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Fig. 1. For a vector sketch (a), our Alpha Contours method produces a 2-manifold shape tightly containing the input strokes, approximating the positive space
of the sketch (b). The resulting shapes allow us to discretize differential operators, including Laplacian and Steklov operators, enabling standard geometry
processing pipelines on vector sketches, such as functional maps (c,d).

A vector sketch is a popular and natural geometry representation depicting

a 2D shape. When viewed from afar, the disconnected vector strokes of a

sketch and the empty space around them visually merge into positive space
and negative space, respectively. Positive and negative spaces are the key

elements in the composition of a sketch and define what we perceive as the

shape. Nevertheless, the notion of positive or negative space is mathemat-

ically ambiguous: While the strokes unambiguously indicate the interior

or boundary of a 2D shape, the empty space may or may not belong to the

shape’s exterior.

For standard discrete geometry representations, such as meshes or point

clouds, some of the most robust pipelines rely on discretizations of dif-

ferential operators, such as Laplace-Beltrami. Such discretizations are not

available for vector sketches; defining them may enable numerous applica-

tions of classical methods on vector sketches. However, to do so, one needs

to define the positive space of a vector sketch, or the sketch shape.
Even though extracting this 2D sketch shape ismathematically ambiguous,

we propose a robust algorithm, Alpha Contours, constructing its conservative
estimate: a 2D shape containing all the input strokes, which lie in its interior

or on its boundary, and aligning tightly to a sketch. This allows us to define

popular differential operators on vector sketches, such as Laplacian and

Steklov operators.

We demonstrate that our construction enables robust tools for vector

sketches, such as As-Rigid-As-Possible sketch deformation and functional

maps between sketches, as well as solving partial differential equations on a

vector sketch.
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1 INTRODUCTION
Sketching is one of the core instruments of visual expression avail-

able to an artist. With the advent of tablets and the increasing

accuracy of vectorization methods [Puhachov et al. 2021], many

sketches are created or converted into vector format, where they

are composed of many disconnected vector strokes. When looked at

from afar, the separate strokes visually merge, revealing the depicted

2D geometry and the empty space around it, sometimes known as

figure-ground, or positive and negative space, respectively, in art

and perception literature (Fig. 2a) [Wagemans et al. 2012].

The positive and negative space, or dark and light respectively,

are the primary elements in the composition of a drawing [Itten

1976]. The drawn strokes together form ‘dark’, or positive space,

and the empty space between them forms ‘light’, or negative space

(Fig. 1b, positive space in blue). Some strokes outline the boundary

of that positive space shape, some strokes depict thick curves, and

some hatching strokes depict filled or textured regions, forming the

interior of the positive space [Dodson 1990; Philbrick and Kaplan

2022]. Note that by this definition, white regions are negative space,

regardless of whether they are enclosed in an object (e.g., in Fig. 1b,

the white interior of the hummingbird is a negative space).

From a geometric standpoint, sketch strokes are a depiction or a

representation of 2D geometry of the positive space. Sketch strokes

explicitly indicate the interior or boundary of the positive space,

while the empty space between the strokes ambiguously suggests

the shape’s exterior or negative space (Fig. 2b). However, this posi-

tive space or sketch shape is unknown, and the task of extracting it

from a sketch is mathematically ill-posed: it is unclear whether a
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gap between strokes is intended to belong to the positive or negative

space.

For standard discrete geometry representations, such as meshes

or point clouds, extensive research has resulted in mature and ro-

bust processing pipelines. Some of those most robust algorithms are

based on the discretization of differential operators, such as Lapla-

cian [Pinkall and Polthier 1993], Dirac [Liu et al. 2017], and Steklov

operators [Wang et al. 2018]. These operators enable numerous

exciting applications such as shape correspondence [Ovsjanikov

et al. 2012], deformation [Sorkine and Alexa 2007], skinning weights

computations [Jacobson et al. 2011], and many others. Such oper-

ators, however, are not defined on vector sketches, rendering all

these methods largely inapplicable to this popular geometry repre-

sentation. Defining such operators in a robust way may serve as a

core component in future sketch processing methods.

The key issue in defining such a differential operator is that it

requires outlining the mathematically ambiguous sketch shape, i.e.,

separating the interior of a shape from its exterior (Fig. 2). If the

2D shape were known, it would allow distinguishing points that

are intrinsically close from those that are only extrinsically close, a

necessary distinction for a shape-aware differential operator.

While extracting the 2D shape of a vector sketch is an ill-posed

task, we look for a conservative estimate: a 2D shape tightly con-
taining all the drawing strokes of the input sketch that excludes

only the non-ambiguous empty space. As a conservative estimate,

such a shape contains textural elements and small details, where the

distinction between inside and outside may be ambiguous but still

excludes clear, large enough gaps (Fig. 2c). Due to the containment,
a 2D shape allows for a definition of a differential operator (e.g., a

Laplacian) of the sketch as a restriction of the differential operator

of the corresponding shape’s manifold onto the sketch strokes. In

particular, a function over sketch strokes may be computed as a

restriction of a function over the full sketch shape. The tightness re-
quirement makes the extracted 2D shape close to the one depicted by

a sketch, such that its complement accurately captures the negative

space.

Finding such a 2D shape of a sketch, however, is a challenging

task. Sketches are, by their very nature, often created quickly and

imprecisely. They may contain overlapping, intersecting strokes

with unclear connectivity and gaps (Fig. 2b). Most importantly, the

task of distinguishing intrinsic proximity from the extrinsic one is

ill-posed: Even for a simpler subclass of vector drawings consisting

solely of roughly parallel strokes clusters (e.g., petals in Fig. 2b),

human observers sometimes disagree on whether some strokes

are intrinsically close or not [Liu et al. 2018]. This task becomes

even more challenging for general sketches (Fig. 1), since those

drawings, in addition to clusters, may contain textural elements or

small features are often difficult to parse even for human observers

(Fig. 12), impeding telling inside from outside.

However, we can observe that the connectivity of strokes is a

strong indicator of intrinsic closeness. Precisely, we note that the

boundary of the sought shape should mostly follow some of these

strokes due to the tightness requirement (Fig. 2). Note that this is

true even for high curvature points: Despite different stroke points

being close, the shape’s boundary follows the stroke without cutting

corners. The only locations where the boundary would deviate from

the drawn strokes are near stroke endpoints, where otherwise, the

boundary would separate intrinsically close strokes (Figs. 2, 6).

We leverage these observations and, inspired by the classical al-

gorithm of Alpha Shapes [Edelsbrunner et al. 1983], we propose a

novel robust algorithm to delineate a 2D shape of a vector sketch

— Alpha Contours. Controlled by a single parameter 𝛼 , our algo-

rithm robustly finds conservative estimates of 2D shapes of vector

sketches of any kind, enabling numerous novel applications of 2D

vector sketches, such as As-Rigid-As-Possible deformation [Sorkine

and Alexa 2007], correspondences between sketches via functional

maps [Ovsjanikov et al. 2012], computing eigenfunctions of popular

differential operators, or solving other partial differential equations

on sketches, such as heat equation. We validate our algorithm on a

gallery of inputs by demonstrating those applications on various

sketches (Sec. 7) and comparing it with the previous work, both

qualitatively and quantitatively (Sec. 6). We discuss the choice of the

parameter 𝛼 in Sec. 4; we suggest a simple heuristic to automatically

compute 𝛼 , which we use for all the results in the paper unless

otherwise specified.

(a) (c)(b)

Fig. 2. Positive (black) and negative (white) space are key to a composition
of a drawing (a). In sketching, artists often depict positive space via densely
sampled strokes (b), where the strokes clearly belong to the positive space,
but the empty space between them only ambiguously suggests the negative
space. Given an input vector sketch (b), we produce the sketch shape (c),
which captures the ambiguous concept of positive space, by filling in the
gaps and aligning the boundaries of the shape to the input strokes.

2 RELATED WORK
Our work builds upon progress in three areas: differential opera-

tors on discrete geometry, envelopes and cages, and vector sketch

processing. We only focus on the most relevant works.

2.1 Operators on Discrete Geometry
Geometry processing has a long history of discretizing differential

operators on various geometry representations. One of the main op-

erators of interest is the Laplace-Beltrami operator, often discretized

on a manifold mesh as the cotangent Laplacian [Pinkall and Polthier

1993]. On point clouds, classical approaches define a Laplacian via a

discrete heat kernel [Belkin et al. 2009], or via Gaussian kernels [Liu

et al. 2012]. Another practical approach is to use mesh Laplacians

on locally meshed neighborhoods [Cao et al. 2010; Clarenz et al.

2004]. Over nonmanifold meshes, including meshed point clouds,

the operator can be discretized via a ‘tufted cover’ [Sharp and Crane

2020]. On codimensional simplices, one can start by discretizing

Dirichlet energy, leading to a discretization of a Laplacian [Zhu et al.

2014].

OurAlpha Contours algorithm is designed to produce a 2-manifold

2D shape that we then triangulate and use the standard cotangent

Laplacian. We compare our construction with the state-of-the-art
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(a) (b) (c) (d)

Fig. 3. Automatic cage construction methods find a low-complexity poly-
gon containing the object (a, image from [Casti et al. 2019]) and do not
attempt tightly contain it. Having a generic vector sketch (b), stroke cluster
parameterization methods [Van Mossel et al. 2021] in conjunction with
sketch clustering methods [Liu et al. 2018] can only approximate the shape
of certain parts of the drawing (c, thick curves on the arms) and fail on the
others (c, rudimentary shading). Our automatic result (d).

point cloud Laplacian discretization [Sharp and Crane 2020] in Sec. 6.

As shown there, our construction leverages the connectivity of the

input strokes and thus can capture the sketch shape more precisely

and, therefore, the shape Laplacian.

In addition to these various discretizations of the Laplace-Beltrami

operator, previous work has considered extrinsic differential opera-

tors on discrete geometry, such as Dirac [Liu et al. 2017] and Steklov

[Wang et al. 2018] operators. We leverage a similar construction to

the one of Wang et al. [2018] to demonstrate that Alpha Contours

can be used directly to construct the Steklov operator for sketches

via the boundary element method (Sec. 5.2).

2.2 Envelopes, Bounding Hulls, and Cages
Envelopes, or Bounding Hulls. Our work is heavily rooted in com-

putational geometry and topology. Among those, we are inspired by

generalizations of Convex Hulls, in particular, a classical approach

to reconstructing 2D shapes containing a given set of points — Al-

pha Shapes [Edelsbrunner 1992; Edelsbrunner et al. 1983]. For a

given 𝛼 , Alpha Shape’s boundary is composed of segments between

points such that there is a circle of radius 𝛼 through those points

that contains no other points from the set. These segments form

closed contours, separating the inside of the alpha shape from the

outside. Note that alpha shapes are not necessarily convex; convex

hull corresponds to 𝛼 = ∞. Other generalizations of a convex hull
are concave hulls [Moreira and Santos 2007], 𝜒-hulls [Duckham

et al. 2008], 𝛼-concave hulls [Asaeedi et al. 2017], or Crust algorithm

[Amenta et al. 1998], to name a few.

In order to apply these point cloud approaches to vector sketches,

one needs to sample the sketches and ignore all the connectivity.

Depending on the parameters, loss of connectivity leads to spurious

connections between disconnected strokes or carving out too much

of the sketch shape – both unacceptable scenarios (Fig. 4). Changing

the sampling does not solve that problem (Fig. 4b,e). In contrast,

our method leverages the connectivity of a sketch to robustly sepa-

rate regions that are intrinsically far, even for a sparse sampling of

strokes; this also makes our algorithm robust to the choice of radius

𝛼 (Fig. 18). We compare our method to Alpha Shapes in detail, as

the most popular alternative (Sec. 6, Fig. 14).

Cages. A related area of research is automatic cage generation

for shape deformation [Ben-Chen et al. 2009; Casti et al. 2019; Le

and Deng 2017]; for a recent review, please refer to Casti et al.

[2019] or Nieto and Susin [2013]. In 2D context, given an input

mesh, the goal of these methods is to compute a polyline of low

complexity, or a cage, that contains the input mesh, to serve as the

animation proxy (Fig. 3a) [Sederberg and Parry 1986]. Our goals,

however, are different: We are aiming to construct a tightly aligning

shape to the input vector strokes of any complexity (Fig. 3b,d).

Automatically constructed cages often poorly align to the input

mesh and contain too much extra negative space, affecting the

precision of the differential operators.

2.3 Vector Sketch Processing
In recent years, our community has seen progress in a variety of

vector sketch processing tasks: sketch colorization [Adobe 2020;

Orzan et al. 2008], shading [Finch et al. 2011; Shao et al. 2012], style

transfer [Freeman et al. 2003], or 3D reconstruction [Bessmeltsev

et al. 2015; Gryaditskaya et al. 2020; Xu et al. 2014]. These methods

often assume a clean vector drawing with precise connectivity and

junctions. However, artists’ vector sketches are typically noisy, have

overdrawn strokes, and contain numerous inaccuracies, making

these methods inapplicable directly. Imprecise junctions and con-

nectivity can be disambiguated by the recent method of Yin et al.

[2022], but its application is limited to clean drawings.

A few methods address the problem of consolidating sketches

into clean ones [Barla et al. 2005; Grabli et al. 2004; Liu et al. 2018;

Rosin 1994]. These methods typically target a subclass of vector

drawings where strokes can be meaningfully grouped into long thin

clusters of roughly parallel strokes (e.g., Fig. 15). Such drawings typ-

ically contain little to no shading or texture, as compared to general

sketches (Figs. 1, 19). Consolidation methods are complementary

to ours: Our algorithm accepts any input vector sketch, but for a

drawing composed out of clusters, we can leverage the result of

consolidation algorithms and produce an even tighter 2D shape, as

we show in Figure 15 (Sec. 7).

A related line of work considered gap closing for vector drawings,

from the sketching systems [Adobe 2020; Asente et al. 2007; Gangnet

et al. 1994], methods detecting intended junctions for polyhedra

[Company et al. 2019; Shuxia and Suihuai 2009; Wang et al. 2020], to

recent learning-based approaches [Yin et al. 2022]. These methods

typically focus on finding closed regions to fill, and do not attempt

to find the sketch shape for a differential operator computation.

With a somewhat similar goal, a line of methods simultaneously

vectorize and consolidate raster line drawings [Bartolo et al. 2007;

Chen et al. 2018; Egiazarian et al. 2020; Favreau et al. 2016; Kim et al.

2018; Mo et al. 2021; Parakkat et al. 2021, 2018; Stanko et al. 2020;

Zhang et al. 2009]. These methods work only with raster input and

do not directly extract the sketch shape, instead producing only

stroke centerlines.

For the vector drawings made out of clusters, a recent sketch

parameterization method [Van Mossel et al. 2021] can approximate

the shape of these clusters with thin strips (Fig. 3b,c). For the stroke

clusters, the union of such strips forms a 2D shape similar to the one

we target with our algorithm. However, their algorithm does not

find the shape of fills or textural elements, nor their result contains
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(a) (b) (c) (d) (e) (f) (g)

Fig. 4. Alpha Shapes, like other point cloud–based approaches, require converting the input vector sketch (a) into a point cloud (b,e), discarding all the stroke
connectivity. This loss of connectivity often results in either spurious connections (c) or holes (d) in the reconstruction, depending on the chosen alpha value
(for (c,d,g) we use the same 𝛼 for a fair comparison, for (d) we took 60% of that value). These issues cannot be easily resolved by resampling the point cloud
(e,f). Our approach leverages the connectivity of the input strokes, alleviating these issues.

(a) (b) (c) (d) (e)

Fig. 5. Requirements for the sketch shape: (a) The shape (blue) should
contain the input strokes (black). (b) The shape should not separate strokes
that are clearly intrinsically close. (c) The shape should tightly bound the
shape, carefully cutting out the negative space. (d) The shape should be
manifold. (e) Our sketch shape.

the input strokes, and therefore, cannot be used directly as the

geometric domain (Figs. 3c, 16).

3 REQUIREMENTS AND OBSERVATIONS
Given a vector sketch, i.e., a set of vector strokes, our goal is to esti-

mate the depicted positive space, the sketch shape. We first clarify

the requirements on the shape, then outline the main observations

leading to our method.

3.1 Requirements
Following the principle that the shape must be a conservative esti-
mate that tightly contains the input strokes (Sec. 1), we now clarify

these in the following requirements, guiding all our algorithmic

choices:

(1) Containment. All the input strokes must be inside or on the

boundary of the 2D shape we reconstruct. This guarantees

that we can define our differential operators as a restriction

of the corresponding differential operator of the 2D shape

onto the sketch strokes. As a consequence, the boundary of

the shape does not intersect any of the input strokes (Fig. 5a).

(2) Conservative. Each input stroke indicates points that unam-

biguously belong to the shape; consecutive samples along a

stroke are, without a doubt, intrinsically close. The gaps be-

tween the strokes, however, might or might not belong to the

shape (Fig. 5b). Since we are targeting a conservative estimate

of a 2D shape, its boundary must not separate the strokes

that are unambiguously intrinsically close, such as strokes

of a stroke cluster, i.e., a group of parallel strokes forming a

long narrow region (e.g., each petal in Fig. 2). In other words,

we only should exclude the regions from our estimate that

are unambiguously outside the unknown 2D shape.

(3) Tightness. Since our goal is to envelop the sketch geome-

try tightly, we require our algorithm, subject to the previ-

ous requirements, to produce a shape estimate that leaves

as little empty space around the strokes as possible. In other

words, the areas that are unambiguously outside the 2D shape

must be cut out of it. For some applications of the differential

operators we discretize, tightness is crucial: For instance, a
functional map between two shapes will only provide a mean-

ingful pointwise correspondence if a 2D shape tightly aligns

with the input strokes (Fig. 5c, detailed discussion in Sec. 7).

(4) Manifold with boundary. We require the 2D shape to be a

2-manifold, i.e., to contain no codimension–0 or -1 features,

such as curves or points (Fig. 5d). For convenience, we also

assume it contains its boundary. Thismeans, in particular, that

the shape’s boundary must consist of simple closed curves

that never intersect each other of themselves.

3.2 Observations
As we are targeting a 2D shape tightly containing the input strokes,

the boundary of the sought 2D shape is necessarily supported by

some of the input strokes, only filling in the necessary gaps (Fig. 6b,

the solid blue segments). Therefore, in order to find such a shape,

we need to perform two tasks: First, complete the boundaries by

filling in the gaps between points that are intrinsically close (Fig. 6b,

the dashed segments). The input sketch, together with those extra

connections, divides the plane into faces (Fig. 8c). Here faces are
2-dimensional cells in the arrangement of curves. Second, we need
to decide which faces of this structure are inside the shape (Fig. 6,

the shaded blue shape). In particular, this decision defines for each

point of an input stroke whether it lies on the boundary or inside

the 2D shape. The union of the faces marked as ‘inside’ will then

form our 2D shape.

Both of these tasks require disambiguation of whether two points

are ‘intrinsically close’ or not. Informally, this defines whether the

space between the two points belongs to the shape: For instance,

we consider two nearby parallel strokes of a stroke cluster to be

intrinsically close, so the space between them belongs to the positive

space. Determining this, however, is mathematically ill-posed. To

disambiguate this, we leverage the following analogy.

Artistic literature and previous research [Dodson 1990; Van Mos-

sel et al. 2021] suggest that artists draw strokes within a shape they

envision, sometimes creating the strokes that outline the boundary

of the shape, sometimes drawing textural strokes or adding details
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within it — a process reminiscent of sampling points on a surface

(cf. Fig. 2a,b).

Inspired by this analogy, we can cast the problem of finding the

sketch shape as a problem of reconstruction: given the input strokes,

reconstruct the full 2D shape they were sampled from. Our approach

is to formalize the vague yet intuitive notion of ‘intrinsic closeness’

by leveraging the connectivity of the sketch and a single parameter

𝛼 > 0. Here 𝛼 is inversely proportional to the sampling density

and defines the upper bound of a gap between two ‘intrinsically

close’ strokes. This implies artists draw the boundary of the sketch

shape leaving gaps up to 𝛼 distance (Fig. 6b), and that any region

containing an empty 𝛼-ball is assumed to be outside the shape. We

refer to this observation as the sampling assumption.
If two points on different strokes are within that threshold dis-

tance, however, this does not necessarily mean they are intrinsically

close, or, equivalently, that the space between them is positive. One

example is illustrated in Fig. 4, where the little sliver at the top-left is

not intrinsically close to the ‘body’ of the letter. To determine which

points are intrinsically close, we need the following definition:

Definition 3.1. Given a closed set 𝐶 ⊂ R2
and a radius 𝛼 > 0, two

points 𝑝, 𝑞 ∈ 𝐶 are 𝛼-connected, if there is a path joining 𝑝 and 𝑞

in 𝐶 ∩ (𝐵𝛼 (𝑝) ∪ 𝐵𝛼 (𝑞)), where 𝐵𝛼 (𝑥) is a ball of radius 𝛼 at 𝑥 .

For a known sketch shape Ω, this definition with 𝐶 = Ω cap-

tures the intuition of points being intrinsically close (Fig. 7a). Points

that are clearly separated by the boundary of Ω will be considered

‘far’ from each other, or not 𝛼-connected, even if the Euclidean

distance between them is small. Note that while in that aspect 𝛼-

connectedneess is similar to an upper bound on a geodesic distance,

in general, those concepts are different: Two points at a large geo-

desic distance can be nevertheless 𝛼-connected (Fig. 7b).

We can also apply this definition to the input sketch, where we

take 𝐶 to be the union of sketch strokes 𝑆 , limiting all the paths to

only lie on the strokes. We refer to the points that are 𝛼-connected

for this choice of 𝐶 as 𝛼-connected in 𝑆 . Then like the sketch is an

approximation of the sketch shape, 𝛼-connectedness (i.e., the set of

all 𝛼-connected pairs of stroke points) over 𝑆 should ideally be the

approximation of the 𝛼-connectedness over the full shape Ω.
With this definition, we can now formalize the notion of a ‘con-

servative’ estimate of the shape. If the true sketch shape Ω is known,

then by adding all ‘missing’ 𝛼-connections to the input strokes 𝑆 , we

can guarantee that all the holes in this sketch, defined as the faces

containing an empty ball of radius 𝛼 (by the sampling assumption),

are either outside or almost completely outside Ω. Simply put, this

would mean that the union of holes accurately captures the negative

space of a sketch. More formally,

Proposition 3.1. Let 𝑆 ⊆ Ω ⊂ R2 be two closed sets. If for all
the pairs of points in 𝑆 that are 𝛼-connected in Ω, they are also 𝛼-
connected in 𝑆 , then every empty face of 𝑆 is either (1) completely
outside Ω or (2) every boundary segment of Ω contained in that face
is within 𝛼 Hausdorff distance of the boundary of the face.

The proof scheme is presented in the appendices (App. A). This

proposition suggests the following idea of the algorithm. We need

to augment the initial sketch 𝑆 with additional connections to cap-

ture all the ‘true’ (unknown) 𝛼-connections between the sketch

(a) (b)

Fig. 6. For a sketch solely composed of closed strokes, its shape’s boundary
is entirely supported by the input strokes (a). For a typical sketch with
open strokes, however, its sketch shape boundary often includes additional
connections (b, orange dashed lines).

(a) (b)

Fig. 7. Examples of 𝛼-connected and non-connected points.

points. Many points are already 𝛼-connected in 𝑆 : points along the

same stroke within the 𝛼 distance from each other or points on

two intersecting strokes connected by a path passing over the inter-

section. With respect to the (unknown) sketch shape 𝑆 ′, however,
many more points are 𝛼-connected. Therefore, our goal is to add

connections to the input sketch such that all the points that are

𝛼-connected in 𝑆 ′ are also 𝛼-connected in our structure — then we

would guarantee that we are not missing any holes of significant

radius.

However, doing so explicitly would be computationally expen-

sive, as it would require adding numerous connections between

many pairs of points. Instead, we only focus on adding such con-

nections when they can contribute to the shape’s boundary. Once

the latter is known, it defines the shape interior and thus defines

the 𝛼-connectedness for all the other points.

We first observe that away from endpoints, the boundary is en-

tirely supported by the strokes, following a stroke until an intersec-

tion point, then switching to the intersecting stroke. In the simplest

case, if a drawing is entirely composed of closed strokes and thus

contains no endpoints, its whole boundary is a subset of the strokes

(Fig. 6a). Given our assumption that strokes at a distance more than

𝛼 from each other are not intrinsically close, the boundary of such

a shape will simply consist of the unambiguous outer boundary

and the boundaries of each empty face containing an empty ball of

radius 𝛼 .

Therefore, the only source of ambiguities is, in fact, endpoints.

As the simplest solution, targeting a conservative estimate of a 2D

shape, we could connect any two points within the 𝛼-radius from

each other that are not already 𝛼-connected. However, we observe

that since some of the strokes are boundary strokes, a segment

intersecting a stroke might cross the shape’s boundary — thus,

adding it would create an incorrect 𝛼-connection, as these points
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are not necessarily 𝛼-connected in Ω. Therefore, in order to have a

tight estimate of our shape, we only consider adding connections

between an endpoint and a point on a different stroke that are (a)

within the 𝛼 distance and (b) if the segment connecting them does

not intersect any stroke (Fig. 8b, 9d). Some of those connections

complete the boundary of the shape (Fig. 6b).

3.3 Sketch Complex
To capture these observations, we define a Sketch Complex from

the input set of strokes that decomposes the plane into regions that

are faces in a 2D arrangement; we then consider all sufficiently

large faces, including the unbounded face as the exterior, and define

Sketch Shape as the complement to that (Fig. 8).

We take inspiration from the classical definition in computational

topology [Ghrist 2014]:

Definition 3.2. Given a point cloud𝑄 inR𝑛 and a length parameter

𝛼 > 0, define the Čech complex to be the simplicial complex built

on 𝑄 as follows. A 𝑘-simplex of 𝐶𝛼 is a collection of 𝑘 + 1 distinct

elements 𝑥𝑖 of 𝑄 such that the intersection of diameter 𝛼 balls at

the 𝑥𝑖 ’s is nonempty.

Since our goal is to define a decomposition of the plane rather

than capturing the discrete topology of the set of samples, we do

not aim to answer for every two samples in the sketch whether they

are intrinsically connected. Instead, we only consider connecting

endpoints to other samples, forming Sketch Complex:

Definition 3.3. Given a sketch, i.e., a set of strokes 𝑆 = {𝑠𝑖 }, 𝑖 =
1, . . . , 𝑁 , where each 𝑠𝑖 is a sequence of sample points 𝑠𝑖 = {𝑣 𝑗𝑖 }, 𝑗 =
1, . . . , 𝑛𝑖 , a Sketch Complex 𝑆𝛼 is a simplicial complex built on

𝑆 as follows. The complex 𝑆𝛼 is the collection of all the segments

connecting an endpoint 𝑣1

𝑖
or 𝑣

𝑛𝑖
𝑖

with any other sample within

𝛼-ball at the endpoint such that (1) the endpoint and the sample are

not already 𝛼-connected in 𝑆 and (2) the segment does not intersect

the input sketch 𝑆 .

For a fixed value of 𝛼 , our complex can be viewed as a subcomplex

of the Čech complex where we keep only the segments (1-simplices)

that are adjacent to at least one endpoint and satisfy the two condi-

tions above.

The Sketch Complex, together with the input strokes, define a 2D

arrangement, or decomposition of the plane into faces, including one

unbounded face (Fig. 8c). We now consider any face containing an

empty 𝛼-ball as the exterior to a sketch and define the complement

to this exterior as the sketch shape. Thus, the sketch shape includes
all smaller bounded faces that do not allow for an in-circle of radius

𝛼 , as well as some chunks of the input strokes (Fig. 5e, the single

stroke in the bottom-right).

Note that the sketch shape satisfies the containment requirement

(Sec. 3.2) by construction. We later show in Sec. 6 that our sketch

shape, with a particular choice of 𝛼 (Sec. 4.3), satisfies the require-

ments of being conservative and tight.

Note that isolated input strokes might lead to the boundary of a

shape formally touching itself, creating points where the resulting

2D shape would be non-manifold (Fig. 5e). We allow that in the

algorithm in Sec. 4, but later perform a simple post-processing step

to guarantee our resulting 2D shape is a 2-manifold with boundary.

Computing Sketch complex, however, can be computationally

expensive: Čech complexes, as well as our Sketch Complexes, can

have high complexity and thus be prohibitively expensive to store or

process. Instead, importantly, we are not interested in the complex

itself, only in the boundaries of holes with a diameter more than 𝛼 ,

so in our algorithm, we store only the segments that are not clearly

inside the sketch shape (see Sec. 4).

4 ALGORITHM
In this section, we introduce the Alpha Contours algorithm, which

takes as input a vector sketch and outputs the sketch shape, repre-

sented as a set of polygons (Fig. 8).

Sketch Preprocessing. We start by sampling each vector stroke

along its arc length parameterization with a fixed step of 0.5% of

the sketch bounding box. Our algorithm is robust with respect to

sampling size, so this choice is rather arbitrary (Sec. 6). We first

assume the single parameter 𝛼 is given as a part of the input; we

later compute it automatically in Sec. 4.3.

To start, we find all intersection points between the input strokes

and add those to the set of samples. After, we apply the following

preprocessing steps to the input strokes:

(a) We merge strokes if their endpoints are located very close to

one another, within the 10
−10

distance;

(b) We split each stroke at the samples with sharp angles (< 90°);

(c) We split strokes at their self-intersection points.

4.1 Algorithm Steps
Leveraging the observations we made (Sec. 3), conceptually, the

algorithm is rather straightforward: We create a 2D arrangement of

the input strokes with extra line segments closing the gaps. We then

find the faces in that arrangement [Chazelle et al. 1993], defining a

face as exterior if it contains an empty 𝛼-ball (Fig. 9).

The first key step is adding extra line segments to close the gaps,

each time connecting only points that are not already 𝛼-connected

over the sketch. A naïve solution would be to add all such segments

into the arrangement. While that would produce the desired Sketch

Complex, it can quickly become an efficiency bottleneck. Depending

on the sampling of the strokes and the radius 𝛼 , each endpoint

may produce a significant number of extra segments and, therefore,

intersection tests, leading to unacceptable times even for simple

drawings.

Instead, our key observation is that for a given endpoint (Fig. 10,

yellow), only a few of those line segments can affect the final sketch

shape boundary (Fig. 10, thick green line segments). Precisely, if

some of the other sampleswithin the circle are pairwise𝛼-connected,

forming “𝛼-connected component” (Fig. 10, one component of 6 sam-

ples on the top, another of 2 samples on the right), then the only

extra segments that can affect the boundary of the final shape are

the segments within each component forming the minimum and

the maximum angle with the stroke tangent (thick green): All the

intermediate segments are contained between the minimum and

maximum and contained within the 𝛼 radius of them, bounded from

all sides by input strokes or the added segments. These bounded

faces (shaded yellow) are inside the 𝛼-ball, and, therefore, by our
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(a) (b) (c) (d) (e)

Fig. 8. Algorithm Overview. Starting with an arbitrary input sketch in vector format and provided with a fixed radius 𝛼 (a), we first add segments completing
the boundaries of the sketch shape and forming Sketch Complex (b), then we find faces containing an empty 𝛼-ball each (c). We mark the rest as interior (d,
shaded blue), and post-process the final region to be 2-manifold, creating the final sketch shape (e).

(a) (b) (c) (d) (e)

Fig. 9. Given the sampled input strokes (a), the Sketch Complex is composed
of all segments between samples within 𝛼-distance such that they are not
already 𝛼-connected (b,c) and do not intersect the sketch strokes (d). For
the selected sample (e), the three allowed segments are in green, we only
add the ones depicted in bold.

Fig. 10. For a given endpoint (center, yellow), only a few line segments can
affect the sketch shape boundary (thick green segments).

definition, must belong to the interior. Hence, the intermediate seg-

ments do not affect the boundary of the shape we seek. We thus

modify the naïve algorithm: for each endpoint, we only add the seg-

ments forming the minimal and the maximal angles with the stroke

tangent for each 𝛼-connected component. In our implementation,

we further optimize it: We skip the 𝛼-connectedness test between all

the pairs of samples and only keep the segments with the minimal

and maximal angles. This gives us a performance boost with only a

minor difference in quality.

The second key step is testing whether a face of the arrangement

has an empty 𝛼-ball. As the largest empty circle within a face must

be equidistant from at least two points of the face’s boundary, the

circle’s center belongs to the face’s medial axis [Huber 2018]. There-

fore, to implement this test, for each face of the arrangement, we

find Voronoi vertices of the curvilinear Voronoi diagram of the face

boundary segments [Karavelas 2004]. These Voronoi vertices are

an approximation of the medial axis; we then test whether there

is a single Voronoi vertex at a distance 𝛼 or greater from the face

boundary. As a simple optimization, we skip faces that have an area

less that 𝜋𝛼2
, because they clearly cannot contain an empty ball of

that size.

The full pseudocode, which we dub Alpha Contours, is presented

in Alg. 1.

Data: A set of strokes 𝑆 = {𝑠𝑖 }, 𝑖 = 1, . . . , 𝑁 , where each

𝑠𝑖 = {𝑣 𝑗𝑖 }, 𝑗 = 1, . . . , 𝑛𝑖

Result: A set 𝐶 ⊂ R2
, the sketch shape

𝑆 = 𝑆 ;

for each endpoint 𝑝 in 𝑆 do
𝑆𝑒𝑔(𝑝) ← {(𝑝, 𝑣) |𝑣 ∈ 𝑆, | |𝑣 − 𝑝 | | ≤ 𝛼} ;
𝑆𝑒𝑔′ (𝑝) ← {(𝑝, 𝑣) ∈ 𝑆𝑒𝑔(𝑝) | (𝑝, 𝑣)are not 𝛼 −
connected in 𝑆, (𝑝, 𝑣) does not intersect 𝑆};
for each 𝛼-connected component 𝐷 of 𝑆𝑒𝑔′ (𝑝) do

𝑆 = 𝑆 ∪ {argmin(𝑝,𝑣) ∈𝐷𝐴𝑛𝑔𝑙𝑒 (𝑝, 𝑣)} ∪
{argmax(𝑝,𝑣) ∈𝐷𝐴𝑛𝑔𝑙𝑒 (𝑝, 𝑣)};

end
end
𝐸 ← unbounded face of 𝑆 ;

for each bounded face 𝑓 in 𝑆 do
if Area(f) > 𝜋𝛼2 then

𝑉 = 𝑉𝑜𝑟𝑜𝑛𝑜𝑖𝑉𝑒𝑟𝑡𝑖𝑐𝑒𝑠 (𝑓 );
𝑅 = max𝑣∈𝑉 𝑑𝑖𝑠𝑡 (𝑆, 𝑣);
if 𝑅 ≥ 𝛼 then

𝐸 ← 𝐸 ∪ 𝑓 ;

end
end

end
𝐶 ← R2 \ 𝐸;

Algorithm 1: Alpha Contours algorithm.

The final result, the sketch shape 𝐶 ⊂ R2
is represented as its

boundary — a set of closed curves Γ𝑖 , 𝑖 = 1, . . . , 𝑛, stored as polylines,

each marked as either ‘exterior’ or ‘interior’. Exterior contours can

be thought of separating foreground from background, while inte-

rior contours cut out holes in the objects. For example, in Fig. 8e,

the resulting sketch shape has five boundary curves in total, three

exterior and two interior ones.
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4.2 Enforcing Manifoldness
Note that the boundary of the extracted sketch shape might touch it-

self or follow along isolated strokes so that the final domain becomes

non-manifold. To alleviate this issue, we then slightly translate the

affected boundary samples in the normal direction (by a fixed step

of 𝜀 = 10
−5

of the sketch bounding box in our implementation),

thus locally inflating the domain (Figs. 8e, 11).

(a) (b) (c) (d) (e)

Fig. 11. For some input stroke configurations (a), our algorithm creates
points where the sketch shape is non-manifold (b, yellow points). To ad-
dress that, at those points, we displace the shape boundary in the normal
directions (c), yielding a 2-manifold shape (d,e).

4.3 Computing 𝛼
For some classes of drawings, the value of 𝛼 can be defined in a man-

ner consistent with human perception: For instance, for sketches

composed solely of clusters, Liu et al. [2018] use a perceptual thresh-

old of 2.1 average distance between strokes, where the average

distance is computed by shooting a perpendicular from each stroke

sample and computing the distance to its closest intersection. For

general sketches, however, there is no known threshold, and we

note that such an estimation of the average distance between strokes

might be unreliable, giving somewhat larger values. In our exper-

iments, therefore, we set it to simply twice the average distance

between strokes. We furthermore show that our method provides

meaningful results with different values of 𝛼 , allowing us to use it

in a general context. We note, however, that 𝛼 must be necessarily

larger than the largest distance between the adjacent samples along

the same stroke for the result to be meaningful.

5 DIFFERENTIAL OPERATORS
The computed sketch shape follows some samples in the input

strokes and forms a manifold shape tightly containing the input

geometry. At this point, one can use the geometric domain directly

to perform shape-aware computations on a sketch, for instance,

geodesic distances. We demonstrate the construction of two popular

discrete differential operators on this domain: the Laplace-Beltrami

operator via a triangulation of the domain’s interior and the Steklov

operator that only uses the known discretization of the boundary.

Note that those are the operators defined on the sketch shape, but

since the shape contains the input strokes entirely, each function

on the sketch strokes can be defined as a restriction of a function

over the sketch shape.

5.1 Laplacian Operator
To define the Laplace-Beltrami operator for the 2D sketch shape,

we start by triangulating the shape. We employ the Constrained

Delaunay Triangulation [Shewchuk 1996], specifying all samples of

the input strokes as vertices and constraining the edges that belong

to the boundary of the extracted shape.

We then compute the standard cotangent Laplacian of that tri-

angulation. We demonstrate some of its eigenfunctions in Fig. 12a.

In Fig. 13, we highlight the Fiedler vector, or the eigenvector cor-

responding to the second smallest eigenvalue, often used in graph

and shape partitioning.

5.2 Steklov Operator
We note that triangulating the domain’s interior, once we have

the boundary provided by the alpha contours, is not necessary to

define a differential operator. We can use the boundary only to solve

PDEs via Boundary Element Methods. In particular, in a similar

spirit to the mesh Steklov operator [Wang et al. 2018], we define the

Sketch Steklov operator to capture the shape’s extrinsic geometry

as follows.

Let us denote the extracted alpha contours as Γ𝑖 , 𝑖 = 1, . . . , 𝑛,

bounding the sketch shape Ω. We first orient the alpha contours

such that Ω is always on their left, meaning counterclockwise for

the outer contours, clockwise for the inner ones. Then the complete

boundary 𝜕Ω =
𝑛⋃
𝑖=1

Γ𝑖 = Γ can be integrated on. Using the funda-

mental solution of the flat 2D Laplacian 𝐺 (𝑥,𝑦) = 1

4𝜋
1

|𝑥−𝑦 | , we can
now define the boundary operators [LaForce 2006]:

Definition 5.1. The single layer potentialV : 𝐻−1/2 (Γ) → 𝐻1/2 (Γ)
as

[V𝜙] (𝑥) :=

∫
Γ
𝐺 (𝑥,𝑦)𝜙 (𝑦)𝑑Γ(𝑦),

where 𝐻𝑎
denotes Sobolev space of order 𝑎. Analogously, we

define

Definition 5.2. The double layer potentialK : 𝐻1/2 (Γ) → 𝐻1/2 (Γ)
as

[K𝜙] (𝑥) :=

∫
Γ

𝜕𝐺 (𝑥,𝑦)
𝜕𝑛(𝑦) 𝜙 (𝑦)𝑑Γ(𝑦).

Finally, we can define the Steklov operator that can be thought

of as a mapping between Dirichlet boundary conditions on Γ for a

harmonic function into its Neumann boundary conditions:

S = V−1 (0.5I + K) .
We discretize the single layer and double layer potentials using

constant elements [LaForce 2006]. We then directly compute the

Steklov operator via explicit matrix inverse. While one can, in prin-

ciple, use a different expression to compute the Steklov operator to

guarantee it is symmetric or compute it in a more efficient manner,

as suggested by Wang et al. [2018], we did not find it necessary for

our setup. As a demonstration, we compute the 1D Steklov operator

of the extracted shape boundaries, compute its eigenfunctions, and

interpolate them inside the domain harmonically (Fig. 12b). Pre-

cisely, having computed an eigenfunction 𝜙 (𝑥)
��
Γ we interpolate it

inside the domain Ω as follows:

𝜙 (𝑥) = [V 𝜕𝜙 (𝑥)
𝜕𝑛
] (𝑥) − [K𝜙] (𝑥),

where
𝜕𝜙 (𝑥 )
𝜕𝑛

��
Γ = [𝑆𝜙] (𝑥)

��
Γ .
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Fig. 12. Some of the eigenfunctions of the Laplacian (top) and 1D Steklov (bottom) operators of the sketch shape, restricted (top) or harmonically interpolated
(bottom) to the input sketch strokes. For this figure, we discard all the holes in the sketch shape.

Fig. 13. Fiedler vector, or the eigenvector corresponding to the second
smallest eigenvalue of the sketch Laplacian operator. Fish image ©Enrique
Rosales.

6 VALIDATION AND DISCUSSION
Up until now, we have demonstrated the results of our algorithm on

many input sketches, including the ones mostly consisting of stroke

clusters considered in previous work (Figs. 2, 8), as well as general

sketches containing many strokes beyond clusters (Figs. 3, 4), such

as shading or hatching. We demonstrate that our algorithm works

robustly on sketches both directly drawn in the vector format and

converted from raster via vectorization methods (see Supplementary

materials).

We validate the key aspects of our algorithm in a number of ways.

Conservative Estimate. We first validate that our method indeed

produces a conservative estimate of the 2D sketch shape, i.e., it does

not separate stroke samples that are perceived as adjacent. While

there is no such ground truth data for general vector sketches, we

evaluate it on sketches composed of clusters, where the previous

methods can robustly estimate such data, excluding some ambigu-

ous regions. On all our input sketches that are composed only of

stroke clusters, we run our algorithm with three radii: the automatic

value of 𝛼 , 1.25𝛼 and 2𝛼 . To measure how much our contours sepa-

rate intrinsically close samples, we first segment each sketch into

clusters using StrokeAggregator [Liu et al. 2018] and parameterize

each cluster via StrokeStrip [Van Mossel et al. 2021]. We then con-

sider all pairs of points within a cluster with the same parameter

value as intrinsically close and measure the percentage of them that

get separated by our sketch shape — in other words, if the isoline

segment containing them is not entirely inside the sketch shape.

The statistics are presented in Table 1. As seen from the table, our

algorithm indeed gives a very conservative estimate of the shape,

only separating 0.8% pairs of points on average with the default

radius 𝛼 , or 0.3% with the 1.25𝛼 . The only notable exceptions are

the bear and the snail, where the strokes are drawn very neatly, and

clusters are very tight, leading to an underestimation of the radius.

Comparing with Alpha Shapes. While our method is inspired by

Alpha Shapes, our results differ from it in a few important ways

(Fig. 14). Alpha Shapes ignore the connectivity of the input strokes,

connecting stroke samples only based on their proximity. As a re-

sult, alpha shapes typically contain either too much or too little of

the positive space of the sketch, often making the drawn shapes

unrecognizable (Fig. 14, top and bottom). Our algorithm is designed

to avoid all these issues (Fig. 14, right), always producing contours

that contain the input strokes yet have an area less than Alpha

Shapes. Our sketch shapes are precisely aligned to the input strokes,

allowing a more precise approximation of the drawn positive space.

An example of why those are important issues is Fig. 19 and its

description (Sec. 7).

Finally, compared toAlpha Shapes, our algorithm produces shapes

of significantly smaller area for the the same value of 𝛼 . On our

inputs, our extracted sketch shapes have from 8% (fox, Fig. 19) to 41%

(dancer, Fig. 15) smaller area than the corresponding alpha shapes

(23% on average), making our sketch shapes satisfy the tightness
requirement (Sec. 3.1). The full statistics on areas are presented in

the Supplementary materials.

Comparison with Amenta et al. [1998]. Another classical contour
reconstruction algorithm [Amenta et al. 1998] also ignores the stroke

connectivity, accepting only the point cloud as the input (Fig. 17).

Unfortunately, this algorithm assumes the 2D point cloud is sampled

from a 1-manifold, so it is not robust even for rather simple sketches

with overdrawn strokes. Overdrawn strokes are often used to depict

width; thus, the samples do not come from a 1-manifold but rather

a 2-dimensional region that does not have to be a manifold.

Cluster Drawings. Our algorithm can be used on any vector sketches,

including cluster drawings, i.e., drawings composed solely of stroke

clusters (Fig. 15b). For this subclass of sketches, we are complemen-

tary to prior vector consolidation work that aims to segment the

input strokes into clusters. In particular, once the clusters are com-

puted (e.g., via StrokeAggregator [Liu et al. 2018]), our algorithm

can be trivially used to outline the contour of each, then the set

union of those forms a precise shape of the sketch (Fig. 15c). Infor-

mation about the clusters makes our results more precise on this

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.



1:10 • Mariia Myronova, William Neveu, and Mikhail Bessmeltsev

kind of drawings, albeit at a performance cost: while our algorithm

takes only 1.2 seconds to compute the complete result (Fig. 15b),

StrokeAggregator takes 145 seconds on the same machine, mak-

ing the full processing time of Fig. 15c to be 146 seconds. We note,

however, that such precision is often not necessary for a variety

of applications, see Sec. 7. We compute all other results directly

without any pre-consolidation.

Comparisonwith StrokeStrip. The cluster parameterizationmethod

StrokeStrip [Van Mossel et al. 2021] can be used to fit a curve of

varying width into a stroke cluster. Theoretically, it can be used to

compute the shape of a pre-clustered drawing. While the result is

visually comparable to ours (Fig. 16), their strips do not contain the

input strokes, making them hard to use in our applications. Their

method also further slows down the performance: For the dancer

example, in addition to the 145s of StrokeAggregator necessary for

clustering the input drawing, StrokeStrip takes extra 10 seconds;

our algorithm terminates in 1.2 seconds in total.

More importantly, these algorithms fail on general sketches that

are not cluster drawings (Fig. 16d). Our method does not have that

limitation (Fig. 16e).

Robustness. Our algorithm is controlled by the single parameter

𝛼 , which we estimate automatically (Sec. 4.3) for our results, but

allows 𝛼 to be controlled by the user if desired. Changing the 𝛼 value

controls which points are considered intrinsically close; intuitively,

the higher the 𝛼 , the larger gaps are considered unintentional, and

the larger the sketch shape is (Fig. 18, top). Note that for any value

of 𝛼 , our sketch shape stays a 2D manifold aligned to the input

drawing, containing all the input strokes.

Furthermore, our algorithm is robust to the choice of initial stroke

sampling, as changing the sampling density four times leads to only

marginal differences in the result (Fig. 18, bottom).

Performance. Our algorithm is easy to implement, robust, and

efficient. We implemented it in C++ using CGAL library [Wein

et al. 2022]. On our machine (Intel ®i9 9900K 3.6GHz, 128Gb RAM),

ten of our 26 results with our alpha parameter take less than 2s

each (flower, eye, dancer, koala, hand, bear, daisy, bird, snail, and

turtle), the others usually complete in under 20 seconds. The two

exceptions are densely drawn sketches, such as the girl with a

blanket (Fig. 14, middle, 114s) and the wizard (Fig. 19, 67s). The

full performance statistics are presented in Table 2. The bottleneck

is curve-segment intersection tests, which can be further optimized.

The total time depends on the number of strokes and the overall

number of samples.

7 APPLICATIONS
Sketch Correspondences. Algorithmically finding correspondences

between two vector sketches is an open problem that is one of the

main roadblocks on the way towards automatic cartoon inbetween-

ing, among other applications. Despite significant progress in frame

interpolation in the raster domain, the state-of-the-art methods for

vector drawing correspondences often rely on the two drawings

having the same topology and manually specified correspondences

[Whited et al. 2010] or consisting solely of closed regions [Zhu et al.

2016].

Table 1. For the drawings composed solely of clusters, our sketch shapes
very rarely separate adjacent strokes. To quantify that, we run our algorithm
with three parameter values: 𝛼 (the automatically computed value), 1.25𝛼

and 2𝛼 . We then segment these sketches into stroke clusters via StrokeAg-
gregator [Liu et al. 2018] and parameterize each cluster via StrokeStrip
[Van Mossel et al. 2021]. Finally, for the same parameter value, we compute
the percentage of pairs of points that get separated by our shape contours.
As seen from the table, those instances are very rare and diminish or disap-
pear with the increasing radius.

Input 𝛼 1.25𝛼 2𝛼

Muscular 0.1% 0% 0%

Dancer 0.2% 0% 0%

Koala 0.1% 0% 0%

Hand 0.9% 0.6% 0.6%

Toucan 0.1% 0% 0%

Bear 2.8% 0.1% 0%

Sparrow 0.8% 0.7% 0.4%

Snail 1.9% 1.7% 0.9%

Turtle 0.9% 0% 0%

Fish 0% 0% 0%

Average 0.8% 0.3% 0.2%

Table 2. Performance statistics for sketches. All other inputs take 2s or less
each.

n. of our

strokes time

Hummingbird 308 5s

Muscular 544 4s

A 231 4s

Dragon 822 16s

Witch 554 12s

Girl with a blanket 2920 114s

Boy with a dog 491 14s

Kettle 316 8s

Dirigible 816 10s

Human back 329 23s

Toucan 327 3s

Fox 292 7s

Rabbit 251 3s

Wizard 873 67s

Spiderman 692 27s

One of the exciting applications of our method is enabling state-

of-the-art methods for functional maps [Ovsjanikov et al. 2012]

between vector sketches of arbitrary topology. In our experiments,

we use a recent method by [Ren et al. 2021].

We note that the choice of 𝛼 values computed using our heuristic

in Sec. 4.3 is not specifically designed to facilitate the computation

of functional maps and thus leads to suboptimal maps. Our heuristic

serves more as a lower bound for a reasonable choice of 𝛼 . Instead,

for this application only, we perform a line search procedure, where

we sample the interval 𝐼 = [𝛼 ′, 2𝛼 ′], where 𝛼 ′ is the automatically

computed value. For each value of 𝛼 , we compute the two sketch

shapes with that value using our algorithm, and then compute the

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.
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Input Alpha Shapes Ours

Fig. 14. Compared with Alpha Shapes, our algorithm leverages the connec-
tivity of the input strokes to create tighter (23% less area on average) shapes
that better preserve sketch details (compare, e.g., faces of the characters).
Input drawings: Witch and girl ©David Revoy CC-BY-4.0, boy with a dog
©Cartoon Animation by Preston Blair (1994), Mission Viejo, CA: Walter
Foster Publishing [Yan et al. 2020].

functional map via the method of Ren et al. [2021] with their de-

fault parameters on the two triangulated sketch shapes. For each

functional map, we then compute the energy measuring the com-

mutativity of the Laplacian, as proposed by Ovsjanikov et al. [2012],

and minimize it over the parameter interval, solving

min

𝛼∈𝐼
𝐸 (𝛼) = min

𝛼∈𝐼
| |𝐶12Δ1 − Δ2𝐶12 | |2𝐹𝑟𝑜 , (1)

where𝐶12 is the resulting functional map, and Δ𝑖 is the Laplacian
matrix for the corresponding sketch shape, both functions of 𝛼 (we

omit the notation for brevity). We then choose the value of 𝛼 within

that interval with minimal energy.

This line search procedure is expensive, as it uses both our al-

gorithm and the functional map optimization many times, taking

from a couple of minutes on simple drawings (hummingbird, daisy,

bird, fox, bunny) to a few hours on the complex ones (witch, wizard,

spiderman).

Note also that in the energy (Eq. 1) we do not use the full energy

presented in Ovsjanikov et al. [2012] that involves a term measuring

the preservation of descriptors, as we found the standard descriptors,

such as wave kernel signature, unreliable in our context.

The results, where corresponding points are visualized with the

same color, are presented in Fig. 1 and Fig. 19. We can observe that

despite the two drawings having a different number of strokes and

vastly different topology, as well as shapes of the individual strokes,

their strategy finds robust correspondences. We hope this will be

used in future inbetweening systems for vector drawings.

(a) (b) (c)

Fig. 15. For sketches composed only of stroke clusters, our algorithm is com-
plementary to the stroke clustering algorithms, such as StrokeAggregator
[Liu et al. 2018]. For the input sketches (a), we compare our direct result (b)
with the result of our algorithm run on pre-clustered input (c). Pre-clustering
indeed makes our algorithm more precise in complex scenarios (cf. fingers
of the dancer), which may or may not be significant depending on the
application, but at a significant performance cost: For the dancer example,
our automatic result (b) takes 1.2s, while together with segmentation (c),
the running time increases to 146s. Koala image ©Enrique Rosales.

The tightness requirement (Sec. 3.1) is crucial for the quality

of functional maps. As we find functional maps between sketch

shapes that contain strokes, the tighter the sketch shape is, the less

of the function will be mapped outside the strokes. Simply put, a

Dirac delta centered at a point in the first sketch may map to a

function with a maximum outside the strokes in the second sketch,

albeit within the sketch shape. The tightness requirement effectively

minimizes this effect.

Please see Supplementary for the comparison of functional maps

on our sketch shapes with the ones computed on the 𝛼-shapes using

the same procedure. Note that the optimal radii for our algorithm

and for the 𝛼-shapes can be different.

Solving PDEs on Sketches. The domain our method extracts can

be directly used to solve partial differential equations (PDEs) on the

sketch shape. As an example, we solve the heat equation modeling

heat transfer from a single point source. The discretization of the

heat equation depends mainly on the discretization of the Laplacian

operator, which we define in Sec. 5. We compare it with the same

equation solved using a point cloud Laplacian operator discretization

from Sharp and Crane [2020], where we take all the samples of the

input strokes as a point cloud. We additionally compare it with the

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.
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Input StrokeAggregator+StrokeStrip Ours

Fig. 16. For an input sketch composed solely of clusters (bear, top), running
StrokeStrip [Van Mossel et al. 2021] on the output of StrokeAggregator [Liu
et al. 2018] can provide a similar shape (pink) to ours (blue). Unfortunately,
their shape does not contain the input drawing (blowup) and thus cannot
be used for our purposes. More importantly, their methods do not support
general sketches (witch, bottom); here, StrokeStrip fails, we only show the
output of StrokeAggregator, which also fails to produce a reasonable seg-
mentation. Our algorithm works on any input vector sketches (right). Witch
image ©David Revoy CC-BY-4.0 [Yan et al. 2020].

Input Crust Ours

Fig. 17. The classical algorithm by [Amenta et al. 1998] assumes points
are sampled from a 1-manifold. Generic sketches, however, do not satisfy
this requirement, making their algorithm fail on typical inputs. Our results
(right). Input drawings: Human back ©Anton Gulic, dirigible ©David Revoy
CC-BY-4.0 [Yan et al. 2020].

heat flow discretized on a pixel image obtained by rasterizing the

input vector drawing and dilating it with our 𝛼 radius. We use an

implicit time-stepping integration scheme for all these experiments

Input

2 /2

sampling/2 sampling   sampling2

Fig. 18. The only parameter of our algorithm, 𝛼 , controls the topology and
the geometry of the extracted sketch shape (top row, 𝛼 is the automatically
computed value). The algorithm is robust to changing the sampling of the
input sketch, only exhibiting minor differences. Toucan image ©Enrique
Rosales.

(Fig. 20). Note that our method successfully separates non-adjacent

parts of the drawing, allowing the heat to flow along the drawn

strokes; point cloud Laplacian and the bitmap (graph) Laplacian

ignore the stroke connectivity, leading to heat ‘leaking’ through the

empty space. For instance, point cloud Laplacian relies on k-nearest

neighbors instead as a proxy of adjacency. Please see Supplementary

materials for the heat flow on the complete domains.

Similarly, we can solve the Laplace equation with the given Dirich-

let boundary conditions to perform harmonic interpolation, as we

show in Fig. 21.

Sketch Deformation. Our method enables deforming rough vector

sketches via the standard deformation methods such as As-Rigid-As-

Possible (ARAP) [Sorkine and Alexa 2007] (Fig. 22). Similarly to the

previous setup, we apply ARAP to the triangulated domain, then

simply read off the transformations of the input samples, as they are

a subset of the mesh vertices. Depending on the desired deformation,

one may choose to either use the complete sketch shape or only

consider the exterior boundaries we extract (i.e., adding all the holes

back into the sketch shape), thus simply separating ‘background’

from ‘foreground’. The former strategy would allow deforming, for

instance, bunny’s nose (Fig. 22, left) separately from the rest of

its face; the latter would treat the bunny as a solid mesh without

holes and deform nose together with the rest of the body and face.

In Fig. 22, we mesh the sketch shape, taking all the extracted 𝛼-

contours into account.

8 CONCLUSIONS, LIMITATIONS, AND FUTURE WORK
We have presented Alpha Contours, the algorithm to approximate

the shape of a vector sketch, or its positive space. We have demon-

strated that this shape is essential to discretizing differential op-

erators on a sketch. Our algorithm allows us to use standard ge-

ometry processing algorithms based on those operators on vector

sketches, paving the way for more robust sketch correspondences,

deformation and animation systems, colorization, and many other

applications. Our algorithm is robust, efficient, easy to implement,

and is controlled by a single parameter 𝛼 .

We have defined the positive and negative space of a sketch in

a purely geometric manner (Sec. 3.2). It remains unclear whether
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Fig. 19. Our algorithm enables using prior work [Ren et al. 2021] to automatically compute functional maps between vector sketches. Note that despite visual
similarity, the sketches have different connectivity and number of strokes (see blow-ups). Input images: Spider-man ©Graham Wilson, witch ©David Revoy
CC-BY-4.0, wizard ©AP CC-BY-SA-3.0 [Yan et al. 2020].

our construction agrees with human perception or to which de-

gree human observers are consistent when interpreting positive

and negative spaces of a sketch. We leave careful analysis of this

phenomenon to future work.

Currently, we do not directly control the topology of our sketch

shapes, sometimes generating shapes with multiple connected com-

ponents (e.g., Fig. 18). While for many applications, that might be the

desired behavior, this makes the problem of sketch correspondence

(Sec. 7) harder, as it can lead to a discrete matching between discon-

nected pieces on two sketches. We leave addressing this limitation

to future work. Another limitation is that our algorithm may not

separate stroke endpoints that visually belong to different clusters

(Fig. 15b), in which case one may use our algorithm in conjunc-

tion with a stroke consolidation algorithm, improving the results

(Fig. 15c).

An exciting future research is investigating how the functional

maps can be used for a meaningful inbetweening for two sketches.
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A APPENDIX
Proof. (of Proposition 3.1)

By contradiction: Assume there is an empty face𝑅 of 𝑆 that intersects

with Ω, i.e.,𝑅∩Ω ≠ ∅. Then either𝑅 ⊆ Ω or𝑅 ⊊ Ω. By the definition
of an empty face in 𝑆 , there is an empty 𝛼-ball in 𝑅. If 𝑅 ⊆ Ω, this
𝛼-ball is a subset of Ω, which contradicts the sampling assumption

(i.e., the artist left a gap larger than 𝛼). Therefore, there is some

part of the boundary 𝛾 ⊆ 𝜕Ω that is in 𝑅. Clearly, this 𝛾 does not

contain a single point of the input strokes, since 𝛾 belongs to an

empty cell 𝑅. Therefore, 𝛾 must consist solely of the missing parts

of the boundary that the artist did not complete, so by the sampling

assumption, each connected component of 𝛾 must be contained in a

𝛼-ball. For some connected components of 𝛾 , let’s take its endpoints,

which will be the points of some input strokes, both outside 𝑅. Since

these two points are 𝛼-connected in Ω by construction, they are

also 𝛼-connected in 𝑆 , so there is a path between them in 𝑆 within

an 𝛼-ball. The Hausdorff distance between 𝛾 and that path inside 𝑆

is less or equal to 𝛼 . □
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