use 2563 occupancy and SDF fields as ground
truth for training, respectively.
Table 3 reports the FID scores of all methods. We conclude that:

(1) our single-category LAS-Diffusion outperforms other methods in
all five categories; (2) our multi-category-conditioned LAS-Diffusion
is slightly worse than its unconditioned version, but still performs
better than other methods, except for airplane (Wavelet-Diffusion)
and rifle (SDF-StyleGAN). The comparison with 3DILG is for
reference only, as their training data are not exactly the same. In
Fig. 19, we visualize some chairs generated by different methods.
We can see that Wavelet-Diffusion, 3DILG, and our LAS-Diffusion
are visually comparable and possess a more faithful geometry than
IM-GAN and SDF-StyleGAN, furthermore, the meshes generated
by our method have less bumpy geometry than others.

Table 3. Quantitative comparisonwith differentmethods. The reported num-
bers are shading-image-based FID scores (lower is better). LAS-Diffusion†

and LAS-Diffusion‡ denote the single-category models and multi-category-
conditioned model, respectively. Note that Wavelet-Diffusion was trained
on 3 categories only.

Method Chair Airplane Car Table Rifle

IM-GAN 63.42 74.57 141.2 51.70 103.3
SDF-StyleGAN 36.48 65.77 97.99 39.03 64.86

Wavelet-Diffusion 28.64 35.05 N/A 30.27 N/A
LAS-Diffusion† 20.45 32.71 80.55 17.25 44.93

3DILG 31.64 54.38 164.15 54.13 77.74
LAS-Diffusion‡ 21.55 43.08 86.34 17.41 70.39

Following [Hui et al. 2022], we also adopt the COV, MMD, and
1-NNA metrics [Achlioptas et al. 2018; Yang et al. 2019] based on
the Chamfer distance (CD) and the Earth mover’s distance (EMD)
on the sampled points to access the fidelity, coverage, and diver-
sity of generative models. Lower MMD, higher COV, 1-NNA that
has a smaller difference to 50%, mean better quality. We report
these metrics in the chair category in Table 4 for IM-GAN, SDF-
StyleGAN, Wavelet-Diffusion, and our single-category model. 2048
points were sampled on each mesh uniformly to perform the evalu-
ation. Wavelet-Diffusion and our method are comparable on MMD
and 1-NNA, and our method attains better COV(EMD) than other
methods.

Shape diversity. Wealso evaluate themodel diversity of ourmethod
on chair category, by computing the histogram of Chamfer dis-
tance between the generated shapes and the training data. Fig. 20-top
shows the histogram whose x-axis is Chamfer distance (×103). The
histogram reveals that most generated shapes are different from the
training set. Fig. 20-bottom presents a test case: for the generated
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IM-GAN SDF-StyleGAN Wavelet-Diffusion 3DILG LAS-Diffusion

Fig. 19. Randomly selected chairs generated by different methods.

Table 4. Additional metric evaluations on chair category. The units of
CD and EMD are 10−3 and 10−2, respectively. LAS-Diffusion† denotes the
single-category model.

Method COV(%)↑ MMD↓ 1-NNA(%)↓
CD EMD CD EMD CD EMD

IM-GAN 57.30 49.48 13.12 17.70 62.24 69.32
SDF-StyleGAN 52.36 48.89 14.97 18.10 65.38 69.06

Wavelet-Diffusion 52.88 47.64 13.37 17.33 61.14 66.92
LAS-Diffusion† 53.76 52.43 13.79 17.45 64.53 65.15

chair (left), we retrieve the four most similar chairs (right) from the
training dataset based on the Chamfer distance. We can see that the
generated chair has a novel structure.

Small datasets. Wealso tested the capability of our single-category
LAS-Diffusion on ShapeNet categories that have a small number of
objects. We chose cap category (56 objects) as well as mug category
(214 objects) to train the occupancy-diffusion module and reused
the trained SDF-diffusion module. Fig. 21 shows that the shapes
generated by LAS-Diffusion are plausible with good quality.

6 CONCLUSION AND PERSPECTIVES
We present a diffusion-based generative technique to synthesize
plausible 3D shapes. Our view-aware local attention mechanism is
well integratedwith our two-stage diffusionmodel and offers greater
controllability and generalizability than existing shape synthesis
techniques. As this mechanism is simple and flexible, there is no

0 20 40 60 80
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Fig. 20. Top: The histogram on the distribution of the Chamfer distance
(CD) between the generated chairs and the training dataset. Here, we
use SquareRoot binning for histogram drawing. Bottom: The four nearest
shapes (right) retrieved from the training dataset according to their Chamfer
distance to the generated chair (left).

Fig. 21. Generation results on small datasets. Top: generated results on cap
category. Bottom: generated results on mug category.

difficulty in extending it to color images, depth images, and even
3D point cloud inputs. We believe that it will be a powerful module
for multimodal-conditioned content generation.

Limitations. Currently, ourmodel
is trained on synthetic data only.
The sketch style is tied to our
rendering pipeline; therefore, our
trained model is not well adapted
for sketches with highly distorted
lines, oversketches, or seriously in-
consistent perspectives. An example is shown in the right inset, in
which our model fails to generate the chair arm structure for the
input with oversketches. We believe that this issue can be overcome
by using more real sketches and paired 3D shapes for training.

In the future, we would like to explore the following directions.

Shape appearance. Currently our work focuses on shape geometry
only and does not provide vivid shape appearances. As 2D sketches
do not contain rich appearance information, we plan to leverage
both 2D sketches and language descriptions to generate geometry-
compatible and plausible shape appearances.

Multi-view sketches. Single-view sketches do not convey the com-
plete idea of designers. We will study how to utilize multi-view
sketches in our model and provide a convenient user interface to
assist 3D design.
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