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Fig. 1. NeRO. We present NeRO for reconstructing the geometry and the BRDF of reflective objects with strong reflective appearances. NeRO only requires
multiview input images of the reflective object under an unknown illumination condition. The output of NeRO is a triangular mesh with material parameters,
which can easily be used in rendering software for relighting and other applications.
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We present a neural rendering-based method called NeRO for reconstruct-
ing the geometry and the BRDF of reflective objects from multiview im-
ages captured in an unknown environment. Multiview reconstruction of
reflective objects is extremely challenging because specular reflections are
view-dependent and thus violate the multiview consistency, which is the
cornerstone for most multiview reconstruction methods. Recent neural ren-
dering techniques can model the interaction between environment lights
and the object surfaces to fit the view-dependent reflections, thus making
it possible to reconstruct reflective objects from multiview images. How-
ever, accurately modeling environment lights in the neural rendering is
intractable, especially when the geometry is unknown. Most existing neural
rendering methods, which can model environment lights, only consider
direct lights and rely on object masks to reconstruct objects with weak
specular reflections. Therefore, these methods fail to reconstruct reflective
objects, especially when the object mask is not available and the object is
illuminated by indirect lights. We propose a two-step approach to tackle
this problem. First, by applying the split-sum approximation and the inte-
grated directional encoding to approximate the shading effects of both direct
and indirect lights, we are able to accurately reconstruct the geometry of
reflective objects without any object masks. Then, with the object geometry
fixed, we use more accurate sampling to recover the environment lights
and the BRDF of the object. Extensive experiments demonstrate that our
method is capable of accurately reconstructing the geometry and the BRDF
of reflective objects from only posed RGB images without knowing the
environment lights and the object masks. Codes and datasets are available
at https://github.com/liuyuan-pal/NeRO.

CCS Concepts: • Computing methodologies→Mesh geometry models.
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1 INTRODUCTION
Multiview 3D reconstruction, a fundamental task in computer graph-
ics and vision [Hartley and Zisserman 2003], has witnessed tremen-
dous progress in recent years [Oechsle et al. 2021; Schönberger
et al. 2016; Wang et al. 2021a,b; Yao et al. 2018; Yariv et al. 2021,
2020]. Despite the compelling results achieved, the reconstruction
of reflective objects, which are frequently seen in the real-world
environment, remains a challenging and outstanding problem. Re-
flective objects usually have glossy surfaces on which some or all of
the lights that strike the object are reflected. The reflection leads to
inconsistent colors when observing the objects from different views.
However, most multiview reconstruction methods rely heavily on
view consistency for stereo matching. This constitutes a significant
barrier to the reconstruction quality of existing techniques. Fig. 2 (b)
shows the reconstructions of widely-used COLMAP [Schönberger
et al. 2016] on reflective objects.

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
© 2023 Association for Computing Machinery.
0730-0301/2023/5-ART $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

As an emerging trend for multi-view reconstruction, modeling
surfaces based on neural rendering exhibits a powerful ability for
tackling complex objects [Oechsle et al. 2021; Wang et al. 2021b;
Yariv et al. 2021, 2020]. In these so-called neural reconstruction
methods, the underlying surface geometry is represented as an
implicit function, e.g., a signed distance function (SDF) encoded
by a multi-layer perception (MLP). To reconstruct the geometry,
these methods optimize the neural implicit function by modeling
the view-dependent colors and minimizing the difference between
the rendered and the input images. However, neural reconstruction
methods still struggle to reconstruct reflective objects. Examples are
provided in Fig. 2 (c). The reason is that the color function used in
these methods only correlates the color with the view direction and
surface geometry, rather than explicitly considering the underlying
shading mechanism for reflections. Consequently, fitting the specu-
lar color variations in different view directions on the surface leads
to erroneous geometry, even with higher frequency in positional
encoding, or deeper and wider MLP networks.

To address the challenging surface reflections, we propose to ex-
plicitly incorporate the formulation of the rendering equation [Ka-
jiya 1986] into the neural reconstruction framework. The rendering
equation enables us to consider the interaction between the surface
Bidirectional Reflectance Distribution Function (BRDF) [Nicodemus
1965] and the environment lights. Since the appearances of reflec-
tive objects are strongly affected by the environment lights, the
view-dependent specular reflection can be well-explained by the
rendering equation. With the explicit rendering function, the repre-
sentation ability of the existing neural reconstruction framework is
substantially enhanced to capture the high-frequency specular color
variations, which significantly benefits the geometry reconstruction
of reflective objects.
Explicitly incorporating the rendering equation in a neural re-

construction framework is not trivial. Accurately evaluating the
rendering equation on a surface point requires computing the in-
tegral of environment lights, which is intractable with unknown
surface locations and unknown environment lights. In order to
tractably evaluate the rendering equation, existing material estima-
tion methods [Boss et al. 2021a,b; Hasselgren et al. 2022; Munkberg
et al. 2022; Verbin et al. 2022; Zhang et al. 2021a,b, 2022b] strongly
rely on object masks to obtain a correct surface reconstruction
and are mainly designed for material estimation of objects without
strong specular reflections, which perform much worse on reflective
objects as shown in Fig. 2 (d,e). Moreover, most of these methods fur-
ther simplify the rendering process to only consider the lights from
distant regions (direct lights) [Boss et al. 2021a,b; Munkberg et al.
2022; Verbin et al. 2022; Zhang et al. 2021a], which thus struggle to
reconstruct surfaces illuminated by reflected lights from the object
itself or nearby regions (indirect lights). Although there are meth-
ods [Hasselgren et al. 2022; Zhang et al. 2021b, 2022b] considering
indirect lights in the rendering, they either require a reconstructed
radiance field with known geometry [Zhang et al. 2021b, 2022b] or
only use very few ray samples to compute the lights [Hasselgren
et al. 2022], which results in unstable convergence on reflective ob-
jects or additional dependence on object masks. Thus, considering
both direct and indirect lights to correctly reconstruct the unknown
surfaces of reflective objects is still challenging.
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(a) Image (b) COLMAP (c) NeuS (d) Ref-NeRF (e) NDRMC∗ (f) Ours

Fig. 2. We apply different multiview reconstruction methods to reconstructing reflective objects. (a) The input images. Reconstruction results of (b)
COLMAP [Schönberger et al. 2016], (c) NeuS [Wang et al. 2021b], (d) Ref-NeRF [Verbin et al. 2022], (e) NDRMC [Hasselgren et al. 2022] and (f) our
method. In images of column (a), we use red bounding boxes to indicate regions illuminated by indirect lights. ∗NDRMC uses ground-truth object masks for
training while all the other methods are trained without object masks.

By incorporating the rendering equation in a neural reconstruc-
tion framework, we propose a method called NeRO for reconstruct-
ing both the geometry and the BRDF of reflective objects from only
posed RGB images. The key component of NeRO is a novel light rep-
resentation. In this light representation, we use two individual MLPs
to encode the radiance of direct and indirect lights respectively and
compute an occlusion probability to determine whether direct or
indirect lights should be used in the rendering. Such a light repre-
sentation efficiently accommodates both direct lights and indirect
lights for accurate surface reconstruction of reflective objects. Based
on the proposed light representation, NeRO adopts a two-stage
strategy for a tractable evaluation of the rendering equation in the
neural reconstruction. The first stage of NeRO employs a split-sum
approximation and the integrated directional encoding [Verbin et al.
2022] to evaluate the rendering equation, which produces accurate
geometry reconstruction with compromised environment lights
and surface BRDF estimation. Then, with the reconstructed geome-
try fixed, the second stage of NeRO improves the estimated BRDF
by more accurately evaluating the rendering equation with Monte
Carlo sampling. With the light representation and the two-stage de-
sign, the proposed method essentially extends the representational
power of neural rendering methods on reflective objects, making it
achieve the full potential of learning geometric surfaces.
To evaluate the performance of NeRO, we introduce a synthetic

dataset and a real dataset, both of which contain reflective objects

illuminated by complex environment lights. On both datasets, NeRO
successfully reconstructs both the geometry and the surface BRDF
of reflective objects, on which the baseline MVS methods and neural
reconstructionmethods fail. The output of ourmethod is a triangular
mesh with the estimated BRDF parameters, which can be easily used
in downstream applications such as relighting.

2 RELATED WORKS

2.1 Multiview 3D reconstruction
Multiview 3D reconstruction or Multiview Stereo (MVS) has been
studied for decades [Campbell et al. 2008; Furukawa and Ponce
2009; Strecha et al. 2006]. Traditional multiview reconstruction
methods mainly rely on the multiview consistency of 3D points
to build correspondences and estimate the depth values on different
views [Barron and Poole 2016; Bleyer et al. 2011; Campbell et al.
2008; Furukawa and Ponce 2009; Gallup et al. 2007; Hosni et al.
2012; Richardt et al. 2010; Schönberger et al. 2016; Strecha et al.
2006]. With the advances of deep learning techniques, many recent
works [Cheng et al. 2020; Wang et al. 2021a; Yan et al. 2020; Yang
et al. 2020; Yao et al. 2018] try to introduce neural networks to
estimate correspondences for the MVS task, which demonstrates im-
pressive reconstruction quality on widely-used benchmarks [Geiger
et al. 2013; Jensen et al. 2014; Scharstein and Szeliski 2002]. In this
paper, we aim to reconstruct reflective objects with strong specular
reflections. The strong specular reflections violate the multiview
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consistency so these correspondence-based methods do not perform
well on reflective objects.

Neural surface reconstruction. Neural rendering and neural
representations [Mildenhall et al. 2020; Park et al. 2019; Sitzmann
et al. 2019; Tewari et al. 2020, 2022] have attracted much attention
due to their strong representation ability and impressive improve-
ments on the novel-view-synthesis task. DVR [Niemeyer et al. 2020]
first introduces the neural rendering and neural surface representa-
tion in themultiview reconstruction. IDR [Yariv et al. 2020] improves
the reconstruction quality with the differentiable sphere tracing and
the Eikonal regularization [Gropp et al. 2020]. UNISURF [Oech-
sle et al. 2021], VolSDF [Yariv et al. 2021] and NeuS [Wang et al.
2021b] introduce the differentiable volume rendering in the multi-
view surface reconstruction with improved robustness and quality.
Subsequent works improve the volume-rendering-based multiview
reconstruction framework in various aspects, such as introducing
Manhattan or normal priors [Guo et al. 2022b; Wang et al. 2022c],
utilizing symmetry [Insafutdinov et al. 2022; Zhang et al. 2021c],
extracting image features [Darmon et al. 2022; Long et al. 2022], im-
proving fidelity [Fu et al. 2022; Wang et al. 2022b] and efficiency [Li
et al. 2022; Sun et al. 2022; Wang et al. 2022a; Wu et al. 2022; Zhao
et al. 2022a]. Similar to these works, we also follow the volume
rendering framework for surface reconstruction but we focus on
reconstructing reflective objects with strong specular reflections, an
outstanding problem that has not been explored by existing neural
reconstruction methods.

2.2 Reflective object reconstruction
Only a few works try to reconstruct reflective objects in the multi-
view stereo setting by using additional object masks [Godard et al.
2015] or removing the reflections [Wu et al. 2018]. Other than the
uncontrolled multiview reconstruction, some works [Han et al. 2016;
Roth and Black 2006] resort to constrained settings with known spec-
ular flows [Roth and Black 2006] or known environments [Han et al.
2016] for the reconstruction of ideal mirror-like objects. Some other
works utilize additional ray information by encoding rays [Tin et al.
2016] or utilizing polarization images [Dave et al. 2022; Kadambi et al.
2015; Rahmann and Canterakis 2001] to reconstruct the objects with
specular reflections. [Whelan et al. 2018] reconstructs mirror planes
in a scene by utilizing reflected images of the scanner. These meth-
ods are limited to a relatively strict setting with specially-designed
capturing devices. In contrast, we aim to directly reconstruct the
reflective objects from posed multiview images, which can be easily
captured using a cellphone camera.
Some image-based rendering methods [Rodriguez et al. 2020;

Sinha et al. 2012] are specially designed for glossy or reflective ob-
jects for the NVS task. NeRFRen [Guo et al. 2022a] reconstructs
a neural density field of a scene with the existence of mirror-like
planes. Neural Point Catacaustics [Kopanas et al. 2022] applies a
warp field to improve the rendering quality on reflective objects.
Ref-NeRF [Verbin et al. 2022] proposes integrated direction encod-
ing (IDE) to improve the NVS quality on reflective materials. Our
method incorporates the IDE in reconstructing reflective objects
with a neural SDF for the surface reconstruction. A concurrent work
ORCA [Tiwary et al. 2022] extends to reconstruct the radiance field

of a scene from the reflections on a glossy object, which also re-
constructs the object in the pipeline. Since the target of ORCA is
mainly to reconstruct the radiance field of the scene, it relies on
object masks for the reconstruction of the reflective objects. In com-
parison, our method does not require object masks and our main
target is to reconstruct the geometry and BRDF of the object.

2.3 BRDF estimation
Estimating the surface BRDF from images is mainly based on the
inverse rendering techniques [Barron and Malik 2014; Nimier-David
et al. 2019]. Some methods [Gao et al. 2019; Guo et al. 2020; Li et al.
2020, 2018; Wimbauer et al. 2022; Ye et al. 2022] rely on an object
prior or a scene prior to directly estimating BRDF and lighting.
Differentiable renderers [Chen et al. 2019, 2021; Kato et al. 2018; Liu
et al. 2019; Nimier-David et al. 2019] allow direct optimization of the
BRDF from image losses. To enable more accurate BRDF estimation,
most methods [Bi et al. 2020, [n.d.]; Cheng et al. 2021; Kuang et al.
2022; Li and Li 2022a,b; Nam et al. 2018; Schmitt et al. 2020; Yang et al.
2022a,b; Zhang et al. 2022a] require multiple images of the object to
be illuminated by different collocated flashlights. In this paper, we
estimate the BRDF in a static scene with moving cameras, which
is also the setting adopted by [Boss et al. 2021a, 2022, 2021b; Deng
et al. 2022; Hasselgren et al. 2022; Munkberg et al. 2022; Zhang
et al. 2021a,b, 2022b]. Among these works, PhySG [Zhang et al.
2021a], NeRD [Boss et al. 2021a], Neural-PIL [Boss et al. 2021b] and
NDR [Munkberg et al. 2022] consider the interaction between the
direct environment lights and the surfaces for the BRDF estimation.
Subsequent works MII [Zhang et al. 2022b], NDRMC [Hasselgren
et al. 2022], DIP [Deng et al. 2022] and NeILF [Yao et al. 2022] add
indirect lights, which improves the quality of estimated BRDF. These
methods mainly aim to reconstruct the BRDF of common objects
without too many specular reflections, which produces low-quality
BRDF on reflective objects. Some other methods [Chen and Liu 2022;
Duchêne et al. 2015; Gao et al. 2020; Liu et al. 2021; Lyu et al. 2022;
Nestmeyer et al. 2020; Philip et al. 2019, 2021; Rudnev et al. 2022;
Shih et al. 2013; Yu et al. 2020; Yu and Smith 2019; Zhao et al. 2022b;
Zheng et al. 2021] are mainly targeted to the relighting task but
not designed for reconstructing the surface geometry or the BRDF.
NeILF [Yao et al. 2022] is the most similar work to the Stage II of
our method, both of which fix the geometry to optimize BRDF with
MC sampling. However, NeILF does not use importance sampling
on the specular lobe and simply predicts lights from a position and
a direction without considering the occlusions. In comparison, our
method explicitly distinguishes direct and indirect lights and uses
importance sampling on diffuse and specular lobes for a better BRDF
estimation on reflective objects.

3 METHOD

3.1 Overview
Given a set of RGB images with known camera poses as input, our
target is to reconstruct the surface and BRDF of the reflective object
in the images. Note that our method does not require knowing the
object masks or environment lights. The pipeline of NeRO consists
of two stages. In Stage I (Sec. 3.3), we reconstruct the geometry of
the reflective object by optimizing a neural SDF with the volume
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Fig. 3. Specular lobe in Eq. 7 is determined by the roughness 𝜌 and the
reflective direction t. (a) A smooth surfacewith small 𝜌 has a smaller specular
lobe while (b) a rougher surface with large 𝜌 has a larger specular lobe.

rendering, in which approximate direct and indirect lights are es-
timated to model the view-dependent specular colors. In Stage II
(Sec. 3.4), we fix the object geometry and finetune the direct and
indirect lights to compute an accurate BRDF of the reflective object.
In the following, we begin with a brief review of NeuS [Wang et al.
2021b] and a micro-facet BRDF model [Cook and Torrance 1982;
Torrance and Sparrow 1967].

3.2 Preliminaries
NeuS [Wang et al. 2021b] for surface reconstruction. We follow
NeuS to represent the object surface by an SDF encoded by an
MLP network 𝑔sdf (x). The surface is the zero-level set with {x ∈
R3 |𝑔sdf (x) = 0}. Then, volume rendering [Mildenhall et al. 2020] is
applied to render images from the neural SDF. Given a camera ray o+
𝑡v emitting from the camera center o to the space along the direction
v, we sample 𝑛 points on the ray {p𝑗 = o + 𝑡 𝑗v|𝑡 𝑗 > 0, 𝑡 𝑗−1 < 𝑡 𝑗 }.
Then, the rendered color for this camera ray is computed by

ĉ =
∑︁
𝑛

𝑤 𝑗 c𝑗 , (1)

where𝑤 𝑗 is the weight for the 𝑗-th point, which is derived from the
SDF value via the opaque density proposed in [Wang et al. 2021b].
c𝑗 is the color for this point, which is decoded from an MLP network
by c𝑗 = 𝑔color (p𝑗 , v) in NeuS. Then, by minimizing the difference
between the rendered color ĉ and the input ground-truth color c, the
parameters of two MLP networks 𝑔sdf and 𝑔color are learned. The
reconstructed surface is extracted from the zero-level set of 𝑔sdf . To
enable the color function to correctly represent the specular colors
on the reflective surfaces, NeRO replaces the color function of NeuS
with the shading function using a Micro-facet BRDF.

Micro-facet BRDF [Cook and Torrance 1982]. On the point
p𝑗 , we compute its colors c𝑗 by the rendering equation (the subscript
𝑗 is omitted in the following discussion for simplicity)

c(𝜔𝑜 ) =
∫
Ω
𝐿(𝜔𝑖 ) 𝑓 (𝜔𝑖 , 𝜔𝑜 ) (𝜔𝑖 · n)𝑑𝜔𝑖 , (2)

where 𝜔𝑜 = −v is the outgoing view direction, c(𝜔𝑜 ) is the output
color c𝑗 for this point p𝑗 in the view direction 𝜔𝑜 , n is the surface
normal, 𝜔𝑖 is the input light direction on the upper half sphere Ω,
𝑓 (𝜔𝑖 , 𝜔𝑜 ) ∈ [0, 1]3 is the BRDF function, 𝐿(𝜔𝑖 ) ∈ [0, +∞)3 is the
radiance of incoming lights. In NeRO, the normal n is computed
from the gradient of the SDF. The BRDF function consists of a diffuse

𝒑

Direct light

𝑠 = 0
Indirect light

𝑠 = 1

Occlusion surface

Bounding sphere

𝒒(𝒑, 𝜔0)

𝜔0 𝜔1

Fig. 4. Direct and indirect lights for a point p. The direct light in the
direction 𝜔0 is not occluded while the indirect light in the direction 𝜔1 is
occluded by surfaces inside the unit sphere. 𝑠 is the occlusion probability.
q(p, 𝜔 ) is the intersection point on the bounding sphere of the ray emitting
from p along the direction 𝜔 .

and a specular part

𝑓 (𝜔𝑖 , 𝜔𝑜 ) = (1 −𝑚) a
𝜋︸     ︷︷     ︸

diffuse

+ 𝐷𝐹𝐺

4(𝜔𝑖 · n) (𝜔𝑜 · n)︸                ︷︷                ︸
specular

, (3)

where𝑚 ∈ [0, 1] is the metalness of the point, 1 −𝑚 is the weight
for the diffuse part, a ∈ [0, 1]3 is the albedo color of the point, 𝐷 is
the normal distribution function, 𝐹 is the Fresnel term and 𝐺 is the
geometry term. 𝐷 , 𝐹 and 𝐺 are all determined by the metalness𝑚,
the roughness 𝜌 ∈ [0, 1] and the albedo a. The expressions of 𝐷 , 𝐹 ,
and 𝐺 can be found in Sec. A.1 of the Appendix. In summary, the
BRDF of the point is specified by the metalness𝑚, the roughness
𝜌 , and the albedo a, all of which are predicted by a material MLP
𝑔material in NeRO, i.e., [𝑚, 𝜌, a] = 𝑔material (p).

Combining Eq. 2 and Eq. 3, we have

c(𝜔𝑜 ) = cdiffuse + cspecular, (4)

cdiffuse =
∫
Ω
(1 −𝑚) a

𝜋
𝐿(𝜔𝑖 ) (𝜔𝑖 · n)𝑑𝜔𝑖 , (5)

cspecular =
∫
Ω

𝐷𝐹𝐺

4(𝜔𝑖 · n) (𝜔𝑜 · n) 𝐿(𝜔𝑖 ) (𝜔𝑖 · n)𝑑𝜔𝑖 . (6)

As explained before, accurately evaluating the integrals of Eq. 5 and
Eq. 6 for every sample point in the volume rendering is intractable.
Therefore, we propose a two-step framework to approximately com-
pute these two integrals. In the first stage, our priority is to faithfully
reconstruct the geometric surface.

3.3 Stage I: Geometry reconstruction
In order to reconstruct surfaces of reflective objects, we adopt the
same neural SDF representation and the volume rendering algorithm
(Eq. 1) as NeuS [Wang et al. 2021b] but with a different color function.
In NeRO, we predict a metalness𝑚, a roughness 𝜌 and an albedo a
to compute a color c𝑗 (i.e., c(𝜔𝑜 )) using the micro-facet BRDF (Eq. 4-
6). To make the computation tractable in the volume rendering
of NeuS, we adopt the split-sum approximation [Karis and Games
2013], which separates the integral of the product of lights and
BRDFs into two individual integrals.
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Split-sum approximation. For the specular color in Eq. 6, we
follow [Karis and Games 2013] to approximate it with

cspecular ≈
∫
Ω
𝐿(𝜔𝑖 )𝐷 (𝜌, t)𝑑𝜔𝑖︸                   ︷︷                   ︸

𝐿specular

·
∫
Ω

𝐷𝐹𝐺

4(𝜔𝑜 · n)𝑑𝜔𝑖︸               ︷︷               ︸
𝑀specular

, (7)

where 𝐿specular is the integral of lights on the normal distribution
function 𝐷 (𝜌, t) ∈ [0, 1] (also called the specular lobe) as shown in
Fig. 3, t is the reflective direction,𝑀specular denotes the integral of
BRDF. Note that a rougher surface has a larger specular lobe while
a smoother surface has a smaller lobe. The integral of BRDF can be
directly computed by𝑀specular = ((1 −𝑚) ∗ 0.04 +𝑚 ∗ a) ∗ 𝐹1 + 𝐹2,
where 𝐹1 and 𝐹2 are two pre-computed scalars depending on the
roughness 𝜌 , the view direction 𝜔𝑜 and the normal n as introduced
in more details in Sec. A.1 in Appendix. The diffuse color in Eq. 5
can be written as

cdiffuse = a(1 −𝑚)
∫
Ω
𝐿(𝜔𝑖 )

𝜔𝑖 · n
𝜋

𝑑𝜔𝑖︸                  ︷︷                  ︸
𝐿diffuse

, (8)

where we use 𝐿diffuse to denote the diffuse light integral.
Split-sum has already been proven to be a good approximation

and is widely used in real-time rendering. With predicted material
parameters albedo a, roughness 𝜌 andmetalness𝑚 from thematerial
MLP, the only two unknowns in Eq. 8 and Eq. 7 are light integrals
𝐿diffuse and 𝐿specular. However, to compute the light integrals, we
do not prefilter environment lights as previous methods [Boss et al.
2021b; Munkberg et al. 2022] but use the integrated directional
encoding [Verbin et al. 2022]. In the following, we first introduce
our light representation 𝐿(𝜔𝑖 ).
Light representation. In NeRO, we define a bounding sphere

around the object to build the neural SDF. Since we only aim to
reconstruct the surfaces inside the bounding sphere, we call all lights
coming from the outside of the bounding sphere as direct lightswhile
we name lights reflected by the surfaces inside the bounding sphere
as indirect lights, which is shown in Fig. 4. Then, we represent the
light 𝐿(𝜔𝑖 ) by

𝐿(𝜔𝑖 ) = [1−𝑠 (𝜔𝑖 )]𝑔direct (𝑆𝐻 (𝜔𝑖 )) +𝑠 (𝜔𝑖 )𝑔indirect (𝑆𝐻 (𝜔𝑖 ), p), (9)

where 𝑔direct and 𝑔indirect are two MLPs for the direct lights and the
indirect lights respectively, 𝑠 (𝜔𝑖 ) ∈ [0, 1] is the occlusion probability
that the ray from the point p to the direction 𝜔𝑖 is occluded by the
surfaces inside the bounding sphere, 𝑆𝐻 is the directional encoding
using spherical harmonics (SH) as basis functions. Note that 𝑠 (𝜔𝑖 ) =
𝑔occ (𝑆𝐻 (𝜔𝑖 ), p) is also predicted by an MLP 𝑔occ.

Motivation of the light representation design. The direct
light 𝑔direct (𝜔𝑖 ) only depends on the direction 𝜔𝑖 so that all points
are illuminated by the same direct environment light. This provides
a strong global prior to explaining the view-dependent colors of
the reflective object. The indirect light 𝑔indirect (𝜔𝑖 , p) additionally
takes the point position p as input because indirect lights vary in
the space. Additional discussion about the light representation is
provided in Sec. A.2 of the Appendix.
Light integral approximation. We use the integrated direc-

tional encoding to approximate the light integrals 𝐿specular and

Without occlusion loss

With occlusion loss

(b) Normals(a) Occlusion prob (b) Renderings

Fig. 5. Effects of occlusion loss. (Top) Without ℓocc, the occlusion probabil-
ity predicted by 𝑔occ will be completely inconsistent with the reconstructed
geometry and causes incorrect reconstruction. (Bottom) With ℓocc, the pre-
dicted occlusion probability is accurate and the reconstruction is correct.

𝐿diffuse. The specular light integral is

𝐿specular ≈[1 − 𝑠 (t)]
∫
Ω
𝑔direct (𝑆𝐻 (𝜔𝑖 ))𝐷 (𝜌, t)𝑑𝜔𝑖+

𝑠 (t)
∫
Ω
𝑔indirect (𝑆𝐻 (𝜔𝑖 ), p)𝐷 (𝜌, t)𝑑𝜔𝑖

≈[1 − 𝑠 (t)]𝑔direct (
∫
Ω
𝑆𝐻 (𝜔𝑖 )𝐷 (𝜌, t)𝑑𝜔𝑖 )+

𝑠 (t)𝑔indirect (
∫
Ω
𝑆𝐻 (𝜔𝑖 )𝐷 (𝜌, t)𝑑𝜔𝑖 , p) .

(10)

In the first approximation, we use the occlusion probability 𝑠 (t)
of the reflective direction t to replace occlusion probabilities 𝑠 (𝜔𝑖 )
of different rays. In the second approximation, we exchange the
order of the MLP and the integral. Discussion about the rationale of
two approximations is provided in Sec. A.3. With Eq. 10, we only
need to evaluate the MLP networks 𝑔direct and 𝑔indirect once on the
integrated directional encoding

∫
Ω 𝑆𝐻 (𝜔𝑖 )𝐷 (𝜌, t)𝑑𝜔𝑖 . By choosing

the normal distribution function 𝐷 to be a von Mises–Fisher (vMF)
distribution (Gaussian distribution on a sphere), Ref-NeRF [Verbin
et al. 2022] has shown that

∫
Ω 𝑆𝐻 (𝜔𝑖 )𝐷 (𝜌, t)𝑑𝜔𝑖 has an approxi-

mated closed-form solution. In this case, we use this closed-form
solution here to approximate the integral of lights.
Similarly, for 𝐿diffuse, the cosine lobe

𝜔𝑖 ·n
𝜋 is also a probability

distribution, which can be approximated by
𝜔𝑖 · n
𝜋

≈ 𝐷 (1.0, n) . (11)

Thus, we can also compute the diffuse light integral as Eq. 10. With
the integrals of lights, we are able to compute the diffuse colors
Eq. 5 and specular colors Eq. 6 and composite them as the color for
each sample point. Note that both the split-sum approximation and
the light integral approximation are only used in Stage I to enable
tractable computation and will be replaced by more accurate Monte
Carlo sampling in Stage II.

Occlusion loss. In the light representation, we use an occlusion
probability 𝑠 predicted by an MLP 𝑔occ to determine whether direct
lights or indirect lights will be used in rendering. However, as shown
in Fig. 5, if we put no constraint on the occlusion probability 𝑠 and
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Fig. 6. Architecture of networks in Stage I. “PE”is positional encod-
ing [Mildenhall et al. 2020] while “IDE” and “DE” are integrated direction
encoding [Verbin et al. 2022] and vanilla directional encoding, respectively.

Reflective object Photo capturer

𝑍

𝑌

𝑋𝑜𝑌 Plane

𝒑

𝒑𝒄

(a) (b) (c) 

Fig. 7. (a) A reflective object shows the reflections of the photo capturer.
(b) We build a 2D NeRF on the 𝑋𝑜𝑌 plane to model the lights occluded by
the photo capturer. (c) The estimated 2D radiance field of the capturer.

just let the network 𝑔occ learn 𝑠 from rendering loss, the predicted
occlusion probability will be completely inconsistent with the re-
constructed geometry and cause unstable convergence. Thus, we
use the neural SDF to constrain the predicted occlusion probability.
Given the ray emitting from a sample point p to its reflective direc-
tion t, we compute its occlusion probability 𝑠march by ray-marching
in the neural SDF 𝑔SDF and enforce the consistency between the
computed probability 𝑠march and the predicted probability 𝑠 with

ℓ𝑜𝑐𝑐 = ∥𝑠march − 𝑠 ∥1, (12)

where ℓ𝑜𝑐𝑐 is the loss for this occlusion probability regularization.
Training Losses. Based on the volume rendering Eq. 1, we com-

pute the color for the camera ray and compute the Charbonier
loss [Barron et al. 2022; Charbonnier et al. 1994] between the ren-
dered color and the input ground-truth color as the rendering loss
ℓrender. Meanwhile, we observe that the first few training steps for
the SDF are not stable, which either extremely enlarges the surface
or squashes the surface too small. A stabilization regularization loss
ℓstable is applied for the first 1k steps. (This is discussed in detail in
Sec. A.4.) In summary, the final loss is

ℓ = ℓrender + 𝜆eikonalℓeikonal + 𝜆occℓ𝑜𝑐𝑐 + 1(step < 1000)ℓstable, (13)

where we also adopt the Eikonal loss [Gropp et al. 2020] to regularize
the norms of SDF gradients to be 1, 1 is the indicator function,
𝜆𝑒𝑖𝑘𝑜𝑛𝑎𝑙 and 𝜆occ are two predefined scalars. The overview of the
network architecture is shown in Fig. 6.

Reflection of the capturer. We assume a static illumination
environment in our model. However, in reality, there is always a
person holding a camera to capture images around a reflective object.
The moving person will be visible in the reflection of the object,
thus violating the assumption of static illumination, as shown in the
red circle of Fig. 7 (a). Since the photo capturer is relatively static
to the camera, we build a 2D NeRF on the 𝑋𝑜𝑌 plane in the camera
coordinate system as shown in Fig. 7 (b). In the computation of the
direct light 𝑔direct in Eq. 9, we additionally check whether the ray
hits the 𝑋𝑜𝑌 plane of the camera coordinate system or not. If a hit
point p𝑐 exists, we will use an MLP 𝑔camera to compute an alpha
value 𝛼camera and a color ccamera by

[𝛼camera, ccamera] = 𝑔camera (p𝑐 ), (14)

where 𝛼camera indicates whether the ray is occluded by the cap-
turer or not while the ccamera represents the color of the capturer
on this point. Then, the direct light is (1 − 𝛼camera)𝑔direct (𝜔𝑖 ) +
𝛼cameraccamera.

3.4 Stage II: BRDF estimation
So far, after Stage I, we have faithfully reconstructed the geometry
of the reflective object but obtained only a rough BRDF estimation,
which needs to be further refined. In Stage II, we aim to accurately
evaluate the rendering equation so as to precisely estimate the sur-
face BRDF i.e. metalness𝑚, albedo a, and 𝜌 . With the fixed geometry
from Stage I, we only need to evaluate the rendering equation on
surface points. Thus, it is now feasible to apply Monte Carlo sam-
pling to compute the diffuse colors in Eq. 5 and the specular colors
in Eq. 6. In the MC sampling, we conduct importance sampling on
both the diffuse lobe and the specular lobe as follows.
Importance sampling. In Monte Carlo sampling, the diffuse

color cdiffuse is computed by sampling𝑁𝑑 rayswith a cosine-weighted
hemisphere probability

cdiffuse =
1
𝑁𝑑

𝑁𝑑∑︁
𝑖

(1 −𝑚)a𝐿(𝜔𝑖 ), (15)

where 𝑖 is 𝑖-th sample ray and 𝜔𝑖 is the direction of this sample ray.
For the specular color cspecular, we apply the GGX distribution as
normal distribution𝐷 . Then, the specular color cspecular is computed
by sampling 𝑁𝑠 rays with DDX distribution [Cook and Torrance
1982]

cspecular =
1
𝑁𝑠

𝑁𝑠∑︁
𝑖

𝐹𝐺 (𝜔𝑜 · h)
(n · h) (n · 𝜔o)

𝐿(𝜔𝑖 ), (16)

where h is the half-way vector between𝜔𝑖 and𝜔𝑜 . To evaluate Eq. 15
and Eq. 16, we still use the samematerial MLP [𝑚, 𝜌, a] = 𝑔material as
Stage I to compute the metalness𝑚, roughness 𝜌 and albedo a. The
light representation 𝐿(𝜔𝑖 ) in Stage II is also Eq. 9 with the reflected
lights of the capturer in Eq. 14, which is the same as Stage I. Since
the geometry is fixed, we directly compute the occlusion probability
𝑠 by tracing rays in the given geometry instead of predicting it from
the MLP 𝑔occ. Meanwhile, for real data, we add the intersection
point on the bounding sphere qp,𝜔 of the ray emitting from p along
the direction 𝜔 , as shown in Fig. 4, as an additional input to the
direct light MLP 𝑔direct. More details are discussed in Sec. A.2
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Regularization terms. We follow previous works [Hasselgren
et al. 2022; Munkberg et al. 2022] to impose two regularization terms
on the final loss. The first is a smoothness regularization ℓsmooth

ℓsmooth = ∥𝑔material (p) − 𝑔material (p + 𝜖)∥2, (17)

where 𝜖 = 5𝑒 − 3. The ℓsmooth makes the predicted materials (rough-
ness, metallic, and albedo) more smooth in the space. Furthermore,
a light regularization ℓlight is imposed to make the diffuse lights
𝐿diffuse =

1
𝑁𝑑

∑
𝑖 𝐿(𝜔𝑖 ) to be neutral white lighting. We compute the

mean of RGB values of the diffuse light and minimize the difference
between the RGB values and their mean,

ℓlight =
3∑︁
𝑐

( [𝐿diffuse]𝑐 −
1
3

3∑︁
𝑐

[𝐿diffuse]𝑐 ), (18)

where 𝑐 is the index of RGB channel of 𝐿diffuse. Along with the
rendering loss, the final loss for Stage II is

ℓ = ℓrender + 𝜆smoothℓsmooth + 𝜆lightℓlight, (19)

where 𝜆smooth and 𝜆light are two predefined scalars.

4 EXPERIMENTS

4.1 Experiment protocol
Datasets. To evaluate the performance of NeRO, we propose a syn-
thetic dataset called the Glossy-Blender dataset and a real dataset
called the Glossy-Real dataset. The Glossy-Blender dataset con-
sists of 8 objects with low roughness and strong reflective appear-
ances. The copyright information of these objects are included in
Sec. A.12. For each object, we uniformly rendered 128 images of
resolution 800 × 800 around the object with the Cycles renderer in
Blender. In rendering, we randomly select indoor HDR images from
PolyHeaven [Poly Heaven 2022] as sources of environment lights.
Among 8 objects, Bell, Cat, Teapot, Potion, and TBell have large
smooth surfaces with strong specular effects while Angel, Luyu,
and Horse contain more complex geometry with small reflective
fragments, as shown in Fig. 8. The Glossy-Real dataset contains 5
objects (Coral, Maneki, Bear, Bunny and Vase), as shown in Fig. 9
(a). We capture about 100-130 images around each object and use
COLMAP [Schönberger and Frahm 2016] to track the camera poses
for all images. To enable robust camera tracking for COLMAP, we
place the object on a calibration board with strong textures. All
images are captured by a cellphone camera with a resolution of
1024 × 768. To get the ground-truth surfaces, we use the structure
light-based RGBD sensor EinScan Pro 2X to scan these objects. Since
the scanner is unable to reconstruct reflective objects, we manually
paint non-reflective substances on these objects before scanning, as
shown in Fig. 9 (b). Sec. A.6 includes the detailed dataset statistics.
Geometry evaluation. For the evaluation of geometry, we adopt
the Chamfer distance (CD) between the reconstructed surfaces and
the ground-truth surfaces as the metric. Note that we only evaluate
the reconstructed surfaces that are visible in images. To achieve this,
we first select 16 input cameras using the farthest point sampling on
the camera locations. Then, we project the reconstructed surface or
the ground-truth surface onto each sampled camera to get a depth
map. Finally, we fuse all the depth maps into a complete point cloud.
The Chamfer distance is computed between the point cloud of the

Bell Cat Teapot Potion

TBell Angel Horse Luyu

Fig. 8. Objects from the Glossy-Blender dataset. “TBell” means “Table
Bell” and “Luyu” is a Chinese tea master worshiped as the Sage of Tea.

Bunny

Coral

Vase

Bear

Bunny

(a) (b)

Fig. 9. The Glossy-Real dataset. (a) Objects and their names. (b) We paint
non-reflective substances on objects and scan objects with an EinScan Pro
2X scanner.

reconstructed surface and the one of the ground-truth surface. On
the real data, NeRO reconstructs all surfaces inside the bounding
sphere rather than only reconstructing the surfaces of the reflective
object, as shown in Fig. 10 (b). From the reconstructed mesh, we
manually crop the mesh of the object for the evaluation, as shown
in Fig. 10 (c).
BRDF evaluation. Directly evaluating the quality of BRDF is diffi-
cult because different baselinemethods adopt different BRDFmodels.
Instead, we evaluate the quality of relighted images to reveal the
quality of the estimated BRDF. For each object in the Glossy-Blender
dataset, we use three new HDR images as the environment lights
to illuminate the object. For each environment light, we render 16
evenly-distributed relighted images around the object. Finally, we
compute PSNR, SSIM [Wang et al. 2004], and LPIPS [Zhang et al.
2018] between the relighted images of different methods and the
images rendered by Blender. There is an indeterminable scale factor
between the albedo and the lights. The indeterminable light-albedo
scales may be different for different baselines. For a fair compari-
son, we normalize the relighted images to match the average colors
of ground-truth images before computing the metrics. On all the
real data, we do not adopt such normalization and provide a visual
comparison.
Baselines for geometry estimation. For geometry reconstruc-
tion, we compare our method with COLMAP [Schönberger et al.
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(a) (b) (c)

Fig. 10. (a) An input image. (b) The completed reconstruction of our method.
(c) The cropped mesh for the evaluation.

2016], Ref-NeRF [Verbin et al. 2022], NeuS [Wang et al. 2021b],
NDR [Munkberg et al. 2022], and NDRMC [Hasselgren et al. 2022].
COLMAP [Schönberger et al. 2016] adopts the traditional MVS algo-
rithm patch match stereo [Bleyer et al. 2011] for the reconstruction.
Since COLMAP fails to reconstruct complete meshes on reflective
objects, we only provide a qualitative comparison with COLMAP.
Ref-NeRF represents the surface with a density field and uses the
reflective direction and IDE in its color function. For Ref-NeRF, we
use grid search to find the best density threshold in [0, 15] to ex-
tract a level set as the output surface. NDR adopts the differentiable
marching tetrahedral (DMTet) [Shen et al. 2021] as the surface rep-
resentation and uses prefiltered split-sum to approximate direct
illuminations. NDRMC replaces the prefiltered split-sum of NDR
with a differentiable MC sampling. Note that both NDR and NDRMC
use ground-truth object masks for training. NeuS uses volume ren-
dering on SDF to extract the surfaces. For all baseline methods, we
adopt their official implementations.
Baselines for BRDF estimation. We choose baseline methods
NDR [Munkberg et al. 2022], NDRMC [Hasselgren et al. 2022],
MII [Zhang et al. 2022b] and NeILF [Yao et al. 2022] for comparison.
NDR only uses split-sum to consider direct lights while NDRMC,
NeILF, and MII all consider indirect lights in the BRDF estimation.
NDRMC uses the differentiable MC sampling with a denoiser. NeILF
also adopts the MC sampling but with an MLP-based light model.
MII uses the Spherical Gaussian to represent direct or indirect lights
and the BRDF. In order to reconstruct reasonable geometry on re-
flective objects, MII, NDR and NDRMC all rely on the object masks
in training. NeILF does not involve surface reconstruction in its
pipeline and needs a reconstructed mesh as input. Thus, we use
the mesh reconstructed by our method as the input to NeILF. MII
can be regarded as a combined version of NeRFactor [Zhang et al.
2021b] and PhySG [Zhang et al. 2021a]. NDR is similar to Neural-
PIL [Boss et al. 2021b], both of which are based on the prefiltered
split-sum. In this case, we do not exhaustively include a comparison
with NeRFactor, PhySG, and Neural-PIL.
Experimental details. We train NeRO on each object for 300k
steps for the surface reconstruction and 100k steps for the BRDF
estimation. On each training step, 512 camera rays are sampled for
both stages. We adopt the Adam optimizer [Kingma and Ba 2014]
(𝛽1 = 0.9, 𝛽2 = 0.999) with a warm-up learning rate schedule, in
which the learning rate first increases from 1e-5 to 5e-4 in 5k (or
1k) steps for the surface reconstruction (or the BRDF estimation)
and then decreases to 1e-5 in the subsequent steps. To compute

NDR∗ NDRMC∗ NeuS Ref-NeRF Ours

Bell 0.0122 0.0045 0.0146 0.0137 0.0032
Cat 0.0344 0.1299 0.0278 0.0201 0.0044

Teapot 0.0530 0.0052 0.0546 0.0143 0.0037
Potion 0.0554 0.0415 0.0393 0.0131 0.0053
TBell 0.0821 0.0046 0.0348 0.0216 0.0035
Angel 0.0056 0.0034 0.0035 0.0291 0.0034
Horse 0.0077 0.0052 0.0053 0.0071 0.0049
Luyu 0.0131 0.0082 0.0066 0.0141 0.0054

Avg. 0.0329 0.0253 0.0233 0.0241 0.0042
Table 1. Reconstruction quality in Chamfer Distance (CD↓) on the
Glossy-Synthetic dataset. We compare our method with NeuS [Wang
et al. 2021b], Ref-NeRF [Verbin et al. 2022], NDR [Munkberg et al. 2022]
and NDRMC [Hasselgren et al. 2022]. ∗NDRMC and NDR use ground-truth
object masks while the other methods do not use object masks. Boldmeans
the best performance and underline means the second best performance.

the MC sampling in Stage II, 𝑁𝑑 = 512 ray samples and 𝑁𝑠 = 256
ray samples are used on the diffuse lobe and the specular lobe
respectively. The whole training process takes about 20 hours for
the surface reconstruction and 5 hours for the BRDF estimation on a
2080Ti GPU. Note that the most time-consuming part in training is
that we sample a massive number of points in the volume rendering.
Recent voxel-based representations could largely reduce sample
points and thus could speed up the NeRO training, which we leave
for future works. On the output mesh, we assign BRDF parameters
to vertices and interpolate the parameters on each face. More details
about the architecture can be found in Sec. A.5.

4.2 Results on Glossy-Blender
Geometry. The quantitative results in CD are reported in Table 1.
Fig. 2 and Fig. 11 show the visualization of reconstructed surfaces.
We interpret the results in the following aspects:

(1) On “Luyu”, “Horse” and “Angel” which have complex geome-
try but only small reflective fragments, all methods achieve
good reconstruction. The reason is that the surface recon-
struction is mainly dominated by the silhouettes of these
objects and the appearances of small reflective fragments
are relatively less informative. However, on the other objects
“Bell”, “Cat”, “Teapot”, “Potion”, and “TBell” which contain a
large reflective surface, baseline methods suffer from view-
dependent reflections and struggle to reconstruct correct sur-
faces. In comparison, our method can accurately reconstruct
the surfaces.

(2) As a traditional MVS method, COLMAP fails to reconstruct
the reflective objects due to the strong reflections, which
either cannot reconstruct any points due to the lack of multi-
view consistency or only reconstructs some erroneous points
inside the object surfaces.

(3) Ref-NeRF explicitly considers the direct environment lights
by encoding colors in reflective directions. However, a density
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(a) Ground-truth (b) COLMAP (c) Ref-NeRF (d) NDRMC∗ (e) NeuS (f) Ours

Fig. 11. Ground-truth and reconstructed surfaces of the Glossy-Blender dataset. We compare our results with COLMAP [Schönberger et al. 2016],
Ref-NeRF [Verbin et al. 2022], NDRMC [Hasselgren et al. 2022], and NeuS [Wang et al. 2021b]. ∗NDRMC is trained with ground-truth object masks while the
other methods do not use object masks.

(a) Ground-truth (b) NDR (c) NDRMC (d) MII (e) NeILF (f) Ours

Fig. 12. Relighting objects in the Glossy-Blender dataset. We compare our method with NDR [Munkberg et al. 2022], NDRMC [Hasselgren et al. 2022],
MII [Zhang et al. 2022b] and NeILF [Yao et al. 2022]. All the relighted images are normalized to match the average colors of the ground-truth images.
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NDR NDRMC MII NeILF Ours

Bell 25.05 24.30 21.58 25.40 31.05
Cat 24.65 23.88 23.46 23.04 30.03

Teapot 19.19 22.45 21.76 24.49 30.95
Potion 21.95 22.07 25.62 24.86 31.17
TBell 16.10 22.60 19.27 22.97 27.48
Angel 22.90 22.89 22.47 24.56 25.49
Horse 25.56 26.42 20.46 25.97 27.41
Luyu 23.72 23.60 23.42 24.62 26.61

Avg. 22.39 23.53 22.28 24.49 28.77
Table 2. Relighting quality in PSNR↑ on the Glossy-Blender dataset.
We compare our method with NDR [Munkberg et al. 2022], NDRMC [Has-
selgren et al. 2022], MII [Zhang et al. 2022b] and NeILF [Yao et al. 2022].
Bold means the best performance while underline means the second best.

field is not a good representation for the surface reconstruc-
tion, which not only results in noisy surfaces but also causes
errors in estimating surface normals when the reflections are
strong, as shown by the “TBell” Row 2 in Fig. 11. Meanwhile,
for regions illuminated by indirect lights, Ref-NeRF also re-
constructs incorrect surfaces, as shown by “Bell” Row 1 and
“Cat” Row 2 in Fig. 2.

(4) NDRMC produces good general shape reconstruction but the
reconstructed surfaces are not smooth and contain holes or
cracks. The CD of NDRMC in Table 1 is large because these
small cracks or holes will produce points that are far away
from the ground-truth surfaces. Moreover, it is still intractable
to applyMC-based shading in volume renderingwithmultiple
sample points on a ray. Thus, similar to IDR [Yariv et al. 2020],
NDRMC computes shading on one point per ray and strongly
relies on object masks for shape reconstruction.

(5) NeuS incorrectly distorts the large reflective surfaces to fit
the reflection colors, leading to erroneous reconstructions on
the objects with large reflective surfaces.

(6) Our method can correctly reconstruct all these reflective ob-
jects by considering both direct and indirect lights to explain
the reflective appearance. Especially on “Teapot”, “TBell”,
“Cat” and “Potion” with large reflective surfaces, our method
accurately reconstructs surfaces no matter whether the re-
gions are illuminated by direct or indirect lights.

BRDF. For the evaluation of BRDF estimation, we report the quality
of relighted images of different methods. The quantitative results
in PSNR are reported in Table 2 and some qualitative results are
shown in Fig. 12. The results of SSIM and LPIPS are included in
Sec. A.8. NDR [Munkberg et al. 2022] mainly suffers from incor-
rectly reconstructed surfaces, which prevents it from accurately
estimating BRDF. NDRMC tends to produce rough materials with
blurred reflections for these glossy objects. MII represents both
lights and BRDF with Spherical Gaussian, which saves computa-
tions but is unable to represent high-frequency environment lights
and smooth reflective BRDFs. NeILF also produces rough materials
because it only uses a uniform sampling on the upper half sphere
and has difficulty in converging to a smooth surface. In comparison

NDR∗ NDRMC∗ NeuS Ref-NeRF Ours

Bunny 0.0047 0.0042 0.0022 0.0054 0.0012
Coral 0.0025 0.0022 0.0016 0.0052 0.0014
Maneki 0.0148 0.0117 0.0091 0.0084 0.0024
Bear 0.0104 0.0118 0.0074 0.0109 0.0033
Vase 0.0201 0.0058 0.0101 0.0091 0.0011

Avg. 0.0105 0.0071 0.0061 0.0078 0.0019
Table 3. Reconstruction quality in Chamfer Distance (CD↓) on the
Glossy-Real dataset. We compare our method with NeuS [Wang et al.
2021b], Ref-NeRF [Verbin et al. 2022], NDR [Munkberg et al. 2022] and
NDRMC [Hasselgren et al. 2022]. ∗NDR and NDRMC use ground-truth
object masks while the other methods do not use object masks. Boldmeans
the best performance and underline means the second best performance.

with NDRMC using only 16 ray samples, we directly use MLP to
decode indirect lights and thus are able to use 512 ray samples for
the cosine lobe and 256 ray samples for the specular lobe, which
makes our method accurately capture the materials. In comparison
with NeILF which only uses a Fibonacci ray sampling on the upper
half-sphere, we adopt the importance sampling on both the cosine
diffuse lobe and the specular lobe. This is essential for recovering
the smooth material because the specular lobe is small but vital for
the reflective appearance and Fibonacci ray sampling often fails to
sample rays in the small specular lobe. Note that our method does
not simply predict smooth materials but also correctly recovers the
rough materials on the “Potion” row 1 of Fig. 12.

4.3 Results on Glossy-Real
Geometry. The quantitative results in CD on the Glossy-Real
dataset are reported in Table 3 and qualitative results are shown in
Fig. 13. In general, the results on the Glossy-Real dataset are similar
to the results on the Glossy-Blender dataset, where our method can
accurately reconstruct all reflective surfaces while each baseline
method fails to reconstruct several objects. On all the objects of the
Glossy-Real dataset, surfaces reconstructed by Ref-NeRF are very
noisy. On “Vase”, “Bear” and “Maneki”, NeuS incorrectly distorts
the large reflective surfaces and on “Coral” and “Bunny”, the recon-
struction of NeuS is generally correct but still contains non-smooth
artifacts on the regions highlighted by the red bounding boxes in
Fig. 13. NDRMC can reconstruct the general shape with the help of
object masks but also produces holes on the surfaces of “Vase”, “Bear”
and “Maneki”. In comparison, our method can correctly reconstruct
all objects. The main artifact of our method is that some details on
the “Maneki” are missing.
BRDF. We provide qualitative relighting results in Fig. 14 to com-
pare our method with MII [Zhang et al. 2022b], NeILF [Yao et al.
2022], NDR [Munkberg et al. 2022] and NDRMC [Hasselgren et al.
2022]. Similar to the relighting results on the synthetic dataset, our
method produces more realistic relighting results than the two base-
lines. NDRMC tends to produce rough materials while MII estimates
smooth but plastic-like materials for these smooth metallic objects.
Our method accurately estimates the smooth metallic materials for
all reflective surfaces and the rough materials for the back of “Bear”.
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(a) Images (b) Ground-truth (c) Ref-NeRF (d) NDRMC∗ (e) NeuS (f) Ours

Fig. 13. Images, ground-truth and reconstructed surfaces of the Glossy-Real dataset. We compare our results with Ref-NeRF [Verbin et al. 2022],
NDRMC [Hasselgren et al. 2022], and NeuS [Wang et al. 2021b]. ∗NDRMC is trained with ground-truth object masks while the other methods do not use
object masks.

4.4 Ablation studies
In this section, we conduct ablation studies on geometry reconstruc-
tion and BRDF estimation.
Ablation studies on the geometry reconstruction. The key

component of our method for surface reconstruction is to consider
the environmental lights for the reconstruction. Thus, we provide
ablation studies on different environment light representations as
shown in Table 4 and Fig. 15.

ID Description Angel Bell Cat Teapot Avg.

0 NeuS 0.0035 0.0146 0.0278 0.0546 0.0251
1 Only direct lights 0.0033 0.0051 0.0217 0.0076 0.0094
2 Only indirect lights 0.0037 0.0043 0.0210 0.0064 0.0089
3 No occlusion loss ℓocc 0.0033 0.0036 0.0212 0.0287 0.0142
4 No Eikonal loss ℓeikonal 0.0027 0.0030 0.0212 0.0184 0.0113
5 Full model 0.0034 0.0032 0.0044 0.0037 0.0037

Table 4. Ablation studies on the geometry reconstruction using objects
from the Glossy-Synthetic dataset. Chamfer Distance (CD↓) is reported.
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(a) Image (b) NDR (c) NDRMC (d) MII (e) NeILF (f) Ours

Fig. 14. Relighting objects from the Glossy-Real dataset. We provide a visual comparison with NDR [Munkberg et al. 2022], NDRMC [Hasselgren et al.
2022], MII [Zhang et al. 2022b], and NeILF [Yao et al. 2022]. We provide the input image with the nearest viewpoint and the relighting HDR map as a reference.

Image Ground-truth NeuS Only direct Only indirect No ℓocc loss Full model

Fig. 15. Ablation studies on the surface reconstruction. We use red bounding boxes to highlight regions illuminated by indirect lights in the images.
Results of NeuS [Wang et al. 2021b] are provided for comparison. “Only direct” means the model using only the direct lights (Model 1 in Table 4). “Only
indirect” means the model using only indirect lights (Model 2 in Table 4). “No ℓocc loss” means the model uses both direct and indirect lights but not use ℓocc
on the occlusion probability (Model 3 in Table 4). “Full model” contains all components (Model 4 in Table 4).
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With ℓeikonal Without ℓeikonal

Fig. 16. Ablation studies on the Eikonal loss ℓeikonal.

Index Description Potion Bell Cat Teapot Avg.

0 Stage I 22.44 28.83 21.54 28.53 25.34
1 No specular lobe sampling 25.94 22.84 24.69 24.25 24.43
2 Only direct 29.74 30.03 29.21 29.84 29.71
3 Only Indirect 29.95 30.94 28.46 30.78 30.03
4 Without ℓlight 30.70 31.07 29.76 30.80 30.58
5 Without ℓsmooth 30.90 30.45 29.41 31.88 30.66
6 Full model 31.17 31.05 30.03 30.95 30.80

Table 5. Ablation studies on the BRDF estimation using objects from
the Glossy-Synthetic dataset. PSNR↑ on of the relighting images is reported.

(1) In Model 1, we simply only consider the direct lights with
𝐿(𝜔𝑖 ) = 𝑔direct (𝜔𝑖 ) in shading. In comparison with the origi-
nal color function of NeuS, Model 1 is already able to recon-
struct the surfaces illuminated by direct lights and avoids the
undesirable surface distortion of NeuS. However, Model 1 is
unable to correctly reconstruct the regions illuminated by
indirect lights as shown in red boxes of Fig. 15.

(2) Model 2 is designed only to consider the indirect lights with
𝐿(𝜔𝑖 ) = 𝑔indirect (p, 𝜔𝑖 ), where 𝑔indirect is supposed to predict
location-dependent lights and is not limited to the direct
environment lights. However, as shown in Fig. 15, Model
2 still struggles to reconstruct the surfaces illuminated by
the indirect lights. The reason is that when the surfaces are
mostly illuminated by the direct environment lights, Model
2 tends to neglect the input position p and only predicts the
position-independent lights on all surface points.

(3) Model 3 applies the combination of direct and indirect lights
as Eq. 9 but does not use the occlusion loss in Eq. 12 to con-
strain the predicted occlusion probability. In this case, Model
3 learns the occlusion probability from only the rendering
loss. As shown in Fig. 15, the convergence of Model 3 is not
stable due to the lack of clear supervision on the occlusion
probability, which succeeds in reconstructing all surfaces of
“Bell” but fails on “Teapot” and “Cat”.

(4) Model 4 does not use the Eikonal loss [Gropp et al. 2020].
Without Eikonal loss, the reconstructed surfaces are slightly
better on “Angel” and “Bell”. However, on “Cat” and “Teapot”,
Model 4 tends to reconstruct double-layer surfaces on regions
illuminated by indirect lights as shown in Fig. 16.

(5) Our full model successfully reconstructs all surfaces of the ob-
jects. On the object “Angel”, all models reconstruct its surface
successfully as discussed in Sec. 4.2.

Ablation studies on the BRDF estimation. We conduct abla-
tion studies on the importance sampling strategy and the proposed

light representation. The relighting results are shown in Table 5 and
Fig. 17. First, the BRDF estimated in stage I of our method usually
has very small roughness because our method in stage I tends to use
a smooth material to improve the ability to fit specular colors. Sec-
ond, about the importance sampling, if we do not apply importance
sampling on the specular lobe, the estimated surface roughness will
be large because it is unable to capture the high-frequency specular
colors, which is similar to the results of NeILF. Third, we compare
different light representations with the same setting as the abla-
tion studies on geometry reconstruction. Only using direct lights
prevents the model from estimating a correct BRDF on surfaces
illuminated by indirect lights. Only using indirect lights results in
over-smooth surfaces because, on rough materials showing low-
frequency color changes, the model with only indirect lights will
predict a smooth material with low-frequency lights rather than
predicting a rough material. We further conduct ablation studies on
the neutral light loss ℓlight and the smoothness loss ℓsmooth [Hassel-
gren et al. 2022; Munkberg et al. 2022]. Neutral light loss makes the
estimated albedo more accurate and reasonable while smoothness
loss avoids noisy material prediction, both of which improve the
relighting quality as shown in Models 4, 5, and 6 in Table 5.
Visualization of image decomposition. To show the quality

of the estimated BRDF and lights, we provide two qualitative ex-
amples of image decomposition by our method in Fig. 18. Though
the appearances of reflective objects contain strong specular effects,
our method successfully separates the high-frequency lights from
the low-frequency albedo. The predicted metalness and roughness
are also very reasonable. Our method accurately predicts a rougher
material for the base of the table bell and a smooth material for
the table bell lid in Fig. 18 (Row 1). Meanwhile, our method also
distinguishes the metallic vase from the non-metallic calibration
board in Fig. 18 (Row 2).

4.5 Limitations
Geometry. Though we successfully reconstruct the shape of reflec-
tive objects, our method still fails to capture some subtle details, as
shown in Fig. 19. The main reason is that the rendering function
strongly relies on the surface normals estimated by the neural SDF
but a neural SDF tends to produce smooth surface normals. Thus,
it is hard for the neural SDF to produce abrupt normal changes
to reconstruct subtle details like the cloth textures of “Angel”, the
beards of “Cat”, and the textures of “Maneki”.
BRDF. In the experiments, we observe that our BRDF estimation
mainly suffers from incorrect geometry, especially on “Angel” as
shown in Fig. 20. Since the appearance of reflective objects strongly
relies on the surface normals to compute the reflective directions,
the incorrectness of surface normals will make our method struggle
to fit correct colors, which leads to inaccurate BRDF estimation.
Meanwhile, the BRDF in NeRO does not support advanced reflec-
tions such as anisotropic reflections.
Pose estimation. Another limitation is that our method relies
on accurate input camera poses and estimating camera poses on
reflective objects usually requires stable textures like calibration
boards for image matching. Without calibration boards, we may
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Ground-truth Stage I No sp. lobe Only direct Only indirect Full model

Fig. 17. Ablation studies on the BRDF estimation. “Stage 1” means the estimated BRDF in Stage I. “No sp. lobe” means not using the importance sampling
on the specular lobe. “Only direct” means only using direct lights in the light representation while “Only indirect” means only using indirect lights. Note that
all relighted images are normalized to match the average colors of the ground-truth images.

Image Rendering Albedo Light Metalness Roughness

Fig. 18. Decomposition of the input image. After the estimation of surface BRDF, our method is able to automatically decompose the input image into
albedo, lights, metalness, and roughness.

recover poses from other co-visible non-reflective objects or with
the help of devices like IMU.

5 CONCLUSION
We have presented NeRO, a neural reconstruction method for ac-
curately reconstructing the geometry and the BRDF of reflective
objects, without knowing the environment light conditions and the
object masks. The key idea of NeRO is to explicitly incorporate the
rendering equation in a neural reconstruction framework. NeRO
achieves this challenging goal by proposing a novel light repre-
sentation and adopting a two-stage approach. In the first stage, by
applying tractable approximations, we model both the direct and
indirect lights with shading MLPs and learn the surface geometry
faithfully. In the second stage, we fix the geometry and reconstruct

a more accurate surface BRDF as well as the environment light by
Monte Carlo sampling. Experiments have demonstrated that NeRO
achieves better surface reconstruction quality and BRDF estimation
of reflective objects compared to the state-of-the-art.
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A APPENDIX

A.1 BRDF model
We adopt the Cook-Torrance BRDF [Cook and Torrance 1982]. The
basic reflection ratio 𝐹0 = (𝑚 ∗ a + (1 −𝑚) ∗ 0.04) where a is the
albedo and𝑚 is the metalness. Then, the Fresnel term is

𝐹 = 𝐹0 + (1 − 𝐹0) (1 − (h · 𝜔𝑜 ))5, (20)

where h is the half-way vector and 𝜔𝑜 is the viewing direction. The
Geometry function is based on the Schlick-GGX Geometry function:

𝐺 (n, 𝜔𝑜 , 𝜔𝑖 , 𝑘) = 𝐺sub (n, 𝜔𝑜 , 𝑘)𝐺sub (n, 𝜔𝑖 , 𝑘), (21)

𝐺sub (n, v, 𝑘) =
n · v

(n · v) (1 − 𝑘) + 𝑘 , (22)

where 𝑘 = 𝜌4/2 and 𝜌 is the roughness. The normal distribution for
Stage II is the Trowbridge-Reitz GGX distribution

𝑁 (n, h, 𝛼) = 𝛼2

𝜋 ((n · h) (𝛼2 − 1) + 1)2
, (23)

where 𝛼 = 𝜌2.

Fig. 21. The prefiltered 𝐹1 and 𝐹2 for the integral of the BRDF.

(a) (b)

Fig. 22. Visualization of direct environment lights. (a) An Image cap-
tured in an indoor environment. (b) Estimated direct lights. Even in an
indoor environment, modeling the direct environment lights with only di-
rections produces a satisfactory approximation for surface reconstruction.

The prefiltered BRDF 𝐹1 and 𝐹2 used in the split-sum are stored
in an image as shown in Fig. 21, where 𝐹1 is the red color, 𝐹2 is
the green color, x-y axis represents the roughness 𝜌 and the n · 𝜔𝑜 ,
respectively. Given 𝜌 and n · 𝜔𝑜 , we interpolate on the image of
Fig. 21 to get 𝐹1 and 𝐹2.

A.2 Discussion on the direct light representation
In Eq. 9, the direct light is represented by 𝑔direct (𝜔𝑖 ), which only
takes a direction 𝜔𝑖 as input. This direct light implicitly contains an
assumption that direct lights all come from the light sources located
at infinity. Such an assumption is accurate enough for surface re-
construction even in a challenging indoor environment. We provide
an example in Fig. 22 to show the environment lights estimated by
our method in Stage I.

However, when using such direct light representation in the BRDF
estimation of Stage II, we find the approximation is not accurate
enough. The main reason for this is that the BRDF estimation is very
sensitive to the locations of strong light sources at a finite distance.
As shown in Fig. 23 (a), the estimated strong light sources in red
circles are all enlarged. The reason is illustrated by Fig. 23 (b). There
are three rays (A, B, C) corresponding to three surface points (A, B,
C). Since both Ray A and Ray C are pointing to the light source, the
network will increase the light intensity on the reflective directions
of Ray A and C, which causes the strong light source to enlarge.
Meanwhile, Ray B is not pointing to the light source but has the
same reflective direction as Ray A. Increasing the light intensity
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Ray A B C

(a) (b)

(c) Only direction (d) Direction + Sphere point 

Light 

source

Point A B C

Fig. 23. (a) The reconstructed direct environment lights using only direc-
tions as input. Note that the strong light sources in the red circles are
enlarged. (b) A diagram containing three rays and a light source to show
the sensitiveness to strong light sources. (c) Estimated albedo using only
directions as the direct light representation. Red circles show the inaccurate
albedo estimation. (d) Estimated albedo using both directions and sphere
intersection points as the direct light representation.

With SIE Without SIE

Fig. 24. Results with or without Sphere Intersection Encoding (SIE).

on the reflective direction of Ray A will also make Ray B brighter.
Therefore, the model will tend to decrease the albedo of Point B.
This causes the phenomenon shown in Fig. 23 (c) that the region in
the red circle has a darker albedo than other regions. To resolve this
problem, we use the direct light representation 𝑔direct (q(p, 𝜔𝑖 ), 𝜔𝑖 )
in Stage II, where q(p, 𝜔𝑖 ) is the intersection point on the bounding
sphere of the ray emitting from p along the direction𝜔𝑖 . We call this
sphere intersection encoding. With sphere intersection encoding,
we are able to more accurately estimate the albedo as shown in
Fig. 23 (d).
An optional choice is to add the sphere intersection encoding

in Stage I. We conduct experiments on the “Bunny” and “Bear” us-
ing this sphere intersection encoding. The results are shown in
Fig. 24. We find that adding such sphere intersection encoding de-
generates the performance. The main reason is that adding a sphere

Bounding sphere

SDF zero-level set

SDF color > 

Background NeRF color

SDF color < 

Background NeRF color
Initialization

Fig. 25. Imbalanced convergence speed between the outer background NeRF
color and the SDF shading color will make the reconstruction fail. (left) The
initialized zero-level set of neural SDF locates inside the bounding sphere.
Note that only the sample points inside the bounding sphere will be used in
the neural SDF to compute the opacity density [Wang et al. 2021b]. (middle)
If the SDF shading color converges faster than the background NeRF color,
then the surface of the neural SDF will dilate to exceed the bounding sphere
and is unable to shrink back to the bounding sphere. (right) If the SDF
shading color converges slower than the background NeRF color, then the
surface of the neural SDF will shrink and eventually disappear. In both cases,
the training of NeuS will fail.

intersection improves the fitting ability, which makes the network
indiscriminately focus on color fitting even using distorted surfaces
instead of recovering the faithful geometry. Stage II is not affected
by such an overfitting problem because Stage II uses Monte Carlo
sampling to sample many rays to render a single pixel, which avoids
overfitting in a single direction.

A.3 Rationale of light integral approximations
The rationale of the two light integral approximations is that:

(1) On a smooth surface with a small specular lobe, the light
integral is mainly determined by the light from the reflec-
tive direction. In this case, the occlusion probability of the
reflective direction will be the dominant factor in the integral.
Therefore, the first approximation of using the probability of
the reflective direction is a good approximation for all other
directions. Meanwhile, as shown in [Verbin et al. 2022], an
integrated directional encoding (IDE) with a small roughness
𝜌 will produce a high-frequency directional encoding that is
suitable to represent strong view-dependent colors on smooth
surfaces. Therefore, the IDE approximation also provides a
good estimation.

(2) On a rough surface with a large specular lobe, the light in-
tegral is not only affected by the reflective direction so the
first approximation seems to be too assumptive. However,
since the light integral on a large specular lobe will mainly
be white and change slowly with the view direction, it is not
essential that we use the 𝑔direct (𝑠 = 0) or the 𝑔indirect (𝑠 = 1)
to predict such a slowly-changing white light. Meanwhile,
the IDE with a large 𝜌 will also produce a low-frequency
directional encoding for this case.

A.4 Stabilization loss
As shown in Fig. 25, the initialization of the neural SDF follows [Atz-
mon and Lipman 2020]. We follow NeuS [Wang et al. 2021b] to use
a background NeRF to render the background of the image, which
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is actually a NeRF++ [Zhang et al. 2020] and should be referred to
NeuS [Wang et al. 2021b] for more details. However, the imbalanced
convergence speed between the shading color of the neural SDF
and the background color provided by the background NeRF will
cause the training process to collapse. If the convergence speed of
the foreground shading color is faster, then the surface tends to
enlarge to exceed the bounding sphere. Otherwise, it would shrink
and eventually disappear. Both cases lead to the failure of training.
To avoid these, we prevent the zero-level set from expanding outside
the bounding sphere or shrinking to disappear by a stabilization loss
ℓstable. Note that the bounding sphere is normalized to a unit sphere
at the origin. We first sample some points 𝑆1 = {p ∈ R3 |∥p∥ < 0.02}
and 𝑆1 = {p ∈ R3 |∥p∥ > 0.98} in the bounding sphere. Then, we
penalize the SDF values of these sample points to get close to 0 in the
first 1000 steps. We find that such a stabilization loss is essential for
a correct convergence of NeuS [Wang et al. 2021b] and our method
on these challenging reflective objects.

A.5 Network architectures and implementation details
Architectures. We illustrate the architectures of all MLPs and im-
plementation details in the following and more detailed structures
can be referred to the codes at https://github.com/liuyuan-pal/NeRO.
Same as NeuS [Wang et al. 2021b], 𝑔sdf uses a positional encoding
with a frequency of 6 as inputs and contains 8 linear layers with
the channel number of 256 and a skip connection on the 4th layer.
The output of 𝑔sdf is an SDF value and a 256-dim feature vector.
The 256-dim feature vector is fed into 𝑔material with 4 linear layers
of 256 channels to output roughness, metalness, and albedo. Both
the direct light MLP 𝑔direct and indirect light MLP 𝑔indirect use the
spherical harmonics directional encoding up to degree 5. The oc-
clusion prob MLP 𝑔occ and the indirect light MLP 𝑔indirect both use
the positional encoding of frequency 8. 𝑔occ, 𝑔direct, and 𝑔indirect all
contain 4 layers with a width of 256. The 2D NeRF built on the XoY
plane of the camera system also contains 4 layers with a width of
256. In Stage II, we use a base feature extraction network with the
same structure as the 𝑔sdf but use a higher positional encoding of 8
to extract 256-dim feature vectors. All other MLPs (𝑔direct, 𝑔indirect
and 𝑔material) in Stage II have the same structures as Stage I. We
summarize the trainable components for both stages in Table 7.
Training details. We train all MLPs in Stage II from scratch. All
activation functions in MLPs are ReLUs and we follow NeuS [Wang
et al. 2021b] to add weight normalization on all linear weights except
the SDF MLP. The final activation for the 𝑔material is Sigmoid to get
values in [0, 1] while the final activation function for 𝑔direct and
𝑔indirect is the exponential function to get light radiance in [0,∞).
We apply the standard gamma correction to get colors in the sRGB
space before computing the rendering loss. On all objects except
the bunny object, we freeze the variance used in the computation of
opacity density for the first 15k steps for better convergence. On the
bunny object, we find such a freezing operation will make the SDF
unable to reconstruct the hole between the legs of the bunny. The
weights used in the loss computation are 𝜆eikonal = 0.1, 𝜆occ = 1.0,
𝜆smooth = 0.05 and 𝜆light = 0.1 for all experiments.

Object Bear Bunny Coral Maneki Vase

Image Num. 97 129 126 128 128
Table 6. Image numbers of each object in the Glossy-Real dataset.

𝑔sdf 𝑔material 𝑔direct 𝑔indirect 𝑔occ 𝑔camera

Stage I ✓ ✓ ✓ ✓ ✓ ✓
Stage II ✓ ✓ ✓ ✓

Table 7. Trainable components in Stage I and Stage II.

Ref-NeRF NeuS NeuS-Large Ours

Model size 5.2M 5.3M 8.7M 7.7M
Chamfer distance↓ 0.0169 0.0212 0.0200 0.0038

Table 8. Model sizes and average CDs on “Bell” and “Cat” of Ref-
NeRF [Verbin et al. 2022], NeuS [Wang et al. 2021b] and our method. “NeuS-
Large” means that we use a deeper and wider color network for NeuS to
make the model larger.

A.6 Dataset statistics
The Glossy-Blender dataset contains 128 training images for each
object, which are uniformly distributed on the upper hemisphere. In
order to evaluate the NVS quality, we additionally render 8 evenly-
distributed test images to compute the metrics of PSNR, SSIM, and
LPIPS. Both training and test images have a resolution of 800×800.
The number of images for each object in the Glossy-Real dataset
is shown in Table 6. All images have a resolution of 1024×768 and
are used for training because our target is shape and material recon-
struction.

A.7 Model size
In this section, we compare the model sizes of NeRO with Ref-
NeRF [Verbin et al. 2022] and NeuS [Wang et al. 2021b] in Table 8.
NeRO uses the same networks as NeuS to model SDF and back-
ground. The network of NeRO is slightly larger due to the decompo-
sition of the color function into materials and lighting. We further
try to increase the width and the depth of the color network of NeuS
to get an ∼8M model called “NeuS-Large”. However, even with large
model size, NeuS-Large is still unable to correctly reconstruct the
reflective surfaces and shows similar results to the original NeuS
model.

A.8 Relighting results in SSIM/LPIPS
We provide the evaluation of relighting quality on the Glossy-
Blender dataset in terms of SSIM [Wang et al. 2004] and LPIPS [Zhang
et al. 2018] in Table 10 and Table 9 respectively. On both metrics,
we observe similar results to PSNR where our method outperforms
the baselines by a significant margin on these reflective objects.
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NDR NDRMC MII NeILF Ours

Bell 0.913 0.903 0.882 0.916 0.965
Cat 0.901 0.907 0.889 0.921 0.962

Teapot 0.844 0.899 0.884 0.918 0.977
Potion 0.824 0.858 0.885 0.903 0.950
TBell 0.739 0.883 0.870 0.897 0.968
Angel 0.864 0.865 0.867 0.889 0.911
Horse 0.930 0.935 0.893 0.945 0.954
Luyu 0.854 0.859 0.850 0.877 0.914

Avg. 0.859 0.889 0.878 0.908 0.950
Table 9. SSIM↑ of NDR [Munkberg et al. 2022], NDRMC [Hasselgren et al.
2022], MII [Zhang et al. 2022b], NeILF [Yao et al. 2022] and our method on
the Glossy-Blender dataset.

NDR NDRMC MII NeILF Ours

Bell 0.0989 0.1180 0.1477 0.1056 0.0557
Cat 0.1104 0.1150 0.1437 0.0737 0.0523

Teapot 0.1385 0.1207 0.1373 0.0980 0.0283
Potion 0.2062 0.2027 0.1723 0.1443 0.0843
TBell 0.2632 0.1703 0.2117 0.1407 0.0460
Angel 0.1066 0.1213 0.1183 0.0940 0.0790
Horse 0.0492 0.0530 0.0723 0.0457 0.0403
Luyu 0.1085 0.1080 0.1300 0.0960 0.0723

Avg. 0.1352 0.1261 0.1417 0.0996 0.0573
Table 10. LPIPS↓ of NDR [Munkberg et al. 2022], NDRMC [Hasselgren et al.
2022], MII [Zhang et al. 2022b], NeILF [Yao et al. 2022] and our method on
the Glossy-Blender dataset.

NeuS Ref-NeRF Ours

PSNR↑ 27.80 27.86 29.73
SSIM↑ 0.875 0.878 0.904
LPIPS↓ 0.365 0.375 0.324

Table 11. NVS quality of NeuS [Wang et al. 2021b] and Ref-NeRF [Verbin
et al. 2022] on the Glossy-Blender dataset with PSNR, SSIM and LPIPS.

A.9 Novel-view synthesis quality
To show the quality of novel view synthesis (NVS), we additionally
render 8 novel-view images on the Glossy-Blender dataset and re-
port the NVS quality on these images in Table 11 in terms of PSNR,
SSIM, and LPIPS.

A.10 Results on less- or non-reflective objects
NeRO is also able to reconstruct less or non-reflective objects, which
we demonstrate from three aspects. First, we show the reconstruc-
tion results on three less reflective objects in Fig 26, where we
capture ∼100 images with a resolution of 1024×768 on each object
and recover the camera poses by COLMAP. Second, we show that
NeRO can simultaneously reconstruct reflective and non-reflective

scan24 scan37 scan110 scan114 scan118 scan122

NeuS 1.00 1.37 1.20 0.35 0.49 0.54
Ours 1.10 1.13 1.14 0.39 0.52 0.57

Table 12. CDs↓ on the DTU dataset.

Description Angel Bell Cat Teapot Avg.

Only indirect lights 0.0037 0.0043 0.0210 0.0064 0.0089
Ref-NeRF+NeuS 0.0038 0.0062 0.0219 0.0064 0.0096
Ours 0.0034 0.0032 0.0044 0.0037 0.0037

Table 13. Comparison with the direct combination of Ref-NeRF and NeuS
in terms of CD.

objects in Fig. 27, where we capture ∼200 images for each set of
objects. Finally, we further evaluate NeRO on the DTU dataset. Since
NeRO assumes a static light environment and the DTU dataset con-
tains images with inconsistent light environments and shadows,
we manually remove images with inconsistent light environments
for training. The quantitative and qualitative results are shown in
Table 12 and Fig. 28.

A.11 Direct combination of Ref-NeRF with NeuS
To improve the reflective color fitting of NeuS [Wang et al. 2021b],
an alternative solution is to combine the color function of Ref-
NeRF [Verbin et al. 2022] with the neural SDF of NeuS. This combi-
nation leads to a model similar to Model 2 of Table 4 in the geometry
ablation study, both of which predict specular lights from a PE and
an IDE. The differences are that Ref-NeRF does not consider the
integral of material 𝑀material in Eq. 7 and that Ref-NeRF directly
predicts the diffuse color from an MLP while Model 2 relies the IDE
on the normal direction (Eq. 8 and Eq. 11) to compute diffuse color.
We report the CDs of this model in Table 13, which are comparable
to Model 2 and worse than NeRO. The qualitative results of this
combination model are shown in Fig. 29.

A.12 Copyrights
The Glossy-Blender dataset is created from the models listed in
Table 14. On some objects, we modified their appearances and ge-
ometry to make the dataset. All the HDR images used in relighting
or rendering are downloaded from https://polyhaven.com under the
CC0 license.
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Fig. 26. Reconstruction results on less reflective objects.

Fig. 27. Reconstruction results on both reflective and non-reflective objects.

Fig. 28. Qualitative reconstruction results on the DTU dataset.

Fig. 29. Reconstructed surfaces of directly combining Ref-NeRF [Verbin
et al. 2022] with NeuS [Wang et al. 2021b].

Model Creator License Link

Bell jQueary CC BY 4.0 here
Cat Suushimi CC BY-NC 4.0 here

Teapot Martin Newell N/A here
Luyu romullus CC BY-SA 4.0 here
TBell gla_bot CC BY 4.0 here
Horse halimi13744 CC BY 4.0 here
Potion Blender3D CC BY 4.0 here
Angel SebastianSosnowski CC BY 4.0 here

Table 14. Copyrights of all models used in the Glossy-Blender dataset.

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: May 2023.

https://sketchfab.com/3d-models/bell-897bc8230df54a1cad474492771880d8
https://sketchfab.com/3d-models/cat-70a23788ef984a7a9a1c9a9fe6d5a651
https://en.wikipedia.org/wiki/Utah_teapot
https://sketchfab.com/3d-models/lu-yu-figurine-derivative-caa5a93fa0fe4d39ad8fc391f3a4d574
https://sketchfab.com/3d-models/table-bell-77f2ea17b4c84fe1a8d2aec02caa9de3
https://sketchfab.com/3d-models/horse-2287485aa2e54f87854b0472444c5930
https://sketchfab.com/3d-models/basic-bottle-b2d9a692c15e4ad980c384fe2d6a8f8c
https://sketchfab.com/3d-models/angel-brass-version-1ed059cb4976440f9a595621949428f8
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(a) Ground-truth (b) COLMAP (c) Ref-NeRF (d) NDRMC∗ (e) NeuS (f) Ours

Fig. 30. Ground-truth and reconstructed surfaces of the Glossy-Blender dataset. We compare our results with COLMAP [Schönberger et al. 2016],
Ref-NeRF [Verbin et al. 2022], NDRMC [Hasselgren et al. 2022], and NeuS [Wang et al. 2021b]. ∗NDRMC [Hasselgren et al. 2022] is trained with ground-truth
object masks while the other methods do not use object masks. The supplementary video contains more qualitative results.
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(a) Ground-truth (b) NDR (c) NDRMC (d) MII (e) NeILF (f) Ours

Fig. 31. Relighting objects in the Glossy-Blender dataset. We compare our method with NDR [Munkberg et al. 2022], NDRMC [Hasselgren et al. 2022],
MII [Zhang et al. 2022b] and NeILF [Yao et al. 2022]. Note that all relighted images are normalized to match the average colors of the ground-truth images.
The supplementary video contains more qualitative results.
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(a) Image (b) NDR (c) NDRMC (d) MII (e) NeILF (f) Ours

Fig. 32. Relighting objects from the Glossy-Real dataset. We provide a visual comparison with NDR [Munkberg et al. 2022], NDRMC [Hasselgren et al.
2022], MII [Zhang et al. 2022b], and NeILF [Yao et al. 2022]. We provide the input image with the nearest viewpoint and the relighting HDR map as a reference.
The supplementary video contains more qualitative results.
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Image0 Image1 Geometry Relighting0 Relighting1 Relighting2

Fig. 33. Reconstruction results on other real objects. The supplementary video contains more qualitative results.
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