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Fig. 1. (Left) Our method recovers underlying spine and shoulder bone movements unobservable by standard motion capture systems. (Right) Our torso model
includes veterbrae bones, ligaments, facet joints and discs, scapula, clavicles, and a rib cage to generate physically and physiologically plausible movements.

Many existing digital human models approximate the human skeletal system
using rigid bodies connected by rotational joints. While the simplification
is considered acceptable for legs and arms, it significantly lacks fidelity to
model rich torso movements in common activities such as dancing, Yoga,
and various sports. Research from biomechanics provides more detailed
modeling for parts of the torso, but their models often operate in isolation
and are not fast and robust enough to support computationally heavy appli-
cations and large-scale data generation for full-body digital humans. This
paper proposes a new torso model that aims to achieve high fidelity both
in perception and in functionality, while being computationally feasible
for simulation and optimal control tasks. We build a detailed human torso
model consisting of various anatomical components, including facets, lig-
aments, and intervertebral discs, by coupling efficient finite-element and
rigid-body simulations. Given an existing motion capture sequence without
dense markers placed on the torso, our new model is able to recover the
underlying torso bone movements. Our method is remarkably robust that it
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can be used to automatically “retrofit” the entire Mixamo motion database of
highly diverse human motions without user intervention. We also show that
our model is computationally efficient for solving trajectory optimization of
highly dynamic full-body movements, without relying any reference motion.
Physiological validity of the model is validated against established literature.

CCS Concepts: • Computing methodologies → Animation; Physical
simulation.
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1 INTRODUCTION
Realistic modeling and simulation of human body movements have
a wide range of applications from entertainments to robotics to
medicine. Conventionally, human models used in computer graph-
ics focus on visual realism while those used in biomechanics focus
on anatomical realism. With recent advances in modeling, simula-
tion and generative models, digital humans that achieve both high
fidelity in perception and in functionality, while still robust and
computationally efficient, are closer to the horizon.
Human skeletal system is typically approximated as articulated

rigid bodies, with hinge or ball-and-socket joints connecting the
body segments. While the simplification can be acceptable for legs
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and arms, the human torso is significantly more complex. For exam-
ple, the vertebrae bones can rotate to provide spine flexibility and
can also translate to absorb compressive impact along the spinal col-
umn. Similarly, the shoulder complex manifests complicated range
of motion (RoM) governed by multiple non-linear inter-bone con-
straints. For visualizing and synthesizing upper-body-rich human
activities, such as gymnastics, dancing, and baseball pitching, us-
ing only rotational joints to model the human torso often leads to
laborious and ad-hoc tuning in order to achieve visual plausibility.

This paper takes a step toward building a biomechanically realistic
torso model that goes beyond the chain-of-rigid-bodies structure.
Instead of connected by joints, the vertebral bones of our spine
model are connected and regulated by discs, ligaments and facets,
wherewe simulate the elastic discswith finite-elementmethod based
on Projective Dynamics [Bouaziz et al. 2014], two-way coupled
with the bones, and simulate the ligaments and facets as non-linear
inequality constraints in an LCP (Linear Complementary Problem)
framework. Similarly, the movements of shoulder complex are also
subject to their own non-linear constraints. The interplay of all
elements collectively determines the RoM of the skeleton, as well as
its dynamic characteristics. Themodel parameters are systematically
adjusted such that the simulated torso can match the real human’s
RoM.

Our torso skeleton is kinematically and dynamically accurate and
easily swappable with the simplified torso of existing humanmodels.
We show that existing motion capture (moCap) data can be "retrofit"
to obtain realistic and detailed torso and shoulder bone movements
that match the movements of limbs in the moCap data. Because this
problem is inherently under determined, the dynamic constraints
imposed by our model are necessary for solving physically and
anatomically plausible torso motions. As such, our method can
serve as a principled tool to enrich motion capture data by adding
unobserved skeletal movements. We also show that our model is
computationally fast enough for optimal control with physics sim-
ulation. We optimize a sequence of control force from the torso
to produce plausible motions, without using any reference data.
In comparison to simplified torso, our model can generate more
momentum without anatomically implausible artifacts, achieving
more human-like movements.

We evaluate our model by reaffirming findings from biomechanics
literature, demonstrating the biological validity of our model and its
potentials to be used for biomedical analysis. The detailed analysis
shows that the RoM of our spine model is similar to those reported
in biomechanics literature. We also found that an emergent behavior
of our torso model consistent with the well-known Scapulohumeral
rhythm, a key signature movement of human shoulder complex.

2 RELATED WORK
Existing human models for character animation often depend on
arbitrary parameterization and manual rigging. Artists usually de-
sign human models to have sufficient degrees of freedom (Dofs) for
reconstructing captured human motions [Holden et al. 2017; Kovar
et al. 2008], but anatomically realistic range of motion and physi-
cal properties are rarely top priories. Automatic rigging methods
have been proposed to accelerate the manual process by learning

rig parameters from a collection of motion data [Hong et al. 2010;
Le and Deng 2014; Xu et al. 2020]. Our model can also be used as
an animation rig, but we differ from existing methods in that we
utilize biomechanics knowledge and physics simulation to synthe-
size additional details of the motion that cannot be observed by the
moCap device, rather than simply fitting to the observed signals
using arbitrarily parameterized rig.
Physics-based modeling of human body parts has been broadly

investigated in computer graphics, such as fingers [Sachdeva et al.
2015], face [Sifakis et al. 2005], hair [Selle et al. 2008], muscles [An-
gles et al. 2019], eyes [Nakada et al. 2018], jaws [Daumas et al. 2005],
skin [McAdams et al. 2011], and feet [Camacho et al. 2002]. For full
human skeletons, however, most existing methods adopt the struc-
ture of a rigid-body tree connected by standard hinge or ball-and-
socket joints, despite that rotation joints are known to be error-prone
for modeling certain human parts, such as the shoulder complex
[Maurel and Thalmann 2000]. The most closely related work is by
Lee and Terzopoulos [2006], who built a neck model connected with
vertebrae bones using ball-and-socket joints. In their work, pivot
points of each joint are carefully selected following biomechanics
literature [Kapandji 1974]. Lee and Terzopoulos [2008] also intro-
duce spline joints to model complex biomechnical joints such as the
scapulothoracic joints and the knee. Rotational spring-dampers are
designed to mimic the effect of intervertebrae discs. The same chain-
of-rigid-bodies framework is later extended to a full upper-body
model in [Lee et al. 2009], combined with finite-element-based mus-
cle and soft tissue modeling. Our model does not consider muscles.
We focus on detailed and realistic modeling of skeletal connections
between vertebrae bones, the rib cage, and the shoulder complex,
allowing more anatomically correct range of motion.
While our work focuses on the modeling of human, control is

also an inseparable component in physics-based animation [Peng
et al. 2018; Witkin and Kass 1988; Yin et al. 2007]. Multiple previous
studies have revealed that better modeling can lead to more effective
control. For instance, more humanlike behaviors were observed
when simulated muscles [Komura et al. 2000; Wang et al. 2012],
learned actuators [Jiang et al. 2019], or passive dynamics of joints
[Liu et al. 2005] were used. Our work also shows that a detailed spine
model enables natural torso motion to emerge with little tweaking
on the optimization cost function.
A rich body of work in biomechanics and medicine has been

focusing on modeling human spines. Gray and Norman [1990] pro-
pose a kinematic model of the human spine with all vertebral joint
movements having three axes of rotations. Panjabi and colleagues
[1976] modeled the discs as bushing elements between vertebrae
bones, parameterized as 6 by 6 stiffness matrices. Such bushing
elements have been extended to have non-linear stiffness to better
reflect the complex dynamics of intervertebrae discs, with parame-
ters identified from in-vitro experiments [Wang et al. 2020]. Dicko
and colleagues [2015] modelled discs using finite-element and liga-
ments as non-linear springs. However, their model was only used
for static spine pose analysis, possibly due to less stable dynam-
ics caused by springs. In general, robustness and computational
efficiency are the main reasons why most existing spine models
were rarely used beyond static pose equilibrium analysis [Ghezel-
bash et al. 2018; Wang et al. 2020]. Our model adopts a hybrid FEM

ACM Trans. Graph., Vol. 42, No. 4, Article 0. Publication date: August 2023.



Anatomically Detailed Simulation of Human Torso • 0:3

Fig. 2. Our torso model include verterbrae bones, discs, ligaments, facet
joints, a rib cage, and a clavicle and a scapula on each side of the shoulder
complex.

plus rigid approach, utilizing an efficient finite-element simulation
framework, coupled with efficient rigid-body simulation with robust
impulse-based constraint handling through LCP solvers, enabling
stable simulation of full-body motion even with large foot-ground
impact.
Human shoulder complex has also been studied extensively in

biomechanics, Seth and colleagues [2016] showed that analytic
modeling of the scapulothoracic joint improved the accuracy of
shoulder movement reconstruction. They used measured statistics
of the scapulothoracic joint movements gathered from in-vivo ex-
periments [McClure et al. 2001]. More realistic skeleton modeling
facilitated the construction of shoulder muscle models in their later
study [Seth et al. 2019]. Biomechanics researchers have also com-
bined spine and shoulder models in biomechanics simulators, e.g.
OpenSim [Delp et al. 2007], to study various activities. For example,
[Bruno et al. 2015; Senteler et al. 2016] studied spine load and re-
action forces during primitive motions such as bending and lifting
with weight, and [Cazzola et al. 2017] studied shoulder injury of
rugby players.

3 TORSO MODELING
We present a physics-based model for human torso that simulates
detailed human anatomy. Our torso model consists of bones, joints,
discs, ligaments, and facets. We include 23 vertebrae bones (from
sacrum to C3) assembling a spinal column, a rib cage, and a clavicle
and a scapula on each side of shoulder complex (See Figure 2). 20
ligaments and 44 facets are attached to the spine, and 23 vertebrae
discs are sandwiched between adjacent vertebrae bones. There are
28 additional costovertebral and costotransverse facets joints that
connect the rib cage to the thoracic bones. The collaboration of the

Fig. 3. We simulate intervertebral discs as deformable materials using finite
element method.

ligaments, the discs and the joints defines the passive dynamics of
our model as well as kinematic characteristics such as the range of
motion. Muscles are not included in our current model.
All the bones are modeled as rigid bodies with detailed geome-

tries used by anatomical modeling [Zygote [n. d.]]. The rib cage
is assumed to be a single rigid body as the movements of the ribs
are mostly associated with breathing. We use ball-and-socket joints
to connect the rib cage and the clavicle, and the clavicle and the
scapula. Between the vertebrae bones and between the rib cage and
the thoracic vertebrae, we connect them with placeholder 6-DoF
free joints, and the relative movements are instead constrained by
finite-element simulation of the discs and non-linear constraints
rising from ligaments and facets. The use of 6-DoF joints allows us
to still treat the torso as an articulated rigid-body tree with 𝒒 being
the state of the rigid-body in generalized coordinates, facilitating
incorporating existing frameworks for physics simulation. Two-way
weak coupling between the finite-element discs and the rigid-body
skeleton is discussed in Section 3.1 and 3.5.

3.1 Intervertebral Disc
Intervertebral discs are deformable materials attached in-between
adjacent vertebrae bones (See Figure 3). The elasticity of the discs
prevents the bones from colliding and rubbing against each other,
and absorbs and dissipates large compressive impacts on the spinal
column. Such a deformable body is often simulated using Finite
Element Method (FEM) which discretizes a body into a finite number
of elements such as tetrahedrons. The states of the disc at time 𝑡
can be represented by its nodal positions 𝒙𝑡 ∈ R3𝑘 , where 𝑘 is the
number of discretized vertices.
Following previous work, we adopt the standard implicit Euler

integration in its variational form [Gast et al. 2015; Martin et al.
2011], where at each time step 𝑡 , we solve an non-linear optimization
problem for the current state 𝒙𝑡 :

𝒙𝑡 = argmin
1

2ℎ2

𝑴 1
2 (𝒙𝑡 − 𝒙𝑡−1 − ℎ𝒗𝑡−1)

2
𝐹
+
∑︁
𝑖

𝑘𝑖𝐸𝑖 (𝒙𝑡 ). (1)

Here 𝑴 is the mass matrix and ℎ is timestep size. 𝒗𝑡 is obtained
through backward finite differencing of 𝒙𝑡 . By minimizing Equation
1, we essentially solve for 𝒙𝑡 that balances the change of momentum
and the forces expressed as the gradients of the potential energies 𝐸𝑖 ,

ACM Trans. Graph., Vol. 42, No. 4, Article 0. Publication date: August 2023.



0:4 • Seunghwan Lee, Yifeng Jiang, and C. Karen Liu

with scalar weights 𝑘𝑖 . For our case, 𝐸𝑖 include isotropic elasticity
[Chao et al. 2010] and volume preservation [Bouaziz et al. 2014] of
the disc.
The minimization problem can be solved by modified Newton’s

Method, but it is usually computationally expensive. This is because
Hessian ∇2𝐸𝑖 (𝒙) obtained through linearization changes at each
time step, preventing us from utilizing matrix factorization to accel-
erate. Facing this issue, Projective Dynamics [Bouaziz et al. 2014]
showed that certain types of energy functions can be solved much
more efficiently in an alternating "local-global" manner. Following
their framework, we define each 𝐸𝑖 as a minimization process:

𝐸𝑖 (𝒙) = min
𝒎𝑖 ∈C𝑖

1

2
| |𝑨𝑖𝒙 −𝒎𝑖 | |2, (2)

where the constraint manifold C𝑖 and coefficient matrix 𝑨𝑖 depend
on the specific energy term. Equation 2 solves for𝒎𝑖 , the projection
of 𝑨𝑖𝒙 onto C𝑖 . The projection error is then defined as the energy
𝐸𝑖 . Since each 𝐸𝑖 is independently computed without considering
other 𝐸𝑖 ’s, we call this step a “local” solve. A large class of FEM
energies can be written into this projection form. For instance, we
can cast the isotropic elasticity term as the distance from the current
deformation gradient to its closest projection on the SO(3) manifold
(isometry rotation with zero deformation), such that a rigid rotation
of the rest-pose tetrahedron will lead to zero elastic energy.

Once all 𝒎𝑖 ’s are obtained through local solves, we proceed with
the standard Newton steps (“global solve”). We plug in the solved
𝒎𝑖 in Equation 2 and express 𝐸𝑖 as a quadratic function in 𝒙 , where
the constant𝑨𝑖 enables acceleration using Cholesky decomposition.
In practice, since the discs are tightly attached to the bones with
negligible inertial effects comparing to the bones, we adopt a quasi-
static simplification, effectively forgoing the momentum term (ℎ →
∞) to improve simulation stability, similar to previous works [Lee
et al. 2018b]. As such, Equation 1 simplifies to: 𝑳𝒙𝑡 = 𝒅, where
𝑳 =

∑
𝑖 𝑘𝑖𝑨

T
𝑖
𝑨𝑖 and 𝒅 =

∑
𝑖 𝑨

T
𝑖
𝒎𝑖 .

An additional energy term 𝐸pos is needed to couple the vertebrae
bones and the discs. We compute a set of attached points between
the bone surface and the disc surface at the rest pose and enforce
the attachment via minimizing 𝐸pos = ∥𝒙B − 𝑷 (𝒒)∥2, where 𝑷 (𝒒)
evaluates attach points on the bone surface in the world frame
given the current state 𝒒, and 𝒙B are the boundary disc vertices in
the world frame. Note that we use the bone configuration 𝒒 from
the previous time step, resulting in a weak coupling between the
bones and the discs. 𝒇pos := −∇𝐸pos is therefore the coupling force
between finite-elements and rigid bodies (See Figure 3).

3.2 Ligament
A ligament is a spring-like fibrous connective tissue attached be-
tween bones. It regulates the relative movements among the bones,
keeping them stable. The anatomical functionality of each ligament
varies by attachment sites (termed origin and insertion). For example,
the intertransverse ligament is routed on the transverse process of
the vertebrae bone, and it mainly limits the opposite-side lateral
flexion of the spine (See Figure 4). We use piece-wise linear approx-
imations to represent the ligament and its geometry. Starting from
the origin of a ligament, we divide the ligament into multiple line

Fig. 4. Ligaments (red) and facet joints (blue). 𝒑+ and 𝒑− being waypoints
on the ligament’s routing from its origin on sacrum to insertion on neck. The
location on cartilage A where the facet resides is termed "inferior articular
process" and the counterpart on cartilage B is termed "superior articular
process".

segments, where each segment is expressed by 𝒑+ and 𝒑− defined
in the local coordinate of the associated bones respectively.
Each ligament is represented by a unilateral spring; it generates

contractile forces when the ligament is extended and zero force
when relaxed, a characteristic described by the Hill’s muscle model
[Zajac 1989]. According to the model, the force-length curve of
ligaments has two phases: tendon elongations below the thresholds
create negligible forces, while tendon elongations above a threshold
create exponentially growing forces. In practice, it is desirable to
avoid a large amount of contractile forces as it decreases simulation
stability. Hence we add inequality constraints (to be solved by a
stable LCP time-stepping scheme) in our simulation where they
preemptively bound the length of the ligament within a moderate
range:

𝐶ligament (𝒒) = ∥𝒑+ (𝒒) − 𝒑− (𝒒)∥2 ≤ 𝑙max, (3)
where 𝑙max is the maximum length that varies by each ligament
(see Section 3.6). Comparing with the Hill’s model, this modification
to inequality constraints (zero force below threshold and infinite-as-
needed beyond threshold) doesn’t change the biomechanical prop-
erty much. Note that one ligament will create multiple𝐶ligament (𝒒)
constraints with different 𝑙max for each segment. Section 3.6 will
describe how the ligament parameters are identified systematically.

3.3 Facet
The facets are located on the posterior side of the vertebrae bones,
as well as between the rib cage and thoracic vertebrae bones. They
are synovial joints consisting of two cartilages facing each other,
wrapped up by the joint capsules. One cartilage (A) slides on the
surface of the other cartilage (B) with near-frictionless movement
due to highly smooth surface and the existence of fluids (See Fig-
ure 4). Facet forms a closed-chain kinematics with the disc which
increases the stability and robustness of the spinal column against
excessive external perturbations. The surface geometry of the car-
tilage B determines the movements of the facet [Drake et al. 2009;
Williams et al. 2010]. As the cartilage is flat and oval-shaped, we
represent the surface geometry of cartilage B as a flat ellipsoid:

𝐶facet (𝒑) = | |𝑺−1𝑹T (𝒑 − 𝒑center) | |2 − 1, (4)
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Fig. 5. The anatomy of shoulder joint. We use ball-and-socket joints for
the sternoclavicular joint, acromioclavicular joint, and glenohumeral joint
(green). We utilize facet constraints to simulate the scapulothorcic joint
where the ellipsoid (blue) defines the surface of the rib cage whereas points
attached to the scapula (red) are moving on the ellipsoid.

where 𝑺 ∈ R3×3 is the diagonal matrix representing each axis scale,
𝑹 ∈ SO(3) is the rotation matrix where each column denotes the
axis of the ellipsoid, and 𝒑center is the center of the ellipsoid. Here,
the level-set 𝐶facet (𝒑) = 0 represents the surface where we would
like points on cartilage A to stay on. In other words, we need to select
three non-colinear points on A that are also on𝐶facet (𝒑) = 0 at the
rest configuration, and the constraint solver will then keep these
three "wheels" on B’s ellipsoid surface during the entire simulation.
In practice, we select four points instead of three to ensure numerical
robustness, and relax 𝐶facet (𝒑) = 0 to |𝐶facet (𝒑) | ≤ 0.2.

3.4 Shoulder
We also utilize the ellipsoid constraint used for facets to simulate the
shoulder movements (See Figure 5). The clavicles and the scapula
together determine the location and the orientation of the shoulder.
The joint of the clavicle is on the sternum (sternoclavicle joint)
and can be modeled by a rotational joint. The movement of the
scapula is much more complex and determined by both the acromio-
clavicle joint and the scapulothoracic joint. The scapulothoracic
joint represents the sliding of the scapula on the posterior of the rib
cage. It has been revealed in many studies (e.g. [Seth et al. 2016])
that the rib cage can be approximated by an ellipsoid on which the
scapula slide on. This movement is identical to the movement of
the facet joint so we add constraints between the rib cage and the
scapula to mimic the scapulothoracic joint anatomy. Unlike facets
joint, however, the ellipsoid constraints for the scapula will create a
close-chain kinematics.

3.5 Torso Dynamics
With finite-element simulation presented in Section 3.1, the equa-
tions of motions of our rigid skeleton model can be described by the
Lagrangian dynamics, where we solve for ¥𝒒 to drive the simulation

forward:

𝑴 (𝒒) ¥𝒒 + 𝒄 (𝒒, ¤𝒒) = 𝝉disc (𝒙B , 𝑷 (𝒒)) + 𝝉ext subject to (5)
𝑪ligament (𝒒) ≤ 𝒍max (6)
|𝑪facet (𝒑(𝒒)) | ≤ 0.2, (7)

where 𝒒 is the generalized positions,𝑴 (𝒒) is themassmatrix, 𝒄 (𝒒, ¤𝒒)
is the coriolis and gravitational forces,𝝉ext is the external forces, and
𝝉disc (𝒙B , 𝑷 (𝒒)) = −𝑱T𝒇pos is the sum of forces generated by the
disc attached to the bones via positional constraints 𝐸pos (𝒙B , 𝑷 (𝒒)).
𝑱 is the Jacobian matrix that maps the generalized coordinate to the
attachment (bone surface) points. Equation 6 and 7 are the ligament
constraints and facet joint constraints, respectively.

Algorithm 1 shows the process of forward dynamics of our model
for each time step 𝑡 , where we sequentially solve the FEM sim-
ulation and the articulated rigid body simulation. For FEM, we
iterate between solving the local projection for each constraint
(Equation 2) and linear solves for the Newton steps. Featherstone’s
algorithm [Featherstone 2014] is used to solve Equation 5 while the
constraints 6 and 7 are solved via impulse-space simulation which
yields a Linear Complementary Proplem (LCP) [Anitescu and Potra
1997]. We use Danzig’s LCP solver [Cottle et al. 2009] to compute
the lagrangian multipliers of the constraints which are eventually
used to modify the generalized velocities ¤𝒒𝑡+1 such that they will
not violate the constraints. Finally, the solved 𝒒𝑡+1 will be used for
the FEM simulation at next time step.

ALGORITHM 1: Torso Forward Dynamics
Input: Disc Positions 𝒙𝑡 , Joint Positions, Joint Velocities
𝒒𝑡 , ¤𝒒𝑡 , Bone Surface Locations 𝑷 (𝒒𝑡 ) 𝑳 =

∑
𝑖 𝑘𝑖𝑨

T
𝑖
𝑨𝑖

for 𝑙 = 0, 1, · · · , numFEMIterations do
𝒅 = 0
for 𝑖 = 0, 1, · · · , numFEMEnergies do

𝒎𝑖 = project(𝑨𝑖𝒙𝑡 , C𝑖 )
𝒅 = 𝒅 +𝑨T

𝑖
𝒎𝑖

end
𝒙𝑡 = 𝑳−1𝒅

end
𝜏disc = −𝑱T𝒇pos (𝒙𝑡B , 𝑷 (𝒒𝑡 ))
¥𝒒𝑡+1 = ForwardDynamics(𝜏ext, 𝜏disc, 𝒒𝑡 , ¤𝒒𝑡 )
¤𝒒𝑡+1 = integrateVelocities( ¥𝒒𝑡+1, ¤𝒒𝑡 )
¤𝒒𝑡+1 =

ResolveConstraintsByLCP( ¤𝒒𝑡+1,𝑪ligament (𝒒𝑡 ),𝑪facet (𝒒𝑡 ))
𝒒𝑡+1 = integratePositions( ¤𝒒𝑡+1, 𝒒𝑡 )
𝒙𝑡+1 = 𝒙𝑡

3.6 Parameters Identification
Ligaments. The maximum lengths 𝑙max of the the ligaments are

determined from biomechanics data of spine range of motion. For
each adjacent pairs of vertebrae bones, existing literature [Šavlovskis
and Raits [n. d.]] measured a few extreme relative orientations
(shown as cross symbols in Figure 6) that an average subject is
able to achieve. As shown in Figure 6, we gradually shorten 𝑙max

until it is no longer enough to realize all documented extreme poses.
At each shortening step, this check is done by running the simu-
lation for the bone pair with random actions. After all ligaments
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Fig. 6. The maximum ligament lengths are adjusted sequentially to match
the human’s range of motion. The cross symbols represented the extreme
relative orientations between two verterbrae bones known to biomechanics
literature. Ligament 1 is shortened until one of extreme poses is no longer
feasible, followed by the repeated operation for Ligament 2. Axial rotation
DoF not shown here for simplicity.

are "tightened", we will obtain a non-linear range of motion (the
yellow and red lines) that is strictly more flexible than the simplex
(green lines) of measured extreme poses. In practice, some of the
ligaments only affects one degree of freedom, and we shorten these
independent ligaments first. Though different orders of shortening
can lead to slightly different non-linear shapes of the RoM, they are
equally valid in the sense of matching all available measurement
data.

Facets. The location 𝒑center, orientation 𝑹 and dimension 𝑺 of
each facet ellipsoid are determined by annotating the bone geome-
tries. For each pair of the adjacent bones, we visually inspect and
manually annotate the positions of superior articular process and
inferior articular process with knowledge of anatomy. We determine
the parameters such that the ellipsoid contains all the vertices on
the superior articular process. We randomly select four non-colinear
points 𝒑 among the vertices on the inferior articular process. Note
that these four points are irrelevant to the shape of the facet ellipsoid
and thus do not affect RoM; they are only used to enable adjacent
bones to slide with each other. Therefore, randomly choosing four
non-colinear points is sufficient to guarantee sliding.

Discs. FEM parameters such as the Young’s modulus are tuned
manually for stable and visually plausible results. We leavematching
disc properties to the non-linear stiffness observed in measurement
data [Wang et al. 2020] to future work.

4 EXPERIMENTAL RESULTS
We evaluate our model based on three aspects. Realism: Can our
model generate detailed torso motions that are visually realistic
and consistent with the realistic human range of motion? Robust-
ness: Can we use our model as an automatic tool to robustly process
large-scalemotion datasets? Efficiency: Is ourmodel computationally
efficient enough for physics simulation and optimal control appli-
cations? We describe a few experiments to validate these aspects
below and provide a supplemental video for further evaluation.

4.1 Experiment setup
Our model includes 24 place-holder free joints and 17 ball-and-
socket joints, totaling 195 DoFs. We model an adult human with a

height of 170cm and a mass of 72kg. The mass of a bone is computed
by the bone density and the bounding box of the mesh while the
mass of some bones with concave shapes such as ribs, scapula, and
clavicle, is manually assigned. We apply joint limits to the stern-
oclavicular joint, the acromioclavicular joint, and the glenohumeral
joint [Magee 2013] while the other joints have no limits. We also
use passive spring-damper for all joints which increase simulation
stability as well as the robustness of retrofitting. We use a PD
controller for each DoF of our torso model.
Our model consists of 20 ligaments and 74 facets, including 44

facet joints, 28 costovertebral and costotransverse joints, and 2
scapulothoracic joints. Each ligament is modelled by a sequence
of line segments, each of which corresponds to each individual
constraint equation (6). This yields 440 tendon constraints on the
spinal column. We also sample four non-colinear points for each
facet. As a result, our rigid-body world is simulated by 680 con-
straints. Our rigid-body simulation is written in C++ building upon
the open-source library DART [Lee et al. 2018a]. We directly use
the LCP solver in the DART engine for body-ground contact. The
simulation runs at 600Hz for retrofitting and 1800Hz for trajectory
optimizations. Simulation runs 8 to 40 times slower than real-time
depending on configurations. We tetrahedralize the disc meshes
using TetWild [Hu et al. 2018]. Each disc consists of 127 to 285 nodal
vertices and 307 to 1090 tetrahedrons depending on its shape.

4.2 Motion Retrofitting
Our method provides a tool to estimate detailed movements of torso
bones unobserved by standard moCap devices. We apply our tool
to a large existing motion capture dataset, Mixamo, without user
intervention to demonstrate its robustness. We will host a large-
scale public dataset of motion capture data with enriched torso
movements.

Our tool takes as input a target motion on any rigged skeleton and
first retarget it to a temporary skeleton, followed by simulating the
detailed torsomovements on our detailed skeleton. In the retargeting
step, we utilize the IK-based retargeting algorithm provided by
MotionBuilderTM to match the limb and head movements of the
target motion on our temporary skeleton. The limbs and head of the
temporary skeleton are identical to those of the detailed skeleton, but
the torso is simplified to three ball joints, similar to many existing
human rigs used in computer animation. The temporary skeleton
has shoulders that include sternoclavicular and acromioclavicular
joints, as it needs to allow movements such as shoulder shrugging
and straightening. We set a wider range of motion for the temporary
torso so that the arms and the head can match the target motion
precisely.
For each frame, using the current positions of the temporary

skeleton, we set the positions of humerus, femur, and head bones
as positional constraints and run our torso dynamics (Section 3.5)
until convergence to a static equilibrium. The dynamic simulation
is necessary because there are far more degrees of freedom on the
torso then the constraints. In our experiments, we simulate the
torso dynamics for 0.5𝑠 for most examples, while for some motions
containing excessive bending we simulate the dynamics for 1𝑠 .
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We retrofit 1293 motion clips from Mixamo dataset including
assorted dance moves, martial arts, baseball, jumping, walking, run-
ning etc. The dataset contains motion clips ranging from 1 to 44
seconds long, totaling an hour and 18 minutes of high quality mo-
tion data. Motion retrofitting takes 20 hours with AMD Ryzen 9
5950X. We accelerate the process with 16 parallel cores. A few rep-
resentative motions can be found in the supplemental video.

4.3 Trajectory Optimization
We evaluate our torso model by solving trajectory optimization
problems to simulate highly dynamic motions, i.e. jumping and
swinging. The optimizer solves for a control trajectory to optimize
the performance of a physically simulated motion sequence. Since
the main goal of this experiment is to validate that the large number
of DoFs does not prohibit physics simulation or optimal control in
terms of efficiency, and motion naturalness is secondary, we use
a very simple cost function, such as jumping as high as possible,
with little regularization or tuning and without any use of human
motion data.
We adopt a standard stochastic trajectory optimization frame-

work MPPI [Williams et al. 2017], a shooting-based gradient-free
algorithm for solving open-loop control sequences. Given a con-
stant initial state 𝒒0, ¤𝒒0, and a transition function defined by a
physics simulator 𝒒𝑡 = 𝐹 (𝒒𝑡−1, 𝒂𝑡−1) with any action space 𝒂, MPPI
solves for (𝒂0, · · · , 𝒂𝑁−1) such that the total optimal control cost∑𝑁
𝑡=0 𝑐 (𝒒𝑡 , ¤𝒒𝑡 ) of the simulated trajectory (𝒒0, 𝒒1, · · · , 𝒒𝑁 ) is min-

imized. We additionally compare motions solved by our model to
those from a fixed-torso model. Optimization takes around 30 MPPI
iterations for both our model and the fixed-torso model, though
our model has a much larger action space. For our model MPPI
optimizations take around 6 hours each with 6 CPU cores, and the
rigid-torso model is around 60x faster.

4.3.1 Falling Test. Before running optimization, we make sure that
when combining our model with an existing full-body skeleton, the
combined model will be robust enough to interact with the environ-
ment and execute random control sequences commanded by MPPI
during optimization. For this we drop our character from 2 meter
high to the floor with small random controls commanded. As shown
in the supplemental video, our model can handle discontinuous,
large contact impact without issues. Interestingly, even without any
optimization, our model already generates a more humanlike falling
motion upon touching the ground, comparing with the fixed-torso
model.

4.3.2 Swing. In this task, the character attempts to swing on a
horizontal bar from zero velocity. The objective is to maximize the
product of horizontal and vertical speeds at the final frame of the
trajectory, such that the character would travel the longest distance
after releasing the bar:

− ¤𝑞𝑦,𝑁 · ¤𝑞𝑧,𝑁 +
𝑁∑︁
𝑡=0

0.1𝑞2𝑥,𝑡 , (8)

where 𝑞𝑥,𝑡 , 𝑞𝑦,𝑡 , 𝑞𝑧,𝑡 are respectively the 𝑥,𝑦, 𝑧 components of the
center of mass of the character at time step 𝑡 . The second term
penalizes deviation from the sagittal plane:

Fig. 7. The ranges of motion of the vertebrae bones. (red) Real human RoM
of each bone. (blue) RoM measured by our model.

The action space at each control step is the change of PD targets
of relative bone orientations. While this action space is largely re-
dundant compared with the real human musculoskeletal system
which uses about 30 muscles to actuate the spine, we did not find
MPPI having practical difficulty converging to a solution, nor did
we find unnatural spine poses exhibted in the solution (except the
task-irrelevant neck bones tends to be moderately jittery). We hy-
pothesize that the coupling of discs, ligaments and facets in our
spine model effectively restrict the search space of MPPI to a biome-
chanically realistic state-action space. On the other hand, the fixed
spine character which uses only torso DoFs to swing demonstrates
unsmooth and suboptimal behaviors, potentially due to its inability
to utilize the spine to store and release potential energy.

4.3.3 Jumping. The cost function tasks the character to jump as
high as possible, with a small regularization term discouraging
deviation from the vertical (𝑦) direction:

− sign( ¤𝑞𝑦,𝑁 )
¤𝑞2
𝑦,𝑁

2𝑔
− 𝑞𝑦,𝑁 +

𝑁∑︁
𝑡=0

0.001(𝑞2𝑥,𝑡 + 𝑞2𝑧,𝑡 ). (9)

For the jumping task, the action space for both our model and the
fixed-torso model additionally include the knee and ankle DoFs. The
difference between motions solved with two models are more subtle
for this task, as excepted since spine mainly performs a balancing
and buffering role in jumping. Nevertheless, the motion simulated
by our torso model exhibits a propagation of acceleration due to the
ground reaction force from the lower limbs through the spine, while
the motion simulated by the fixed-torso model only uses ankles to
exert large torque, resulting in more robot-like motion.

4.4 Comparisons with Real Human Data
4.4.1 Range of Motion. An effective validation of our model is to
compare the range of motion (RoM) of each vertebrae bone in the
simulatedmotion against real human RoM recorded in biomechanics
literature. Because we do not explicitly “set” joint limits for our torso
model, the resulting RoM is an emergent quantity from the complex
interplay of physical and geometry properties of discs, ligaments,
and facet joints.
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Fig. 8. Scapulohumeral rhythm. A unique phenomenon observed when
humans rotate the upper arm latterally. The scapula elevation and humerus
abduction maintains a fixed ratio after threshold configuration is reached.
Our model (movement trajectory in black curve) is able to reproduce this
phenomenon (shown in red curve).

We compare the range of motion of each bone with established
biomechanics literature [Anderst et al. 2015; Bhalla and Simmons
1969; Fujii et al. 2007]. The RoM of existing real human data is highly
variant by subject’s age, sex, and physical capability. We compare
the RoM of our model with the average of existing data shown in red
line in Figure 7). For each vertebrae bone, we measure the maximum
and the minimum angle along anatomical axes (Flexion-Extension,
Axial rotation and Lateral bending) to identify the RoM. The ranges
of axial rotation and lateral bending are divided by half as they are
symmetric. The RoM of our model is measured by the minimum and
maximum angles (5% outliers are removed) among all retrofitted
sequences of the Mixamo dataset.
We observe that most verterbrae bones have similar RoMs com-

pared to the biomechanics literature. There are still a few noticeable
differences. For flexion-extension, the real human has a wider RoM
on L1 and L2 while our model has a wider RoM on upper thoracic
region. We suspect that the maximum length of ligaments we identi-
fied might be larger than the real human statistics due to our overly
conservative algorithm. As a result, bending upper thoracic region
is sufficient to match the positional constraints. We also observe a
peak on C7 especially in axial rotation. We suspect that the locations
and the shapes of the costovertebral joints and the costotransverse
joints overly constrain the thoracic bones, and thus C7 has to be
more flexible to compensate the narrowed RoM on the thoracic
bones.

4.4.2 Scapulohumeral Rhythm. Scapulohumeral rhythm is one of
the signature features observed from human shoulder movements
[Rockwood 2009]. It describes the relation between scapula elevation
and humerus abduction. When a healthy subject laterally rotates
the upper arm on the coronal plane, the glenohumeral joint (GH)
and the scapulothoracic joint (ST) both contribute to the rotation
(See Figure 8). The lateral rotation begins with the first phase called
setting phase where the rotation is almost purely done by the GH
joint while the ST joint remains relatively unchanged. If the rotation
continues beyond a threshold (around 30 degrees), both GH and

Fig. 9. Pressure Load on L5-L4 Disc.

ST joints start to rotate at a 1-to-2 ratio. This unique phenomenon
emerges in our simulatedmotion from using sliding facet constraints
between the scapula and the rib cage.

4.4.3 Pressure Load on Disc. Existing biomechanics literature pri-
marily focuses on spine and shoulder geometry and kinematics, such
as lordosis (spine curvature), RoM, and Scapulohumeral Rhythm,
while studies examining spine dynamics are less common due to
the challenges of conducting in-vivo experiments. Among studies
that measure dynamical properties, researchers often perform quasi-
static analyses, such as assessing pressure loads on intervertebral
discs. In [Wilke et al. 1999], the authors implanted a transducer with
a pressure sensor into the L4-L5 disc, measuring loads during every-
day tasks like standing, sitting, and holding objects. One experiment
revealed a 0.5 MPa pressure during standing, which increased to
1.1 MPa when holding a 20 kg box and further to 1.8 MPa when
holding the box 60 cm from the chest (See Figure 9).

To benchmark our model against their data, we compute pressure
load by calculating elastic forces at the disc surface and dividing by
the area attached to the bone (14.4 cm2). Using a PD controller, we
emulate a pose holding a box with feet welded to the ground, allow-
ing the character to hold the box without learning or optimizing
motion control. Our experiment demonstrates similar pressure for
the standing task and an increase when holding a box, albeit less
than the clinical data, possibly due to the PD controller’s high gain.
Holding a box should cause spinal bending and both rotational and
translational deformation of discs, but the high gain results in negli-
gible rotational disc deformation. Translational DoFs between bones
are not controlled by PD (to prevent the spine from moving freely
with magic forces) and are solely influenced by the translational
disc deformation, which correctly increases during box carrying.

4.5 Ablations
In this section, we conduct ablation studies to demonstrate the roles
of intervertebral discs and ligaments in our torso simulation model.

4.5.1 Disc. The intervertebral discs play a critical role in prevent-
ing vertebral discs from colliding and rubbing against each other.
When we remove the discs during motion retrofitting, we observe a
significant increase in bone-to-bone collisions. To quantify the im-
pact of the discs, we measure bone-to-bone displacements relative to
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Fig. 10. Bone-to-bone displacements and collision incidence rate during
motion retrofitting.

Fig. 11. (left) We visualize distributions of flexion-extension angle of L5
during retrofitting themotions in theMixamo dataset. (right)We accumulate
the flexion-extension angles among lumbar bones during 65𝑜 flexion.

rest-pose displacements and count the frames with collisions during
retro-fitting, with and without the discs (See Figure 10). We approx-
imate each vertebral bone as a cylinder to prevent the posterior side
of bone (linked with the facets) from dominantly affecting distance
measurements. We use mesh-to-cylinder distances to measure the
displacements and compute the average and standard deviation
(error bars) of the displacements across all motion frames in the
dataset.

We observe that without the discs, the displacements at the lum-
bar bones are below 0 cm due to gravity, meaning that the distances
between the bones are narrow. As a result, the bones collide with
each other frequently at the incidence rate of 8.0% and 14.1% for L5
and L4 respectively during motion retrofitting. We also observe high
collision rates among the upper thoracic bones, which are closer to
each other at rest comparing to bones in other sections of the spine.
With discs modeled (red in figure), collision rates are close to zero.

4.5.2 Ligament. In addition, we also study the impact of ligaments.
Removing the ligaments results in a unrealistically wider range
of motion (RoM) than that of a real human spine (See Figure 11).
Without the ligaments, the L5 exhibits a large flexion-extension
angle ranging from −30𝑜 to 60𝑜 . When retrofitting the spine to the
existing motions, our method tends to find extreme solution where
only L5 rotates to fit the motion while other vertebral bones remain
in the rest pose (See Figure 11 Right). This experiment shows that
the ligaments with identified parameters provide accurate RoM,
significantly improving our simulation model in producing more
human-like results.

5 DISCUSSION
This paper introduces a novel human torso model featuring key
anatomical elements from the spine and the shoulder complex. We
show that our model is robust enough to retrofit a large and diverse
motion database, and to be readily incorporated into existing full-
body skeletons to simulate highly dynamic movements. We further
partially validate that the statistics of our model is consistent with
the human data from biomechanics literature. While there has been
some attempts from the biomechanics community to build similarly
detailed spine or shoulder models, we demonstrate in this work that
tools, algorithms, and implementation know-hows that continue
to mature in Computer Graphics can make anatomically realistic
human models robust and efficient for computationally-heavy ap-
plications, accelerating wide adoption of these models.

Our current implementation has a few limitations. First, we have
yet to model muscles on the torso which drive the spine and the
shoulder. Our detailed skeletal model should help the development
of an accurate torso muscle model. Second, passive dynamics of the
joints and the discs, such as spring-damping coefficients and Poisson
ratio, are tunedmanually.Whilemeasurement of dynamic properties
of human skeleton is much less available compared with kinematics,
our future work would include matching passive dynamics of our
model to experiment data. Third, our current retrofitting is solved
frame-by-frame and can lack temporal smoothness in some cases.
Optimizing over a time window, or better initialization scheme
would improve the quality of retrofitting.

Perhaps the most exciting application domain enabled by our
model lies in medicine and healthcare. The proposed computer
graphics techniques have the potential to contribute to the develop-
ment of noninvasive diagnostic tools for analyzing and predicting
internal spinal conditions during daily activities. For instance, back
pain, a prevalent medical issue affecting 80% of individuals at some
point in their lives, is often caused by slipped (herniated) discs that
impinge on the spinal nerve cord. The depth of this impingement af-
fects the severity of pain and varies with different poses. Our model
could simulate such protrusions and anticipate how various full-
body poses during a gait cycle influence the depth of impingement.
Furthermore, incorrect squatting posture during strength training,
leading to an improperly bent spine, can increase pressure on the
spinal column. Our method may be capable of reproducing these
phenomena and predicting the optimal squat position to minimize
spinal load. Considering the wide variability in torso RoM due to
factors like age, sex, and physical ability, personalizing our model for
medical applications presents another promising future direction.
Our framework also holds promise for enhancing computer an-

imation applications. Existing skinning techniques such as linear
blend skinning and dual quaternion skinning can be readily inte-
grate to our model. In addition, by accounting for detailed bone
meshes, our spine model can enable novel skinning techniques to
visualize the outlines of scapular and vertebral protrusions com-
monly seen in actual human skin. Our model can thus serve as the
foundation for a novel skinning pipeline. Additionally, adapting
our spine model to quadruped animals, such as cats, may lead to
improvements in the realism of animated quadruped motion.
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