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Fig. 1. A deployable structure built from a multistable elastic knot. The two center images show di�erent orientations of the same 3D equilibrium state.

We present an algorithmic approach to discover, study, and design multi-

stable elastic knots. Elastic knots are physical realizations of closed curves

embedded in 3-space. When endowed with the material thickness and bend-

ing resistance of a physical wire, these knots settle into equilibrium states

that balance the forces induced by elastic deformation and self-contacts of

the wire. In general, elastic knots can have many distinct equilibrium states,

i.e. they are multistable mechanical systems. We propose a computational

pipeline that combines randomized spatial sampling and physics simulation

to e�ciently �nd stable equilibrium states of elastic knots. Leveraging results

from knot theory, we run our pipeline on thousands of di�erent topological

knot types to create an extensive data set of multistable knots. By applying

a series of �lters to this data, we discover new transformable knots with

interesting geometric and physical properties. A further analysis across

knot types reveals geometric and topological patterns, yielding constructive

principles that generalize beyond the currently tabulated knot types. We

show how multistable elastic knots can be used to design novel deployable

structures and engaging recreational puzzles. Several physical prototypes at

di�erent scales highlight these applications and validate our simulation.
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1 INTRODUCTION

Knots are a fundamental concept in mathematics and physics. As

mathematical objects, knots are mainly studied as topological equiv-

alence classes of embeddings of a circle into 3D space [Adams 2004].

As physical objects, knots can be classi�ed into two main categories:

tight knots and loose knots. Tight knots, commonly used in medi-

cal sutures, climbing, or boating, leverage friction to block sliding.

Their geometric con�gurations alter the mechanical properties of

the rope in which they are tied, such as its tensile strength [Stasiak

et al. 1999].

On the other hand, one can tie a knot in a thin elastic rod or wire,

and join its ends to form a loose knot (Figure 1). The resulting elastic

knot will relax into a con�guration that minimizes its elastic energy

subject to topology-preserving non-interpenetration constraints.

Despite the simplicity of the material system, even a single knot

can exhibit a surprising variety of geometrically distinct equilib-

rium shapes. In other words, loose elastic knots are multistable (see

Figure 2 and Figure 8).

Multistability is a fundamental mechanical principle with wide-

spread applications ranging from simple bottle caps or light switches

to energy harvesting [Kim and Kim 2012], medical devices [Roetter

et al. 2009], morphing structures [Zhang et al. 2021], and repro-

grammable mechanical metamaterials [Chen et al. 2021].

, Vol. 1, No. 1, Article . Publication date: May 2023.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


2 • Michele Vidulis, Yingying Ren, Julian Pane�a, Eitan Grinspun, and Mark Pauly

0.4 0.5 1.00.90.80.70.6

Elastic Energy

(normalized)

Physical Models

Simulated Models

Fig. 2. Even the figure-eight knot (41), one of the simplest knots with only four crossings, exhibits many geometrically distinct equilibria. To our knowledge,

only the three le�most states with lower elastic energy have been reported in the literature.

Here, we present a study of multistable elastic knots with two or

more equilibrium states. These stable knot embeddings can be con-

tinuously transformed into each other without changing topology,

but are separated by energy barriers. In general, we cannot hope

to �nd such local minima analytically in a complex energy land-

scape that is de�ned by the elasticity of the wire and self-contact

constraints. Thus, we turn to numerical optimization.

Contributions. We present several technical innovations to build

a computational pipeline for the discovery and exploration of mul-

tistable elastic knots. Speci�cally, we apply a geometric sampling

scheme for topological knots, implement a robust simulationmethod,

and design �lters and interactive tools for analyzing the space of

elastic knots. We apply our method to

• create and publicly disseminate an extensive data set of mul-

tistable knots,

• perform an analysis of this dataset to identify geometrical

and topological patterns in the space of elastic knots,

• report previously undocumented stable states of elastic knots,

revealing their high degree of multistability, and

• introduce new deployable structures and a new class of recre-

ational puzzles.

We validate our approach with several physical prototypes that

consistently exhibit the multistability predicted by the simulation.

Code and data for this paper can be found at https://go.ep�.ch/knots.

2 RELATED WORK

Our computational pipeline for multistable knots is a speci�c in-

stance of the problem of exploring complex energy landscapes. We

brie�y discuss related methods in this general domain before re-

viewing previous research that links more directly to our approach.

Speci�cally, our method builds upon prior work on (i) sampling

closed curves, (ii) studying properties of elastic knots in a theoreti-

cal framework, and (iii) modeling and simulating physical knots.

Exploring complex energy landscapes. Finding multiple local mini-

mizers of a high-dimensional, nonlinear, and non-convex objective

function is relevant for a wide range of problems such as protein

structure prediction [Liwo et al. 1999], optimal object arrangement

[Pintér 2002], and network optimization [Guisewite 1995]. Typically,

these local minima are found as byproducts of a global optimization

algorithm seeking a global minimizer. Global optimization is com-

putationally hard apart from special cases (e.g., convex problems),

and a systematic, deterministic search of high-dimensional energy

landscapes is thwarted by the curse of dimensionality. Therefore,

many global optimization algorithms combine local optimization

with random sampling. Existing methods include stochastic tun-

neling [Wenzel and Hamacher 1999], parallel tempering [Earl and

Deem 2005] and genetic algorithms [Zbigniew 1996]. We cannot

easily apply the meta-heuristics proposed in these algorithms to our

simulation, however, due to the challenging topological constraints.

Moreover, we are interested not only in global constrained minimiz-

ers of elastic energy (i.e., the equilibria of lowest energy), but also

the numerous other stable equilibrium con�gurations that a knot

can assume.

Sampling closed curves. As we represent our knots as discrete

curves, we aim to sample the �nite-dimensional space of closed 3D

polygons with = vertices. Many approaches have been proposed to

sample random polygons. Examples include ordered sets of points

on the unit sphere (2 [Even-Zohar 2017], equilateral curves in R3

[Cantarella and Shonkwiler 2016], and planar 4-valent bicolored

graphs [Liang and Mislow 1994]. Unfortunately, no e�cient algo-

rithm is known for determining whether two given closed curves are

topologically equivalent [Hass 1998]. This would be needed to iden-

tify which equilibrium con�gurations reached from these randomly

sampled curves are stable states of the same elastic knot. To address

this issue, several Markov chain algorithms have been proposed to

sample curves of �xed knot topology. These methods start from a

valid embedding of known knot type, and then iteratively modify

, Vol. 1, No. 1, Article . Publication date: May 2023.

https://go.epfl.ch/knots


Computational Exploration of Multistable Elastic Knots • 3

this embedding while preserving its topology [Alvarado et al. 2011].

E�cient implementations of these algorithms exist for polygons on

the cubic lattice Z3 [Quake 1995; Rensburg and Whittington 1991]

and serve as a basis for our work (see Section 5).

Elastic knots. The study of physical knots is often based on energy

functionals de�ned on closed 3D curves [Strzelecki and von der

Mosel 2017]. Such functionals can capture physical properties of the

material with which the knots are tied, such as their electrostatic

charge [Fukuhara 1988], self-repulsion [O’Hara 2003], ropelength

[Cantarella et al. 2002; Gonzalez and Maddocks 1999], or elastic

energy [Bartels and Reiter 2020; Langer and Singer 1984].

A widely studied problem in the context of knot energies is the

computation of canonical shapes of knots [Buck and Orlo� 1993].

The canonical embedding is identi�ed with the global energy mini-

mizer, subject to topological non-penetration constraints.

Langer and Singer [1985] show how self-contact points are funda-

mental for the emergence of non-trivial geometries in closed elastic

rods. The authors prove that, when considering only bending en-

ergy, a closed knotted wire cannot rest in stable equilibrium without

points of self-contact. Contact-free equilibria have been documented

in simple open knots tied into paper strips, for certain displacements

and rotations of the elastic ribbon’s ends [Moulton et al. 2018].

Elastic knots are often studied by means of energy functionals

that model elasticity and self-repulsion. The energy-minimizing

con�gurations have been computed numerically, e.g. by gradient

descent [Bartels and Reiter 2021], or even analytically for some

speci�c basic knot types under an assumption of vanishing wire

thickness [Diao et al. 2021; Gerlach et al. 2017].

Several works report the existence of multiple stable states for

speci�c simple elastic knots [Avvakumov and Sossinsky 2014; Bar-

tels and Reiter 2021; Gilsbach et al. 2021]; see also Figure 2. Similar

conclusions about multi-stability were obtained using models based

on purely geometric deformations of polygonal curves [Buck and

Rawdon 2004; Gallotti and Pierre-Louis 2007], as well as the more

accurate Kirchho� rod theory [Furrer et al. 2000], which describes

the behavior of elastic rods that can bend and twist [Jawed et al.

2018]. Explicit solutions have been derived for intrinsically straight

Kirchho� rods in the absence of self-contact points [Swigon et al.

1998]. In the case of knotted rods with self-contacts, analytical so-

lutions are only known for rings [Coleman and Swigon 2000] and

torus knots [Coleman and Swigon 2004]. Multiple con�gurations

satisfying the equations are shown to exist for the same physical

rod. The di�culty in generalizing these results to more complex

topologies, barring simple cases with regular geometries [Audoly

et al. 2007; Clauvelin et al. 2009], is that the location of contact

points cannot be assumed a priori.

Knot simulation. In mechanical engineering, numerical simula-

tions of elastic rods are commonly based on Finite Element dis-

cretizations of the smooth equations [Durville 2012; Johanns et al.

2021; Meier et al. 2014]. In computer graphics, alternative models

have been proposed, including STRANDS [Pai 2002], Super-Helices

[Bertails et al. 2006], and CORDE [Spillmann and Teschner 2007],

based on Cosserat’s rod theory [Soler et al. 2018], and Discrete Elas-

tic Rods [Bergou et al. 2010, 2008], which discretizes Kirchho�’s

theory. The key idea of these models is to represent a rod with a

reduced set of variables using a framed curve that separates the en-

coding of the centerline from the orientation of the cross-section. In

particular, CORDE has been used to simulate tight knots [Spillmann

and Teschner 2008]. To avoid self-penetrations, contact forces are

computed at each time step to recover a collision-free con�guration.

Alternative solutions involve the discretization of self-repulsive knot

energies [Bartels and Reiter 2020, 2021], which, if properly tuned,

penalize close-to-singular con�gurations. Bartels and colleagues

developed KNOTEVOLVE, a numerical optimization framework to

simulate self-repelling con�ned curves. The software is publicly

accessible through a web interface1. Despite being very e�ective for

knot untangling [Yu et al. 2021], globally-de�ned repulsive energies

are not well suited to model local phenomena such as self-contacts,

since interaction forces are non-zero even between points that are

distant in space. Moreover, large displacements can potentially lead

to missed collisions, causing topology changes in the simulated

structure. Some recent works address this challenge by combining

collision detection with smooth, local contact energy terms that

ramp up as edges penetrate each other [Choi et al. 2021; Li et al. 2020,

2021]. Continuous-time collision detection [Wang et al. 2021] can be

used in these frameworks to compute admissible, collision-free step

sizes to guarantee topology preservation.

Jumping knots. In the early 1980s, Langer introduced interesting

geometric puzzles based on elastic knots that have been an inspi-

ration for our work [Gardner 1983]. The elastic wires, coined as

jumping knots by Langer, automatically deploy into unique 3D equi-

librium states when removed from a �at envelope (Figure 11). The

goal of these puzzles is then to �t the knot back into the envelope

by manually �nding the deformation from the 3D state into a multi-

covered circle. We use our computational pipeline to discover new

jumping knots in the style of Langer. We also generalize the concept

of jumping knots and propose new types of knot-based puzzles as

discussed in Section 8.

3 MATHEMATICAL KNOTS

We �rst introduce some basic concepts and terminology of math-

ematical knots relevant to our work. Knot theory is a branch of

topology that studies knots as mathematical entities [Adams 2004].

1

2

5

4

6 3

DT Code:  [4, 6, 2]

A knot is an embedding of the topolog-

ical circle (1 in 3D space. A knot type

is the equivalence class generated by

an ambient isotopy relation, i.e. the set

of all closed curves that can be con-

tinuously deformed into each other

without self-intersections. The knot di-

agram of a closed curve is any 2D pro-

jection that is injective away from a

�nite number of crossings where two

segments of the projected curve inter-

sect transversely. Knot diagrams en-

code the topological structure of the

curve by indicating which of the two

strands passes over the other at each

crossing (see inset).

1https://aam.uni-freiburg.de/agba/forschung/knotevolve/
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Fig. 3. Overview of our computational pipeline. For a given knot type, we sample random embeddings as initial states for our elastic rod simulation that

optimizes the curve geometry towards a local minimum of the elastic energy. Clustering and filtering tools then facilitate analysis and exploration.

Knot Tables. Knot types have been classi�ed in tables that contain

di�erent ways of encoding their topological structure. These tables

commonly provide additional information on symmetry types, chi-

rality, and other numerical or polynomial invariants, i.e. quantities

that have the same value for topologically equivalent curves.

The �rst classi�cation of knots as topological objects is due to Tait

[1884]. To sort knots by complexity, Tait used the crossing number,

i.e. the minimum number of crossings across all possible knot dia-

grams of a certain knot type. His table enumerated more than one

hundred knots with up to ten crossings. We refer to tabulated knots

using Alexander–Briggs notation G~ , where G denotes the crossing

number and ~ is an arbitrary index. For example, the �gure-eight

knot of Figure 2 is denoted by 41. A letter (a or n) in the subscript

indicates whether a knot is alternating or not [Adams 2004], but

this distinction is not relevant for our purposes.

Research to extend Tait’s work is still ongoing. The most recent

tabulation considers all knot types with up to nineteen crossings, re-

sulting in more than 350 million topologically distinct knots [Burton

2020]. The KnotInfo database [2022] collects a variety of information

about all the knot types up to twelve crossings.

Encoding Knot Types. The Dowker-Thistlethwaite (DT) notation

is a way of encoding a knot type by means of a sequence of integer

numbers. Given an oriented knot diagram, the corresponding DT

code can be computed by tracing along the knot curve and labeling

visited crossings (see inset above). Conversely, from a given DT code

we can reconstruct a knot diagram, which can in turn be converted

to a 3D curve [Scharein 1998]. A complete de�nition of the DT

notation can be found in Appendix A. We employ DT codes to

construct knots in our pipeline as discussed in Section 5.

Among the many possible alternative representations of knot

types, we mention closed braids [Alexander 1923], as they have

an intuitive geometric interpretation and allow easy generation of

multi-covered circle embeddings. We apply the braid representation

in the design of knot puzzles as discussed in Section 8.

4 OVERVIEW

Our central goal is to discover and explore multistable behavior in

elastic knots. For this purpose, we propose a computational pipeline

summarized in Figure 3. Given a topological knot type, we �rst

create a 3D embedding of the corresponding centerline curve based

on an input DT code. We then sample new embeddings by apply-

ing a series of topology-preserving transformations (Section 5). For

each embedded curve, we construct an elastic rod with appropriate

physical properties, straight rest shape, and circular cross-section.

We then minimize the elastic potential energy of the rod to �nd an

equilibrium state, while preserving the knot topology using contact

modeling and continuous collision detection (Section 6). Sampling

and simulation provide us with a large set of (not necessarily dis-

tinct) equilibrium states for a given knot type. To facilitate analysis

and exploration, we introduce a hierarchical clustering scheme to

group knot embeddings based on a geometric similaritymeasure and

present a series of �lters to extract the most relevant knot embed-

dings for speci�c design objectives (Section 7). We run our pipeline

on a large class of tabulated knots and perform an analysis of equi-

librium states across knot types. To the best of our knowledge, this

is the �rst documented attempt of providing a large-scale overview

of the shapes attainable by knotted elastic wire in equilibrium. The

results of this analysis as well as several application examples are

discussed in Section 8.

5 SAMPLING KNOT EMBEDDINGS

Given a knot type, we use its DT code to construct a geometric

embedding. We then manipulate this initial curve using a series of

random, topology-preserving operations on a cubic lattice to create

new embeddings of the same knot type (see Figure 4).

Sampling a knot on the cubic lattice. Knot embeddings on the cubic

lattice Z3 are constrained to have vertices at integer coordinates and

edges connecting adjacent grid locations. To sample a knot on the

lattice, we �rst generate a polygonal embedding from the DT code

using KnotPlot2 [Scharein 1998]. The embedding is then re�ned and

rounded onto the lattice. To ensure that rounding does not alter the

knot topology, we scale the polygonal curve so that the minimum

distance between any two nodes is large enough to prevent rounding

two nonadjacent nodes to the same lattice location. We apply 100

iterations of the repulsive curves algorithm [Yu et al. 2021] prior to

this scaling to increase the minimum distance and hence reduce the

required scaling factor.

2https://www.knotplot.com
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Fig. 4. Sampling random embeddings of a given knot type. The DT code is transformed into an initial polygon which is rounded to integer coordinates with

guarantee of topology preservation. On the cubic la�ice Z3, the BFACF algorithm performs a random series of local, topology-preserving modifications to the

knot geometry that produce a set of distinct embeddings.

Random self-avoiding walks. Given a polygon on the cubic lattice,

we generate a set of geometrically distinct embeddings of the given

knot type by applying random sampling. Speci�cally, we use the

BFACF algorithm traditionally employed in the study of particle

physics [Berg and Foerster 1981] and knotted polymers [Quake

1995]. This approach applies three di�erent types of local modi�-

cations on the lattice, indicated by the roman numerals I, II, and

III as shown in Figure 4. These moves are attempted iteratively by

choosing random locations on the curve. Since the curve is sampled

on the cubic lattice, it can be easily determined if a move alters

the knot topology. A move is applied, and the curve con�guration

is updated accordingly, only if the knot topology is preserved. An

implementation of the BFACF algorithm is available in KnotPlot

[Scharein 1998].

The above sampling algorithm has ergodicity classes that corre-

spond to knot types [Rensburg and Whittington 1991]. This means

that any two cubic lattice polygons with the same knot type can be

transformed into each other using only the moves of BFACF.

Since the computed lattice curves will serve as initialization for

the equilibrium simulation described below, we need to ensure an

adequate curve resolution. Too few vertices can lead to convergence

issues in contact handling due to large kinks in the curves, while

too many vertices diminish performance. We empirically found

= = 400 vertices to give a su�ciently �ne discretization to faithfully

model curvature in all knot types with up to 12 crossings. For more

complex knots, a higher sampling rate might be necessary.

To reach the desired curve resolution, we introduce bias in the

BFACF algorithm by adapting the probabilities of applying type

I, II, and III moves. Following [Scharein et al. 2009], we sample

moves in two cycles. First, we bias the algorithm towards more

of the length-increasing type II moves. We stop when the number

of nodes equals 10=. Then, we increase the relative probability of

length-decreasing type I moves and continue the random walk until

the curve has exactly = nodes. The probabilities of each of the moves

are controlled by a single adjustable parameter as discussed in detail

by Madras and Slade [1996].

6 SIMULATION

The result of applying our sampling algorithm is a set of random

curve embeddings of a given knot type on the cubic lattice. These

curves, when interpreted as the centerlines of elastic wires, are far

from stable equilibria. We thus propose a simulation method that

optimizes each curve towards a local minimum of elastic energy

under non-interpenetration constraints to preserve knot topology.

In contrast to prior work [Coleman and Swigon 2000, 2004], we

make no assumptions on the number, location, or geometry of con-

tact regions. Moreover we employ contact energy terms that more

faithfully model physical collisions compared to the global repulsive

interactions typical of classical knot energies [Bartels and Reiter

2021; Rawdon and Simon 2006; Yu et al. 2021].

Our implementation uses the discrete elastic rod model [Bergou

et al. 2010, 2008]. The centerline curve of the discrete knotted wire is

represented by a closed polyline with = nodes. In order to represent

the orientation of the cross-section at each point along the rod

and measure twist, a material frame angle variable \ 9 is introduced

for each edge 0 f 9 < =; this angle speci�es the rotation of the

cross-section around the edge tangent (relative to an orthonormal

reference frame that is maintained adapted to the edge tangent via

parallel transport). The total energy �rod (x, ā ) of a discrete elastic

rod accounts for bending, twisting, and stretching deformations,

where x ∈ R=×3 collects the node positions x8 , and ā ∈ R=+1 collects

the material frame angle variables along with an additional angle Θ.

The scalar variableΘ represents the twist injected before connect-

ing the two ends. When this variable is left free in the optimization,

the rod is allowed to untwist and relax into an equilibrium con-

�guration with zero twisting energy. However, by �xing Θ to a

prescribed value, we are able to assign the link of the (discrete)

framed curve, a topological invariant that is preserved during the

simulation (see Appendix C for more details). Accounting for link is

important when considering deformations of a knot from one state

into another. A typical example is our application to knot puzzles

discussed in Section 8. More details on our implementation of closed

rods are provided in the supplemental material.

Contact Handling. Reliably computing stable states of an elas-

tic knot requires robust handling of self-contacts. Speci�cally, we

need to guarantee preservation of the polyline topology during

optimization.

We adopt the variational approach proposed by Li and colleagues

[2020; 2021], which achieves these goals by introducing a smooth

potential energy to model contact forces and employing continuous-

time collision detection [Wang et al. 2021]. Equilibrium states can

then be found by minimizing a total potential energy de�ned as

the sum of the elastic energy of the wire and a barrier term �contact
penalizing interpenetrations:

{x∗, ā ∗} = argmin
x,ā

�rod (x, ā ) + l�contact (x). (1)
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Fig. 5. Pairwise similarity for some equilibria of knot 61. The Hausdor�

distance shown at the top has di�iculties distinguishing between the pairs of

states 1-2 and 3-4, which are geometrically close, but have distinctly di�erent

contact pa�erns. Our correlation-based measure more easily separates these

embeddings.

The scalar weightl ∈ R balances the relative contribution of elastic

energy and contact energy. Rather than using the publicly available

C-IPC code, which simulates rods with contact but does not model

twisting, we opted to combine our full discrete elastic rod imple-

mentation described above with the IPC Toolkit [Ferguson et al.

2020]. We refer to prior works ([Bergou et al. 2010, 2008; Li et al.

2020, 2021]) for more details on these energy terms.

Numerical Solver. We optimize Equation (1) using amodi�ed New-

ton solver based on the code from [Panetta et al. 2019]. To account

for rigid motions and global twisting of the isotropic cross-section,

which if left unconstrained result in a singular total potential energy

Hessian � = ∇2�rod + l∇
2�contact, we add a tiny multiple of the

identity before attempting to compute a Cholesky factorization. By

shifting all eigenvalues up by a small amount, this modi�cation

essentially eliminates rigid motion from the Newton step and, more

importantly, ensures a positive de�nite matrix in neighborhoods of

stable equilibria. This strategy achieved signi�cantly faster conver-

gence than other alternatives we tried using variable pin constraints

(both local ones based on constraining the orientation of a single

edge and more global ones appropriately �xing displacement com-

ponents of distant vertices). The shift magnitude is chosen as n_min,

where n is a user-de�ned parameter (�xed at n = 10−4 in our ex-

periments), and _min is the minimum nonzero eigenvalue of ∇2�rod
evaluated on the simulated wire in a straight con�guration. If the

Cholesky factorization of the shifted Hessian fails, it implies � was

inde�nite (rather than positive semide�nite) and a further shift is

applied to the spectrum to make it positive de�nite.

We note that the sparsity pattern of ∇2�contact changes whenever

the contact constraint set changes (while the sparsity pattern of

∇2�rod is �xed); for best performance, we detect these changes

and recompute the symbolic factorization only in this case. Our

threshold for convergence is based on the gradient norm and a

requirement that � be positive semide�nite (to rule out unstable

equilibria).

7 EXPLORATION

Launching our simulation from hundreds of randomly sampled

embeddings (see Section 7.4) yields a large number of numerical

solutions to the equilibrium problem. To facilitate interactive ex-

ploration of the dataset, it is helpful to group geometrically similar

embeddings—for instance, those corresponding to the same physical

equilibrium state. We note that even when the numerical solutions

do approximate the same equilibrium, they deviate from each other

for several reasons: (1) the physical equilibrium is not unique, as

any global rotation or cyclic reparametrization of one equilibrium

centerline produces another; (2) the minimization problem is solved

only to a �nite level of accuracy, meaning each numerical solution

lies in a neighborhood of states also satisfying the convergence crite-

rion; and (3) the energy landscape of our discrete model can contain

spurious nearby local minima that for certain applications should

be considered to be in the same equivalence class. We therefore

propose an interactively tunable clustering method to achieve this

grouping. By adjusting a single sensitivity parameter, the user can

browse through a hierarchical arrangement of equilibrium states

to visually identify the most relevant embeddings. These embed-

dings can additionally be sorted and �ltered according to di�erent

geometric or physical attributes.

7.1 Similarity measure

Our clustering involves making pairwise comparisons between any

two equilibrium centerlines of a given knot type. In our exploration

pipeline, this comparison must be performed millions of times, mak-

ing direct measures of geometric similarity between two space

curves, such as Hausdor� or Fréchet distances, computationally

prohibitive [Alt and Godau 1995]. We instead compute the similar-

ity of two knot embeddings from di�erential signatures based on

curvature ^ and torsion g of the centerline curves.

For our polygonal curves, we de�ne discrete curvature ^8 as the

turning angle between the edges meeting at node 8 divided by the

Voronoi area of that node (the average incident edge length). We

de�ne discrete torsion g 9 as the angle between the binormal vectors

of the endpoint nodes of edge 9 divided by the length of that edge.

Binormals are computed from the cross product of the two incident

edge vectors [Carroll et al. 2014]. From this de�nition, it is apparent

that discrete torsion becomes numerically unstable as curvature

approaches zero, i.e. when consecutive edge vectors align. Indeed,

the torsion of a continuous curve can blow up in the neighborhood

of in�ection points [Hord 1972]. This is problematic since in�ection

points are common in our knots (see Figure 8) and the resulting

extreme, mesh-dependent peaks in the discrete torsion function will

dominate the similarity metric. We address this issue by multiplying

the torsion pro�le with the corresponding curvature value (which

vanishes at the problematic points) to eliminate the singularity and

obtain a well-behaved torsion measure. In other words, we consider

the two pro�les  = [^1, . . . , ^=] and ) = [^1ḡ1, . . . , ^=ḡ=], where

ḡ8 =
1

2
(g8−1 + g8 ) is the averaged torsion of the two edges adjacent

to node 8 .

Our similarity measure is based on the discrete cross-correlation

of the pro�les ( 1,)1) and ( 2,)2) of two knot embeddings. Specif-

ically, for two discrete curvature signature vectors  1,  2 ∈ R= , we
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distance = 1 - similarity
1.0

0.6

0.4

0.2

0.8

knot index

1.0

0.6

0.4

0.2

0.8

0.0

similarity matrix

Fig. 6. Hierarchical clustering for knot 77. Equilibrium states are progres-

sively merged according to the pairwise similarities shown in the matrix

plot. The sca�er plot on the le� has been created from the similarity matrix

via multi-dimensional scaling. Depending on the user-selected threshold,

geometrically distinct, but similar embeddings can be grouped into the same

equivalence class. For example, the currently separated red and orange clus-

ters will merge into one cluster as the distance threshold is increased.

compute a normalized discrete cross-correlation

( 1 ★ 2) [B] :=
 1 · roll( 2, B)

∥ 1∥ ∥ 2∥
,

where roll( 2, B) [8] :=  2 [(8 + B) mod =] cyclically permutes

a vector. We then calculate a normalized curvature-torsion cross-

correlation)1★)2 analogously and compute the normalized similar-

ity measure as maxB [( 1 ★ 2) [B]]+ [()1 ★)2) [B]]+ ∈ [0, 1], where

[·]+ := max(·, 0) clamps negative values to zero (to prevent the

signs of two negative correlations from canceling). We e�ciently

evaluate the cross-correlation using a discrete Fast Fourier Trans-

form [Proakis and Manolakis 2006].

As illustrated in Figure 5, our similarity measure can distinguish

between geometrically close embeddings that have di�erent self-

contact patterns. This is important, for example, in the design of

knot puzzles as discussed in Section 8.3.

Symmetries. Our similarity metric is designed to be invariant

under rigid motions and cyclic reparametrizations. When desired,

we can in addition account for re�ective symmetry and reversal

of curve orientation, which de�ne states of equal potential energy.

Whether these states are topologically equivalent to the originals

depends on the knot type. Some knots are known to be chiral: an

oriented curve with chiral knot type is not ambient-isotopic to its

mirror image, nor to a copy with reversed orientation [Kodama

and Sakuma 1992]. Orientation reversal can be accounted for in

our similarity measure by also computing convolutions of the curve

signatures in addition to correlations. Mirroring corresponds to

Energy DiameterSphericity

Low

High

Attribute

Value

Fig. 7. Filtering sorts embeddings according to di�erent physical and geo-

metric a�ributes. Total elastic energy (le�) increases with the square of

curvature. Sphericity (center) measures closeness to a sphere, here illus-

trated with three orthogonal shadow projections to be�er convey the 3D

shape. Diameter (right) measures the maximum distance between any two

points in the curve. The two embeddings in each column have the same

topology. From le� to right the knot types are 95, 935, and 11a,57.

inverting the sign of torsion. We then take the maximum of all these

measures to de�ne the �nal similarity score.

7.2 Hierarchical Clustering

Clustering supports interactive exploration by grouping geometri-

cally similar equilibrium states to reduce visual complexity. We use

agglomerative (i.e. bottom-up) hierarchical clustering. Given the

pairwise similarities of all polygonal knot embeddings, we compute

a tree diagram by iteratively merging data points and clusters that

are most similar. To measure the distance between two clusters

in the process, we use the complete linkage method, which takes

the maximum distance between elements in the two groups, and

tends to result in compact clusters [Everitt et al. 2011]. The distance

values for each merge are recorded. These values can then be used

to support interactive exploration by manually selecting a cutting

threshold as illustrated in Figure 6. For low values of the threshold,

di�erent datapoints form clusters on their own. As the threshold is

increased, geometrically similar states merge, facilitating the identi-

�cation of recurrent geometries.

The same hierarchical clustering technique is used to adaptively

estimate the number of initial embeddings to sample for each knot

type, as explained in Section 8.

7.3 Filtering

We have observed that elastic knots exhibit a surprisingly large

number of equilibrium states with diverse properties (Figure 8). To

support analysis, we propose a series of �lters that allow sorting

equilibrium states according to di�erent physical and geometric

quantities. These �lters facilitate the discovery of knots with speci�c

properties, such as the deployable structures and knot puzzles we
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2 543

Fig. 8. Elastic knots show a great variety of equilibrium shapes. We show a subset of the equilibria of the knot 81 sorted by increasing elastic energy from le�

to right and top to bo�om. While some of these states appear geometrically identical, our similarity measure can distinguish di�erences in contact pa�ern as

illustrated in the zooms. Only one of these equilibria has a distinctly 3D shape (bo�om le�).

present in Section 8. Below we list �lters that we have applied

in our exploration so far. Additional �lters can be designed and

incorporated into our analysis framework as needed for speci�c

applications.

Physical Attributes.

• Energy quanti�es the elastic energy �rod, giving some in-

dication of how di�cult it is to deform the knot into this

equilibrium state.

• Sti�ness is measured as the smallest positive eigenvalue of

the full simulation energy Hessian � .

• Maximum Stress induced by bending assesses the potential

for material failure. It is computed for a rod with Young’s

modulus � and circular cross-section radius A as fmax =

A�max8 ∥(^b)8 ∥, where (^b)8 is the discrete curvature binor-

mal of the discrete elastic rods model [Bergou et al. 2008]

evaluated at node 8 .

Geometric Attributes.

• Curvature indicates the total curvature of the centerline+
|^ |3B , measured as

�
8 ^8 for our polygonal curves.

• 3D-ness is de�ned as the aspect ratio of the oriented bound-

ing box of the knot centerline (the shortest box edge length

divided by the longest).

• Sphericity measures the distance to a sphere as the standard

deviation of the distance of node positions x8 from the knot

centroid.

• Diameter is de�ned as the maximum distance between any

two points on the curve.

Figure 7 illustrates some of these �lters, which can be applied in

any combination. For example, to extract equilibria that are close to

multi-covered circles, we �rst sort according to high sphericity and

then according to low 3D-ness. As we discuss in detail in Section 8,

we can also apply �lters across di�erent knot types to extract knots

with speci�c characteristics from our data set.

7.4 Dataset of Elastic Knot Equilibrium States

We ran our pipeline on all the knots available from the KnotInfo knot

table [Livingston and Moore 2022] to build a data set of elastic knots

for all 2,977 knot types with up to 12 crossings. We also sampled

more complex knot types, but did not yet perform a comprehensive

computation of the latest knot table that contains more than 350

million knot types [Burton 2020] and would thus require trillions

of sampling computations and billions of simulations.

The boundary conditions imposed at this stage allow the ends of

the rod to rotate, resulting in twist-free equilibrium con�gurations.

This enables the framed curves we sample in this exploratory phase

to be fully recovered from the centerline polygon alone. If desired,

the value of the link can be computed using Călugăreanu’s relation

Lk = Tw + Wr [Călugăreanu 1961], where twist Tw = 0, and writhe

Wr depends on the centerline but not on the framing. See Appendix

C for more details on how these quantities are computed.

In our pipeline, sampling initial embeddings has a negligible

computational cost. Rather, the cost is dominated by the simulation

phase, with balanced cost contributions from solving for the Newton

descent direction and line search backtracking to a feasible collision-

free step. This motivates our use of adaptive sampling to selectively

reduce the costs of simulation.
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In particular, we �rst compute 50 initial states for each knot type

and simulate their relaxation. We continue to progressively sample

more cubic lattice embeddings in batches of 10. Every sampling cycle,

we evaluate the information contained in the batch by computing

an importance score ( . The de�nition of ( is based on the geometric

similarity of the new equilibria with all the previously computed

con�gurations, weighted by the energy of the new states. The score

takes values in [0, 1], where 1 indicates strong evidence that an

additional sampling cycle could generate yet unknown equilibria

with relatively low elastic energy. Sampling only continues if ( > 0.1.

We stop sampling when amaximum bound of 500 samples is reached.

Please refer to our supplemental material for more details on how

the score is computed, and an evaluation of the robustness of these

sampling heuristics.

All the simulations were performed on a Linux workstation with

a 64-Core AMD Ryzen Threadripper 3990X Processor and 128GB of

RAM using 14.8h of total compute time. We simulated the equilib-

rium states for 416,980 random cubic lattice samples, across all the

2,977 knot types up to 12 crossings. The adaptive sampling gener-

ated a median value of 90 samples per knot type. For 95% of knot

types, our sampling criterion truncated the sampling process. The

remaining 5% of knot types, for which the sampling process was

stopped at 500 samples, remain candidates for further exploration.

Overall, adaptive sampling provided a 70% reduction in compute

time compared to sampling 500 states for all knot types.

The full data set as well as the source code of our implementation

can be found at https://go.ep�.ch/knots.

8 RESULTS

Figure 8 gives an indication of the geometric richness of the equilib-

rium states of knotted wires. Since the geometry of these knots is

best appreciated in a 3D viewer, we encourage the reader to explore

our supplemental material, where 3D models of our computed knot

equilibria can be found.

We have built physical prototypes from aluminum poles of 8.5mm

diameter (Figure 1) and superelastic nitinol wire of 1mm diameter

(Figures 2, 12, 14). As illustrated in Figures 2 and 12, our physical

prototypes match the simulated predictions well.

8.1 Limitations

Before presenting our analysis and application examples, we com-

ment on some limitations of our approach.

Most fundamentally, our randomized sampling approach cannot

guarantee an exhaustive search of equilibrium states for a given knot

type. Moreover, we have no systematic way of deciding whether

nearby solutions of the discrete minimization of Equation (1) as

obtained by our numerical (hence approximate) method, corre-

spond to a single local energy minimizer of the smooth, inequality-

constrained formulation; samples of a level set that locally minimizes

the energy; or samples of distinct equilibrium states separated by

small energy barriers. As a consequence, we cannot make precise

statements about the number of distinct equilibrium states of any

given knot type. In fact, for our simulationmodel, this number might

be in�nite for vanishing wire thickness if no upper bound on the

elastic energy is imposed.

2795 Non-BB knots

182 BB knots

4 4 4

4 4 4

4 4 3

2

2222

222 2

2

+
ÿ
^ dB

2c 1A (� )

Fig. 9. Curvature analysis. The histogram accumulates for each knot type

the equilibrium state with smallest total curvature normalized by Milnor’s

minimal bound. Knots with bridge index equal to braid index (BB knots)

assume Milnor’s bound in multi-covered circle embeddings (orange). The

zoom shows one outlier in the histogram that has a slightly higher total

curvature. For this specific knot topology and our chosen wire length to

diameter ratio, no ’flat’ multi-covered circle exists in our data set. The next

set of knots close to Milnor’s bound is shown in light blue. At the other end

of the spectrum are 2-bridge knots that do not exhibit any embedding close

to Milnor’s bound (dark blue). Numbers show the bridge index 1A (� ) .

In our current data set, the ratio of wire length to wire diameter

is �xed at 1,000. While we found that the geometry of equilibrium

states does not change drastically with small changes of this ratio,

some equilibrium states can disappear as the ratio decreases.

We currently do not model friction at the self-contact regions.

This simpli�cation misses some forces acting on the wire, but avoids

reporting potentially unstable equilibria that only occur because of

friction. In that sense, our method is conservative and only reports

states that are stable even without additional friction forces.

8.2 Analysis

In general, we observe that loose elastic knots exhibit numerous ge-

ometrically distinct equilibrium states (see Figures 2 and 8). While

many of these states have high elastic energy and might not be

, Vol. 1, No. 1, Article . Publication date: May 2023.

https://go.epfl.ch/knots


10 • Michele Vidulis, Yingying Ren, Julian Pane�a, Eitan Grinspun, and Mark Pauly

12
n,225

12
n,26

12
n,499

12
n,85

12
n,7

12
n,226

12
n,73

12
n,617

12
n,223

12
n,206

11
n,152

12
n,161

12
n,227

Fig. 10. Cross-topology analysis. For the query knot shown on the le�, we

extract other knot types with geometrically similar embeddings from our

data set.

relevant for most practical applications, this wealth of stable equi-

libria o�ers fascinating possibilities to create complex multistable

structures with as simple a process as knotting a wire.

To our surprise, we found that for all knots we studied in detail,

a signi�cant majority of the observed elastic equilibria are approxi-

mately planar. This seems counterintuitive: Since the elastic energy

is largely dominated by bending, it might appear natural that the

wire would assume a 3D state to reduce the overall curvature. To

better understand the behavior of elastic knots, we take a closer

look at the curvature of our equilibrium states.

Milnor’s bound. Milnor proved one of the fundamental results for

geometric knots that relates the total curvature of the embedding

to the topology of the knot [Milnor 1950]. For any embedded closed

curve � , Milnor showed that the total curvature is bounded from

below. More precisely,
∫

ÿ
Ą (ĩ)dĩ > 2ÿĘĨ (ÿ), where Ą (ĩ) measures

curvature and ĘĨ (ÿ) is the bridge index ofÿ , a topological invariant

de�ned in Appendix B. Blair et al. [2020] tabulated ĘĨ (ÿ) for knots

with up to 14 crossings.

In Figure 9, we compare for each knot type the smallest total

curvature of its equilibrium centerlines against the lower bound

provided by Milnor’s theorem. Our analysis shows that this bound is

(approximately3) reached only for multi-covered circle embeddings

of knots that have a bridge index equal to their braid index (BB

knots, see Appendix B for detailed de�nitions) as predicted in [Diao

et al. 2021]. We note that the lowest-curvature embeddings of all BB

knots appear in our data set, which provides some evidence that our

sampling is e�ective at recovering at least the low-energy equilibria

of each knot type.

For the remaining knots, we observe that knots close to the

minimal-curvature bound exhibit geometric commonalities in a

few distinct shapes. 3D knots appear as intertwined arrangements

of three circles (see also Figure 15). All other knots in this set are ap-

proximately planar and feature pretzel-like sub-components. These

geometric features lead to low overall curvature as the large arcs

compensate for the high curvature of the smaller arcs.

3We set a small threshold when �ltering with respect to curvature to account for wire
thickness. The true bound is only reached in the limit of vanishing wire thickness.

4
1

9
40

9
46

physical model of 9
46

envelope

Fig. 11. Langer proposed three di�erent jumping knots that self-deploy

from planar, multi-covered circle states. The goal of the puzzle is to fit the

3D state knots back into the envelope.

On the other hand, the knot types with large distance to Milnor’s

bound also share interesting geometric features, particularly the

occurrence of several tight loops. Topologically, these are all knots

with two bridges, where a bridge is a subarc of a knot diagram that

contains only over-crossings [Adams 2004]. The existence of tight

loops is consistent with a phenomenon known as braid localization

[Gallotti and Pierre-Louis 2007].

Cross-topology analysis. Figure 8 illustrates how we can apply

clustering and �ltering to study the geometric embeddings of dif-

ferent equilibrium states of the same knot type. Conversely, our

analysis tools also allow discovering patterns across di�erent knot

topologies. In Figure 10 we select a speci�c knot embedding and

search the database for similar geometries. To reduce the search

complexity, we �rst �lter according to geometric attributes. Among

this pre-�ltered set, we �nd the most similar embeddings using

ICP alignment [Rusinkiewicz and Levoy 2001]. Such a set of knots

exhibit geometrically similar stable states but have di�erent topol-

ogy and di�erent self-contact patterns, and consequently, di�erent

mechanical behavior. A potential application could be metamaterial

design. A “knitted” network of these knots could be tuned for a spe-

ci�c mechanical behavior by optimizing the distribution of di�erent

knot types across the network pattern.

8.3 Elastic Knot Puzzles

In this section, we show how our knot exploration algorithms can

be used to design knot puzzles. The challenge in these puzzles is to

manually deform a given equilibrium state into a di�erent stable (or

unstable) state.

Jumping Knots. For the special case of Langer’s jumping knots

shown in Figure 11, the goal is “to return this exuberant creature

to its �at package, by collapsing it into a circular coil.” 4 Using our

exploration framework, we have created new Langer-style puzzles

shown in Figure 12. Please also see the accompanying video to better

appreciate the jumping dynamics.

To �nd such jumping knots, we �rst use our �ltering method

to discover knot types with interesting 3D states. Next we need

to determine if the knot “jumps,” i.e. can deploy automatically to

such a 3D equilibrium from a planar, unstable multi-covered-circle

state. For this purpose, we make use of the braid representation for

knots [Adams 2004]. Braids represent a set of intertwined strands

and are closely related to knots. In particular, a fundamental result in

4Quoted from the original packaging of Langer’s knots.
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Fig. 12. Our new jumping knots. Top row: Knots with three orthogonal

shadow views to give a sense of their 3D equilibrium shapes. Middle rows:

Physical models and corresponding views of the simulated embeddings.

Bo�om row: Themulti-covered circle state stores significant potential energy

that is released when the knot jumps to assume its 3D equilibrium state.

knot theory states that every knot can be represented as a closed braid

[Alexander 1923]. A ġ-strands braid can be compactly encoded in a

braid word of arbitrary length containing 2(ġ − 1) distinct symbols.

Braid representations of knot types up to 12 crossings have been

computed [Gittings 2004].

Given the braid representation of a knot type, we compute an

initial embedding that approximates a multi-covered circle as illus-

trated in Figure 13 (see also [Scharein 1998]). We then apply our

simulation algorithm while imposing a planarity constraint that

keeps the knot curve sandwiched between two proximate parallel

planes. In this way, the curve relaxes into a minimal-energy multi-

covered-circle state. We check that this state is not in equilibrium

after releasing the planarity constraint, running our simulation to

predict whether the knot deploys towards the 3D target state. How-

ever, since our simulation neither accounts for dynamics nor friction,

we have to validate this prediction with physical models.

braid word: [-1, 2, -3, 4, -1, 2, -3, -1, 2, 4, -3, 4]

Fig. 13. The braid word encodes the over/under relation of the crossings of

braided strands that can be closed along a cylindrical embedding to form a

knot. Here we show a multi-covered circle initialization for the knot 12a,1019,

one of our new jumping knots.

One subtlety in the design of transformable knots is that we need

to ensure that the states we are interested in have the same link.

This is required since the physical connection of the two wire ends

does not allow the knot to untwist during deformation. We use

the Călugăreanu-White-Fuller theorem that states that link (Ĉġ)

is equal to the sum of twist (Đĭ ) and writhe (ēĨ ) for a closed

smooth curve [Călugăreanu 1961]. To compute the writhe of our

discrete polygonal embeddings, we employ the method of [Klenin

and Langowski 2000]. In our simulation, we �rst measure the writhe

of the desired 3D stateēĨtarget, and then set the twist of the initial

braid þ so that Ĉġþ = Đĭþ +ēĨþ =ēĨtarget. This computational

exploration uncovered many more jumping knots than Langer’s

originals. Figure 12 shows only a few representatives that we have

fabricated to con�rm the jumping behavior. To our knowledge, these

have not been documented before.

General Knot Puzzles. We can generalize Langer’s puzzles to knots

with multiple stable states. The goal is then to �nd the deformation

between any two or more of these states. Figure 14 shows two of

our puzzle designs. In general, we found the manual transformation

of multistable knots engaging and satisfying. Our computational

pipeline allows designing a multitude of such puzzles, but their e�ec-

tiveness as a puzzle and di�culty level would need to be evaluated

more systematically in a user study.

Since the physical connection blocks twisting, we restrict the

search of candidate states to knots with the same writhe (twist is

always zero for the knots of our dataset) to ensure that a deformation

path exists between any two simulated states of a knot. The physical

prototypes are then built in one of the �at con�gurations that match

the chosen value of the writhe. The eventual excess twist is released

by letting one of the ends of the wire rotate freely before connecting

it to the opposite one. This procedure allows to match the link of

the physical and simulated puzzles.

8.4 Generalization

Visual inspection of similar knots can reveal constructive principles

that can potentially be generalized. Speci�cally, we aim to create

geometrically similar stable knots that exceed the complexity of

existing knot tables.

In Figure 15, we observe that the embeddings retrieved from our

database are all composed of three circular parts that are linked

through a variable number of crossings at their touching regions.

We can easily adapt the number of these crossings separately at each
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Knot 7
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Knot 9
47

Fig. 14. Physical knot puzzles designed with our approach. Finding the

deformation that transforms one equilibrium state to another is not trivial.

Top: A relatively easy puzzle with one 3D state. Bo�om: A di�icult puzzle

with two geometrically close, but structurally distinct embeddings (compare

with the simulated equilibrium states in Figure 6). The two puzzles’ link

values are -3 and 1, respectively.

of the three touching regions through direct edits, and then run our

simulation to validate that these newly constructed knots indeed

settle into a geometrically similar equilibrium. These new knots

exceed 12 crossings and therefore were not present in our database

of equilibrium shapes. We do not currently have an e�ective tool

to determine their precise crossing number nor their knot type. In

fact, these knots might not yet be classi�ed in any existing table.

Periodic braids. When analyzing two of the simplest 3D knots,

41 and 940, we observed that their braid representations are pe-

riodic. This property can be generalized as shown in Figure 16,

again extending beyond the knots in our database. Interestingly, the

observed topological pattern also manifests itself in geometric sym-

metry of the knots’ equilibrium states. The bottom row of Figure 16

shows a view along the main symmetry axis. We observe how the

crossing patterns form two regular Ħ-gons, one at the top and one

at the bottom of each embedding. For odd Ħ , these Ħ-gons align,

while for even Ħ they are rotated relative to each other by an angle

of ÿ/Ħ . We initialized our simulation for these knots from multi-

covered circle embeddings obtained from the generalized braid word

representations, as illustrated in Figure 13.

Kozlov [2013] proposed a similar procedural approach to generate

cyclic knots that he coined NODUS structures. While the speci�c

knot types he presents di�er from the ones in Figure 16, it is con-

ceivable that both classes of knots can be de�ned by some uni�ed

symmetry-based generative procedure.
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Fig. 15. Constructive generalization. The knots in the top right are retrieved

from our database by searching for embeddings close to the 3D state of

knot 935 that is composed of three intertwined circles. Generalizing this

pa�ern allows us to design knots with similar geometry that go beyond the

12-crossing knots currently in our data set (bo�om row).

8.5 Future Work

We have shown some examples of how our interactive knot explo-

ration framework facilitates analysis, generalization, and design of

multistable elastic knots. However, we believe that we have only

scratched the surface. We expect that other topological and geomet-

ric patterns can still be mined from our data set, and that additional

computations or extensions to our method can yield richer data sets

in the future.

For example, our data set was computed for an elastic wire with

a straight rest shape, constant circular cross-section and uniform

material properties. These geometric and material parameters a�ect

not only a knot’s equilibrium shape, but also its mechanical behavior.

Varying these parameters is supported by our framework and could

o�er more �exibility for design at the expense of additional compu-

tation and data analysis. A quantitative analysis of the deformation

of elastic knots under load also will be interesting future work.

Our simulation algorithm allows discovering distinct knot equi-

libria, but we currently do not have the means to �nd the transition

between such states, nor quantify the energy barrier separating

them. A promising avenue for future work is designing computa-

tional methods for �nding minimum energy paths in con�guration

space between any two stable states [Vaucher and Reiher 2018],

which could help answer many interesting questions related to

multistable knots and deployable structures in general.

We can easily extend our simulation algorithm to handle links,

i.e. intertwined combinations of several knots. How to e�ectively

design or explore such networks o�ers numerous avenues for future

research. Finally, it would be interesting to combine knotted elas-

tic rods with other deformable elements. For example, multistable

, Vol. 1, No. 1, Article . Publication date: May 2023.



Computational Exploration of Multistable Elastic Knots • 13

[1, -2, 1, -2]  [1, -2, 3, 1, -2, 3, 1, -2, 3] General Rule: [1, -2, 3, -4, ...,  p, ...]

p=2 p=3 p=4 p=5 p=6

p times

-+

4
1

9
40

Fig. 16. The knots 41 (first column) and 940 (second column) have periodic braid words that can be generalized towards more complex knot types outside our

knot data set. For each level of periodicity Ħ , the top and bo�om rows show two di�erent views of the same 3D embedding, which has been computed from a

multi-covered circle initialization. All knots have the same wire thickness. The length of each wire is set proportional to Ħ .

elastic knots coupled with fabrics o�er new design opportunities

for deployable structures such as self-erecting tents.

9 CONCLUSION

We presented a computational pipeline for discovering and studying

multistable elastic knots. Our analysis o�ers new insights into the

rich space of elastic knots, reveals a surprising abundance of multi-

stable states that have not been documented before, and facilitates

the design of new deployable structures and recreational puzzles.

Our algorithms o�er versatile tools for the study of elastic knots

as well as more complex compound systems of interlinked knots.

This opens up a wide space for future exploration and provides

many opportunities for the design of advanced transformable struc-

tures or metamaterials with unique mechanical properties. Public

dissemination of our data set and source code will help facilitate

these future explorations.
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A DOWKER-THISTLETHWAITE NOTATION
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DT Code: 

[4, 8, -12, 2, 14, -6, 16, 10]

The Dowker-Thistlethwaite (DT) no-

tation uses a sequence of integers to

encode the topological structure of a

knot type. A DT sequence, or code, can

be derived from a knot diagram with ę

crossings as a sequence of signed inte-

gers whose absolute value is an even

number from 2 to 2ę . Given a knot di-

agram, the DT code can be computed

by picking an arbitrary starting point

and direction, and then label crossings

in order of traversal. A negative sign

is used to indicate that the strand with

even label passes over at the crossing.

At the end of the traversal, each cross-

ing has an even and an odd label. The

DT code is obtained by sorting the signed integers according to the

associated odd labels 1, 3, . . . , 2ę − 1. A diagram of knot 821 and the

corresponding DT code can be seen in the inset. Given a DT code, a

2D projection of the corresponding knot type can be reconstructed

up to re�ections. For detailed examples of DT code computation

and knot reconstruction from DT code we refer to [Adams 2004].

A reconstructed knot diagram can be embedded in 3D as discussed

e.g. in [Scharein 1998].

B BRIDGE AND BRAID INDEX

Given a knot diagram, a bridge is a subarc that includes only over-

crossings. The bridge number of the knot diagram is the least num-

ber of disjoint bridges that contain all over-crossings. The bridge

index of a knot typeć is the minimum bridge number across all knot

diagrams of type ć . Equivalently, the bridge index can be de�ned as

the minimal number of local maxima along a given direction across

all the knot embeddings of type ć [Adams 2004].

A braid can be imagined as a set of intertwined strands head-

ing from left to right (see Figure 13). Alexander’s theorem [1923]

guarantees that every knot is topologically equivalent to in�nitely

many closed braids. The braid index of a knot type ć is the minimal

number of strands needed to generate a closed braid of type ć . Note

that bridge(ć) f braid(ć), as every braid can be arranged so that

each of its strands contributes to the de�nition of the bridge index

with a single local maximum.

C LINK, TWIST, AND WRITHE OF A FRAMED CURVE

Given a smooth closed curve x(ĩ) ∈ R3 parametrized by arc-length

ĩ ∈ [0, Ĉx], and a family of framing vectors d1 (ĩ) ∈ R3 such that

d1 (ĩ) § x′ (ĩ) ∀ĩ , the linking number Ĉġ of the framed curve (x, d1)

is de�ned by the Gauss double integral

Ĉġ (x, d1) =
1

4ÿ

∫ Ĉx

0

∫ Ĉx

0

(x(ĩ) − y(Ī)) · (x′ (ĩ) × y′ (Ī))

∥x(ĩ) − y(Ī)∥3
dĪ dĩ,

(2)

where y = x + Ċd1 is an o�set curve generated by displacing x in

the direction of d1, and Ċ > 0 is chosen small enough to guarantee

that x and y do not intersect.

For a closed framed curve (x, d1), Călugăreanu’s theorem [1961]

states that link (Ĉġ) can be decomposed into the sum of twist (Đĭ )

and writhe (ēĨ )

Ĉġ (x, d1) = Đĭ (x, d1) +ēĨ (x), (3)

where

Đĭ (x, d1) =
1

2ÿ

∫ Ĉx

0
d′1 (ĩ) · (x

′ (ĩ) × d1 (ĩ))dĩ, (4)

and

ēĨ (x) =
1

4ÿ

∫ Ĉx

0

∫ Ĉx

0

(x(ĩ) − x(Ī)) · (x′ (ĩ) × x′ (Ī))

∥x(ĩ) − x(Ī)∥3
dĪ dĩ . (5)

Note thatēĨ (x) only depends on the curve but not on the fram-

ing d1. For more details on the geometric interpretation of these

quantities see e.g. [O’Reilly 2017, Ch. 3].

A discrete version of eq. (3) has been applied to polygonal curves

in the context of DNA modeling [Klenin and Langowski 2000]. For

a discrete rod Ď = {(xğ , d
ğ
1)}

Ĥ−1
ğ=0 , where xğ are the nodal positions,

and dğ1 represent the �rst director of the adapted material frames

orthogonal to edge ğ , the twist can be de�ned as

Đĭ (Ď) =
1

2ÿ

Ĥ
∑

ğ=1

(Ăğ − Ăğ−1 +mğ ) =
1

2ÿ

(

Θ +

Ĥ
∑

ğ=1

mğ

)

. (6)

Here mğ is the twist of the reference frame at node ğ , see [Bergou

et al. 2010]. Note that cyclic indexing modulo Ĥ is implied for a

closed periodic rod. The writhe of Ď can be computed from eq. (5),

where the double integral reduces to a double sum over the set of

all edge pairs, and the contribution of each pair can be evaluated

exactly [Swigon et al. 1998]. The link of Ď is then given by the sum

of its twist and writhe.
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